EP4242375A1 - Verfahren zum betreiben einer stopfmaschine und stopfmaschine - Google Patents

Verfahren zum betreiben einer stopfmaschine und stopfmaschine Download PDF

Info

Publication number
EP4242375A1
EP4242375A1 EP23156452.7A EP23156452A EP4242375A1 EP 4242375 A1 EP4242375 A1 EP 4242375A1 EP 23156452 A EP23156452 A EP 23156452A EP 4242375 A1 EP4242375 A1 EP 4242375A1
Authority
EP
European Patent Office
Prior art keywords
tamping
unit
lifting
hydraulic
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP23156452.7A
Other languages
English (en)
French (fr)
Other versions
EP4242375B1 (de
Inventor
Ronald Steiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Original Assignee
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasser und Theurer Export Von Bahnbaumaschinen GmbH filed Critical Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Publication of EP4242375A1 publication Critical patent/EP4242375A1/de
Application granted granted Critical
Publication of EP4242375B1 publication Critical patent/EP4242375B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/13Packing sleepers, with or without concurrent work on the track
    • E01B27/16Sleeper-tamping machines
    • E01B27/17Sleeper-tamping machines combined with means for lifting, levelling or slewing the track

Definitions

  • the invention relates to a method for tamping a track, which has a track grate stored in a ballast bed made of sleepers and rails fastened thereon, the track being driven on with a tamping machine comprising a lifting/straightening unit and a tamping unit, the track grate being moved during a tamping cycle by means of of the lifting/straightening unit is lifted into a target position and at least one threshold is tamped using the tamping unit.
  • the invention also relates to a tamping machine for carrying out the method.
  • Tamping machines have been known for a long time and are used to produce or repair a predetermined track position of a track grate stored in a ballast bed.
  • the track is driven over with the tamping machine, with a lifting/straightening unit lifting a section of track grate located between two rail carriages.
  • the lifting and lateral alignment of the track grate is recorded using the machine's own measuring system.
  • the raised and straightened track grate is fixed using a tamping unit.
  • Both the lifting/straightening unit and the tamping unit usually include hydraulic drives. These drives are controlled using a machine control.
  • the procedural steps for tamping a track take place in a fixed order.
  • the tamping machine with the tamping unit is positioned above the threshold to be tamped.
  • the track grate is then lifted using the lifting/straightening unit and straightened to the side.
  • the new track position is fixed using the tamping unit.
  • tamping picks subjected to vibration are immersed in the ballast bed on both sides of a threshold. With a The tamping picks opposite the sleeper are moved towards each other when the tamping pick is moved towards each other, whereby gravel is pushed under the raised sleeper.
  • a disadvantage of the known method can be an uneven temporal distribution of the energy required to carry out a stuffing cycle.
  • the invention is based on the object of improving a method of the type mentioned in such a way that an efficient energy supply is made possible for the lifting process and the stuffing process.
  • a corresponding tamping machine should also be specified.
  • tamping picks of the tamping unit subjected to vibration are lowered into the ballast bed before the track grate is lifted, with the tamping picks being placed next to each other with the track grate raised after the lifting has been carried out using the lifting/straightening unit.
  • the energy-consuming vibration of the tamping picks is divided into two phases, with the lifting and straightening of the track grate taking place in between.
  • an electric or hydraulic vibration drive an electric or hydraulic accumulator can be recharged during the lifting/straightening process. In this way, a limited capacity of the accumulator or an electrical or hydraulic supply system can be optimized.
  • This process is particularly advantageous for existing tamping machines that are retrofitted with a more powerful tamping unit. This results in higher power peaks during a tamping process, but the time intervals between them are extended due to the new sequence of immersion process, lifting process and setting process. This leaves more time to install an electric or hydraulic accumulator using an existing power source - for example, an internal combustion engine - to be refilled before the next power peak occurs.
  • the tamping unit and the lifting/straightening unit are controlled to carry out movement processes by means of a common machine control, with movement processes carried out by the tamping unit and the lifting/straightening unit being reported back to the machine control using sensors.
  • the feedback from each movement execution ensures that there are no time overlaps in the specified sequence of actions, which could lead to undesirable performance peaks.
  • the vibration of the tamping picks is switched off while the track grate is being lifted. Switching off the vibration is possible in particular with fully hydraulic tamping units, according to the information in the AT 500972 B1 .
  • the vibration drive is not completely switched off, but rather the eccentricity is set to zero. The rotary drive is idle during this time.
  • hydraulic drives of the tamping unit and the lifting/straightening unit are supplied by means of a common hydraulic system or by means of a respective hydraulic system, with at least one hydraulic system state variable being monitored by means of a sensor and the movement sequences of the tamping unit and/or the lifting unit being monitored by means of the machine control.
  • / straightening unit can be specified depending on the monitored hydraulic system status variable.
  • the suspension of the vibration is also considered a pause in movement of the tamping unit. In this way, for example, a drop in hydraulic pressure below a predetermined threshold is avoided, which ensures continuous process reliability.
  • Hydraulic fluid is advantageously stored in a hydraulic accumulator, with the lifting/straightening unit and/or the tamping unit being controlled depending on a monitored filling state of the hydraulic accumulator.
  • the avoidance of load peaks according to the invention is taken into account. This reduces the space required and the load on the corresponding hydraulic system.
  • Appropriate monitoring makes sense both for a common hydraulic system and for two separate hydraulic systems that are powered by a common power source.
  • the power source is coupled to a hydraulic pump of the respective hydraulic system.
  • a first hydraulic system supplies the lifting/straightening unit and a second hydraulic system supplies the tamping unit.
  • a respective hydraulic accumulator is arranged in both hydraulic systems, with the hydraulic accumulators being filled with a time delay using the common power source via the assigned hydraulic pumps.
  • the tamping picks are subjected to vibration by means of an electric drive, with electrical energy being stored in an electrical storage device to supply the electric drive.
  • the units of the tamping machine are operated with the optimal drive type.
  • Rotary vibration drives are designed as electric motors. Hydraulic cylinders are used to generate lifting and positioning forces, particularly for so-called asynchronous constant pressure tamping.
  • the tamping machine according to the invention for tamping a track comprises a machine frame that can be moved on rail chassis, on which a lifting/straightening unit and a tamping unit are arranged, and a machine control for generating control signals, the machine control being set up to carry out one of the methods described above.
  • a control program is therefore installed in the machine control, by means of which the tamping unit is first activated during a tamping cycle. As a result, the tamping picks first dip into the ballast bed and then the lifting/straightening unit activated. The tamping picks are ordered when the track grate is raised and aligned.
  • an energy supply system with a storage device is arranged, with a monitoring signal from the storage device being fed to the machine control.
  • the activation sequence of the units specified by the machine control can be adapted to the current memory state. This ensures that there is always enough energy available to carry out the next process step.
  • the tamping unit for generating vibrations includes an eccentric drive with adjustable eccentricity.
  • a vibration amplitude is maintained even with high resistances in the ballast bed.
  • the adjustability of the eccentricity means that a vibration break with low energy consumption is possible at any time.
