EP3941715A1 - Method for manufacturing an aluminium alloy part by additive manufacturing and aluminium alloy part obtained according to the method - Google Patents

Method for manufacturing an aluminium alloy part by additive manufacturing and aluminium alloy part obtained according to the method

Info

Publication number
EP3941715A1
EP3941715A1 EP20721629.2A EP20721629A EP3941715A1 EP 3941715 A1 EP3941715 A1 EP 3941715A1 EP 20721629 A EP20721629 A EP 20721629A EP 3941715 A1 EP3941715 A1 EP 3941715A1
Authority
EP
European Patent Office
Prior art keywords
particles
mixture
powders
alloy
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20721629.2A
Other languages
German (de)
French (fr)
Inventor
Mathieu OPPRECHT
Jean-Paul Garandet
Fernando LOMELLO
Guilhem Roux
Mathieu Soulier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3941715A1 publication Critical patent/EP3941715A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the general field of manufacturing aluminum alloy part by additive manufacturing.
  • the invention relates to a method of manufacturing aluminum alloy parts from a powder mixture containing aluminum-based particles and yttrin particles.
  • the invention also relates to an aluminum alloy part obtained with this process.
  • the invention is particularly advantageous since it makes it possible to remedy the problems of hot cracking of cracking aluminum alloys in additive manufacturing processes involving melting.
  • the invention finds applications in many industrial fields, and in particular in the automotive, aeronautics or even energy fields (for example, for the manufacture of heat exchangers).
  • the different manufacturing processes of metal alloy parts by additive manufacturing have in common the use of the raw material in the form of powders and to shape the metal alloy via a step of melting these powders. .
  • the various additive manufacturing processes concerned include, in particular, powder bed fusion processes (or PBF for "Powder Bed Fusion” in English terminology) and processes for depositing material under concentrated energy (or DED for " Directed Energy Deposition ”in Anglo-Saxon terminology).
  • PBF processes consist in melting certain regions of a bed of powder, for example by means of a laser beam.
  • DED processes consist of bringing the solid material, for example in the form of wire or powder, to melt it, for example by means of a laser beam, and to deposit the molten material.
  • the chemical composition of the powder alloy is changed.
  • Scamalloy shade (APWORKS ⁇ ). It is a light alloy comprising aluminum and magnesium, modified with zirconium and scandium, developed specifically for additive manufacturing.
  • AhSc primary particles precipitate from the liquid and act as seeds for the growth of grains of the Al matrix.
  • Scandium therefore allows a refinement of the microstructure and the development of equiaxed dendritic solidification.
  • Scandium is a particularly expensive element, which significantly increases the costs of the raw material (by a factor of 4 compared to a standard aluminum powder).
  • Another solution consists in adding nanoparticles of a so-called germinating material, less expensive than scandium, to the aluminum powder to promote equiaxial solidification.
  • aluminum alloy powders are mixed with nanoparticles in Zr, Ta, Nb, Ti or even in one of their oxides, nitrides, hydrides, borides, carbides and aluminides to manufacture parts.
  • parts are manufactured by selective laser melting (also denoted SLM) from, for example, a mixture comprising: B
  • An object of the present invention is to provide a method of manufacturing parts made of aluminum alloys which do not exhibit cracks, the method having to be simple to implement and inexpensive.
  • the present invention provides a method of manufacturing an aluminum alloy part by additive manufacturing comprising at least one step during which a layer of a mixture of powders is melted and then solidified,
  • the mixture of powders comprising:
  • the volume percentage of second particles in the mixture of powders ranging, preferably, from 0.5% to 5%.
  • the invention differs fundamentally from the prior art by the addition of particles of yttrium oxide (Y2O3) to the aluminum-based powder.
  • Y2O3 yttrium oxide
  • the addition of such particles makes it possible to promote an equiaxial solidification structure and thus eliminate cracking in the final part.
  • yttrium oxide gives rise to germinating AUY particles by reaction with aluminum according to the following reactions: Indeed, even if Yttrium oxide appears to be more thermodynamically stable than alumina regardless of temperature (see Ellingham diagram shown in Figure 1 and obtained from data extracted from Chu et al.
  • the release of the metal Y can take place by dissolving the oxide precursor (or the second particles) in the metal bath.
  • yttrin is a stable oxide, easy to handle and / or to store, with respect to metallic elements known to be highly reducing.
  • the second particles have a larger dimension ranging from 5nm to 2pm, preferably from 10nm to 400nm, and even more preferably from 30nm to 50nm.
  • the volume percentage of second particles in the mixture of powders ranges from 1% to 3%.
  • the first particles have a larger dimension ranging from 10 pm to 100 pm, for example from 10 to 45 pm, and preferably from 20 to 65 pm.
  • the additional elements are chosen from Cu, Si, Zn, Mg, Fe, Ti, Mn, Zr, Va, Ni, Pb, Bi and Cr.
  • the aluminum alloy is alloy 7075, alloy 6061, alloy 2219 or alloy 2024.
  • the manufacturing process is a selective laser melting process.
  • the manufacturing process is a selective melting process by electron beam.
  • the material cost of an aluminum alloy 6061 is about 60 € / kg and the material cost of a mixture of powders comprising the aluminum alloy 6061 and yttrin (2% by volume) is about 66 € / kg;
  • the invention also relates to an aluminum alloy part, obtained according to the method described above, the part comprising yttrin.
  • the part is devoid of any cracking / fissure.
  • the part is a heat exchanger.
  • FIG. 1 previously described is an Ellingham diagram representing the stabilities of aluminum oxide (Al 2 0 3 ) and of yttrium oxide (Y 2 0 3 ),
  • FIG. 2 schematically represents a mixture of powders according to a particular embodiment of the process of the invention.
  • the process for manufacturing an aluminum alloy part by additive manufacturing comprises the following successive steps: a) provide a mixture of powders comprising, and preferably consisting of:
  • first powder comprising first particles 10 made of a first material comprising at least 80% by weight of aluminum and up to 20% by weight of one or more additional elements
  • a second powder comprising second particles 20 made of a second material, the second material being yttrium oxide,
  • step d) cooling the plurality of molten areas in step c) so as to form a plurality of solidified zones, this plurality of solidified zones constituting the first elements of the parts to be constructed.
  • steps b), c) and d) can be repeated at least once so as to form at least one other solidified zone on the first solidified zone.
  • the process is repeated until the final shape of the part is obtained.
  • the first powder mixture layer is formed on a substrate.
  • yttrin particles 20 to the first aluminum-based particles 10 of interest makes it possible to obtain an equiaxial solidification structure and a final piece of aluminum alloy without cracking.
  • the first particles 10 are functionalized by the second particles 20 (FIG. 2).
  • the second particles 20 consist of yttrin.
  • the second yttrium oxide powder preferably represents from 0.5% to 5% by volume of the mixture of powders, preferably from 1% to 3%.
  • the first particles 10 have a larger dimension ranging from 10 pm to 100 pm and the second particles 20 have a larger dimension ranging from 5 nm to 2 pm and, preferably, from 10 nm to 400 nm.
  • the first particles 10 and the second particles 20 are elements which may be of spherical, ovoid or elongated shape.
  • the particles are substantially spherical and their largest dimension is their diameter.
  • the first powder is formed of first particles 10 of a first material.
  • the first material comprises at least 80% by mass of aluminum.
  • the first particles 10 can comprise up to 20% of one or more additional elements (also called alloying elements). These elements are preferably chosen from zinc, magnesium, copper, silicon, iron, manganese, titanium, vanadium, bismuth, lead, nickel, zirconium and chromium. Preferably, the additional element or one of the additional elements is magnesium.
  • the alloy is an aluminum alloy 7075, an alloy 2024, an alloy 2219 or an aluminum alloy 6061.
  • the mixture of powders provided in step a) is produced upstream of the additive manufacturing process.
  • the first powder and the second powder are mixed with the dynamic mixer BD, for example with a Turbula ® mixer.
  • the dynamic mixer BD for example with a Turbula ® mixer.
  • Turbula ® mixer Alternatively, it could be a mechanosynthesis process.
  • a sufficiently energetic beam is used to melt at least the first particles 10.
  • the deposited layer can be locally melted or completely melted.
  • the melting step makes it possible to create melted patterns in the layer of the mixture of powders.
  • One or more zones of molten particles can be made to form the desired pattern.
  • the particles 10 forming the pattern melt completely so as to lead, during solidification (step d), to one or more zones solidified in an aluminum alloy.
  • steps b), c) and d) can be repeated at least once so as to form at least one other solidified zone on the first solidified zone.
  • the process is repeated until the final shape of the part is obtained.
  • the non-solidified powders are then removed and the final part is detached from the substrate.
  • the part obtained, according to one of these processes, can be subjected to an annealing step (heat treatment) to reduce internal stresses and improve mechanical properties.
  • annealing step heat treatment
  • the parameters of the manufacturing process by laser fusion on a powder bed are:
  • it is an electron beam fusion process on a powder bed (EBM).
  • EBM powder bed
  • the machines used for additive manufacturing processes include, for example, a powder delivery system ("powder delivery system”), a device for spreading and homogenizing the surface of the powder (“Roller” or “ Blade ”), a beam (for example an infrared laser beam at a wavelength of approximately 1060nm), a scanner to direct the beam, and a substrate (also called a plate) which can descend vertically (along a Z axis perpendicular to the bed of powder).
  • the assembly can be confined in a closed and inerted enclosure, to control the atmosphere, but also to prevent the dissemination of powders.
  • the invention particularly finds applications in the field of energy, and more particularly, heat exchangers, in the field of aeronautics, and in the field of the automobile.
  • a cube shaped part with dimensions 10mm * 10mm * 12mm is made by printing by SLM.
  • the part is obtained from a mixture of two powders: an aluminum alloy powder and an yttrin powder.
  • its particle size ranges from 30nm to 50nm.
  • the mixture of the two powders is made in a glove box from: 1200mL of the aluminum alloy powder to be refined, 24mL of the yttrium oxide powder (mixture at 2% by volume), and 250mL of Zirconia balls of 3mm diameter, used to homogenize the mixture.
  • the volume of the mixing pot is 6.5L.
  • the filling rate defined as the ratio of the volume represented by the particles 10, the particles 20 and the zirconia beads to the volume of the mixing pot, is approximately 23%.
  • the mixture is passed to 3D dynamic mixer, for example in the Turbula ® during lOh.
  • the mixture is then coarsely sieved (1mm) to recover the zirconia beads, then it is used to make a part by 3D printing.
  • the SLM conditions making it possible to obtain the densest cubes are as follows: laser power: 190-270W; laser speed: 400-800mm / s, vector space: 100pm; layer thickness (powder bed): 20pm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

