EP4041467B1 - Sheet steel having a deterministic surface structure and method for manufacturing such steel sheet - Google Patents

Sheet steel having a deterministic surface structure and method for manufacturing such steel sheet Download PDF

Info

Publication number
EP4041467B1
EP4041467B1 EP20785704.6A EP20785704A EP4041467B1 EP 4041467 B1 EP4041467 B1 EP 4041467B1 EP 20785704 A EP20785704 A EP 20785704A EP 4041467 B1 EP4041467 B1 EP 4041467B1
Authority
EP
European Patent Office
Prior art keywords
depth profile
sheet steel
skin
flank
hand part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20785704.6A
Other languages
German (de)
French (fr)
Other versions
EP4041467A1 (en
Inventor
Oliver Vogt
Fabian JUNGE
Burak William Cetinkaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP4041467A1 publication Critical patent/EP4041467A1/en
Application granted granted Critical
Publication of EP4041467B1 publication Critical patent/EP4041467B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/227Surface roughening or texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/005Rolls with a roughened or textured surface; Methods for making same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0245Lubricating devices
    • B21B45/0248Lubricating devices using liquid lubricants, e.g. for sections, for tubes
    • B21B45/0251Lubricating devices using liquid lubricants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/228Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length skin pass rolling or temper rolling

Definitions

  • the invention relates to a steel sheet tempered with a deterministic surface structure.
  • the invention further relates to a method for producing a steel sheet tempered with a deterministic surface structure.
  • the task is therefore to provide a steel sheet tempered with a deterministic surface structure, which provides a targeted change in the surface structure compared to the prior art.
  • Providing a targeted surface structure on a tempered steel sheet is essential for further processes, especially in the processing industry for the production of components for automobiles.
  • the steel sheet is coated with a metallic coating.
  • the process media used such as oil and/or lubricants, are present in the necessary quantities at locations relevant to the forming process.
  • These areas relevant to the forming process are usually the contact surfaces of steel sheet and forming tools - therefore not the impressions or depressions in the steel sheets in which the process media preferentially collect, but the surface in the form of the area of the elevations on the steel sheets.
  • a targeted surface structure can be provided for a steel sheet tempered with a deterministic surface structure if the surface structure has a large number of depressions, each depression having a circumferential flank area which starts from the surface flows into a valley area, whereby in Viewed in a sectional view, each depression has a depth profile which comprises two opposite flank portions and a valley portion running between the flank portions and connecting the flank portions, the depth profile being divided into a left part and a right part of the depth profile, the left part of the depth profile being from highest point to the lowest point and the right part of the depth profile runs from the highest point to the lowest point, the depth profile running asymmetrically, with the flank areas and valley areas of the left part and the right part of the depth profile at least in height or in width differentiate.
  • the resulting height of the process medium has accumulated and is therefore available to the process-relevant area, whereby the resistance can be reduced so that the unfavorable relationship of the forming can be compensated for by the targeted influence on the local process medium distribution.
  • process media collect particularly on wide and steep flank areas and valley areas.
  • the height is particularly relevant because the height defines the area of the flank area from which the capillary effect originates.
  • a height that is too high can have a detrimental effect on the forming process, as the medium would have to travel a longer distance from the valley (partial) area in order to reach the process-relevant area.
  • the steel sheet is coated with a zinc-based coating, which is applied by hot-dip coating.
  • the tempering takes place after the steel sheet has been hot-dip coated.
  • the steel sheet is coated with a zinc-based coating, which is applied by electrolytic coating.
  • the tempering takes place before the electrolytic coating of the steel sheet.
  • Deterministic surface structure means recurring surface structures that have a defined shape and/or design, cf. EP 2 892 663 B1 .
  • this also includes surfaces with a (quasi-)stochastic appearance, which are, however, applied using a deterministic texturing process and are therefore composed of deterministic form elements.
  • Sheet steel is generally understood to mean a flat steel product, which can be provided in sheet form or in blank form or in strip form.
  • the flank area surrounding the depression, together with the valley area integrally connected to the flank area, defines a closed volume of the surface structure embossed into the steel sheet by means of tempering.
  • the closed volume the so-called empty volume, can be tailored to a process medium to be applied, in particular oil, for later processing using a forming process.
  • the depth profile is viewed in and/or transversely to the temper rolling direction.
  • a skin-pass roll Through the action of a skin-pass roll, specific influence can be exerted in particular in and/or transversely to the skin-pass roll direction, since a targeted asymmetry of the depressions can be set by the shaping elements of the skin-pass roll, preferably in the skin-pass roll direction, but also alternatively or additionally transversely to the skin-pass roll direction, which is based on the Act on the surface of the steel sheet, dip into the surface of the steel sheet and create the depressions.
  • the geometric design (size and depth) of a deterministic surface structure (negative shape) on a tempered steel sheet depends in particular on how the corresponding geometric structure (positive shape, shaping elements) is/is designed on a temper roller.
  • Laser texturing processes are preferably used in order to be able to set targeted structures (positive shape) on the surface of a temper roller by removing material.
  • the design of the structure(s) can be positively influenced by targeted control of the energy, the pulse duration and selection of a suitable wavelength of a laser beam acting on the surface of the skin pass roller.
  • fs, ps and ns pulses are all suitable for material removal, but the type of energy coupling and removal on a solid surface is significantly different, as is the size of the heat affected zone (HAZ).
  • a pulse leaves a substantially circular crater on the tempering roller surface, which, in the case of several craters, represents the surface or the area of the elevations (surface) on the steel sheet and thus the contact surface between the steel sheet and the shaping tool after the tempering process. Reducing the pulse duration has an influence on the formation of a crater; in particular, the diameter of the crater can be reduced.
  • flank (partial) areas can be specifically adjusted to any desired height, width and/or gradient (angle of the flank area).
  • the depression viewed in the plane of the surface, has a surface which has a center of gravity through which the depth profile is viewed in and/or transversely to the temper rolling direction.
  • the depth profile that runs transversely to the temper rolling direction can be clearly determined by the center of gravity, which area of the recess viewed in the plane of the surface, in particular the differences between the flank portions and valley portions of the left part and the right Part of the depth profile in terms of height, width and/or slope.
  • the depth profile has a symmetry factor A ⁇ 0.9, where A corresponds to the quotient of the integrals of the left and right parts of the depth profile, the integral with the larger value being in the denominator of the quotient.
  • the depth profile has a symmetry factor A ⁇ 0.85, preferably A ⁇ 0.8, preferably A ⁇ 0.75, more preferably A ⁇ 0.7, particularly preferably A ⁇ 0.67.
  • the coating may contain additional elements such as aluminum with a content of up to 5% by weight and/or magnesium with a content of up to 5% by weight in the coating.
  • additional elements such as aluminum with a content of up to 5% by weight and/or magnesium with a content of up to 5% by weight in the coating.
  • Steel sheets with a zinc-based coating have very good cathodic corrosion protection, which has been used in automobile construction for years. If improved corrosion protection is provided, the coating additionally has magnesium with a content of at least 0.3% by weight, in particular at least 0.6% by weight, preferably at least 0.9% by weight.
  • aluminum can be present with a content of at least 0.3% by weight, in particular to improve the bonding of the coating to the steel sheet and in particular to prevent the diffusion of iron from the steel sheet into the coating during heat treatment of the coated one To essentially prevent steel sheeting so that the positive corrosion properties are retained.
  • the thickness of the coating can be between 1 and 15 ⁇ m, in particular between 2 and 12 ⁇ m, preferably between 3 and 10 ⁇ m. Below the minimum limit, there cannot be sufficient cathodic corrosion protection are guaranteed and above the maximum limit, joining problems can occur when connecting the steel sheet according to the invention or a component made therefrom with another component; in particular, if the thickness of the coating exceeds the specified maximum limit, no stable process can be ensured during thermal joining or welding.
  • the steel sheets are first coated with an appropriate coating and then passed on for tempering.
  • a thickness of the coating can be between 1 and 10 ⁇ m, in particular between 1.5 and 8 ⁇ m, preferably between 2 and 5 ⁇ m.
  • the steel sheet is first tempered and then electrolytically coated. Depending on the thickness of the coating, the roughness in the flank area can essentially be retained even after electrolytic coating.
  • the particularly coated steel sheet is additionally provided with a process medium, in particular with an oil, the process medium in particular being included in the surface structure with a layer of up to 2 g/m 2 . Due to the dimensions of the surface structure, there is only little need for process medium, so that the layer is up to 2 g/m 2 , in particular up to 1.5 g/m 2 , preferably up to 1 g/m 2 , preferably up to 0.6 g/m 2 , more preferably up to 0.4 g/m 2 is limited.
  • the process medium is deposited after application essentially in the depressions locally in the flank areas and valley areas with a steeper gradient, higher height and / or greater width and is preferably used for further processes, such as for example for shaping processes Deep-drawing processes, closer to or adjacent to places relevant to the forming process, are available in order to improve lubrication and reduce friction and thus wear on the shaping means, such as shaping devices, preferably (deep-drawing) presses.
  • the steel sheet according to the invention has very good tribological properties with a low process medium requirement and is more environmentally friendly in comparison to the steel sheets known from the prior art, in particular oiled ones, in particular due to the lower use of resources.
  • the invention relates to a method for producing a steel sheet tempered with a deterministic surface structure, comprising the following steps: - providing a steel sheet, - tempering the steel sheet with a tempering roller, wherein the surface of the tempering roller, which acts on the surface of the steel sheet, with a deterministic surface structure is set up in such a way that after tempering, the surface structure is embossed into the steel sheet starting from a surface of the steel sheet, the surface structure having a plurality of depressions, each depression having a circumferential flank area, which starts from the surface in a valley area opens, whereby viewed in a sectional view, each depression has a depth profile which comprises two opposite flank portions and a valley portion running between the flank portions and connecting the flank portions, the depth profile being divided into a left part and a right part of the depth profile, the left Part of the depth profile runs from the highest point to the lowest point and the right part of the depth profile runs from the highest point to the lowest point, with the depth profile
  • the surface (positive shape) of the tempering roller forms a surface structure by applying force to the surface of the steel sheet, which defines depressions with valley and flank areas (negative shape) and essentially corresponds to the surface (positive shape) of the tempering roller.
  • the skin pass roller to form a deterministic surface structure can be processed using suitable means, for example using a laser, cf. also EP 2 892 663 B1 .
  • other removal processes can also be used to adjust a surface on a skin-pass roll, for example machining manufacturing processes with a geometrically determined or indeterminate cutting edge, chemical or electrochemical, optical or plasma-induced processes, which are suitable for a steel sheet to be skin-dressed with a surface structure and a corresponding one To be able to implement asymmetry.
  • the steel sheet is coated with a zinc-based coating by hot-dip coating.
  • the melt for hot-dip coating can contain, in addition to zinc and unavoidable impurities, additional elements such as aluminum with a content of up to 5% by weight and/or magnesium with a content of up to 5% by weight.
  • the tempered steel sheet is coated with a zinc-based coating by electrolytic coating.
  • the steel sheet is additionally provided with process medium, preferably with oil, after tempering, the process medium being provided with a coating of up to 2 g/m 2 , more preferably with a coating of up to 0.4 g/m 2 is applied.
  • Figure 1 is an atomic force microscopy (AFM) image of a section of a coated steel sheet (1,1') dressed with a deterministic surface structure (2).
  • the steel sheet (1, 1 ⁇ ) can be an uncoated steel sheet (1), i.e. not have a metallic coating in particular, or it can be a steel sheet (1') coated with a metallic coating (1.2).
  • the deterministic surface structure (2) shows a recurring I-shaped impression as a depression (2.1).
  • the center of gravity (S) in the plane of the surface (1.1) can be determined relatively quickly and easily with a substantially rectangular depression. Other embodiments of the depression(s) are also conceivable and applicable and are not limited to an I-shaped impression.
  • the surface structure (2) was embossed using a tempering roller (not shown), the surface of the tempering roller being structured using a laser, cf. EP 2 892 663 B1 .
  • Each depression (2.1) has a circumferential flank area (2.3) which, starting from the surface (1.1), opens into a valley area (2.2).
  • the scanning area of the atomic force microscopy had an area of 90 ⁇ 90 ⁇ m 2 , with three areas (framed in white) within the scanning area with an area of 25 ⁇ 60 ⁇ m 2 each being examined in more detail.
  • the depth profiles (2.11) determined from the three areas (X, Y, Z) were combined to form an average depth profile (2.11) Figures 2 to 4 shown enlarged.
  • only one depth profile in (partial) section can be used representatively for evaluation and not, as in this case, an average value can be formed from several depth profiles.
  • each recess (2.1) has a depth profile (2.11), which has two opposite flank portions (2.31) and one that runs between the flank portions (2.31) and connects the flank portions (2.31).
  • Valley portion (2.21) wherein the depth profile (2.11) is divided into a left part and a right part of the depth profile (2.11), the depth profile (2.11) running asymmetrically, with the flank portions (2.31) and valley portions (2.21) of the
  • the left part and the right part of the depth profile (2.11) differ at least in height (h), in width (b) and / or in slope ( ⁇ ).
  • the sectional view (Y) runs, for example, through the center of gravity (S) of the recess (2.1), whereby the depth profile (2.1) can run in the rolling direction or transversely to the rolling direction.
  • the width (b) is understood to be the width between the respective highest assigned point (P1, P2) and the lowest point (P3).
  • the height (h) is determined between the respective highest point (P1, P2) and the lowest point (P3).
  • the depth profile (2.11) can be divided into a left part and a right part of the depth profile (2.11), with the left part of the depth profile (2.11) extending from the highest point (P1) to runs to the lowest point (P3) and the right part of the depth profile (2.11) runs from the highest point (P2) to the lowest point (P3).
  • the depth profile (2.11) has an asymmetry factor A ⁇ 0.9, where A corresponds to the quotient of the integrals (Int) of the left and right parts of the depth profile (2.11), where the integral (Int) with the larger value is in the denominator of the quotient stands.
  • the integrals between the points (P1, P3), left part, and between points (P3, P2), right part, correspond to the left and right surfaces (shown hatched) of the depth profile (2.11) below the depth profile function.
  • Table 1 compares the three areas examined with their parameters: Table 1 Area h_P1,P3 h_P3,P2 b_P1,P3 b_P3,P2 Int_P1,P3 Int_P3,P2 A X 2.66 ⁇ m 2.29 ⁇ m 18.75 ⁇ m 26.76 ⁇ m 13.45 ⁇ m2 20.68 ⁇ m2 0.65 Y 2.52 ⁇ m 2.08 ⁇ m 20.51 ⁇ m 26.95 ⁇ m 16.21 ⁇ m2 24.55 ⁇ m2 0.66 Z 3.10 ⁇ m 2.41 ⁇ m 19.53 ⁇ m 23.63 ⁇ m 20.99 ⁇ m2 14.78 ⁇ m2 0.70
  • a process medium in the form of a forming oil was applied to the steel sheet (1, 1') according to the invention, in particular coated with a metallic coating and with a deterministic surface structure (2). set asymmetry along a preferred direction of the steel sheet has accumulated in a part of the depth profile (2.11) within the recess (s) (2.1), so that it can be stored in the necessary amount in the areas relevant to the forming process in a further deep-drawing test.
  • a dry steel sheet according to the invention ie coated without a process medium, as well as several steel sheets according to the invention coated with a process medium with different layers of 0.5, 1, 1.5 and 2 g/m 2 in the surface structure (2), were subjected to a deep-drawing test under the same conditions.
  • the result was that, as expected, due to the high frictional force, a high level of abrasion occurred on the dry steel sheet and the steel sheets coated with the process medium produced essentially identical results showed and no significant abrasion was visible. It was therefore possible to show that the process medium coating on the steel sheet, which was particularly coated according to the invention and dressed with a deterministic surface structure, was sufficient at 0.5 g/m 2 to achieve a correspondingly good result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Coating With Molten Metal (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