  • the tamping unit includes a hydraulic cylinder for generating vibration.
  • existing additional cylinders are also used to generate vibrations. High energy consumption during vibration generation is compensated for by switching off the vibration during the lifting/straightening process.
  • tamping machine 1 shown comprises a machine frame 2, which can be moved on a track 4 supported on rail chassis 3.
  • the track 4 has a track grid 7 formed from sleepers 5 and rails 6 fastened thereon, which is stored in a ballast bed 8.
  • a lifting/straightening unit 9 and a tamping unit 10 are arranged on the machine frame 2 of the tamping machine 1. If necessary, an additional lifting device 11 serves as an extension of the lifting/straightening unit 9 for lifting a branching strand in a switch.
  • the lifting of a track section or a switch by the lifting/straightening unit 9 takes place in relation to a machine-specific measuring system 12.
  • this measuring system 12 comprises several wire chords 13 which are tensioned between measuring wheel axles 14 guided on the track 4.
  • the height of the track grate 7 in the area of the lifting/straightening unit 9 is recorded by means of a measuring sensor 15.
  • a further measuring wheel axle 14 is arranged, with which distance changes of the rails 6 relative to the wire chords 13 serving as reference elements are determined via linkage.
  • measuring systems 12 can also be used for the present method, in particular optical measuring systems that have optical measuring chords and camera systems with pattern recognition.
  • the measuring transmitter 15 includes, for example, an image sensor for evaluating optical signals.
  • the lateral position of the track grate 7 is also recorded relative to the respective reference system.
  • a machine control 16 is provided to control the lifting/straightening unit 9 and the tamping unit 10. This controls, for example, proportional valves that are assigned to hydraulic lifting drives 17 and straightening drives 18 of the lifting/straightening unit 9.
  • a control circuit is set up to lift and laterally straighten a section of track or a switch. The system consisting of track 4 or switch and the lifting arrangement forms a controlled system on which various disturbance variables can affect.
  • the tamping unit 10 includes a hydraulic height actuator 19, by means of which a tool carrier 20 with tamping tools attached to it can be adjusted in height. At the lower end of the tamping tools, tamping picks 21 are arranged, which dip into the ballast bed 8 between the sleepers 5 when the tool carrier 20 is lowered. The upper ends of the stuffing tools are connected to hydraulic auxiliary drives 22. Extending piston rods of these additional drives 22 cause an additional movement of the tamping picks 21.
  • the additional drives 22 are additionally set up to generate vibrations.
  • a piston-side pressure chamber and a rod-side pressure chamber are alternately subjected to increased pressure. The vibration movement generated in this way can be superimposed on the setting movement.
  • a preferred variant includes its own vibration drive 23, to which the additional drives 22 are connected.
  • the vibration drive 23 includes an eccentric shaft with adjustable eccentricities.
  • the auxiliary drive 22, each connected to an eccentric section, is caused to vibrate when the eccentric shaft rotates. This vibration is transmitted via the additional drive 22 to the associated tamping pick 21.
  • the eccentricities are set to zero, a rotary drive runs idle and no vibrations act on the additional drives 22.
  • the individual drives 17, 18, 19, 22, 23 are activated in such a way that no power peaks with particularly high energy consumption occur.
  • the focus is on two process steps, during which the tamping picks 21 are both subjected to vibration and moved in the ballast bed 8. This is the dipping process and the setting process. A pause is provided between these two particularly high-performance processes.
  • a hydraulic vibration drive 23 requires high flow rates of hydraulic fluid, which can lead to a rapid pressure drop in a hydraulic system 24.
  • the duration of the pause is used to lift and straighten the track grate 7. In this way, the total duration of a tamping cycle remains approximately unchanged compared to a known sequence of movements.
  • the energy supply system in Fig. 1 includes a common hydraulic system 24, with which both the lifting/straightening unit 9 and the tamping unit 10 are supplied.
  • the variant in Fig. 2 includes two separate hydraulic systems 24, which are coupled to a common drive motor 27 via hydraulic pumps 25 and a pump distribution gear 26.
  • a hydraulic system 24 An electrical power system or a hybrid system works in a similar way.
  • the hydraulic pump 25 builds up an operating pressure in the hydraulic system 24, which is maintained by means of a hydraulic accumulator 28 (accumulator).
  • accumulator a hydraulic accumulator 28
  • an electrical energy storage device may be arranged.
  • the drives 17, 18, 19, 22, 23 of the lifting/straightening unit 9 and the tamping unit 10 are connected to the hydraulic system.
  • the hydraulic fluid flowing out of the drives 17, 18, 19, 22, 23 is filtered in a hydraulic tank 29 and fed again to the hydraulic pump 25.
  • the activation of the vibration drive 23 leads to a high flow of hydraulic fluid because a vibration amplitude (a few millimeters) with a high vibration frequency (35Hz to 45Hz) is to be maintained. This is particularly true for combined hydraulic drives that generate both the vibration and the setting movement in the respective setting hydraulic cylinder 22.
  • the vibration exposure therefore leads to an increased load on the hydraulic system 24, with a pressure drop in the hydraulic accumulator 28 being particularly problematic.
  • the lowering, lifting, straightening and setting movements of the corresponding hydraulic drives 17, 18, 19, 22 cause a low flow of hydraulic fluid because the travel per unit of time is smaller compared to the vibration movement.
  • the lowering, lifting, straightening and setting movements therefore do not lead to a rapid drop in pressure in the hydraulic system 24.
  • a sensor 30 is arranged, for example in the hydraulic accumulator 28.
  • At least the hydraulic accumulator 28 assigned to the tamping unit 10 is monitored.
  • a measurement signal from the sensor 30 is fed to the machine control 16.
  • the drive motor 27 and the respective hydraulic pump 25 are continuously operated in an optimal performance range, with power peaks of the units 9, 10 being covered by means of the common or the respective hydraulic accumulator 28.
  • the flow rate of the respective hydraulic pump 25 remains essentially constant.
  • the goal is a balanced energy balance over the duration of a tamping process.
  • the respective tamping process begins with the positioning of the tamping unit 10 above the threshold 5 to be tamped. According to the invention, the tool carrier 20 with the tamping tools is lowered in the next step.
  • the associated hydraulic accumulator 28 empties because the hydraulic fluid consumption of the vibration generation exceeds the flow rate of the hydraulic pump 25.
  • the tamping unit 10 pauses and the track grate 7 is lifted using the lifting/straightening unit 9 and directed laterally.
  • a filling process takes place because the hydraulic fluid consumption of the lifting and straightening drives 17, 18 is below the flow rate of the hydraulic pump 25 ( Fig. 2 ).
  • the hydraulic accumulator 28, which is assigned to the paused tamping unit 10, is filled anyway ( Fig. 3 ).
  • a filling quantity of the respective hydraulic accumulator 28 or a current system pressure is compared with a threshold value stored in the machine control 16. In this way, the tamping unit 10 is only activated when the stored energy is sufficient for the subsequent feeding process.
  • the hydraulic accumulator 28 empties again due to the vibration of the tamping pick 21. However, due to the pause between the immersion process and the setting process, it is ensured that the supply through the hydraulic system 24 is maintained throughout.
  • An electrical energy supply system includes an electrical storage device that is continuously charged. During an immersion process of the vibrating tamping picks 21, more energy is consumed than is supplied. The electrical storage is charged during the lifting and straightening process, so that sufficient energy is available again for the vibration application during the subsequent setting process.
  • the units 9, 10 of the tamping machine 1 are equipped with movement or position sensors 31. Using these sensors 31, the current position of rolling tongs or lifting hooks of the lifting/straightening unit 9 as well as the stuffing tools are reported to the machine control 16. This means that the individual movement processes can be optimally coordinated with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