Disclosed is a method for manufacturing an aluminium alloy part by additive manufacturing comprising a step during which a layer of a mixture of powders is melted locally and then solidified, characterised in that the mixture of powders comprises: - first particles (10) comprising at least 80 wt% of aluminium and up to 20 wt% of one or more additional elements, and - second particles (20) of yttria, the volume percentage of second particles (20) in the mixture of powders preferably ranging from 0.5% to 5%.

Description

PROCÉDÉ DE FABRICATION D'UNE PIECE EN ALLIAGE D'ALUMINIUM PAR FABRICATION ADDITIVE ET PIECE EN ALLIAGE D'ALUMINIUM METHOD OF MANUFACTURING AN ALUMINUM ALLOY PART BY ADDITIVE MANUFACTURING AND ALUMINUM ALLOY PART
OBTENUE SELON LEDIT PROCÉDÉ OBTAINED ACCORDING TO THIS PROCESS
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUE TECHNICAL AREA
La présente invention se rapporte au domaine général de la fabrication de pièce en alliage d'aluminium par fabrication additive. The present invention relates to the general field of manufacturing aluminum alloy part by additive manufacturing.
L'invention concerne un procédé de fabrication de pièces en alliage d'aluminium à partir d'un mélange de poudre contenant des particules à base d'aluminium et des particules d'yttrine. The invention relates to a method of manufacturing aluminum alloy parts from a powder mixture containing aluminum-based particles and yttrin particles.
L'invention concerne également une pièce en alliage d'aluminium obtenue avec ce procédé. The invention also relates to an aluminum alloy part obtained with this process.
L'invention est particulièrement intéressante puisqu'elle permet de remédier aux problèmes de fissuration à chaud des alliages d'aluminium fissurants dans les procédés de fabrication additive impliquant une fusion. The invention is particularly advantageous since it makes it possible to remedy the problems of hot cracking of cracking aluminum alloys in additive manufacturing processes involving melting.
L'invention trouve des applications dans de nombreux domaines industriels, et notamment dans les domaines de l'automobile, de l'aéronautique ou encore de l'énergie (par exemple, pour la fabrication d'échangeurs thermiques). The invention finds applications in many industrial fields, and in particular in the automotive, aeronautics or even energy fields (for example, for the manufacture of heat exchangers).
ÉTAT DE LA TECHNIQUE ANTÉRIEURE STATE OF THE PRIOR ART
Les différents procédés de fabrication de pièces en alliage métallique par fabrication additive (aussi appelée impression BD) ont pour point commun d'utiliser la matière première sous forme de poudres et de mettre en forme l'alliage métallique via une étape de fusion de ces poudres. The different manufacturing processes of metal alloy parts by additive manufacturing (also called BD printing) have in common the use of the raw material in the form of powders and to shape the metal alloy via a step of melting these powders. .
Les différents procédés de fabrication additive concernés incluent, en particulier, les procédés de fusion sur lit de poudre (ou PBF pour « Powder Bed Fusion » en terminologie anglo-saxonne) et les procédés de dépôt de matière sous énergie concentrée (ou DED pour « Directed Energy Déposition » en terminologie anglo-saxonne). The various additive manufacturing processes concerned include, in particular, powder bed fusion processes (or PBF for "Powder Bed Fusion" in English terminology) and processes for depositing material under concentrated energy (or DED for " Directed Energy Deposition ”in Anglo-Saxon terminology).
Les procédés PBF consistent à faire fondre certaines régions d'un lit de poudre, par exemple au moyen d'un faisceau laser. Les procédés DED consistent à amener le matériau solide, par exemple sous forme de fil ou de poudre, de le faire fondre, par exemple au moyen d'un faisceau laser, et de déposer le matériau fondu. PBF processes consist in melting certain regions of a bed of powder, for example by means of a laser beam. DED processes consist of bringing the solid material, for example in the form of wire or powder, to melt it, for example by means of a laser beam, and to deposit the molten material.
Avec de tels procédés, il est possible de produire industriellement des pièces, de forme simple ou complexe, ayant des propriétés mécaniques satisfaisantes. With such processes, it is possible to industrially produce parts, of simple or complex shape, having satisfactory mechanical properties.
Cependant, certains alliages d'aluminium sont sujets à des problèmes de fissuration à chaud résultants d'une solidification dendritique colonnaire, à l'origine d'une microstructure sensible aux contraintes thermomécaniques pendant la solidification, notamment pour une fraction solide allant de 0,9 à 0,98. However, some aluminum alloys are subject to hot cracking problems resulting from columnar dendritic solidification, causing a microstructure sensitive to thermomechanical stresses during solidification, in particular for a solid fraction ranging from 0.9 to 0.98.
Pour remédier à cet inconvénient, différentes solutions ont été envisagées. To remedy this drawback, various solutions have been considered.
Par exemple, il est possible de modifier la composition chimique de l'alliage de la poudre. C'est le cas par exemple de la nuance Scamalloy (APWORKS ©). Il s'agit d'un alliage léger comprenant de l'aluminium et du magnésium, modifié avec du zirconium et du scandium, développé spécifiquement pour la fabrication additive. Au cours de la solidification, des particules primaires AhSc précipitent à partir du liquide et actent comme des germes pour la croissance de grains de la matrice Al. Le Scandium permet donc un raffinement de la microstructure et le développement d'une solidification dendritique équiaxe. Cependant, le Scandium est un élément particulièrement cher, ce qui augmente considérablement les coûts de la matière première (d'un facteur 4 par rapport à une poudre standard d'aluminium). For example, it is possible to change the chemical composition of the powder alloy. This is the case, for example, with the Scamalloy shade (APWORKS ©). It is a light alloy comprising aluminum and magnesium, modified with zirconium and scandium, developed specifically for additive manufacturing. During solidification, AhSc primary particles precipitate from the liquid and act as seeds for the growth of grains of the Al matrix. Scandium therefore allows a refinement of the microstructure and the development of equiaxed dendritic solidification. However, Scandium is a particularly expensive element, which significantly increases the costs of the raw material (by a factor of 4 compared to a standard aluminum powder).