Die Erfindung betrifft ein mit einer deterministischen Oberflächenstruktur dressiertes Stahlblech. Des Weiteren betrifft die Erfindung ein Verfahren zum Herstellen eines mit einer deterministischen Oberflächenstruktur dressierten Stahlblechs.The invention relates to a steel sheet tempered with a deterministic surface structure. The invention further relates to a method for producing a steel sheet tempered with a deterministic surface structure.

Aus dem Stand der Technik sind gattungsgemäße mit einer deterministischen Oberflächenstruktur dressierte Stahlbleche bekannt, s. zum Beispiel Patentschrift EP 2 892 663 B1 .Steel sheets of this type with a deterministic surface structure are known from the prior art, see for example the patent specification EP 2 892 663 B1 .

Hinsichtlich des bekannten Standes der Technik besteht Optimierungsbedarf, insbesondere mit Blick auf eine gezielte Modellierung der Oberflächenstruktur eines mit einer deterministischen Oberflächenstruktur dressierten Stahlbleches.With regard to the known state of the art, there is a need for optimization, particularly with regard to targeted modeling of the surface structure of a steel sheet dressed with a deterministic surface structure.

Die Aufgabe ist daher, ein mit einer deterministischen Oberflächenstruktur dressiertes Stahlblech zur Verfügung zu stellen, welches im Vergleich zum Stand der Technik eine gezielte Veränderung der Oberflächenstruktur bereitstellt.The task is therefore to provide a steel sheet tempered with a deterministic surface structure, which provides a targeted change in the surface structure compared to the prior art.

Die Aufgabe wird mit den Merkmalen des Anspruches 1 gelöst.The task is solved with the features of claim 1.