Verfahren zum Stopfen eines Gleises (4), das einen in einem Schotterbett (8) gelagerten Gleisrost (7) aus Schwellen (5) und darauf befestigten Schienen (6) aufweist, wobei das Gleis (4) mit einer ein Hebe-/Richtaggregat (9) und ein Stopfaggregat (10) umfassenden Stopfmaschine (1) befahren wird, wobei während eines Stopfzyklus der Gleisrost (7) mittels des Hebe-/Richtaggregats (9) in eine Soll-Lage gehoben wird und wobei zumindest eine Schwelle (5) mittels des Stopfaggregats (10) unterstopft wird. Dabei werden mit Vibration beaufschlagte Stopfpickel (21) des Stopfaggregats (10) vor dem Heben des Gleisrostes (7) in das Schotterbett (8) abgesenkt, wobei die Stopfpickel (21) bei gehobenem Gleisrost (7) zueinander beigestellt werden. Auf diese Weise wird eine effiziente Energieversorgung der Aggregate (9, 10) ermöglicht.

Description

    Technisches Gebiet
  • Die Erfindung betrifft ein Verfahren zum Stopfen eines Gleises, das einen in einem Schotterbett gelagerten Gleisrost aus Schwellen und darauf befestigten Schienen aufweist, wobei das Gleis mit einer ein Hebe-/Richtaggregat und ein Stopfaggregat umfassenden Stopfmaschine befahren wird, wobei während eines Stopfzyklus der Gleisrost mittels des Hebe-/Richtaggregats in eine Soll-Lage gehoben wird und wobei zumindest eine Schwelle mittels des Stopfaggregats unterstopft wird. Zudem betrifft die Erfindung eine Stopfmaschine zur Durchführung des Verfahrens.
  • Stand der Technik
  • Stopfmaschinen sind seit langem bekannt und dienen zur Herstellung oder Instandsetzung einer vorgegebenen Gleislage eines in einem Schotterbett gelagerten Gleisrostes. Im Betrieb wird das Gleis mit der Stopfmaschine befahren, wobei ein Hebe-/Richtaggregat einen zwischen zwei Schienenfahrwerken befindlichen Gleisrostabschnitt anhebt. Dabei wird die vollzogene Hebung und seitliche Ausrichtung des Gleisrostes mittels eines maschineneigenen Messsystems erfasst. Fixiert wird der gehobene und gerichtete Gleisrost mittels eines Stopfaggregats. Sowohl das Hebe-/Richtaggregat als auch das Stopfaggregat umfassen in der Regel hydraulische Antriebe. Die Ansteuerung dieser Antriebe erfolgt mittels einer Maschinensteuerung.
  • Die Verfahrensschritte zum Stopfen eines Gleises laufen nach dem Stand der Technik in einer festgelegten Reihenfolge ab. Zuerst wird die Stopfmaschine mit dem Stopfaggregat über der zu unterstopfende Schwelle positioniert. Dann wird der Gleisrost mit dem Hebe-/Richtaggregat gehoben und seitlich gerichtet. Nach diesem Hebe- und Richtvorgang wird die neue Gleislage mittels des Stopfaggregats fixiert. Dabei tauchen beidseits einer Schwelle mit Vibration beaufschlagte Stopfpickel in das Schotterbett ein. Mit einer Beistellbewegung werden die bezüglich der Schwelle gegenüberliegenden Stopfpickel zueinander bewegt, wodurch Schotter unter die angehobene Schwelle geschoben wird. Die Verdichtung des verlagerten Schotters erfolgt durch die auf den Schotter einwirkende Vibration der Stopfpickeln. Ein solcher Verfahrensablauf wird beispielsweise in der EP 1 817 463 A1 beschrieben. Nachteilig kann bei dem bekannten Verfahren eine ungleichmäßige zeitliche Verteilung der benötigten Energie zur Durchführung eines Stopfzyklus sein.
  • Darstellung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art dahingehend zu verbessern, dass für den Hebevorgang und den Stopfvorgang eine effiziente Energieversorgung ermöglicht wird. Zudem soll eine entsprechende Stopfmaschine angegeben werden.
  • Erfindungsgemäß werden diese Aufgaben gelöst durch die Merkmale der unabhängigen Ansprüche 1 und 7. Abhängige Ansprüche geben vorteilhafte Ausgestaltungen der Erfindung an.
  • Dabei werden mit Vibration beaufschlagte Stopfpickel des Stopfaggregats vor dem Heben des Gleisrostes in das Schotterbett abgesenkt, wobei nach erfolgter Hebung mittels des Hebe-/Richtaggregats die Stopfpickel bei gehobenem Gleisrost zueinander beigestellt werden. Auf diese Weise wird die energieaufwendige Vibrationsbeaufschlagung der Stopfpickel in zwei Phasen aufgeteilt, wobei dazwischen die Hebung und das Richten des Gleisrostes erfolgt. Bei einem elektrischen oder hydraulischen Vibrationsantrieb ist während des Hebe-/Richtvorgangs ein elektrischer oder hydraulischer Akkumulator wieder aufladbar. Auf diese Weise ist eine begrenzte Kapazität des Akkumulators beziehungsweise eines elektrischen oder hydraulischen Versorgungssystems optimierbar. Besonders vorteilhaft ist dieses Verfahren bei bestehenden Stopfmaschinen, die mit einem leistungsstärkeren Stopfaggregat nachgerüstet werden. Daraus resultieren während eines Stopfvorgangs höhere Leistungsspitzen, deren zeitliche Abstände zueinander jedoch durch die neue Abfolge von Eintauchvorgang, Hebevorgang und Beistellvorgang verlängert werden. Damit bleibt mehr Zeit, einen elektrischen oder hydraulischen Akkumulator mittels einer bestehenden Kraftquelle - beispielsweise eines Verbrennungsmotors - wieder aufzufüllen, bevor die nächste Leistungsspitze auftritt.