Une autre solution consiste à ajouter à la poudre d'aluminium des nanoparticules d'un matériau dit germinant, moins cher que le scandium, pour promouvoir une solidification équiaxe. Another solution consists in adding nanoparticles of a so-called germinating material, less expensive than scandium, to the aluminum powder to promote equiaxial solidification.
Dans le document WO 2018/144323 Al, des poudres en alliage d'aluminium sont mélangées avec des nanoparticules en Zr, Ta, Nb, Ti ou encore en un des leurs oxydes, nitrures, hydrures, borures, carbures et aluminures pour fabriquer des pièces en alliage d'aluminium par fabrication additive. Parmi les différents exemples de réalisation décrits, des pièces sont fabriquées par fusion sélective par laser (aussi notée SLM) à partir, par exemple, d'un mélange comprenant : B In document WO 2018/144323 A1, aluminum alloy powders are mixed with nanoparticles in Zr, Ta, Nb, Ti or even in one of their oxides, nitrides, hydrides, borides, carbides and aluminides to manufacture parts. made of aluminum alloy by additive manufacturing. Among the various embodiments described, parts are manufactured by selective laser melting (also denoted SLM) from, for example, a mixture comprising: B
- de l'aluminium et des nanoparticules de tantale de 50nm de diamètre (1% volumique), ou - aluminum and tantalum nanoparticles 50 nm in diameter (1% by volume), or
- un alliage d'aluminium (AI7075 ou AI6061) et des nanoparticules de zirconium de 500-1500nm de diamètre (1% volumique). - an aluminum alloy (AI7075 or AI6061) and zirconium nanoparticles of 500-1500nm in diameter (1% by volume).
Dans le document de Martin et al. "3D printing of high-strength aluminium alloys", Nature 549 (2017), pages 365-369, des poudres d'alliages d'aluminium de séries 7075 (distribution bimodale à 15pm et 45pm) et 6061 (dso de 45pm) ont été mélangées avec 1% volumique de nanoparticules de Zirconium stabilisées à l'hydrogène (Zrhh) pour remédier au problème de fissuration à chaud des alliages d'aluminium obtenu par SLM. Les nanoparticules sont « électrostatiquement » assemblées sur la poudre de base pour obtenir une répartition uniforme. Aucune information n'est donnée sur la granulométrie des nanoparticules utilisées. In the document by Martin et al. "3D printing of high-strength aluminum alloys", Nature 549 (2017), pages 365-369, aluminum alloy powders of series 7075 (bimodal distribution at 15pm and 45pm) and 6061 (dso of 45pm) have been mixed with 1% by volume of Zirconium nanoparticles stabilized with hydrogen (Zrhh) to remedy the problem of hot cracking of aluminum alloys obtained by SLM. The nanoparticles are “electrostatically” assembled on the base powder to obtain a uniform distribution. No information is given on the particle size of the nanoparticles used.
EXPOSE DE l'INVENTION DISCLOSURE OF THE INVENTION
Un but de la présente invention est de proposer un procédé de fabrication de pièces en alliages d'aluminium ne présentant pas de fissure, le procédé devant être simple à mettre en œuvre et bon marché. An object of the present invention is to provide a method of manufacturing parts made of aluminum alloys which do not exhibit cracks, the method having to be simple to implement and inexpensive.
Pour cela, la présente invention propose un procédé de fabrication d'une pièce en alliage d'aluminium par fabrication additive comprenant au moins une étape au cours de laquelle une couche d'un mélange de poudres est fondue puis solidifiée, For this, the present invention provides a method of manufacturing an aluminum alloy part by additive manufacturing comprising at least one step during which a layer of a mixture of powders is melted and then solidified,
le mélange de poudres comprenant : the mixture of powders comprising:
- des premières particules comprenant au moins 80% massique d'aluminium et jusqu'à 20% massique d'un ou plusieurs éléments additionnels, et - first particles comprising at least 80% by mass of aluminum and up to 20% by mass of one or more additional elements, and
- des deuxièmes particules en yttrine (Y2O3), le pourcentage volumique de deuxièmes particules dans le mélange de poudres allant, de préférence, de 0,5 % à 5%. - second particles in yttrin (Y2O3), the volume percentage of second particles in the mixture of powders ranging, preferably, from 0.5% to 5%.
L'invention se distingue fondamentalement de l'art antérieur par l'adjonction de particules d'oxyde d'yttrium (Y2O3) à la poudre à base d'aluminium. L'adjonction de telles particules permet de favoriser une structure de solidification équiaxe et ainsi éliminer la fissuration dans la pièce finale. Contre toute attente, l'oxyde d'yttrium donne naissance à des particules germinantes d'AUY par réaction avec l'aluminium selon les réactions suivantes: En effet, même si l'oxyde d'Yttrium semble plus stable thermodynamiquement que l'alumine quelle que soit la température (voir le diagramme d'Ellingham représenté sur la figure 1 et obtenu à partir des données extraites de Chu et al. "Sintering of aluminum nitride by using alumina crucible and MoSh heating element at températures of 1650°C and 1700°C", Ceramics International 35 (2009), 3455-3461), il a été observé que, au cours du procédé de fabrication additive, on forme la phase germinante AI3Y par décomposition de l'yttrine. The invention differs fundamentally from the prior art by the addition of particles of yttrium oxide (Y2O3) to the aluminum-based powder. The addition of such particles makes it possible to promote an equiaxial solidification structure and thus eliminate cracking in the final part. Against all expectations, yttrium oxide gives rise to germinating AUY particles by reaction with aluminum according to the following reactions: Indeed, even if Yttrium oxide appears to be more thermodynamically stable than alumina regardless of temperature (see Ellingham diagram shown in Figure 1 and obtained from data extracted from Chu et al. "Sintering of aluminum nitride by using alumina crucible and MoSh heating element at temperatures of 1650 ° C and 1700 ° C ", Ceramics International 35 (2009), 3455-3461), it has been observed that, during the additive manufacturing process, one forms the germinating phase AI 3 Y by decomposition of yttrin.
Alternativement ou de manière concomitante, la libération du métal Y peut se faire par dissolution du précurseur oxyde (ou des deuxième particules) dans le bain métallique. Alternatively or concomitantly, the release of the metal Y can take place by dissolving the oxide precursor (or the second particles) in the metal bath.