Die Bereitstellung einer gezielten Oberflächenstruktur auf einem dressierten Stahlblech ist wesentlich für weitere Prozesse, insbesondere in der weiterverarbeitenden Industrie zur Herstellung von Bauteilen für Automobile. Das Stahlblech ist mit einem metallischen Überzug beschichtet. Im Zuge der Bauteilherstellung, insbesondere in Umformprozessen ist es vorteilhaft, wenn verwendete Prozessmedien, wie zum Beispiel Öl und/oder Schmierstoffe, in notwendiger Auflage an umformprozessrelevanten Stellen vorhanden sind. Diese umformprozessrelevanten Stellen sind in der Regel die Kontaktflächen von Stahlblech und formgebenden Werkzeugen - demnach nicht die Einprägungen bzw. Vertiefungen in den Stahlblechen, in denen sich die Prozessmedien bevorzugt sammeln, sondern die Oberfläche in Form der Fläche der Erhebungen auf den Stahlblechen. Die Erfinder haben festgestellt, dass bei einem mit einer deterministischen Oberflächenstruktur dressierten Stahlblech im Vergleich zum Stand der Technik eine gezielte Oberflächenstruktur dadurch bereitgestellt werden kann, wenn die Oberflächenstruktur eine Vielzahl an Vertiefungen aufweist, wobei jede Vertiefung einen umlaufenden Flankenbereich aufweist, welcher ausgehend von der Oberfläche in einem Talbereich mündet, wobei in einer Schnittdarstellung betrachtet, jede Vertiefung ein Tiefenprofil aufweist, welches zwei gegenüberliegende Flankenteilbereiche und einen zwischen den Flankenteilbereichen verlaufenden und die Flankenteilbereiche verbindenden Talteilbereich umfasst, wobei das Tiefenprofil in einen linken Teil und einen rechten Teil des Tiefenprofils unterteilt ist, wobei der linke Teil des Tiefenprofils vom höchsten Punkt bis zum niedrigsten Punkt und der rechte Teil des Tiefenprofils vom höchsten Punkt bis zum niedrigsten Punkt verlaufen, wobei das Tiefenprofil asymmetrisch verläuft, wobei sich die Flankenteilbereiche und Talteilbereiche des linken Teils und des rechten Teils des Tiefenprofils zumindest in der Höhe oder in der Breite unterscheiden.Providing a targeted surface structure on a tempered steel sheet is essential for further processes, especially in the processing industry for the production of components for automobiles. The steel sheet is coated with a metallic coating. In the course of component production, particularly in forming processes, it is advantageous if the process media used, such as oil and/or lubricants, are present in the necessary quantities at locations relevant to the forming process. These areas relevant to the forming process are usually the contact surfaces of steel sheet and forming tools - therefore not the impressions or depressions in the steel sheets in which the process media preferentially collect, but the surface in the form of the area of the elevations on the steel sheets. The inventors have found that, in comparison to the prior art, a targeted surface structure can be provided for a steel sheet tempered with a deterministic surface structure if the surface structure has a large number of depressions, each depression having a circumferential flank area which starts from the surface flows into a valley area, whereby in Viewed in a sectional view, each depression has a depth profile which comprises two opposite flank portions and a valley portion running between the flank portions and connecting the flank portions, the depth profile being divided into a left part and a right part of the depth profile, the left part of the depth profile being from highest point to the lowest point and the right part of the depth profile runs from the highest point to the lowest point, the depth profile running asymmetrically, with the flank areas and valley areas of the left part and the right part of the depth profile at least in height or in width differentiate.

Durch die gezielte Modellierung der Oberflächenstruktur und dem entsprechend ausgebildeten asymmetrischen Verlauf des Tiefenprofils wurde festgestellt, dass beim Umformen die Asymmetrie zwar einen ungünstigen Einfluss auf das Umformergebnis hat, wobei die Bereiche der Oberfläche des Stahlblechs, welche insbesondere an die Flankenteilbereiche und Talteilbereiche mit einer steileren Steigung und/oder größeren Breite angrenzen und in Kontakt mit dem formgebenden Werkzeug gelangen, einer höheren Umformkraft ausgesetzt sind, da sie einen höheren Widerstand entgegenbringen, jedoch überraschenderweise festgestellt werden konnte, dass sich die Prozessmedien gezielt in den Flankenteilbereichen und Talteilbereichen mit einer steileren Steigung und/oder größeren Breite mit einer je nach Menge und/oder Art, z. B. abhängig von der Fließfähigkeit, des Prozessmediums resultierenden Höhe angesammelt haben und somit dem prozessrelevanten Bereich zur Verfügung stehen, wodurch der Widerstand reduziert werden kann, so dass sich das ungünstige Verhältnis der Umformung durch den gezielten Einfluss auf die lokale Prozessmedienverteilung kompensiert werden kann. Prozessmedien sammeln sich aufgrund der Kapillarwirkung insbesondere an breiten und steilen Flankenteilbereichen und Talteilbereichen. Die Höhe ist insbesondere relevant, da die Höhe die Fläche des Flankenteilbereichs definiert, von der der Kapillareffekt ausgeht. Eine zu hohe Höhe kann sich jedoch bei konstanter Menge des Prozessmediums nachteilig für den Umformprozess auswirken, da das Medium einen längeren Weg vom Tal(teil)bereich aus zurücklegen müsste, um an den prozessrelevanten Bereich zu gelangen.Through the targeted modeling of the surface structure and the correspondingly designed asymmetrical course of the depth profile, it was found that during forming the asymmetry has an unfavorable influence on the forming result, with the areas of the surface of the steel sheet, which are particularly on the flank areas and valley areas having a steeper gradient and/or greater width and come into contact with the shaping tool, are exposed to a higher forming force because they have a higher resistance, but surprisingly it was found that the process media is specifically located in the flank areas and valley areas with a steeper gradient and/ or larger width with a depending on the quantity and/or type, e.g. B. depending on the flowability, the resulting height of the process medium has accumulated and is therefore available to the process-relevant area, whereby the resistance can be reduced so that the unfavorable relationship of the forming can be compensated for by the targeted influence on the local process medium distribution. Due to capillary action, process media collect particularly on wide and steep flank areas and valley areas. The height is particularly relevant because the height defines the area of the flank area from which the capillary effect originates. However, if the amount of process medium is constant, a height that is too high can have a detrimental effect on the forming process, as the medium would have to travel a longer distance from the valley (partial) area in order to reach the process-relevant area.

Das Stahlblech ist mit einem zinkbasierten Überzug beschichtet, welcher durch Schmelztauchbeschichten aufgebracht ist. Das Dressieren erfolgt nach dem Schmelztauchbeschichten des Stahlblechs.The steel sheet is coated with a zinc-based coating, which is applied by hot-dip coating. The tempering takes place after the steel sheet has been hot-dip coated.

Alternativ ist das Stahlblech mit einem zinkbasierten Überzug beschichtet, welcher durch elektrolytisches Beschichten aufgebracht ist. Das Dressieren erfolgt vor dem elektrolytischen Beschichten des Stahlblechs.Alternatively, the steel sheet is coated with a zinc-based coating, which is applied by electrolytic coating. The tempering takes place before the electrolytic coating of the steel sheet.

Unter deterministischer Oberflächenstruktur sind wiederkehrende Oberflächenstrukturen zu verstehen, welche eine definierte Form und/oder Ausgestaltung aufweisen, vgl. EP 2 892 663 B1 . Insbesondere gehören hierzu zudem Oberflächen mit einer (quasi-)stochastischen Anmutung, die jedoch mittels eines deterministischen Texturierungsverfahrens aufgebracht werden und sich somit aus deterministischen Formelementen zusammensetzen.Deterministic surface structure means recurring surface structures that have a defined shape and/or design, cf. EP 2 892 663 B1 . In particular, this also includes surfaces with a (quasi-)stochastic appearance, which are, however, applied using a deterministic texturing process and are therefore composed of deterministic form elements.

Unter Stahlblech ist allgemein ein Stahlflachprodukt zu verstehen, welches in Blechform bzw. in Platinenform oder in Bandform bereitgestellt werden kann.Sheet steel is generally understood to mean a flat steel product, which can be provided in sheet form or in blank form or in strip form.

Der die Vertiefung umlaufende Flankenbereich definiert zusammen mit dem einstückig an den Flankenbereich angeschlossenen Talbereich ein geschlossenes Volumen der in das Stahlblech mittels Dressieren eingeprägte Oberflächenstruktur. Das geschlossene Volumen, das sogenannte Leervolumen, kann für die spätere Verarbeitung mittels Umformverfahren auf ein zu applizierendes Prozessmedium, insbesondere Öl, abgestimmt sein.The flank area surrounding the depression, together with the valley area integrally connected to the flank area, defines a closed volume of the surface structure embossed into the steel sheet by means of tempering. The closed volume, the so-called empty volume, can be tailored to a process medium to be applied, in particular oil, for later processing using a forming process.

Weitere vorteilhafte Ausgestaltungen und Weiterbildungen gehen aus der nachfolgenden Beschreibung hervor. Ein oder mehrere Merkmale aus den Ansprüchen, der Beschreibung wie auch der Zeichnung können mit einem oder mehreren anderen Merkmalen daraus zu weiteren Ausgestaltungen der Erfindung im Rahmen des durch die Ansprüche definierten Schutzumfanges verknüpft werden. Es können auch ein oder mehrere Merkmale aus den unabhängigen Ansprüchen durch ein oder mehrere andere Merkmale im Rahmen des durch die Ansprüche definierten Schutzumfanges verknüpft werden.Further advantageous refinements and further developments can be found in the following description. One or more features from the claims, the description and the drawing can be combined with one or more other features therefrom to form further embodiments of the invention within the scope of protection defined by the claims. One or more features from the independent claims can also be linked by one or more other features within the scope of protection defined by the claims.