  • Vorteilhafterweise werden das Stopfaggregat und das Hebe-/Richtaggregat zur Ausführung von Bewegungsvorgängen mittels einer gemeinsamen Maschinensteuerung angesteuert, wobei der Maschinensteuerung ausgeführte Bewegungsvorgänge des Stopfaggregats und des Hebe-Richtaggregats mittels Sensoren rückgemeldet werden. Damit sind die Bewegungsabläufe des Stopfaggregats und des Hebe-/Richtaggregats exakt aufeinander abgestimmt. Durch die Rückmeldung jeder Bewegungsausführung ist sichergestellt, dass es bei der vorgegebenen Reihenfolge von Aktionen zu keinen zeitlichen Überschneidungen kommt, die zu unerwünschten Leistungsspitzen führen könnten.
  • Zur Optimierung des Energieverbrauchs wird in einer Weiterbildung des Verfahrens die Vibration der Stopfpickel während des Hebens des Gleisrostes abgeschaltet. Die Abschaltung der Vibration ist insbesondere mit vollhydraulischen Stopfaggregaten möglich, entsprechend den Ausführungen in der AT 500972 B1 . Bei Exzenterantrieben, die wie in der AT 517999 A1 zur Vibrationserzeugung dienen, erfolgt keine vollständige Abschaltung des Vibrationsantriebs, sondern eine Nullstellung der Exzentrizität. Der rotatorische Antrieb befindet sich währenddessen im Leerlauf.
  • In einer bevorzugten Variante werden hydraulische Antriebe des Stopfaggregats und des Hebe-/Richtaggregats mittels eines gemeinsamen Hydrauliksystems oder mittels eines jeweiligen Hydrauliksystems versorgt, wobei zumindest eine Hydrauliksystemzustandsgröße mittels eines Sensors überwacht wird und wobei mittels der Maschinensteuerung die Bewegungsabläufe des Stopfaggregats und/oder des Hebe-/Richtaggregats in Abhängigkeit der überwachten Hydrauliksystemzustandsgröße vorgegeben werden. In diesem Zusammenhang gilt auch das Aussetzen der Vibrationsbeaufschlagung als Bewegungspause des Stopfaggregats. Auf diese Weise wird beispielsweise ein Abfallen eines Hydraulikdrucks unter eine vorgegebene Schwelle vermieden, wodurch eine durchgehende Prozesssicherheit besteht.
  • Vorteilhafterweise wird Hydraulikflüssigkeit in einem Hydraulikspeicher gespeichert, wobei das Hebe-/Richtaggregat und/oder das Stopfaggregat in Abhängigkeit eines überwachten Füllzustands des Hydraulikspeichers angesteuert werden. Bei der Dimensionierung der Hydraulikpumpe und des Hydraulikspeichers wird die erfindungsgemäße Vermeidung von Lastspitzen berücksichtigt. Das verringert den Platzbedarf und die Belastungen des entsprechenden Hydrauliksystems.
  • Sinnvoll ist eine entsprechende Überwachung sowohl bei einem gemeinsamen Hydrauliksystem als auch bei zwei separaten Hydrauliksystemen, die mittels einer gemeinsamen Kraftquelle versorgt werden. Dabei ist die Kraftquelle mit einer Hydraulikpumpe des jeweiligen Hydrauliksystems gekoppelt. Ein erstes Hydrauliksystem versorgt das Hebe-/Richtaggregat und ein zweites Hydrauliksystem versorgt das Stopfaggregat. In beiden Hydrauliksystemen ist ein jeweiliger Hydraulikspeicher angeordnet, wobei die Hydraulikspeicher mittels der gemeinsamen Kraftquelle über die zugeordneten Hydraulikpumpen zeitversetzt befüllt werden.
  • Bei einer weiteren bevorzugten Variante werden die Stopfpickel mittels eines elektrischen Antriebs mit Vibration beaufschlagt, wobei elektrische Energie zur Versorgung des elektrischen Antriebs in einem elektrischen Speicher gespeichert wird. Die Aggregate der Stopfmaschine werden dabei mit der jeweils optimalen Antriebsart betrieben. Rotatorische Vibrationsantriebe sind als Elektromotoren ausgebildet. Mittels Hydraulikzylinder werden Hebe- und Beistellkräfte erzeugt, insbesondere für eine sogenannte asynchrone Gleichdruckstopfung.
  • Die erfindungsgemäße Stopfmaschine zum Stopfen eines Gleises umfasst einen auf Schienenfahrwerken verfahrbaren Maschinenrahmen, an dem ein Hebe-/Richtaggregat und ein Stopfaggregat angeordnet sind, und eine Maschinensteuerung zur Generierung von Steuersignalen, wobei die Maschinensteuerung zur Durchführung eines der oben beschriebenen Verfahren eingerichtet ist. In der Maschinensteuerung ist somit ein Steuerungsprogramm installiert, mittels dem während eines Stopfzyklus zuerst das Stopfaggregat aktiviert wird. Infolgedessen tauchen zunächst die Stopfpickel in das Schotterbett ein und nachfolgend wird das Hebe-/Richtaggregat aktiviert. Eine Bestellbewegung der Stopfpickel erfolgt bei gehobenem und gerichtetem Gleisrost.
  • In einer Weiterbildung ist ein Energieversorgungssystem mit einer Speichereinrichtung angeordnet, wobei ein Überwachungssignal der Speichereinrichtung der Maschinensteuerung zugeführt ist. Auf diese Weise ist die mittels der Maschinensteuerung vorgegebene Aktivierungsabfolge der Aggregate auf den aktuellen Speicherzustand anpassbar. Damit ist sichergestellt, dass immer genügend Energie zur Durchführung eines nächstfolgenden Verfahrensschritts zur Verfügung steht.
  • Bei einer vorteilhaften Ausführung mit hoher Prozesssicherheit umfasst das Stopfaggregat zur Vibrationserzeugung einen Exzenterantrieb mit verstellbarer Exzentrizität. Einerseits wird damit auch bei hohen Widerständen im Schotterbett eine Vibrationsamplitude aufrechterhalten. Andererseits ist durch die Verstellbarkeit der Exzentrizität jederzeit eine Vibrationspause mit geringem Energieverbrauch möglich.
  • In einer Alternative umfasst das Stopfaggregat einen Hydraulikzylinder zur Vibrationserzeugung. Insbesondere werden vorhandene Beistellzylinder zusätzlich zur Vibrationserzeugung genutzt. Ein hoher Energieverbrauch während der Vibrationserzeugung wird durch die Abschaltung der Vibration während des Hebe-/Richtvorgangs ausgeglichen.