II ne paraissait pas évident que cette phase AI3Y (2ème réaction) ait le temps de germer puisque les durées de vie des bains de métaux fondus, formés lors du procédé, sont relativement courts (de la centaine de microsecondes à la milliseconde). A première vue, cette réaction in-situ n'est ni thermodynamiquement ni cinétiquement favorisée par les conditions thermiques imposées par le procédé. It did not appear obvious that this AI3Y phase (2 nd reaction) has time to germinate since the lifetimes of the molten metal baths formed during the process are relatively short (from a hundred microseconds to a millisecond). At first glance, this in-situ reaction is neither thermodynamically nor kinetically favored by the thermal conditions imposed by the process.
Avantageusement, l'yttrine est un oxyde stable, facile à manipuler et/ou à stocker, par rapport à des éléments métalliques connus pour être fortement réducteurs. Advantageously, yttrin is a stable oxide, easy to handle and / or to store, with respect to metallic elements known to be highly reducing.
Avantageusement, les deuxièmes particules ont une plus grande dimension allant de 5nm à 2pm, de préférence de lOnm à 400nm, et encore plus préférentiellement de 30nm à 50nm. Advantageously, the second particles have a larger dimension ranging from 5nm to 2pm, preferably from 10nm to 400nm, and even more preferably from 30nm to 50nm.
Avantageusement, le pourcentage volumique de deuxièmes particules dans le mélange de poudres va de 1% à 3%. Avantageusement, les premières particules ont une plus grande dimension allant de lOpm à lOOpm par exemple de 10 à 45pm, et de préférence de 20 à 65pm. Advantageously, the volume percentage of second particles in the mixture of powders ranges from 1% to 3%. Advantageously, the first particles have a larger dimension ranging from 10 pm to 100 pm, for example from 10 to 45 pm, and preferably from 20 to 65 pm.
Avantageusement, les éléments additionnels sont choisis parmi Cu, Si, Zn, Mg, Fe, Ti, Mn, Zr, Va, Ni, Pb, Bi et Cr. Advantageously, the additional elements are chosen from Cu, Si, Zn, Mg, Fe, Ti, Mn, Zr, Va, Ni, Pb, Bi and Cr.
Avantageusement, l'alliage d'aluminium est l'alliage 7075, l'alliage 6061, l'alliage 2219 ou l'alliage 2024. Advantageously, the aluminum alloy is alloy 7075, alloy 6061, alloy 2219 or alloy 2024.
Selon une première variante de réalisation avantageuse, le procédé de fabrication est un procédé de fusion sélective par laser. According to a first advantageous variant embodiment, the manufacturing process is a selective laser melting process.
Selon une deuxième variante de réalisation avantageuse, le procédé de fabrication est un procédé de fusion sélective par faisceau d'électrons. According to a second advantageous variant embodiment, the manufacturing process is a selective melting process by electron beam.
Le procédé présente de nombreux avantages : The process has many advantages:
- être simple à mettre en oeuvre, puisqu'il suffit de mélanger des poudres. Il s'agit d'une étape par voie sèche, rapide à réaliser et simple à mettre en place, quelle que soit la quantité de poudres ; - be simple to implement, since it suffices to mix the powders. This is a dry process step, quick to perform and easy to set up, regardless of the amount of powders;
- être peu coûteux, et donc intéressant d'un point de vue industriel. A titre illustratif, le coût matière d'un alliage d'aluminium 6061 est d'environ 60€/kg et le coût matière d'un mélange de poudres comprenant l'alliage d'aluminium 6061 et l'yttrine (2% volumique) est d'environ 66€/kg ; - be inexpensive, and therefore interesting from an industrial point of view. By way of illustration, the material cost of an aluminum alloy 6061 is about 60 € / kg and the material cost of a mixture of powders comprising the aluminum alloy 6061 and yttrin (2% by volume) is about 66 € / kg;
- pouvoir stocker/manipuler facilement la poudre d'yttrine, puisqu'il s'agit d'un oxyde : il n'y a pas besoin d'utiliser d'atmosphère inerte ; - be able to store / easily handle the yttrin powder, since it is an oxide: there is no need to use an inert atmosphere;
- pouvoir utiliser des poudres dont les particules sont de petites dimensions puisque de telles particules d'yttrine ne sont pas pyrophoriques (contrairement à des particules d'yttrium de mêmes dimensions), ce qui rend le procédé plus sûr ; - be able to use powders whose particles are small since such yttrium particles are not pyrophoric (unlike yttrium particles of the same dimensions), which makes the process safer;
- pouvoir facilement modifier le rapport volumique entre les poudres au moment du mélange de poudre ; - be able to easily modify the volume ratio between the powders when the powder is mixed;
- être facilement adaptable pour tout procédé de fabrication additive et pour tout alliage d'aluminium sujet au problème de fissuration à chaud ; - pouvoir utiliser les paramètres classiquement utilisés dans les procédés de fabrication additive. - be easily adaptable for any additive manufacturing process and for any aluminum alloy subject to the problem of hot cracking; - be able to use the parameters conventionally used in additive manufacturing processes.
L'invention concerne également une pièce en alliage d'aluminium, obtenue selon le procédé précédemment décrit, la pièce comprenant de l'yttrine. La pièce est dépourvue de fissuration/fissure. The invention also relates to an aluminum alloy part, obtained according to the method described above, the part comprising yttrin. The part is devoid of any cracking / fissure.
Avantageusement, la pièce est un échangeur thermique. Advantageously, the part is a heat exchanger.
D'autres caractéristiques et avantages de l'invention ressortiront du complément de description qui suit. Other characteristics and advantages of the invention will emerge from the additional description which follows.
Il va de soi que ce complément de description n'est donné qu'à titre d'illustration de l'objet de l'invention et ne doit en aucun cas être interprété comme une limitation de cet objet. It goes without saying that this additional description is given only by way of illustration of the subject of the invention and should in no case be interpreted as a limitation of this subject.
BRÈVE DESCRIPTION DES DESSINS BRIEF DESCRIPTION OF THE DRAWINGS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés à titre purement indicatif et nullement limitatif en faisant référence aux dessins annexés sur lesquels : The present invention will be better understood on reading the description of exemplary embodiments given purely as an indication and in no way limiting, with reference to the appended drawings in which:
La figure 1 précédemment décrite, est un diagramme d'Ellingham représentant les stabilités de l'oxyde d'aluminium (Al203) et de l'oxyde d'yttrium (Y203), FIG. 1 previously described is an Ellingham diagram representing the stabilities of aluminum oxide (Al 2 0 3 ) and of yttrium oxide (Y 2 0 3 ),