Gemäß einer Ausgestaltung des erfindungsgemäßen Stahlblechs wird das Tiefenprofil in und/oder quer zur Dressierwalzrichtung betrachtet. Durch das Einwirken einer Dressierwalze kann insbesondere in und/oder quer zur Dressierwalzrichtung gezielt Einfluss genommen werden, da durch die formgebenden Elemente der Dressierwalze vorzugsweise in Dressierwalzrichtung, aber auch alternativ oder zusätzlich quer zur Dressierwalzrichtung eine gezielte Asymmetrie der Vertiefungen eingestellt werden kann, welche auf die Oberfläche des Stahlblechs einwirken, in die Oberfläche des Stahlblechs eintauchen und die Vertiefungen erzeugen.According to one embodiment of the steel sheet according to the invention, the depth profile is viewed in and/or transversely to the temper rolling direction. Through the action of a skin-pass roll, specific influence can be exerted in particular in and/or transversely to the skin-pass roll direction, since a targeted asymmetry of the depressions can be set by the shaping elements of the skin-pass roll, preferably in the skin-pass roll direction, but also alternatively or additionally transversely to the skin-pass roll direction, which is based on the Act on the surface of the steel sheet, dip into the surface of the steel sheet and create the depressions.

Die geometrische Ausgestaltung (Größe und Tiefe) einer deterministischen Oberflächenstruktur (negative Form) auf einem dressierten Stahlblech hängt insbesondere davon ab, wie die entsprechende geometrische Struktur (positive Form, formgebenden Elemente) auf einer Dressierwalze gestaltet ist/wird. Vorzugsweise kommen Laser-Texturierverfahren zur Anwendung, um gezielte Strukturen (positive Form) auf der Oberfläche einer Dressierwalze durch Materialabtrag einstellen zu können. Insbesondere kann durch gezielte Ansteuerung der Energie, der Pulsdauer und Wahl einer geeigneten Wellenlänge eines auf die Oberfläche der Dressierwalze einwirkenden Laserstrahls positiv Einfluss auf die Gestaltung der Struktur(en) genommen werden. fs-, ps- und ns-Pulse sind allesamt für einen Materialabtrag geeignet, die Art der Energieeinkoppelung und des Abtrages auf einer Festkörperoberfläche ist jedoch wesentlich unterschiedlich, ebenso die Größe der Wärmeeinflusszone (HAZ). Je kürzer die Pulsdauer desto weniger Energie kann beispielsweise aus dem Laserfokus in die Umgebung (HAZ) abfließen. Je länger der Puls desto mehr der Strahlungsenergie wird in das sich bereits bildende Plasma eingekoppelt oder von diesem reflektiert, kann also nicht in die Dressierwalzenoberfläche direkt eingekoppelt werden. Ein Puls hinterlässt auf der Dressierwalzenoberfläche einen im Wesentlichen kreisrunden Krater, der bzw. die, bei mehreren Kratern, nach dem Dressiervorgang die Oberfläche respektive die Fläche der Erhebungen (Oberfläche) auf dem Stahlblech und somit die Kontaktfläche zwischen Stahlblech und formgebenden Werkzeug abbildet. Eine Reduktion der Pulsdauer hat Einfluss auf die Ausbildung eines Kraters, insbesondere kann der Durchmesser des Kraters verringert werden. Durch die Reduktion der Pulsenergie, insbesondere bei der Verwendung von Kurz- bzw. Ultrakurzpulslasern, ist es möglich, die geometrische Struktur (positive Form) auf der Oberfläche einer Dressierwalze gezielt einzustellen. Dies wird beispielsweise erreicht, wenn die Pulsdauer des Lasers, mit dem die Oberfläche der Dressierwalze texturiert wird, in Richtung auf die Abtragsschwelle verringert wird und so die geometrische Struktur auf der Dressierwalze mit höherer Auflösung erzeugt werden kann. Ähnliches kann durch Erhöhen der Strahlprofilqualität (M2) und der Apertur der idealerweise asphärischen Fokussieroptik erzielt werden. Insbesondere durch die hohe Auflösung bzw. geringe Kraterfläche, die durch die energieärmere Wechselwirkung von Laser und Dressierwalze entsteht, können Flanken(teil)bereiche gezielt in beliebigere Höhe, Breite und/oder Steigung (Winkel des Flankenbereichs) eingestellt werden.The geometric design (size and depth) of a deterministic surface structure (negative shape) on a tempered steel sheet depends in particular on how the corresponding geometric structure (positive shape, shaping elements) is/is designed on a temper roller. Laser texturing processes are preferably used in order to be able to set targeted structures (positive shape) on the surface of a temper roller by removing material. In particular, the design of the structure(s) can be positively influenced by targeted control of the energy, the pulse duration and selection of a suitable wavelength of a laser beam acting on the surface of the skin pass roller. fs, ps and ns pulses are all suitable for material removal, but the type of energy coupling and removal on a solid surface is significantly different, as is the size of the heat affected zone (HAZ). The shorter the pulse duration, the less energy can flow from the laser focus into the environment (HAZ), for example. The longer the pulse, the more of the radiation energy is coupled into or reflected from the plasma that is already forming, so it cannot be coupled directly into the skin pass roller surface. A pulse leaves a substantially circular crater on the tempering roller surface, which, in the case of several craters, represents the surface or the area of the elevations (surface) on the steel sheet and thus the contact surface between the steel sheet and the shaping tool after the tempering process. Reducing the pulse duration has an influence on the formation of a crater; in particular, the diameter of the crater can be reduced. By reducing the pulse energy, especially when using short or ultra-short pulse lasers, it is possible to specifically adjust the geometric structure (positive shape) on the surface of a skin pass roller. This is achieved, for example, if the pulse duration of the laser with which the surface of the tempering roller is textured is reduced towards the removal threshold and the geometric structure on the tempering roller can thus be generated with higher resolution. Something similar can be achieved by increasing the beam profile quality (M 2 ) and the aperture of the ideally aspherical focusing optics. In particular, due to the high resolution and small crater area, which arises from the lower-energy interaction between the laser and the tempering roller, flank (partial) areas can be specifically adjusted to any desired height, width and/or gradient (angle of the flank area).

Gemäß einer Ausgestaltung des erfindungsgemäßen Stahlblechs weist die Vertiefung in der Ebene der Oberfläche betrachtet eine Fläche auf, welche einen Schwerpunkt besitzt, durch welchen das Tiefenprofil in und/oder quer zur Dressierwalzrichtung betrachtet wird. Das durch den Schwerpunkt, welcher in der Ebene der Oberfläche betrachteten Fläche der Vertiefung eindeutig ermittelbar ist, beispielsweise in bzw. alternativ oder zusätzlich quer zur Dressierwalzrichtung verlaufende Tiefenprofil kann eine Asymmetrie gezeigt werden, insbesondere die Unterschiede der Flankenteilbereiche und Talteilbereiche des linken Teils und des rechten Teils des Tiefenprofils in Bezug auf Höhe, in der Breite und/oder in der Steigung.According to one embodiment of the steel sheet according to the invention, the depression, viewed in the plane of the surface, has a surface which has a center of gravity through which the depth profile is viewed in and/or transversely to the temper rolling direction. The depth profile that runs transversely to the temper rolling direction, for example in or alternatively or additionally transversely to the temper rolling direction, can be clearly determined by the center of gravity, which area of the recess viewed in the plane of the surface, in particular the differences between the flank portions and valley portions of the left part and the right Part of the depth profile in terms of height, width and/or slope.

Gemäß einer Ausgestaltung des erfindungsgemäßen Stahlblechs weist das Tiefenprofil einen Symmetriefaktor A ≤ 0,9 auf, wobei A dem Quotienten der Integrale des linken und rechten Teils des Tiefenprofils entspricht, wobei das Integral mit dem größeren Wert im Nenner des Quotienten steht. Insbesondere weist das Tiefenprofil einen Symmetriefaktor A ≤ 0,85, vorzugsweise A ≤ 0,8, bevorzugt A ≤ 0,75, weiter bevorzugt A ≤ 0,7, besonders bevorzugt A ≤ 0,67. Je kleiner der Symmetriefaktor eingestellt wird, desto stärker werden die Bleche entlang einer vorgegebenen Richtung konditioniert, sodass entlang dieser Richtung im Vergleich zur gegensätzlichen Richtung beispielsweise bessere Reibeigenschaften und/oder bessere Strömungswiderstandseigenschaften (laminar oder turbulent von Fluiden) erzielt werden können.According to one embodiment of the steel sheet according to the invention, the depth profile has a symmetry factor A ≤ 0.9, where A corresponds to the quotient of the integrals of the left and right parts of the depth profile, the integral with the larger value being in the denominator of the quotient. In particular, the depth profile has a symmetry factor A ≤ 0.85, preferably A ≤ 0.8, preferably A ≤ 0.75, more preferably A ≤ 0.7, particularly preferably A ≤ 0.67. The smaller the symmetry factor is set, the more the sheets are conditioned along a given direction, so that, for example, better friction properties and/or better flow resistance properties (laminar or turbulent of fluids) can be achieved along this direction compared to the opposite direction.