  • Kurze Beschreibung der Zeichnungen
  • Die Erfindung wird nachfolgend in beispielhafter Weise unter Bezugnahme auf die beigefügten Figuren erläutert. Es zeigen in schematischer Darstellung:
  • Fig. 1
    Stopfmaschine auf einem Gleis
    Fig. 2
    Blockschaltbild mit einem gemeinsamen Hydrauliksystem
    Fig. 3
    Blockschaltbild mit zwei Hydrauliksystemen
    Beschreibung der Ausführungsformen
  • Die in Fig. 1 dargestellte Stopfmaschine 1 umfasst einen Maschinenrahmen 2, der auf Schienenfahrwerken 3 abgestützt auf einem Gleis 4 verfahrbar ist. Das Gleis 4 weist einen aus Schwellen 5 und darauf befestigten Schienen 6 gebildeten Gleisrost 7 auf, der in einem Schotterbett 8 gelagert ist. Am Maschinenrahmen 2 der Stopfmaschine 1 sind ein Hebe-/Richtaggregat 9 und ein Stopfaggregat 10 angeordnet. Gegebenenfalls dient eine Zusatzhebevorrichtung 11 als Erweiterung des Hebe-/Richtaggregats 9 zum Heben eines abzweigenden Strangs in einer Weiche.
  • Die Hebung eines Gleisabschnitts bzw. einer Weiche durch das Hebe-/Richtaggregat 9 erfolgt in Bezug zu einem maschineneignen Messsystem 12. Im einfachsten Fall umfasst dieses Messsystem 12 mehrere Drahtsehnen 13, die zwischen am Gleis 4 geführten Messradachsen 14 gespannt sind. Mittels eines Messwertgebers 15 wird die Höhenlage des Gleisrostes 7 im Bereich des Hebe-/Richtaggregats 9 erfasst. Beispielsweise ist eine weitere Messradachse 14 angeordnet, mit der über Gestänge Abstandsänderungen der Schienen 6 relativ zu den als Bezugselemente dienenden Drahtsehnen 13 bestimmt werden.
  • Für das vorliegende Verfahren sind auch andere Messsysteme 12 einsetzbar, insbesondere optische Messsysteme, die optische Messsehnen sowie Kamerasysteme mit Mustererkennung aufweisen. Dabei umfasst der Messwertgeber 15 beispielsweise einen Bildsensor zur Auswertung von optischen Signalen. Die seitliche Lage des Gleisrostes 7 wird ebenfalls gegenüber dem jeweiligen Bezugssystem erfasst.
  • Zur Ansteuerung des Hebe-/Richtaggregats 9 und des Stopfaggregats 10 ist eine Maschinensteuerung 16 vorgesehen. Damit werden beispielsweise Proportionalventile angesteuert, die hydraulischen Hebeantrieben 17 und Richtantrieben 18 des Hebe-/Richtaggregats 9 zugeordnet sind. Zur Hebung und zum seitlichen Richten eines Gleisabschnitts bzw. einer Weiche ist ein Regelkreis eingerichtet. Dabei bildet das System aus Gleis 4 bzw. Weiche und der Hebeanordnung eine Regelstrecke, auf die verschiedene Störgrößen einwirken können.
  • Das Stopfaggregat 10 umfasst einen hydraulischen Höhenstellantrieb 19, mittels dem ein Werkzeugträger 20 mit daran befestigten Stopfwerkzeugen höhenverstellbar ist. Am unteren Ende der Stopfwerkzeuge sind Stopfpickel 21 angeordnet, die beim Absenken des Werkzeugträgers 20 zwischen den Schwellen 5 in das Schotterbett 8 eintauchen. Die oberen Enden der Stopfwerkzeuge sind mit hydraulischen Beistellantrieben 22 verbunden. Ausfahrende Kolbenstangen dieser Beistellantriebe 22 bewirken eine Beistellbewegung der Stopfpickel 21.
  • In einer Variante sind die Beistellantriebe 22 zusätzlich zur Vibrationserzeugung eingerichtet. Dabei werden eine kolbenseitige Druckkammer und eine stangenseitige Druckkammer alternierend mit erhöhtem Druck beaufschlagt. Die auf diese Weise erzeugte Vibrationsbewegung ist der Beistellbewegung überlagerbar.
  • Eine bevorzugte Variante umfasst einen eigenen Vibrationsantrieb 23, an den die Beistellantriebe 22 angeschlossen sind. Beispielsweise umfasst der Vibrationsantrieb 23 eine Exzenterwelle mit verstellbaren Exzentrizitäten. Der jeweils an einen exzentrischen Abschnitt angeschlossene Beistellantrieb 22 wird bei rotierender Exzenterwelle in Vibration versetzt. Diese Vibration überträgt sich über den Beistellantrieb 22 auf den zugeordneten Stopfpickel 21. Bei Nullstellung der Exzentrizitäten läuft ein Rotationsantrieb im Leerlauf und es wirken keine Vibrationen auf die Beistellantriebe 22.
  • Erfindungsgemäß erfolgt die Aktivierung der einzelnen Antriebe 17, 18, 19, 22, 23 in der Weise, dass keine Leistungsspitzen mit besonders hohem Energieverbrauch auftreten. Im Fokus stehen zwei Verfahrensschritte, während derer die Stopfpickel 21 sowohl mit Vibration beaufschlagt als auch im Schotterbett 8 bewegt werden. Das ist der Eintauchvorgang und der Beistellvorgang. Zwischen diesen beiden Vorgängen mit besonders hoher Leistung ist eine Pause vorgesehen.
  • In dieser Pause wird ein gegebenenfalls vorhandener Energiespeicher wieder aufgeladen. Insbesondere ein hydraulischer Vibrationsantrieb 23 erfordert hohe Durchflussmengen an Hydraulikflüssigkeit, was zu einem raschen Druckabfall in einem Hydrauliksystem 24 führen kann. Genutzt wird die Dauer der Pause für das Heben und Richten des Gleisrostes 7. Auf diese Weise bleibt die Gesamtdauer eines Stopfzyklus gegenüber einer bekannten Bewegungsabfolge annähernd unverändert.
  • In den Figuren 2 und 3 sind Energieversorgungssysteme der Stopfmaschine 1 schematisch dargestellt. Das Energieversorgungssystem in Fig. 1 umfasst ein gemeinsames Hydrauliksystem 24, mit dem sowohl das Hebe-/Richtaggregat 9 als auch das Stopfaggregat 10 versorgt werden. Die Variante in Fig. 2 umfasst zwei separate Hydrauliksysteme 24, die über Hydraulikpumpen 25 und ein Pumpenverteilgetriebe 26 mit einem gemeinsamen Antriebsmotor 27 gekoppelt sind.