La figure 2 représente de manière schématique un mélange de poudres selon un mode de réalisation particulier du procédé de l'invention. FIG. 2 schematically represents a mixture of powders according to a particular embodiment of the process of the invention.
Les différentes parties représentées sur les figures ne le sont pas nécessairement selon une échelle uniforme, pour rendre les figures plus lisibles. The different parts shown in the figures are not necessarily on a uniform scale, to make the figures more readable.
Les différentes possibilités (variantes et modes de réalisation) doivent être comprises comme n'étant pas exclusives les unes des autres et peuvent se combiner entre elles. The different possibilities (variants and embodiments) must be understood as not being mutually exclusive and can be combined with one another.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS DETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
Le procédé de fabrication d'une pièce en alliage d'aluminium par fabrication additive comprend les étapes successives suivantes : a) fournir un mélange de poudres comprenant, et de préférence constitué par : The process for manufacturing an aluminum alloy part by additive manufacturing comprises the following successive steps: a) provide a mixture of powders comprising, and preferably consisting of:
- une première poudre comprenant des premières particules 10 en un premier matériau comprenant au moins 80% massique d'aluminium et jusqu'à 20% massique d'un ou plusieurs éléments additionnels, a first powder comprising first particles 10 made of a first material comprising at least 80% by weight of aluminum and up to 20% by weight of one or more additional elements,
- une deuxième poudre comprenant des deuxièmes particules 20 en un deuxième matériau, le deuxième matériau étant de l'oxyde d'yttrium, a second powder comprising second particles 20 made of a second material, the second material being yttrium oxide,
b) former une couche du mélange de poudres, b) forming a layer of the mixture of powders,
c) faire fondre localement la couche du mélange de poudres, de préférence, par balayage d'un faisceau laser ou par balayage d'un faisceau d'électrons, de manière à former une pluralité de zones fondues, c) locally melting the layer of the mixture of powders, preferably by scanning a laser beam or by scanning an electron beam, so as to form a plurality of molten zones,
d) refroidir la pluralité fondue à l'étape c) de manière à former une pluralité de zones solidifiées, cette pluralité de zones solidifiées étant constitutive des premiers éléments des pièces à construire. d) cooling the plurality of molten areas in step c) so as to form a plurality of solidified zones, this plurality of solidified zones constituting the first elements of the parts to be constructed.
Avantageusement, les étapes b), c) et d) peuvent être répétées au moins une fois de manière à former au moins une autre zone solidifiée sur la première zone solidifiée. Le procédé se répète jusqu'à obtenir la forme finale de la pièce. La première couche de mélange de poudres est formée sur un substrat. Advantageously, steps b), c) and d) can be repeated at least once so as to form at least one other solidified zone on the first solidified zone. The process is repeated until the final shape of the part is obtained. The first powder mixture layer is formed on a substrate.
L'ajout de particules 20 d'yttrine aux premières particules 10 d'intérêt à base d'aluminium permet d'obtenir une structure de solidification équiaxe et une pièce finale en alliage d'aluminium sans fissuration. The addition of yttrin particles 20 to the first aluminum-based particles 10 of interest makes it possible to obtain an equiaxial solidification structure and a final piece of aluminum alloy without cracking.
De préférence, les premières particules 10 sont fonctionnalisées par les deuxièmes particules 20 (figure 2). Preferably, the first particles 10 are functionalized by the second particles 20 (FIG. 2).
De préférence, les deuxièmes particules 20 sont constituées d'yttrine. Preferably, the second particles 20 consist of yttrin.
La deuxième poudre d'oxyde d'yttrium représente, de préférence, de 0,5% à 5% volumique, du mélange de poudres, préférentiellement de 1% à 3%. The second yttrium oxide powder preferably represents from 0.5% to 5% by volume of the mixture of powders, preferably from 1% to 3%.
Selon un mode de réalisation avantageux, les premières particules 10 ont une plus grande dimension allant de lOpm à lOOpm et les deuxièmes particules 20 ont une plus grande dimension allant de 5nm à 2pm et, de préférence, de lOnm à 400nm. Les premières particules 10 et les deuxièmes particules 20 sont des éléments pouvant être de forme sphérique, ovoïde ou allongée. De préférence, les particules sont sensiblement sphériques et leur plus grande dimension est leur diamètre. According to an advantageous embodiment, the first particles 10 have a larger dimension ranging from 10 pm to 100 pm and the second particles 20 have a larger dimension ranging from 5 nm to 2 pm and, preferably, from 10 nm to 400 nm. The first particles 10 and the second particles 20 are elements which may be of spherical, ovoid or elongated shape. Preferably, the particles are substantially spherical and their largest dimension is their diameter.
La première poudre est formée de premières particules 10 en un premier matériau. Le premier matériau comprend au moins 80% massique d'aluminium. The first powder is formed of first particles 10 of a first material. The first material comprises at least 80% by mass of aluminum.
Les premières particules 10 peuvent comprendre jusqu'à 20% d'un ou plusieurs éléments additionnels (aussi appelés éléments d'alliage). Ces éléments sont, de préférence, choisis parmi le zinc, le magnésium, le cuivre, le silicium, le fer, le manganèse, le titane, le vanadium, le bismuth, le plomb, le nickel, le zirconium et le chrome. De préférence, l'élément additionnel ou l'un des éléments additionnels est du magnésium. The first particles 10 can comprise up to 20% of one or more additional elements (also called alloying elements). These elements are preferably chosen from zinc, magnesium, copper, silicon, iron, manganese, titanium, vanadium, bismuth, lead, nickel, zirconium and chromium. Preferably, the additional element or one of the additional elements is magnesium.
De préférence, l'alliage est un alliage d'aluminium 7075, un alliage 2024, un alliage 2219 ou un alliage d'aluminium 6061. Preferably, the alloy is an aluminum alloy 7075, an alloy 2024, an alloy 2219 or an aluminum alloy 6061.
Le mélange de poudres fourni à l'étape a) est réalisé en amont du procédé de fabrication additive. The mixture of powders provided in step a) is produced upstream of the additive manufacturing process.