Vorzugsweise kann der Überzug neben Zink und unvermeidbaren Verunreinigungen zusätzliche Elemente wie Aluminium mit einem Gehalt von bis zu 5 Gew.-% und/oder Magnesium mit einem Gehalt von bis zu 5 Gew.-% in dem Überzug enthalten. Stahlbleche mit zinkbasiertem Überzug weisen einen sehr guten kathodischen Korrosionsschutz auf, welche seit Jahren im Automobilbau eingesetzt werden. Ist ein verbesserter Korrosionsschutz vorgesehen, weist der Überzug zusätzlich Magnesium mit einem Gehalt von mindestens 0,3 Gew.-%, insbesondere von mindestens 0,6 Gew.-%, vorzugsweise von mindestens 0,9 Gew.-% auf. Aluminium kann alternativ oder zusätzlich zu Magnesium mit einem Gehalt von mindestens 0,3 Gew.-% vorhanden sein, um insbesondere eine Anbindung des Überzugs an das Stahlblech zu verbessern und insbesondere eine Diffusion von Eisen aus dem Stahlblech in den Überzug bei einer Wärmebehandlung des beschichteten Stahlblechs im Wesentlichen zu verhindern, damit die positiven Korrosionseigenschaften weiterhin erhalten bleiben. Dabei kann eine Dicke des Überzugs zwischen 1 und 15 µm, insbesondere zwischen 2 und 12 µm, vorzugsweise zwischen 3 und 10 µm betragen. Unterhalb der Mindestgrenze kann kein ausreichender kathodischer Korrosionsschutz gewährleistet werden und oberhalb der Höchstgrenze können Fügeprobleme beim Verbinden des erfindungsgemäßen Stahlblechs respektive eines daraus gefertigten Bauteils mit einem anderen Bauteil auftreten, insbesondere kann bei Überschreiten der Dicke des Überzugs angegebene Höchstgrenze kein stabiler Prozess beim thermischen Fügen bzw. Schweißen sichergestellt werden. Beim Schmelztauschbeschichten werden zunächst die Stahlbleche mit einem entsprechenden Überzug beschichtet und anschließend dem Dressieren zugeführt.Preferably, in addition to zinc and unavoidable impurities, the coating may contain additional elements such as aluminum with a content of up to 5% by weight and/or magnesium with a content of up to 5% by weight in the coating. Steel sheets with a zinc-based coating have very good cathodic corrosion protection, which has been used in automobile construction for years. If improved corrosion protection is provided, the coating additionally has magnesium with a content of at least 0.3% by weight, in particular at least 0.6% by weight, preferably at least 0.9% by weight. Alternatively or in addition to magnesium, aluminum can be present with a content of at least 0.3% by weight, in particular to improve the bonding of the coating to the steel sheet and in particular to prevent the diffusion of iron from the steel sheet into the coating during heat treatment of the coated one To essentially prevent steel sheeting so that the positive corrosion properties are retained. The thickness of the coating can be between 1 and 15 µm, in particular between 2 and 12 µm, preferably between 3 and 10 µm. Below the minimum limit, there cannot be sufficient cathodic corrosion protection are guaranteed and above the maximum limit, joining problems can occur when connecting the steel sheet according to the invention or a component made therefrom with another component; in particular, if the thickness of the coating exceeds the specified maximum limit, no stable process can be ensured during thermal joining or welding. During melt-coating, the steel sheets are first coated with an appropriate coating and then passed on for tempering.

Mittels elektrolytischen Beschichtens kann eine Dicke des Überzugs zwischen 1 und 10 µm, insbesondere zwischen 1,5 und 8 µm, vorzugsweise zwischen 2 und 5 µm betragen. Im Vergleich zum Schmelztauchbeschichten wird das Stahlblech zunächst dressiert und anschließend elektrolytisch beschichtet. Je nach Dicke des Überzugs kann die Rauheit im Flankenbereich im Wesentlichen auch nach dem elektrolytischen Beschichten beibehalten werden.By means of electrolytic coating, a thickness of the coating can be between 1 and 10 μm, in particular between 1.5 and 8 μm, preferably between 2 and 5 μm. In comparison to hot-dip coating, the steel sheet is first tempered and then electrolytically coated. Depending on the thickness of the coating, the roughness in the flank area can essentially be retained even after electrolytic coating.

Gemäß einer Ausgestaltung des erfindungsgemäßen Stahlblechs ist das insbesondere beschichtete Stahlblech zusätzlich mit einem Prozessmedium, insbesondere mit einem Öl versehen, wobei insbesondere das Prozessmedium mit einer Auflage bis zu 2 g/m2 in der Oberflächenstruktur aufgenommen ist. Aufgrund der Dimensionierung der Oberflächenstruktur besteht nur wenig Bedarf an Prozessmedium, so dass die Auflage bis zu 2 g/m2, insbesondere bis zu 1,5 g/m2, vorzugsweise bis zu 1 g/m2, bevorzugt bis zu 0,6 g/m2, weiter bevorzugt bis zu 0,4 g/m2 begrenzt ist. Insbesondere durch die Asymmetrie lagert sich das Prozessmedium nach dem Aufbringen im Wesentlichen in den Vertiefungen lokal in den Flankenteilbereichen und Talteilbereichen mit einer steileren Steigung, höheren Höhe und/oder größeren Breite ab und steht für weitere Prozesse, wie zum Beispiel für formgebende Prozesse, vorzugsweise für Tiefziehprozesse, näher an bzw. angrenzend an umformprozessrelevanten Stellen bereit, um die Schmierung zu verbessern und die Reibung und somit den Verschleiß der formgebenden Mittel, wie zum Beispiel Formgebungsvorrichtungen, vorzugsweise (Tiefzieh-) Pressen, zu reduzieren. Insbesondere kann eine Anlagerung des Prozessmediums an tribologisch ungünstigen Bereichen, die nicht zur Prozessmediumzufuhr in die eigentliche Kontakt- bzw. Reibzone beitragen, wirksam unterdrückt werden. Somit hat das erfindungsgemäße Stahlblech mit geringem Prozessmediumbedarf sehr gute tribologische Eigenschaften und ist im Vergleich zu dem aus dem Stand der Technik bekannten, insbesondere beölten Stahlblechen umweltschonender insbesondere durch geringeren Ressourceneinsatz.According to one embodiment of the steel sheet according to the invention, the particularly coated steel sheet is additionally provided with a process medium, in particular with an oil, the process medium in particular being included in the surface structure with a layer of up to 2 g/m 2 . Due to the dimensions of the surface structure, there is only little need for process medium, so that the layer is up to 2 g/m 2 , in particular up to 1.5 g/m 2 , preferably up to 1 g/m 2 , preferably up to 0.6 g/m 2 , more preferably up to 0.4 g/m 2 is limited. In particular, due to the asymmetry, the process medium is deposited after application essentially in the depressions locally in the flank areas and valley areas with a steeper gradient, higher height and / or greater width and is preferably used for further processes, such as for example for shaping processes Deep-drawing processes, closer to or adjacent to places relevant to the forming process, are available in order to improve lubrication and reduce friction and thus wear on the shaping means, such as shaping devices, preferably (deep-drawing) presses. In particular, accumulation of the process medium in tribologically unfavorable areas that do not contribute to the supply of process medium into the actual contact or friction zone can be effectively suppressed. Thus, the steel sheet according to the invention has very good tribological properties with a low process medium requirement and is more environmentally friendly in comparison to the steel sheets known from the prior art, in particular oiled ones, in particular due to the lower use of resources.

Gemäß einem zweiten Aspekt betrifft die Erfindung ein Verfahren zum Herstellen eines mit einer deterministischen Oberflächenstruktur dressierten Stahlblechs umfassend folgende Schritte: - Bereitstellen eines Stahlblechs, - Dressieren des Stahlblechs mit einer Dressierwalze, wobei die Oberfläche der Dressierwalze, welche auf die Oberfläche des Stahlblechs einwirkt, mit einer deterministischen Oberflächenstruktur derart eingerichtet ist, dass nach dem Dressieren die Oberflächenstruktur ausgehend von einer Oberfläche des Stahlblechs in das Stahlblech eingeprägt ist, wobei die Oberflächenstruktur eine Vielzahl an Vertiefungen aufweist, wobei jede Vertiefung einen umlaufenden Flankenbereich aufweist, welcher ausgehend von der Oberfläche in einem Talbereich mündet, wobei in einer Schnittdarstellung betrachtet, jede Vertiefung ein Tiefenprofil aufweist, welches zwei gegenüberliegende Flankenteilbereiche und einen zwischen den Flankenteilbereichen verlaufenden und die Flankenteilbereiche verbindenden Talteilbereich umfasst, wobei das Tiefenprofil in einen linken Teil und einen rechten Teil des Tiefenprofils unterteilt ist, wobei der linke Teil des Tiefenprofils vom höchsten Punkt bis zum niedrigsten Punkt und der rechte Teil des Tiefenprofils vom höchsten Punkt bis zum niedrigsten Punkt verlaufen, wobei das Tiefenprofil asymmetrisch verläuft, wobei sich die Flankenteilbereiche und Talteilbereiche des linken Teils und des rechten Teils des Tiefenprofils zumindest in der Höhe oder in der Breite unterscheiden.According to a second aspect, the invention relates to a method for producing a steel sheet tempered with a deterministic surface structure, comprising the following steps: - providing a steel sheet, - tempering the steel sheet with a tempering roller, wherein the surface of the tempering roller, which acts on the surface of the steel sheet, with a deterministic surface structure is set up in such a way that after tempering, the surface structure is embossed into the steel sheet starting from a surface of the steel sheet, the surface structure having a plurality of depressions, each depression having a circumferential flank area, which starts from the surface in a valley area opens, whereby viewed in a sectional view, each depression has a depth profile which comprises two opposite flank portions and a valley portion running between the flank portions and connecting the flank portions, the depth profile being divided into a left part and a right part of the depth profile, the left Part of the depth profile runs from the highest point to the lowest point and the right part of the depth profile runs from the highest point to the lowest point, with the depth profile running asymmetrically, with the flank portions and valley portions of the left part and the right part of the depth profile at least in height or differ in width.