  • Die Funktionsweise wird anhand eines Hydrauliksystems 24 erläutert. Ein elektrisches Energieversorgungssystem oder ein Hybridsystem funktioniert in entsprechender Weise. Im Betrieb baut die Hydraulikpumpe 25 im Hydrauliksystem 24 einen Betriebsdruck auf, der mittels eines Hydraulikspeichers 28 (Akkumulator) gehalten wird. Bei einem elektrischen oder hybriden System ist gegebenenfalls ein elektrischer Energiespeicher angeordnet.
  • An das Hydrauliksystem sind die Antriebe 17, 18, 19, 22, 23 des Hebe-/Richtaggregats 9 und des Stopfaggregats 10 angeschlossen. Die aus den Antrieben 17, 18, 19, 22, 23 abfließende Hydraulikflüssigkeit wird in einem Hydrauliktank 29 gefiltert und erneut der Hydraulikpumpe 25 zugeführt.
  • Die Aktivierung des Vibrationsantriebs 23 führt zu einem hohen Durchfluss der Hydraulikflüssigkeit, weil eine Vibrationsamplitude (einige Millimeter) mit hoher Vibrationsfrequenz (35Hz bis 45Hz) aufrechterhalten werden soll. Das gilt besonders für kombinierte hydraulische Antriebe, die sowohl die Vibration als auch die Beistellbewegung im jeweiligen Beistellhydraulikzylinder 22 erzeugen. Somit führt die Vibrationsbeaufschlagung zu einer erhöhten Belastung des Hydrauliksystems 24, wobei insbesondere ein Druckabfall im Hydraulikspeicher 28 problematisch ist.
  • Die Senk-, Hebe-, Richt- und Beistellbewegungen der entsprechenden hydraulischen Antriebe 17, 18, 19, 22 bewirken einen geringen Durchfluss der Hydraulikflüssigkeit, weil ein Stellweg pro Zeiteinheit im Vergleich zur Vibrationsbewegung geringer ist. Die Senk-, Hebe-, Richt- und Beistellbewegungen führen somit zu keinem raschen Druckabfall im Hydrauliksystem 24.
  • Zur Überwachung des gemeinsamen oder des jeweiligen Hydrauliksystems 24 ist ein Sensor 30 angeordnet, beispielsweise im Hydraulikspeicher 28. Bei der Variante in Fig. 3 wird zumindest der dem Stopfaggregat 10 zugeordnete Hydraulikspeicher 28 überwacht. Ein Messsignal des Sensors 30 ist der Maschinensteuerung 16 zugeführt. Damit wird ein vorteilhaftes Verfahren ermöglicht, bei dem die Aggregate 9, 10 in Abhängigkeit einer Systemzustandsgröße (z.B. Druck oder Füllstand des Speichers 28) des überwachten Hydrauliksystems 24 angesteuert werden. Der Antriebsmotor 27 und die jeweilige Hydraulikpumpe 25 werden dabei durchgehend in einem optimalen Leistungsbereich betrieben, wobei Leistungsspitzen der Aggregate 9, 10 mittels des gemeinsamen oder des jeweiligen Hydraulikspeichers 28 abgedeckt werden. Die Durchflussmenge der jeweiligen Hydraulikpumpe 25 bleibt im Wesentlichen konstant. Das Ziel ist eine ausgeglichene Energiebilanz über die Dauer eines Stopfvorgangs hinweg.
  • Der jeweilige Stopfvorgangs beginnt mit der Positionierung des Stopfaggregats 10 über der zu unterstopfenden Schwelle 5. Erfindungsgemäß wird im nächsten Schritt der Werkzeugträger 20 mit den Stopfwerkzeugen abgesenkt. Dabei tauchen die mit Vibration beaufschlagten Stopfpickel 21 in das Schotterbett 8 ein. Während dieses Vorgangs leert sich der zugeordnete Hydraulikspeicher 28, weil der Hydraulikflüssigkeitsverbrauch der Vibrationserzeugung die Durchflussmenge der Hydraulikpumpe 25 übersteigt.
  • Im nächsten Verfahrensschritt pausiert das Stopfaggregat 10 und der Gleisrost 7 wird mittels des Hebe-/Richtaggregats 9 gehoben und seitlich gerichtet. Bei einem gemeinsamen Hydraulikspeicher 28 erfolgt ein Füllvorgang, weil der Hydraulikflüssigkeitsverbrauch der Hebe- und Richtantriebe 17, 18 unter der Durchflussmenge der Hydraulikpumpe 25 liegt (Fig. 2). Bei separaten Hydrauliksystemen 24 erfolgt ohnedies eine Befüllung des Hydraulikspeichers 28, der dem pausierenden Stopfaggregat 10 zugeordnet ist (Fig. 3).
  • Mittels des Sensors 30 wird eine Füllmenge des jeweiligen Hydraulikspeichers 28 oder ein aktueller Systemdruck mit einem in der Maschinensteuerung 16 hinterlegten Schellenwert abgeglichen. Auf diese Weise wird das Stopfaggregat 10 erst dann aktiviert, wenn die gespeicherte Energie für den nachfolgenden Beistellvorgang ausreicht.
  • Während des Beistellvorgangs leert sich der Hydraulikspeicher 28 aufgrund der Vibrationsbeaufschlagung der Stopfpickel 21 wieder. Aufgrund der Pause zwischen dem Eintauchvorgang und dem Beistellvorgang ist jedoch sichergestellt, dass die Versorgung durch das Hydrauliksystem 24 durchgehende aufrechterhalten bleibt.
  • Ein entsprechendes Verfahren ist für einen elektrisch betriebenen Vibrationsantrieb 23 vorgesehen. Ein elektrisches Energieversorgungssystem umfasst einen elektrischen Speicher, der durchgängig aufgeladen wird. Während eines Eintauchvorgangs der vibrierenden Stopfpickel 21 wird mehr Energie verbraucht, als zugeführt wird. Eine Aufladung des elektrischen Speichers erfolgt während des Hebe-Richtvorgangs, sodass beim nachfolgenden Beistellvorgang wieder genügend Energie für die Vibrationsbeaufschlagung zur Verfügung steht.
  • Zur weiteren Verbesserung des Verfahrens sind die Aggregate 9, 10 der Stopfmaschine 1 mit Bewegungs- oder Positionssensoren 31 ausgestattet. Mittels dieser Sensoren 31 werden aktuelle Stellung von Rollzangen oder Hebehaken des Hebe-/Richtaggregats 9 sowie der Stopfwerkzeuge an die Maschinensteuerung 16 gemeldet. Damit sind die einzelnen Bewegungsvorgänge optimal aufeinander abstimmbar.