Dans un mode préférentiel de mise en oeuvre de l'invention, la première poudre et la deuxième poudre sont mélangées au mélangeur dynamique BD, par exemple avec un mélangeur Turbula®. Alternativement, il pourrait s'agir d'un procédé de mécano- synthèse. In a preferred embodiment of the invention, the first powder and the second powder are mixed with the dynamic mixer BD, for example with a Turbula ® mixer. Alternatively, it could be a mechanosynthesis process.
Lors de l'étape c), on utilise un faisceau suffisamment énergétique pour faire fondre au moins les premières particules 10. During step c), a sufficiently energetic beam is used to melt at least the first particles 10.
La couche déposée peut être localement fondue ou totalement fondue. The deposited layer can be locally melted or completely melted.
L'étape de fusion permet de créer des motifs fondus dans la couche du mélange de poudres. Une ou plusieurs zones de particules fondues peuvent être réalisées pour former le motif désiré. Les particules 10 formant le motif fondent complètement de manière à conduire, lors de la solidification (étape d), à une ou plusieurs zones solidifiées en un alliage d'aluminium. The melting step makes it possible to create melted patterns in the layer of the mixture of powders. One or more zones of molten particles can be made to form the desired pattern. The particles 10 forming the pattern melt completely so as to lead, during solidification (step d), to one or more zones solidified in an aluminum alloy.
Avantageusement, les étapes b), c) et d) peuvent être répétées au moins une fois de manière à former au moins une autre zone solidifiée sur la première zone solidifiée. Le procédé se répète jusqu'à obtenir la forme finale de la pièce. Les poudres non solidifiées sont ensuite évacuées et la pièce finale est détachée du substrat. Advantageously, steps b), c) and d) can be repeated at least once so as to form at least one other solidified zone on the first solidified zone. The process is repeated until the final shape of the part is obtained. The non-solidified powders are then removed and the final part is detached from the substrate.
La pièce obtenue, selon l'un de ces procédés, peut être soumise à une étape de recuit (traitement thermique) pour réduire les contraintes internes et améliorer les propriétés mécaniques. The part obtained, according to one of these processes, can be subjected to an annealing step (heat treatment) to reduce internal stresses and improve mechanical properties.
Selon une première variante de réalisation, il s'agit d'un procédé de fusion laser sur lit de poudre (SLM). A titre illustratif et non limitatif, les paramètres du procédé de fabrication par fusion laser sur lit de poudre sont : According to a first variant embodiment, it is a powder bed laser melting (SLM) process. By way of illustration and without limitation, the parameters of the manufacturing process by laser fusion on a powder bed are:
- entre 50 et 500W pour la puissance laser ; - between 50 and 500W for laser power;
- entre 100 et 2000 mm/s pour la vitesse laser ; - between 100 and 2000 mm / s for the laser speed;
- entre 25 et 120pm pour la distance entre deux espaces vecteurs (« hatch » en terminologie anglo-saxone) ; - between 25 and 120 pm for the distance between two vector spaces (“hatch” in English terminology);
- entre 15 et 60pm pour l'épaisseur de couche. - between 15 and 60pm for the layer thickness.
Selon une autre variante de réalisation, il s'agit d'un procédé de fusion par faisceau d'électrons sur lit de poudre (EBM). A titre illustratif et non limitatif, les paramètres du procédé de fabrication par fusion par faisceau d'électrons sur lit de poudre sont : According to another variant embodiment, it is an electron beam fusion process on a powder bed (EBM). By way of illustration and without limitation, the parameters of the manufacturing process by fusion by electron beam on a powder bed are:
- entre 50 et 3000W pour le faisceau d'électrons ; - between 50 and 3000W for the electron beam;
- entre 100 et 8000 mm/s pour la vitesse du faisceau ; - between 100 and 8000 mm / s for the speed of the beam;
- entre 50 et 150pm pour la distance entre deux espaces vecteurs ; - between 50 and 150 pm for the distance between two vector spaces;
- entre 40 et 60pm pour l'épaisseur de couche. - between 40 and 60pm for the layer thickness.
Les machines utilisées pour les procédés de fabrication additive comprennent, par exemple, un système d'alimentation en poudre (« powder delivery System »), un dispositif d'étalement et d'homogénéisation de la surface de la poudre (« Roller » ou « Blade »), un faisceau (par exemple un faisceau laser infrarouge à une longueur d'onde de 1060nm environ), un scanner pour diriger le faisceau, et un substrat (aussi appelé plateau) qui peut descendre verticalement (selon un axe Z perpendiculaire au lit de poudre). The machines used for additive manufacturing processes include, for example, a powder delivery system ("powder delivery system"), a device for spreading and homogenizing the surface of the powder ("Roller" or " Blade ”), a beam (for example an infrared laser beam at a wavelength of approximately 1060nm), a scanner to direct the beam, and a substrate (also called a plate) which can descend vertically (along a Z axis perpendicular to the bed of powder).
L'ensemble peut être confiné dans une enceinte fermée et inertée, pour contrôler l'atmosphère, mais aussi pour éviter la dissémination des poudres. Bien que cela ne soit aucunement limitatif, l'invention trouve particulièrement des applications dans le domaine de l'énergie, et plus particulièrement, des échangeurs thermiques, dans le domaine de l'aéronautique, et dans le domaine de l'automobile. The assembly can be confined in a closed and inerted enclosure, to control the atmosphere, but also to prevent the dissemination of powders. Although this is in no way limiting, the invention particularly finds applications in the field of energy, and more particularly, heat exchangers, in the field of aeronautics, and in the field of the automobile.
Exemples illustratifs et non limitatifs d'un mode de réalisation : Illustrative and nonlimiting examples of one embodiment:
Dans cet exemple, une pièce en forme de cube de dimensions 10mm*10mm*12mm est fabriquée par impression par SLM. In this example, a cube shaped part with dimensions 10mm * 10mm * 12mm is made by printing by SLM.
La pièce est obtenue à partir d'un mélange de deux poudres : une poudre d'alliage d'aluminium et une poudre d'yttrine. The part is obtained from a mixture of two powders: an aluminum alloy powder and an yttrin powder.
La granulométrie de la poudre d'alliage d' Aluminium (AI6061) est la suivante : dio=27,5pm, dso=41,5pm et dgo=62,7pm. The particle size of the aluminum alloy powder (AI6061) is as follows: dio = 27.5 μm, dso = 41.5 μm and dgo = 62.7 μm.
Concernant la poudre d'Y2C>3, sa granulométrie va de 30nm à 50nm. Regarding the Y2C> 3 powder, its particle size ranges from 30nm to 50nm.
Le mélange des deux poudres est réalisé en boîte à gant à partir de : 1200mL de la poudre d'alliage d'aluminium à raffiner, 24mL de la poudre d'oxyde d'Yttrium (mélange à 2% volumique), et de 250mL de billes de Zircone de diamètre 3mm, utilisées pour homogénéiser le mélange. Le volume du pot de mélange est de 6,5L. The mixture of the two powders is made in a glove box from: 1200mL of the aluminum alloy powder to be refined, 24mL of the yttrium oxide powder (mixture at 2% by volume), and 250mL of Zirconia balls of 3mm diameter, used to homogenize the mixture. The volume of the mixing pot is 6.5L.
Le taux de remplissage, défini comme le rapport du volume représenté par les particules 10, les particules 20 et les billes de Zircone sur le volume du pot de mélange, est environ de 23%. The filling rate, defined as the ratio of the volume represented by the particles 10, the particles 20 and the zirconia beads to the volume of the mixing pot, is approximately 23%.
Le mélange est passé au mélangeur dynamique 3D, par exemple au Turbula®, pendant lOh. The mixture is passed to 3D dynamic mixer, for example in the Turbula ® during lOh.
Le mélange est ensuite tamisé grossièrement (1mm) pour récupérer les billes de zircone, puis il est utilisé pour réaliser une pièce par impression 3D. The mixture is then coarsely sieved (1mm) to recover the zirconia beads, then it is used to make a part by 3D printing.
A titre illustratif, les conditions SLM permettant d'obtenir les cubes les plus denses sont les suivantes : puissance laser : 190-270W ; vitesse laser : 400-800mm/s, espace vecteur : lOOpm ; épaisseur de couche (lit de poudre): 20pm. By way of illustration, the SLM conditions making it possible to obtain the densest cubes are as follows: laser power: 190-270W; laser speed: 400-800mm / s, vector space: 100pm; layer thickness (powder bed): 20pm.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une pièce en alliage d'aluminium par fabrication additive comprenant une étape au cours de laquelle une couche d'un mélange de poudres est localement fondue puis solidifiée, caractérisé en ce que le mélange de poudres comprend : 1. A method of manufacturing an aluminum alloy part by additive manufacturing comprising a step during which a layer of a mixture of powders is locally melted and then solidified, characterized in that the mixture of powders comprises:
- des premières particules (10) comprenant au moins 80% massique d'aluminium et jusqu'à 20% massique d'un ou plusieurs éléments additionnels, et - first particles (10) comprising at least 80% by weight of aluminum and up to 20% by weight of one or more additional elements, and
- des deuxièmes particules (20) en yttrine, le pourcentage volumique de deuxièmes particules dans le mélange de poudres allant, de préférence, de 0,5% à 5%. - second particles (20) in yttrin, the volume percentage of second particles in the mixture of powders preferably ranging from 0.5% to 5%.
2. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les deuxièmes particules (20) ont une plus grande dimension allant de 5nm à 2pm, de préférence de lOnm à 400nm, et encore plus préférentiellement de 30nm à 50nm. 2. Method according to any one of the preceding claims, characterized in that the second particles (20) have a larger dimension ranging from 5nm to 2pm, preferably from 10nm to 400nm, and even more preferably from 30nm to 50nm.
3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le pourcentage volumique de deuxièmes particules 20) dans le mélange de poudres va de 1% à 3%. 3. Method according to any one of the preceding claims, characterized in that the volume percentage of second particles 20) in the mixture of powders ranges from 1% to 3%.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les premières particules (10) ont une plus grande dimension allant de lOpm à lOOpm, et de préférence de 20 à 65pm. 4. Method according to any one of the preceding claims, characterized in that the first particles (10) have a larger dimension ranging from 10 pm to 100 pm, and preferably from 20 to 65 pm.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les éléments additionnels sont choisis parmi Cu, Si, Zn, Mg, Fe, Ti, Mn, Zr, Va, Ni, Pb, Bi et Cr. 5. Method according to any one of the preceding claims, characterized in that the additional elements are chosen from Cu, Si, Zn, Mg, Fe, Ti, Mn, Zr, Va, Ni, Pb, Bi and Cr.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'alliage d'aluminium est l'alliage 7075, l'alliage 2024, l'alliage 2219 ou l'alliage 6061. 6. Method according to any one of the preceding claims, characterized in that the aluminum alloy is alloy 7075, alloy 2024, alloy 2219 or alloy 6061.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le procédé de fabrication est un procédé de fusion sélective par laser. 7. Method according to any one of claims 1 to 6, characterized in that the manufacturing process is a selective laser melting process.
8. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le procédé de fabrication est un procédé de fusion sélective par faisceau d'électrons. 8. Method according to any one of claims 1 to 6, characterized in that the manufacturing process is a selective melting process by electron beam.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le mélange de poudre est réalisé au mélangeur dynamique BD ou par mécano- synthèse. 9. Method according to any one of claims 1 to 8, characterized in that the powder mixture is produced with a dynamic mixer BD or by mechanosynthesis.
10. Pièce en alliage d'aluminium obtenue selon le procédé tel que défini dans l'une quelconque des revendications 1 à 9, caractérisé en ce qu'elle comprend de l'yttrium. 10. Part made of aluminum alloy obtained according to the method as defined in any one of claims 1 to 9, characterized in that it comprises yttrium.
11. Pièce selon la revendication précédente, caractérisée en ce que la pièce est un échangeur thermique. 11. Part according to the preceding claim, characterized in that the part is a heat exchanger.
EP20721629.2A 2019-05-13 2020-04-30 Method for manufacturing an aluminium alloy part by additive manufacturing and aluminium alloy part obtained according to the method Pending EP3941715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1904930A FR3096057B1 (en) 2019-05-13 2019-05-13 METHOD OF MANUFACTURING AN ALUMINUM ALLOY PART BY ADDITIVE MANUFACTURING
PCT/EP2020/062126 WO2020229197A1 (en) 2019-05-13 2020-04-30 Method for manufacturing an aluminium alloy part by additive manufacturing and aluminium alloy part obtained according to the method

Publications (1)

Publication Number Publication Date
EP3941715A1 true EP3941715A1 (en) 2022-01-26

Family

ID=68072615

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20721629.2A Pending EP3941715A1 (en) 2019-05-13 2020-04-30 Method for manufacturing an aluminium alloy part by additive manufacturing and aluminium alloy part obtained according to the method

Country Status (5)

Country Link
US (1) US20220212258A1 (en)
EP (1) EP3941715A1 (en)
JP (1) JP2022532349A (en)
FR (1) FR3096057B1 (en)
WO (1) WO2020229197A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996807A (en) * 2021-10-29 2022-02-01 华中科技大学 Method for eliminating microcracks in selective laser melting additive manufacturing of 2024 aluminum alloy
CN115491547B (en) * 2022-09-28 2023-04-18 山东创新精密科技有限公司 Multiphase reinforced aluminum alloy material and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11802321B2 (en) * 2015-03-17 2023-10-31 Elementum 3D, Inc. Additive manufacturing of metal alloys and metal alloy matrix composites
US20170016095A1 (en) * 2015-07-16 2017-01-19 Hamilton Sundstrand Corporation Method of manufacturing aluminum alloy articles
US20190032175A1 (en) 2017-02-01 2019-01-31 Hrl Laboratories, Llc Aluminum alloys with grain refiners, and methods for making and using the same
US11260475B2 (en) * 2017-08-07 2022-03-01 Board Of Regents, The University Of Texas System Method and system for powder bed fusion additive manufacturing of crack-free aluminum alloys

Also Published As

Publication number Publication date
FR3096057A1 (en) 2020-11-20
US20220212258A1 (en) 2022-07-07
WO2020229197A1 (en) 2020-11-19
JP2022532349A (en) 2022-07-14
FR3096057B1 (en) 2021-06-11

Similar Documents

Publication Publication Date Title
EP3741482B1 (en) Method for manufacturing a part made of aluminium alloy by additive manufacturing from a mixture of powders containing yttrium-stablised zirconia
FR3066129B1 (en) PROCESS FOR MANUFACTURING ALUMINUM ALLOY PIECE
EP1878533B1 (en) Superalloy powder
FR3083479A1 (en) PROCESS FOR PRODUCING AN ALUMINUM ALLOY PART
EP3914746A2 (en) Method for manufacturing an aluminum alloy part
WO2020229197A1 (en) Method for manufacturing an aluminium alloy part by additive manufacturing and aluminium alloy part obtained according to the method
EP3787816B1 (en) Method for manufacturing precious metal alloys and precious metal alloys thus obtained
EP3409349A1 (en) Particle for manufacturing metal parts by 3d printing and method for manufacturing metal parts
FR3086873A1 (en) PROCESS FOR MANUFACTURING AN ALUMINUM ALLOY PART
FR3075827A1 (en) ALUMINUM ALLOY POWDER FOR ADDITIVE MANUFACTURING, AND PROCESS FOR MANUFACTURING A PIECE BY MANUFACTURING THE POWDER
FR3083478A1 (en) PROCESS FOR PRODUCING AN ALUMINUM ALLOY PART
FR3086872A1 (en) PROCESS FOR MANUFACTURING AN ALUMINUM ALLOY PART
WO2020165542A1 (en) Method for manufacturing an aluminum alloy part
FR3082763A1 (en) PROCESS FOR MANUFACTURING AN ALUMINUM ALLOY PART
WO2022195227A1 (en) Process for manufacturing an aluminium alloy part by laser powder bed fusion
WO2020095009A2 (en) Method for manufacturing an aluminum alloy part
EP3995235A1 (en) Method for manufacturing a part made of aluminium alloy by additive manufacturing from a mixture of powders containing zrsi2 particles
EP4183502A1 (en) Method for producing a part made of an hea/ca alloy
CH715619B1 (en) A method of manufacturing a part made of an alloy of a precious metal with boron, a method of manufacturing such an alloy and an alloy of 18 carat gold and boron.
FR3096988A1 (en) Manufacturing process by sintering a part in a nitrided CCA alloy
EP4363141A1 (en) Method for manufacturing a 6061 aluminium alloy part by additive manufacturing
FR3135217A1 (en) METHOD FOR MANUFACTURING AN ALUMINUM ALLOY PART BY ADDITIVE MANUFACTURING
FR3139018A1 (en) Process for manufacturing an aluminum alloy part
WO2023237844A1 (en) Process for manufacturing an aluminium alloy part
WO2024194589A1 (en) Metal powder for additive manufacturing method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221102