Die Oberfläche (positive Form) der Dressierwalze bildet durch Krafteinwirkung auf die Oberfläche des Stahlblechs eine Oberflächenstruktur aus, welche Vertiefungen mit jeweils Tal- und Flankenbereichen (negative Form) definiert und entspricht im Wesentlichen der Oberfläche (positive Form) der Dressierwalze. Die Dressierwalze zur Ausbildung einer deterministischen Oberflächenstruktur kann mit geeigneten Mitteln bearbeitet werden, beispielsweise mittels Laser, vgl. auch EP 2 892 663 B1 . Des Weiteren können auch andere Abtragverfahren zur Einstellung einer Oberfläche an einer Dressierwalze eingesetzt werden, beispielsweise spanende Fertigungsverfahren mit geometrisch bestimmter oder unbestimmter Schneide, chemische bzw. elektrochemische, optische oder plasmainduzierte Verfahren, welche geeignet sind, ein zu dressierendes Stahlblech mit einer Oberflächenstruktur und einer entsprechenden Asymmetrie umsetzen zu können.The surface (positive shape) of the tempering roller forms a surface structure by applying force to the surface of the steel sheet, which defines depressions with valley and flank areas (negative shape) and essentially corresponds to the surface (positive shape) of the tempering roller. The skin pass roller to form a deterministic surface structure can be processed using suitable means, for example using a laser, cf. also EP 2 892 663 B1 . Furthermore, other removal processes can also be used to adjust a surface on a skin-pass roll, for example machining manufacturing processes with a geometrically determined or indeterminate cutting edge, chemical or electrochemical, optical or plasma-induced processes, which are suitable for a steel sheet to be skin-dressed with a surface structure and a corresponding one To be able to implement asymmetry.

Um Wiederholungen zu vermeiden, wird jeweils auf die Ausführungen zu dem erfindungsgemäßen mit einer deterministischen Oberflächenstruktur dressierten Stahlblech verwiesen.In order to avoid repetition, reference is made to the statements on the steel sheet according to the invention, which is tempered with a deterministic surface structure.

Erfindungsgemäß wird vor dem Bereitstellen des Stahlblechs das Stahlblech durch Schmelztauchbeschichten mit einem zinkbasierten Überzug beschichtet. Vorzugsweise kann die Schmelze zum Schmelztauchbeschichten neben Zink und unvermeidbaren Verunreinigungen zusätzliche Elemente wie Aluminium mit einem Gehalt von bis zu 5 Gew.-% und/oder Magnesium mit einem Gehalt von bis zu 5 Gew.-% enthalten.According to the invention, before the steel sheet is provided, the steel sheet is coated with a zinc-based coating by hot-dip coating. Preferably, the melt for hot-dip coating can contain, in addition to zinc and unavoidable impurities, additional elements such as aluminum with a content of up to 5% by weight and/or magnesium with a content of up to 5% by weight.

Alternativ wird erfindungsgemäß nach dem Dressieren des Stahlblechs das dressierte Stahlblech durch elektrolytisches Beschichten mit einem zinkbasierten Überzug beschichtet.Alternatively, according to the invention, after tempering the steel sheet, the tempered steel sheet is coated with a zinc-based coating by electrolytic coating.

Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens wird das Stahlblech nach dem Dressieren zusätzlich mit Prozessmedium, vorzugsweise mit Öl, versehen, wobei das Prozessmedium mit einer Auflage bis zu 2 g/m2, weiter bevorzugt mit einer Auflage bis zu 0,4 g/m2 aufgebracht wird.According to one embodiment of the method according to the invention, the steel sheet is additionally provided with process medium, preferably with oil, after tempering, the process medium being provided with a coating of up to 2 g/m 2 , more preferably with a coating of up to 0.4 g/m 2 is applied.

Im Folgenden werden konkrete Ausgestaltungen der Erfindung mit Bezugnahme auf die Zeichnung im Detail näher erläutert. Die Zeichnung und begleitende Beschreibung der resultierenden Merkmale sind nicht beschränkend auf die jeweiligen Ausgestaltungen zu lesen, dienen jedoch der Illustration beispielhafter Ausgestaltung. Weiterhin können die jeweiligen Merkmale untereinander wie auch mit Merkmalen der obigen Beschreibung im Rahmen des durch die Ansprüche definierten Schutzumfanges genutzt werden für mögliche weitere Entwicklungen und Verbesserungen der Erfindung, speziell bei zusätzlichen Ausgestaltungen, welche nicht dargestellt sind. Gleiche Teile sind stets mit den gleichen Bezugszeichen versehen.Specific embodiments of the invention are explained in more detail below with reference to the drawing. The drawing and accompanying description of the resulting features are not to be read as restrictive to the respective embodiments, but serve to illustrate exemplary embodiments. Furthermore, the respective features can be used with each other as well as with features of the above description within the scope of protection defined by the claims for possible further developments and improvements of the invention, especially in additional embodiments which are not shown. The same parts are always provided with the same reference numbers.

Die Zeichnung zeigt in

Figur 1))
eine AFM-Aufnahme eines Ausschnitts eines beschichteten, mit einer deterministischen Oberflächenstruktur dressierten Stahlblechs gemäß eines erfindungsgemäßen Ausführungsbeispiels,
Figur 2)
eine Teil-Schnittdarstellung gemäß des Schnitts X in Fig. 1,
Figur 3)
eine Teil-Schnittdarstellung gemäß des Schnitts Y in Fig. 1 und
Figur 4)
eine Teil-Schnittdarstellung gemäß des Schnitts Z in Fig. 1.
The drawing shows in
Figure 1))
an AFM image of a section of a coated steel sheet dressed with a deterministic surface structure according to an exemplary embodiment according to the invention,
Figure 2)
a partial sectional view according to section X in Fig. 1 ,
Figure 3)
a partial sectional view according to section Y in Fig. 1 and
Figure 4)
a partial sectional view according to section Z in Fig. 1 .

In Figur 1) ist eine Rasterkraftmikroskopie (AFM)-Aufnahme eines Ausschnitts eines beschichteten, mit einer deterministischen Oberflächenstruktur (2) dressierten Stahlblechs (1,1') gemäß eines erfindungsgemäßen Ausführungsbeispiels dargestellt. Das Stahlblech (1, 1`) kann ein unbeschichtetes Stahlblech (1) sein, also keinen insbesondere metallischen Überzug aufweisen, oder ein mit einem metallischen Überzug (1.2) beschichtetes Stahlblech (1') sein. Die deterministische Oberflächenstruktur (2) zeigt eine immer wiederkehrenden I-förmigen Einprägung als Vertiefung (2.1). Der Schwerpunkt (S) in der Ebene der Oberfläche (1.1) ist bei einer im Wesentlichen rechteckigen Vertiefung relativ schnell und einfach zu ermitteln. Andere Ausführungsformen der Vertiefung(en) sind ebenfalls denkbar und anwendbar und nicht auf eine I-förmige Einprägung beschränkt. Die Oberflächenstruktur (2) wurde mittels einer Dressierwalze (nicht dargestellt) eingeprägt, wobei die Oberfläche der Dressierwalze mittels Laser strukturiert worden ist, vgl. EP 2 892 663 B1 . Jede Vertiefung (2.1) weist einen umlaufenden Flankenbereich (2.3) auf, welcher ausgehend von der Oberfläche (1.1) in einem Talbereich (2.2) mündet.In Figure 1 ) is an atomic force microscopy (AFM) image of a section of a coated steel sheet (1,1') dressed with a deterministic surface structure (2). an exemplary embodiment according to the invention is shown. The steel sheet (1, 1`) can be an uncoated steel sheet (1), i.e. not have a metallic coating in particular, or it can be a steel sheet (1') coated with a metallic coating (1.2). The deterministic surface structure (2) shows a recurring I-shaped impression as a depression (2.1). The center of gravity (S) in the plane of the surface (1.1) can be determined relatively quickly and easily with a substantially rectangular depression. Other embodiments of the depression(s) are also conceivable and applicable and are not limited to an I-shaped impression. The surface structure (2) was embossed using a tempering roller (not shown), the surface of the tempering roller being structured using a laser, cf. EP 2 892 663 B1 . Each depression (2.1) has a circumferential flank area (2.3) which, starting from the surface (1.1), opens into a valley area (2.2).