Claims (10)

  1. Verfahren zum Stopfen eines Gleises (4), das einen in einem Schotterbett (8) gelagerten Gleisrost (7) aus Schwellen (5) und darauf befestigten Schienen (6) aufweist, wobei das Gleis (4) mit einer ein Hebe-/Richtaggregat (9) und ein Stopfaggregat (10) umfassenden Stopfmaschine (1) befahren wird, wobei während eines Stopfzyklus der Gleisrost (7) mittels des Hebe-/Richtaggregats (9) in eine Soll-Lage gehoben wird und wobei zumindest eine Schwelle (5) mittels des Stopfaggregats (10) unterstopft wird, dadurch gekennzeichnet, dass mit Vibration beaufschlagte Stopfpickel (21) des Stopfaggregats (10) vor dem Heben des Gleisrostes (7) in das Schotterbett (8) abgesenkt werden und dass die Stopfpickel (21) bei gehobenem Gleisrost (7) zueinander beigestellt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Stopfaggregat (10) und das Hebe-/Richtaggregat (9) zur Ausführung von Bewegungsvorgängen mittels einer gemeinsamen Maschinensteuerung (16) angesteuert werden und dass der Maschinensteuerung (16) ausgeführte Bewegungsvorgänge des Stopfaggregats (10) und des Hebe-Richtaggregats (9) mittels Sensoren (31) rückgemeldet werden.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Vibration der Stopfpickel (21) während des Hebens des Gleisrostes (7) abgeschaltet wird.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass hydraulische Antriebe (17, 18, 19, 22, 23) des Stopfaggregats (10) und des Hebe-/Richtaggregats (9) mittels eines gemeinsamen Hydrauliksystems (24) oder mittels eines jeweiligen Hydrauliksystems (24) versorgt werden, dass zumindest eine Systemzustandsgröße mittels eines Sensors (30) überwacht wird und dass mittels der Maschinensteuerung (16) die Bewegungsabläufe des Stopfaggregats (10) und/oder des Hebe-/Richtaggregats (9) in Abhängigkeit der überwachten Systemzustandsgröße vorgegeben werden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass Hydraulikflüssigkeit in einem Hydraulikspeicher (28) gespeichert wird und dass das Hebe-/Richtaggregat (9) und/oder das Stopfaggregat (10) in Abhängigkeit eines überwachten Füllzustands des Hydraulikspeichers (28) angesteuert werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Stopfpickel (21) mittels eines elektrischen Antriebs (23) mit Vibration beaufschlagt werden und dass elektrische Energie zur Versorgung des elektrischen Antriebs (23) in einem elektrischen Speicher gespeichert wird.
  7. Stopfmaschine (1) zum Stopfen eines Gleises (4), mit einem auf Schienenfahrwerken (3) verfahrbaren Maschinenrahmen (2), an dem ein Hebe-/Richtaggregat (9) und ein Stopfaggregat (10) angeordnet sind und mit einer Maschinensteuerung (16) zur Generierung von Steuersignalen, dadurch gekennzeichnet, dass die Maschinensteuerung (16) zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 6 eingerichtet ist.
  8. Stopfmaschine (1) nach Anspruch 7, dadurch gekennzeichnet, dass ein Energieversorgungssystem mit einer Speichereinrichtung (28) angeordnet ist und dass ein Überwachungssignal der Speichereinrichtung (28) der Maschinensteuerung (16) zugeführt ist.
  9. Stopfmaschine (1) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das Stopfaggregat (10) zur Vibrationserzeugung einen Exzenterantrieb mit verstellbarer Exzentrizität umfasst.
  10. Stopfmaschine (1) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das Stopfaggregat (10) einen Hydraulikzylinder zur Vibrationserzeugung umfasst.
EP23156452.7A 2023-02-14 Verfahren zum betreiben einer stopfmaschine und stopfmaschine Active EP4242375B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50143/2022A AT525428B1 (de) 2022-03-08 2022-03-08 Verfahren zum Betreiben einer Stopfmaschine