Der Scanbereich der Rasterkraftmikroskopie (Atomic Force Microscopy, AFM) wies eine Fläche von 90 × 90 µm2, wobei drei Bereiche (weiß eingerahmt) innerhalb des Scanbereichs mit einer Fläche von jeweils 25 × 60 µm2 näher untersucht wurden. Die aus den drei Bereichen (X, Y, Z) ermittelten Tiefenprofile (2.11) wurden zu jeweils einem gemittelten Tiefenprofil (2.11) zusammengefasst X, Y, Z (strichliniert dargestellt) und die daraus bestimmten Tiefenprofile (2.11) im Teilschnitt in den Figuren 2 bis 4 vergrößert dargestellt. Je nach Auflösung der verwendeten Messapparatur kann auch nur ein Tiefenprofil im (Teil-)Schnitt repräsentativ zur Auswertung herangezogen werden und nicht wie in diesem Fall aus mehreren Tiefenprofilen ein Mittelwert gebildet werden. Die Darstellungen in den Figuren 2 bis 4 zeigen jeweils in einer Schnittdarstellung (X, Y, Z) betrachtet, dass jede Vertiefung (2.1) ein Tiefenprofil (2.11) aufweist, welches zwei gegenüberliegende Flankenteilbereiche (2.31) und einen zwischen den Flankenteilbereichen (2.31) verlaufenden und die Flankenteilbereiche (2.31) verbindenden Talteilbereich (2.21) umfasst, wobei das Tiefenprofil (2.11) in einen linken Teil und einen rechten Teil des Tiefenprofils (2.11) unterteilt ist, wobei das Tiefenprofil (2.11) asymmetrisch verläuft, wobei sich die Flankenteilbereiche (2.31) und Talteilbereiche (2.21) des linken Teils und des rechten Teils des Tiefenprofils (2.11) zumindest in der Höhe (h), in der Breite (b) und/oder in der Steigung (α) unterscheiden. Die Schnittdarstellung (Y) verläuft beispielsweise durch den Schwerpunkt (S) der Vertiefung (2.1), wobei das Tiefenprofil (2.1) in Walzrichtung oder quer zur Walzrichtung verlaufen kann.The scanning area of the atomic force microscopy (AFM) had an area of 90 × 90 µm 2 , with three areas (framed in white) within the scanning area with an area of 25 × 60 µm 2 each being examined in more detail. The depth profiles (2.11) determined from the three areas (X, Y, Z) were combined to form an average depth profile (2.11) Figures 2 to 4 shown enlarged. Depending on the resolution of the measuring equipment used, only one depth profile in (partial) section can be used representatively for evaluation and not, as in this case, an average value can be formed from several depth profiles. The representations in the Figures 2 to 4 each show, viewed in a sectional view (X, Y, Z), that each recess (2.1) has a depth profile (2.11), which has two opposite flank portions (2.31) and one that runs between the flank portions (2.31) and connects the flank portions (2.31). Valley portion (2.21), wherein the depth profile (2.11) is divided into a left part and a right part of the depth profile (2.11), the depth profile (2.11) running asymmetrically, with the flank portions (2.31) and valley portions (2.21) of the The left part and the right part of the depth profile (2.11) differ at least in height (h), in width (b) and / or in slope (α). The sectional view (Y) runs, for example, through the center of gravity (S) of the recess (2.1), whereby the depth profile (2.1) can run in the rolling direction or transversely to the rolling direction.

Als Breite (b) wird die Breite zwischen dem jeweiligen höchsten zugeordneten Punkt (P1, P2) und dem tiefsten Punkt (P3) verstanden. Die Höhe (h) wird zwischen dem jeweiligen höchsten Punkt (P1, P2) und dem tiefsten Punkt (P3) bestimmt. An diesen Punkten (P1, P2, P3) kann somit das Tiefenprofil (2.11) definiert in einen linken Teil und einen rechten Teil des Tiefenprofils (2.11) unterteilt werden, wobei der linke Teil des Tiefenprofils (2.11) vom höchsten Punkt (P1) bis zum niedrigsten Punkt (P3) verläuft und der rechte Teil des Tiefenprofils (2.11) vom höchsten Punkt (P2) bis zum niedrigsten Punkt (P3) verläuft. Das Tiefenprofil (2.11) weist einen Asymmetriefaktor A ≤ 0,9 auf, wobei A dem Quotienten der Integrale (Int) des linken und rechten Teils des Tiefenprofils (2.11) entspricht, wobei das Integral (Int) mit dem größeren Wert im Nenner des Quotienten steht. Die Intergrale zwischen den Punkten (P1, P3), linker Teil, und zwischen Punkten (P3, P2), rechter Teil, entsprechen der linken und rechten Fläche (schraffiert dargestellt) des Tiefenprofils (2.11) unterhalb der Tiefenprofil-Funktion. In der folgende Tabelle 1 sind die drei untersuchten Bereiche mit ihren Kenngrößen gegenübergestellt: Tabelle 1 Bereich h_P1,P3 h_P3,P2 b_P1,P3 b_P3,P2 Int_P1,P3 Int_P3,P2 A X 2,66 µm 2,29 µm 18,75 µm 26,76 µm 13,45 µm2 20,68 µm2 0,65 Y 2,52 µm 2,08 µm 20,51 µm 26,95 µm 16,21 µm2 24,55 µm2 0,66 Z 3,10 µm 2,41 µm 19,53 µm 23,63 µm 20,99 µm2 14,78 µm2 0,70 The width (b) is understood to be the width between the respective highest assigned point (P1, P2) and the lowest point (P3). The height (h) is determined between the respective highest point (P1, P2) and the lowest point (P3). At these points (P1, P2, P3), the depth profile (2.11) can be divided into a left part and a right part of the depth profile (2.11), with the left part of the depth profile (2.11) extending from the highest point (P1) to runs to the lowest point (P3) and the right part of the depth profile (2.11) runs from the highest point (P2) to the lowest point (P3). The depth profile (2.11) has an asymmetry factor A ≤ 0.9, where A corresponds to the quotient of the integrals (Int) of the left and right parts of the depth profile (2.11), where the integral (Int) with the larger value is in the denominator of the quotient stands. The integrals between the points (P1, P3), left part, and between points (P3, P2), right part, correspond to the left and right surfaces (shown hatched) of the depth profile (2.11) below the depth profile function. The following Table 1 compares the three areas examined with their parameters: Table 1 Area h_P1,P3 h_P3,P2 b_P1,P3 b_P3,P2 Int_P1,P3 Int_P3,P2 A X 2.66µm 2.29 µm 18.75µm 26.76 µm 13.45 µm2 20.68 µm2 0.65 Y 2.52µm 2.08 µm 20.51 µm 26.95µm 16.21 µm2 24.55 µm2 0.66 Z 3.10 µm 2.41 µm 19.53 µm 23.63 µm 20.99 µm2 14.78 µm2 0.70

In einer weiteren Untersuchung wurde auf das erfindungsgemäße, insbesondere mit einem metallischen Überzug beschichtete und einer deterministischen Oberflächenstruktur (2) dressierte Stahlblech (1, 1') ein Prozessmedium in Form eines Umformöls appliziert und es konnte gezeigt werden, dass sich das Prozessmedium durch die gezielt eingestellte Asymmetrie entlang einer Vorzugsrichtung des Stahlblechs in einem Teil des Tiefenprofils (2.11) innerhalb der Vertiefung(en) (2.1) angesammelt hat, so dass es in einem weiteren Tiefziehversuch in notwendiger Auflage dem umformprozessrelevanten Stellen bevorratet werden kann. Als Referenz wurde ein trockenes, d. h. ohne Prozessmedium beschichtetes erfindungsgemäßes Stahlblech wie mehrere mit einem Prozessmedium mit unterschiedlichen Auflagen 0.5, 1, 1.5 und 2 g/m2 in der Oberflächenstruktur (2) beschichtetes erfindungsgemäßes Stahlblech unter gleichen Bedingungen einem Tiefziehversuch unterzogen. Im Ergebnis stellte sich heraus, dass erwartungsgemäß bedingt durch die hohe Reibkraft sich beim trockenen Stahlblech ein hoher Abrieb einstellte und die mit dem Prozessmedium beschichteten Stahlbleche im Wesentlichen identische Ergebnisse aufzeigten und kein nennenswerter Abrieb zu erkennen war. Es konnte somit aufgezeigt werden, dass die Prozessmediumauflage am erfindungsgemäß insbesondere beschichteten, mit einer deterministischen Oberflächenstruktur dressierten Stahlblech mit 0.5 g/m2 ausreichend war, um ein entsprechend gutes Ergebnis zu erzielen.In a further study, a process medium in the form of a forming oil was applied to the steel sheet (1, 1') according to the invention, in particular coated with a metallic coating and with a deterministic surface structure (2). set asymmetry along a preferred direction of the steel sheet has accumulated in a part of the depth profile (2.11) within the recess (s) (2.1), so that it can be stored in the necessary amount in the areas relevant to the forming process in a further deep-drawing test. As a reference, a dry steel sheet according to the invention, ie coated without a process medium, as well as several steel sheets according to the invention coated with a process medium with different layers of 0.5, 1, 1.5 and 2 g/m 2 in the surface structure (2), were subjected to a deep-drawing test under the same conditions. The result was that, as expected, due to the high frictional force, a high level of abrasion occurred on the dry steel sheet and the steel sheets coated with the process medium produced essentially identical results showed and no significant abrasion was visible. It was therefore possible to show that the process medium coating on the steel sheet, which was particularly coated according to the invention and dressed with a deterministic surface structure, was sufficient at 0.5 g/m 2 to achieve a correspondingly good result.

Claims (7)

  1. A sheet steel (1, 1') skin-pass rolled with a deterministic surface structure (2), wherein the sheet steel (1') comprises a zinc-based metallic coat, which is applied by hot-dip coating or by electrolytic coating, wherein the surface structure (2) is impressed into the sheet steel (1, 1') starting from a surface (1.1) of the sheet steel (1, 1'), wherein the surface structure (2) has a multiplicity of indentations (2.1), wherein each indentation (2.1) has an encircling flank region (2.3) which leads, starting from the surface (1.1), down to a valley region (2.2), wherein, as viewed in a sectional illustration, each indentation (2.1) has a depth profile (2.11) which comprises two opposite flank subregions (2.31) and a valley subregion (2.21) which runs between the flank subregions (2.31) and which connects the flank subregions (2.31), wherein the depth profile (2.11) is divided into a left-hand part and a right-hand part of the depth profile (2.11), wherein the left-hand part of the depth profile (2.11) runs from the highest point (P1) to the lowest point (P3), and the right-hand part of the depth profile (2.11) runs from the highest point (P2) to the lowest point (P3), wherein skin-pass rolling takes place after hot-dip coating or prior to electrolytic coating, characterized in that the depth profile (2.11) runs in an asymmetrical manner, wherein the flank subregions (2.31) and valley subregions (2.21) of the left-hand part and of the right-hand part of the depth profile (2.11) differ at least in height (h) or width (b).
  2. The sheet steel as claimed in claim 1, wherein the depth profile (2.11) is viewed in and/or transversely to the skin-pass rolling direction.
  3. The sheet steel as claimed in claim 1 or 2, wherein, as viewed in the plane (E) of the surface (1.1), the indentation (2.1) has an area (2.12) which has a centroid (S) through which the depth profile (2.11) is viewed in and/or transversely to the skin-pass rolling direction.
  4. The sheet steel as claimed in one of the preceding claims, wherein the depth profile (2.11) has a symmetry factor A ≤ 0.9, where A corresponds to the ratio of the integrals of the left-hand and right-hand part of the depth profile (2.11), the integral with the larger value being the denominator of the ratio.
  5. The sheet steel as claimed in one of the preceding claims, wherein the sheet steel (1, 1') is additionally provided with a process medium, wherein in particular the process medium is taken up with a surface weight of up to 2 g/m2 in the surface structure (2).
  6. A method for producing a sheet steel (1, 1') skin-pass rolled with a deterministic surface structure (2), comprising the following steps:
    - providing a sheet steel,
    - skin-pass rolling the sheet steel with a skin-pass roll, wherein the surface of the skin-pass roll which acts on the surface of the sheet steel is furnished with a deterministic surface structure such that, after the skin-pass rolling, the surface structure (2) is impressed into the sheet steel (1, 1') starting from a surface (1.1) of the sheet steel (1, 1'), wherein the surface structure (2) has a multiplicity of indentations (2.1), wherein each indentation (2.1) has an encircling flank region (2.3) which leads, starting from the surface (1.1), down to a valley region (2.2), wherein, as viewed in a sectional illustration, each indentation (2.1) has a depth profile (2.11) which comprises two opposite flank subregions (2.31) and a valley subregion (2.21) which runs between the flank subregions (2.31) and which connects the flank subregions (2.31), wherein the depth profile (2.11) is divided into a left-hand part and a right-hand part of the depth profile (2.11), wherein the left-hand part of the depth profile (2.11) runs from the highest point (P1) to the lowest point (P3), and the right-hand part of the depth profile (2.11) runs from the highest point (P2) to the lowest point (P3), wherein the depth profile (2.11) runs in an asymmetrical manner, wherein the flank subregions (2.31) and valley subregions (2.21) of the left-hand part and of the right-hand part of the depth profile (2.11) differ at least in height (h) or width (b), wherein, prior to the provision of the sheet steel, the sheet steel is coated with a zinc-based metallic coat by hot-dip coating, or wherein, after the sheet steel has been skin-pass rolled, the skin-pass rolled sheet steel is coated by electrolytic coating with a zinc-based metallic coat.
  7. The method as claimed in claim 1, wherein the sheet steel (1, 1') is additionally provided with a process medium, wherein the process medium is applied with a surface weight of up to 2 g/m2.
EP20785704.6A 2019-10-10 2020-09-28 Sheet steel having a deterministic surface structure and method for manufacturing such steel sheet Active EP4041467B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019215580.4A DE102019215580A1 (en) 2019-10-10 2019-10-10 Sheet steel with a deterministic surface structure
PCT/EP2020/077098 WO2021069247A1 (en) 2019-10-10 2020-09-28 Sheet steel having a deterministic surface structure

Publications (2)

Publication Number Publication Date
EP4041467A1 EP4041467A1 (en) 2022-08-17
EP4041467B1 true EP4041467B1 (en) 2024-02-21

Family

ID=72717850

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20785704.6A Active EP4041467B1 (en) 2019-10-10 2020-09-28 Sheet steel having a deterministic surface structure and method for manufacturing such steel sheet

Country Status (5)

Country Link
EP (1) EP4041467B1 (en)
JP (1) JP2022551479A (en)
CN (1) CN114555251A (en)
DE (1) DE102019215580A1 (en)
WO (1) WO2021069247A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020207561A1 (en) 2020-06-18 2021-12-23 Thyssenkrupp Steel Europe Ag Passed and coated sheet steel and process for its manufacture
DE102022113809A1 (en) 2022-06-01 2023-12-07 Thyssenkrupp Steel Europe Ag Flat metal product and component thereof
DE102022132638A1 (en) * 2022-12-08 2024-06-13 Thyssenkrupp Steel Europe Ag Deterministically textured work roll for use in a cold rolling mill, method for producing a deterministically textured work roll for use in a cold rolling mill and cold rolling mill

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230402A (en) * 1986-03-31 1987-10-09 Kawasaki Steel Corp Steel sheet to be painted and its production
JP2659853B2 (en) * 1990-07-16 1997-09-30 三菱重工業株式会社 Rolling method
EP1136574A1 (en) * 2000-03-21 2001-09-26 SM Schweizerische Munitionsunternehmung AG Process for manufacturing embossing tools and their uses
DE10134506A1 (en) * 2001-07-04 2003-01-30 Blanco Gmbh & Co Kg Method for producing a metal sheet, metal sheet and device for applying a surface structure to a metal sheet
DE102012017703A1 (en) * 2012-09-07 2014-03-13 Daetwyler Graphics Ag Flat product of metal material, in particular a steel material, use of such a flat product and roller and method for producing such flat products
DE102016102723B3 (en) * 2016-02-16 2017-06-01 Salzgitter Flachstahl Gmbh Tempering roller, method for applying a flat product hereby and flat product thereof
KR101839245B1 (en) * 2016-12-14 2018-03-15 주식회사 포스코 Rolling roll for plated steel sheet manufactured thereby

Also Published As

Publication number Publication date
DE102019215580A1 (en) 2021-04-15
JP2022551479A (en) 2022-12-09
WO2021069247A1 (en) 2021-04-15
CN114555251A (en) 2022-05-27
EP4041467A1 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
EP4041467B1 (en) Sheet steel having a deterministic surface structure and method for manufacturing such steel sheet
EP2892663B1 (en) Flat product made of metal material, in particular a steel material, use of such a flat product, and roll and method for producing such flat products
EP4038216B1 (en) Sheet steel having a deterministic surface structure
DE69108284T2 (en) Textures produced in all mill stands and stages.
EP4182099B1 (en) Skin pass rolled sheet steel, skin pass roll and method for producing skin pass rolled sheet steel
DE102019214136A1 (en) Sheet steel with a deterministic surface structure
DE102019214135A1 (en) Sheet steel with a deterministic surface structure
DE102019214133A1 (en) Sheet steel with a deterministic surface structure
EP3414365B1 (en) Reform optimised aluminum alloy sheet
EP3925713B1 (en) Skin pass rolled and coated steel sheet and method for producing the same
EP4035788B1 (en) Method for texturing a skin-pass roll
WO2017144407A1 (en) Roller, in particular skin pass roller, and skin passed flat product
EP0761324A1 (en) Metal sheet, mill roll for the manufacture of metal sheet, method of texturing the surface of the mill roll and its use
EP1362648B1 (en) Method of making an aluminum tube, aluminum tube and use of the aluminum tube
WO2001071048A1 (en) Production of an embossing tool and use of the same
DE102021125889A1 (en) Process for skin-passing a steel sheet, skin-passed steel sheet and component made therefrom
EP4387779A1 (en) Process for manufacturing a laser-textured temper pass roll, method for temper-passing a steel sheet, and accordingly temper-passed steel sheet
DE102022130994A1 (en) INTERNAL COMBUSTION ENGINE PISTONS AND METHOD OF ITS MANUFACTURE
EP3266890B1 (en) Use of a tape having omnidirectional surface topography for producing a heat exchanger component
DE102021119589A1 (en) Sheet metal with a deterministic surface structure
WO2023232547A1 (en) Flat metal product and component based thereon
EP2554292A1 (en) Conduit element with surface structure and method for production and use of such a conduit element

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220311

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230414

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231020

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CETINKAYA, BURAK WILLIAM

Inventor name: JUNGE, FABIAN

Inventor name: VOGT, OLIVER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020007113

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240221

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240521

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240521

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240621

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221