Publications (2)

Publication Number Publication Date
EP4242375A1 true EP4242375A1 (de) 2023-09-13
EP4242375B1 EP4242375B1 (de) 2024-09-11

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT500972B1 (de) 2004-10-29 2006-05-15 Plasser Bahnbaumasch Franz Verfahren zum unterstopfen von schwellen
EP1817463A1 (de) 2004-11-22 2007-08-15 Franz Plasser Bahnbaumaschinen-Industriegesellschaft m.b.H. Verfahren zur korrektur von höhenlagefehlern eines gleises
AT517999A1 (de) 2015-11-20 2017-06-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Stopfaggregat und Verfahren zum Stopfen eines Gleises

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT500972B1 (de) 2004-10-29 2006-05-15 Plasser Bahnbaumasch Franz Verfahren zum unterstopfen von schwellen
EP1817463A1 (de) 2004-11-22 2007-08-15 Franz Plasser Bahnbaumaschinen-Industriegesellschaft m.b.H. Verfahren zur korrektur von höhenlagefehlern eines gleises
EP1817463B1 (de) * 2004-11-22 2008-09-03 Franz Plasser Bahnbaumaschinen-Industriegesellschaft m.b.H. Verfahren zur korrektur von höhenlagefehlern eines gleises
AT517999A1 (de) 2015-11-20 2017-06-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Stopfaggregat und Verfahren zum Stopfen eines Gleises

Also Published As

Publication number Publication date
AT525428B1 (de) 2023-04-15
AT525428A4 (de) 2023-04-15

Similar Documents

Publication Publication Date Title
AT513973B1 (de) Stopfaggregat für eine Gleisstopfmaschine
EP1653003A2 (de) Verfahren zum Unterstopfen von Schwellen
EP3692211B1 (de) Gleisbaumaschine zum verdichten von schotter
EP3870759B1 (de) Verfahren und vorrichtung zum verdichten eines schotterbettes
DE10212389B4 (de) Geschwindigkeitssteuersystem für eine Verdichtungsarbeitsmaschine und Verfahren zur Steuerung
DE2330102A1 (de) Verfahren und maschine zum verdichten der schotterbettung eines gleises, insbesondere unter gleichzeitiger verbringung dieses gleises in die soll-hoehenlage
AT518072B1 (de) Stopfaggregat für eine Gleisstopfmaschine
DE3132708C2 (de) Gleisstopf-Nivellier-und Richtmaschine mit Stabilisationsaggregat und Verfahren zum Verdichten der Schotterbettung eines zu korrigierenden Gleises
EP3721013B1 (de) Verfahren und system zur belastungsüberwachung eines stopfaggregates
EP3649289B1 (de) Verfahren und vorrichtung zum verdichten eines gleisschotterbetts
EP1722036A2 (de) Bodenverdichtungsgerät
DE10046336B4 (de) Bodenverdichtungsvorrichtung mit Schwingungserreger und Verfahren zum Regeln des Schwingungserregers
AT525428B1 (de) Verfahren zum Betreiben einer Stopfmaschine
EP4242375B1 (de) Verfahren zum betreiben einer stopfmaschine und stopfmaschine
EP3902956B1 (de) Verfahren und gleisbaumaschine zur bearbeitung eines schottergleises
EP4214363A1 (de) Verfahren und gleisstopfmaschine zum unterstopfen eines gleises
EP3653789A1 (de) Verfahren und stopfaggregat zum stopfen eines gleises
EP4176132B1 (de) Verfahren und maschine mit einem stopfaggregat
EP4072922B1 (de) Verfahren zum betreiben einer schienengeführten gleisbaumaschine und gleisbaumaschine
DE102010019053A1 (de) Bodenverdichtungsvorrichtung mit Messvorrichtung zum Bestimmen von Bodenkennwerten
AT524861B1 (de) Verfahren und Maschine zum Stopfen eines Gleises
AT522237B1 (de) Verfahren zum Verdichten eines Schotterbettes eines Gleises
DE3132870A1 (de) Gleisnivellierstopf- und richtmaschine mit stabilisationsaggregat
AT518024B1 (de) Gleisfahrbare Gleisverdichtmaschine
EP4403701A1 (de) Stopfaggregat und verfahren zum unterstopfen einer gruppe von benachbarten schwellen eines gleises

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240313

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240424

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED