EP3809116B1 - Prüfkammer und verfahren zur konditionierung von luft - Google Patents

Prüfkammer und verfahren zur konditionierung von luft Download PDF

Info

Publication number
EP3809116B1
EP3809116B1 EP19203078.1A EP19203078A EP3809116B1 EP 3809116 B1 EP3809116 B1 EP 3809116B1 EP 19203078 A EP19203078 A EP 19203078A EP 3809116 B1 EP3809116 B1 EP 3809116B1
Authority
EP
European Patent Office
Prior art keywords
test
humidity
temperature
air
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19203078.1A
Other languages
English (en)
French (fr)
Other versions
EP3809116A1 (de
Inventor
Bojan SALAMON
Jürgen Bitzer
Jürgen NUFER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weiss Technik GmbH
Original Assignee
Weiss Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weiss Technik GmbH filed Critical Weiss Technik GmbH
Priority to EP19203078.1A priority Critical patent/EP3809116B1/de
Priority to ES19203078T priority patent/ES2948011T3/es
Priority to JP2020171633A priority patent/JP2021063805A/ja
Priority to KR1020200131750A priority patent/KR20210044710A/ko
Publication of EP3809116A1 publication Critical patent/EP3809116A1/de
Application granted granted Critical
Publication of EP3809116B1 publication Critical patent/EP3809116B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/002Test chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity

Definitions

  • the invention relates to a test chamber, in particular a climatic chamber or the like, and a method for conditioning the air in a test space of a test chamber.
  • Test chambers are regularly used to check the physical and/or chemical properties of objects, especially devices. This is what temperature test cabinets or climate test cabinets are like known, within which temperatures can be set in a range from -50°C to +180°C. In the case of climatic test chambers, additional desired climatic conditions can be set, to which the device or the test material is then exposed over a defined period of time.
  • Such test chambers can be designed as a mobile device, which is only connected to a building with the necessary supply lines and includes all the assemblies required for temperature and air conditioning. Temperature control of a test room accommodating the test material to be tested is regularly carried out in a circulating air duct within the test room.
  • One or more heat exchangers for heating or cooling the air flowing through the circulating air duct or the test chamber are arranged in the circulating air duct.
  • a fan sucks in the air in the test room and directs it in the circulating air duct to the respective heat exchangers.
  • the test material can be tempered in this way or exposed to a defined temperature change. During a test interval, for example, a temperature can then change between a maximum temperature and a minimum temperature of the test chamber.
  • a test chamber is, for example, from DE 10 2016 204 378 A1 known. Provision is also regularly made to set a relative humidity within the test room during a test interval or to condition the air in the test room with regard to its relative humidity.
  • a humidifier built into the climate test cabinet is used.
  • an increase or decrease in the air temperature in the test space and/or an increase or decrease in the relative humidity of the air in the test space can be provided.
  • the temperature or relative humidity can also be kept at a constant value.
  • a number of test standards for climatic chambers are known for various test sequences, for example the IEC 60068-2-30 and IEC 60068-2-38 in the version valid on the priority date of the patent application. These standards specify the periods within which certain temperatures and relative humidity levels are to be developed in the test room. In particular, there is the problem of controlling the relative humidity of the air in the test room as precisely as possible.
  • JP 2012 211825 A discloses a temperature and humidity control system based on absolute humidity and a tester using such a system.
  • JP 5 329325 B2 discloses an environmental test apparatus in which a test item is placed in a test chamber 2, and a surface temperature of the test item in the test chamber is lowered to about 0°C or less, and then an absolute humidity at least around the test item is increased, and steam in of the air on the surface of the test item and/or its surroundings is changed in phase to thereby form frost on the surface of the test item.
  • the known test chambers have a control device with a test chamber control circuit for controlling the temperature of the air in the test room and a humidifier control circuit for controlling the relative humidity in the test room.
  • a test chamber control circuit for controlling the temperature of the air in the test room
  • a humidifier control circuit for controlling the relative humidity in the test room.
  • Actual variables are measured using a temperature sensor or humidity sensor inside the test room.
  • the test chamber control circuit and the humidifier control circuit work against each other. If, for example, a temperature in the test room is to be reduced and at the same time a relative humidity is to be increased, regulation of the relative humidity and regulation of the temperature may counterbalance each other.
  • control device or software of the control device can also be programmed in such a way that under certain operating conditions there is an amplification or a weakening of one or the other controlled variable, which, however, is very complex. Corresponding software becomes considerably more complex and therefore more error-prone as a result.
  • the controller gain is either too small or too large in one direction or the other, which results in overshoot and a settling time and thus influenced by a control deviation in an undesired manner.
  • the present invention is therefore based on the object of proposing a method for conditioning the air in a test space of a test chamber and a test chamber, which enables a small control deviation of a relative humidity in a test space under changing test conditions.
  • test material is arranged in the test chamber which can be closed off from the environment and is temperature-insulated, with the air in the test chamber being tempered by means of a temperature control device in the test chamber and humidified by means of a humidifier in the test chamber is, wherein a temperature of the air in the test chamber is measured with a temperature sensor of a test chamber control circuit of a control device of the test chamber, with the test chamber control circuit controlling the temperature by means of the temperature control device, wherein a Humidity of the air in the test room is measured with a humidity sensor of a humidifier control circuit of the control device, with the humidifier control circuit controlling the humidity by means of the humidifier, with the humidity sensor measuring an absolute humidity in the test room, with the humidifier control circuit determining the humidity according to the absolute Humidity is regulated as a controlled variable, and the control device is designed as a cascade control with the test chamber control circuit as
  • the humidifier is designed here in such a way that the air in the test room can be humidified with the humidifier.
  • the humidifier can also be used to dehumidify the air in the test room.
  • the humidifier can then have other devices for dehumidifying the air, such as a condenser.
  • the temperature sensor of the test chamber control circuit is located in the test room so that the temperature of the air in the test room can be measured with the temperature sensor.
  • the humidity sensor of the humidifier control circuit is also arranged inside the test room, so that the humidity of the air in the test room can be measured. At least the absolute humidity in g/m 3 or g/kg of the air in the test room can be determined with the humidity sensor.
  • the humidity sensor can also be used to measure the relative humidity and/or a dew point in the test room.
  • the absolute humidity can be determined in a variety of ways, for example by measuring the temperature and the saturation quantity above water or above ice in the air in the test room.
  • the absolute air humidity can easily be determined or calculated from a dry-bulb temperature and a wet-bulb temperature or a vapor pressure, an individual gas constant of the water and an absolute temperature. With the humidity sensor, the absolute humidity is therefore essentially measured indirectly and is always based on a known relationship between water content, temperature and humidity pressure of the air.
  • the absolute air humidity measured or determined with the humidity sensor is used by the humidifier control circuit as a controlled variable.
  • absolute humidity as a control variable means that the test chamber control circuit and the humidifier control circuit cannot work against each other. Even if the temperature of the air in the test room changes, the absolute humidity remains constant in principle, in contrast to the relative humidity. This already significantly improves the control accuracy, since undesired amplifications or reductions can be ruled out.
  • a further advantageous effect results from the fact that the absolute humidity in the test room is always the same at all points. Since there can be temperature deviations at different points in the test room, the relative humidity can vary in size at these points. It was therefore previously necessary to carry out a spatial measurement of the relative humidity at various measuring points in the test room in order to be able to determine the relative humidity precisely at all.
  • this spatial measurement can be dispensed with, since knowledge of the temperature at a measuring point is only required if the absolute air humidity was measured or determined at this measuring point.
  • a calibration or adjustment of the test chamber prior to carrying out a test sequence is made significantly easier as a result.
  • the humidity is regulated exclusively according to the absolute air humidity as the control variable.
  • Software for the control device would be even more complex as a result.
  • a specified test sequence with a temperature and a humidity as desired values can be stored in the control device, with the humidity being able to be stored as a relative air humidity, with the control device for the relative air humidity being able to determine the corresponding absolute air humidity. Provision can therefore be made to store predetermined test sequences in the control device, so that the control device can regulate the temperature and humidity over a time interval or a test period, for example for a standardized test sequence.
  • the target values or target values for temperature and humidity can therefore be saved for the entire test process.
  • the relative air humidity can be assumed as a target value, since this is regularly specified for standardized test procedures.
  • the control device can now calculate the corresponding absolute humidity for this relative humidity. It is thus also possible for the absolute humidity of the humidifier control circuit to be used as the setpoint or control variable.
  • the control device can therefore use the specified absolute air humidity as the setpoint variable and the measured absolute air humidity as an actual variable in the humidifier control circuit.
  • the humidifier control circuit can only use the absolute air humidity as a control variable.
  • the temperature of the air in the test room can be changed or increased or decreased by the control device in a test period of a specified test sequence, whereby the temperature can be controlled with the test chamber control circuit and at the same time the humidity of the air in the test room can be controlled with the humidifier control circuit .
  • the fact that the test chamber control circuit and the humidifier control circuit can be operated simultaneously makes it possible to regulate the temperature and humidity at the same time. In this case, since the humidifier control circuit uses the absolute air humidity as the control variable be excluded that the test chamber control circuit and the humidifier control circuit interfere with each other.
  • a PID controller can be used as a controller of the humidifier control loop. This is particularly advantageous since the absolute humidity can be controlled better with the constant P component of the PID controller than relative humidity as a controlled variable. Because the possible water content of the air increases exponentially with increasing temperature, this exponential function is already contained in the values of the absolute humidity with the absolute humidity as the controlled variable, which is not the case with the relative humidity as the controlled variable. Only by using the absolute humidity as a controlled variable is it possible to use a PID controller to advantage and achieve a higher control quality.
  • Humidity constancy in the test room can be controlled with a tolerance of ⁇ ⁇ 1% absolute humidity by means of the humidifier control circuit.
  • the test chamber according to the invention in particular a climatic chamber or the like, for conditioning air, comprises a test chamber that can be closed off from the environment and is temperature-insulated for receiving test material, a temperature control device for temperature control and a humidifier for humidifying the air in the test chamber, with the test chamber having a control device with a Test chamber control circuit and a humidifier control circuit, the test chamber control circuit having a temperature sensor for measuring the temperature of the air in the test room and for controlling the temperature by means of the temperature control device, the humidifier control circuit having a humidity sensor for measuring the humidity of the air in the test room and for controlling the Humidity is used by means of the humidifier, with the humidity sensor being able to measure an absolute humidity in the test room, with the humidifier control circuit being able to regulate the humidity according to the absolute humidity as a control variable.
  • Test chamber reference is made to the description of the advantages of the method according to the invention.
  • the humidity sensor can be a psychrometer for measuring a dry bulb temperature and a wet bulb temperature.
  • the psychrometer can be, for example, an aspiration psychrometer, which includes a thermometer or dry-bulb thermometer and a humidity thermometer, the sensor element or the section relevant to temperature measurement of which is surrounded by a casing that can be wetted with water.
  • the liquid in the envelope evaporates more quickly or more slowly, with the sensor element being cooled by the evaporation and a temperature difference resulting between the humidity thermometer and the dry thermometer not surrounded by the envelope.
  • a relative humidity, a dew point and/or the absolute humidity can be determined or measured from the temperature difference with the help of tables or algorithms.
  • the humidity sensor can also be any other type of sensor that is suitable for measuring the absolute humidity.
  • the humidifier can have a container with a container interior for accommodating a water bath, a heating device for controlling the temperature of the water bath, and an aeration device for generating air bubbles in the water bath, it being possible for a container opening to be formed in the container above the water bath, which fills the container interior with connects to the test room.
  • the container of the humidifier can be essentially closed and temperature-insulated.
  • the heating device can be arranged in the water bath, so that the water bath can be heated by means of the heating device.
  • the container opening is then used for a tight connection to the test room, so that humidified air can be introduced from the container into the test room via an air duct or hose, for example.
  • the humidifier can also be designed in such a way that it is arranged directly inside the test room.
  • the air bubbles can be generated in the water bath by means of the ventilation device, as a result of which the air bubbles can rise in the area of the heating device, so that air saturated with water can be generated comparatively quickly for the test room.
  • a temperature in a temperature range from ⁇ 70° C. to +180° C., preferably ⁇ 80° C. to +200° C., can be formed within the test chamber by means of the temperature control device.
  • the temperature control device can have a cooling device with a cooling circuit with a refrigerant, a heat exchanger, which can be arranged in the test chamber, a compressor, a condenser and an expansion element, wherein the temperature control device can have a heating device with a heater and a further heat exchanger.
  • the heating device can be, for example, an electrical resistance heater that heats the test space in such a way that the temperature in the test space can be increased via the additional heat exchanger.
  • the cooling device then has the heat exchanger for cooling the air in the test room.
  • the control device can control the cooling device and the heating device or the temperature control device in such a way that the air circulated in the test chamber can be cooled or heated and an air temperature within the test chamber can be formed in a temperature range provided for a test sequence.
  • a temporal temperature constancy of ⁇ 1k preferably ⁇ 0.3k to ⁇ 0.5k, can be formed during a test interval or test sequence in the test room.
  • a test interval is understood here as a section of a complete test period in which the test material is exposed to a substantially constant temperature or climatic condition.
  • the control device is designed as a cascade control with the test chamber control circuit as a master controller and the humidifier control circuit as a a follow-up controller is formed.
  • the humidity can then be regulated as a function of the temperature, so that it is always ensured that the humidity is adjusted to the temperature prevailing in the test chamber.
  • test chamber results from the feature descriptions of the subclaims which refer back to method claim 1.
  • the figure shows a schematic representation of a test chamber 10 which has a test space 11 in which the test material 12 is arranged.
  • a test room 11 In the test room 11 there is also a circulating air duct 13 which forms an air treatment room 14 in the test room 11 .
  • a heat exchanger 15 for heating or cooling the air flowing through the circulating air duct 13 is arranged in the air treatment duct 14 .
  • a fan 16 sucks in the air in the test chamber 11 and directs it in the circulating air duct 13 to the heat exchanger 15.
  • the test material 12 is thus surrounded by an air flow shown here by arrows 17 and is exposed to a defined temperature change.
  • the test chamber 10 has a control device, not shown here, with a test chamber control circuit and a humidifier control circuit.
  • the test chamber control circuit includes a temperature sensor 18, by means of which an air temperature of a supply air at an outlet 20 of the circulating air duct 13 can be measured.
  • Another temperature sensor 19 of the test chamber control circuit is arranged at an inlet 21 of the circulating air duct 13 so that an air temperature of an exhaust air within the test chamber 11 can be measured here.
  • the control device can detect, store and/or store a temperature difference between the temperature of the supply air and the temperature of the exhaust air within a test period or a predetermined test sequence process.
  • the exact adjustment of the air temperature to a target value is carried out with the test chamber control circuit.
  • a humidity sensor 22 of the humidifier control circuit is arranged in the circulating air duct, with which an absolute air humidity in g/m 3 or g/kg in the test room 11 is measured.
  • the humidifier control circuit regulates the humidity of the air in the test room 11, preferably exclusively, based on the absolute humidity as the controlled variable.
  • the humidity is also set in accordance with the specified test sequence from set values stored in the control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Air Conditioning Control Device (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

  • Die Erfindung betrifft eine Prüfkammer, insbesondere Klimakammer oder dergleichen, sowie ein Verfahren zur Konditionierung von Luft eines Prüfraums einer Prüfkammer.
  • Prüfkammern werden regelmäßig zur Überprüfung von physikalischen und/oder chemischen Eigenschaften von Gegenständen, insbesondere Vorrichtungen, eingesetzt. So sind Temperaturprüfschränke oder Klimaprüfschränke bekannt, innerhalb derer Temperaturen in einem Bereich von -50°C bis +180°C eingestellt werden können. Bei Klimaprüfschränken können ergänzend gewünschte Klimabedingungen eingestellt werden, denen dann die Vorrichtung bzw. das Prüfgut über einen definierten Zeitraum ausgesetzt wird. Derartige Prüfkammern können als ein mobiles Gerät ausgebildet sein, welches lediglich mit erforderlichen Versorgungsleitungen mit einem Gebäude verbunden ist und alle zur Temperierung und Klimatisierung erforderlichen Baugruppen umfasst. Eine Temperierung eines das zu prüfende Prüfgut aufnehmenden Prüfraums erfolgt regelmäßig in einem Umluftkanal innerhalb des Prüfraums. In dem Umluftkanal sind ein oder mehrere Wärmetauscher zur Erwärmung oder Kühlung der den Umluftkanal bzw. den Prüfraum durchströmenden Luft angeordnet. Dabei saugt ein Lüfter bzw. ein Ventilator die im Prüfraum befindliche Luft an und leitet sie im Umluftkanal zu den jeweiligen Wärmetauschern. Das Prüfgut kann so temperiert oder auch einem definierten Temperaturwechsel ausgesetzt werden. Während eines Prüfintervalls kann dann beispielsweise eine Temperatur zwischen einem Temperaturmaximum und einem Temperaturminimum der Prüfkammer wechseln. Eine derartige Prüfkammer ist beispielsweise aus der DE 10 2016 204 378 A1 bekannt. Weiter ist regelmäßig vorgesehen, eine relative Luftfeuchte innerhalb des Prüfraums während eines Prüfintervalls einzustellen bzw. die im Prüfraum befindliche Luft hinsichtlich ihrer relativen Feuchte zu konditionieren. Neben einer Entfeuchtung des Prüfraums über beispielsweise einen Kondensator wird daher ein im Klimaprüfschrank verbauter Befeuchter eingesetzt. Während eines Prüfablaufs bzw. Prüfzyklus kann eine Erhöhung oder Minderung einer Lufttemperatur im Prüfraum und/oder eine Erhöhung oder Minderung einer relativen Luftfeuchte der Luft im Prüfraum vorgesehen sein. Je nach Prüfablauf kann aber auch die Temperatur oder relative Luftfeuchte auf einem konstanten Wert zu halten sein. Für verschiedene Prüfabläufe sind eine Reihe von Prüfnormen für Klimaschränke bekannt, beispielsweise für Wechselklimate die IEC 60068-2-30 und die IEC 60068-2-38 in der zum Prioritätstag der Patentanmeldung gültigen Fassung. Diese Normen legen fest, innerhalb welcher Zeiträume bestimmte Temperaturen und relative Luftfeuchten in dem Prüfraum auszubilden sind. Insbesondere besteht hier Problem der möglichst genauen Regelung der relativen Luftfeuchte der Luft in dem Prüfraum.
  • JP 2012 211825 A offenbart ein auf absoluter Feuchtigkeit basierendes Temperatur- und Feuchtigkeitsregulierungssystem sowie ein Prüfgerät mit einem derartigen System.
  • JP 5 329325 B2 offenbart eine Umweltprüfvorrichtung, bei der ein Prüfgegenstand in einer Prüfkammer 2 angeordnet wird, und eine Oberflächentemperatur des Prüfgegenstandes in der Prüfkammer auf etwa 0°C oder weniger gesenkt wird, und dann eine absolute Luftfeuchtigkeit zumindest in der Umgebung des Prüfgegenstandes erhöht wird, und Dampf in der Luft auf der Oberfläche des Prüfgegenstandes und/oder seiner Umgebung in der Phase verändert wird, um dadurch Frost auf der Oberfläche des Prüfgegenstandes zu bilden.
  • Zur Regelung der Klimabedingungen im Prüfraum weisen die bekannten Prüfkammern eine Regeleinrichtung mit einem Prüfkammerregelkreis zur Regelung der Temperatur der Luft in dem Prüfraum und einem Befeuchterregelkreis zur Regelung der relativen Luftfeuchte im Prüfraum auf. Eine Messung von Ist-Größen erfolgt dabei mittels eines Temperatursensors bzw. Feuchtesensors innerhalb des Prüfraums. Insbesondere besteht hier die Schwierigkeit, dass unter bestimmten Voraussetzungen der Prüfkammerregelkreis und der Befeuchterregelkreis gegeneinander arbeiten. Soll beispielsweise eine Temperatur im Prüfraum reduziert werden und gleichzeitig eine relative Luftfeuchte erhöht werden, schwingen sich eine Regelung der relativen Luftfeuchte und eine Regelung der Temperatur eventuell gegeneinander auf. Beispielsweise würde es bei Startgrößen von 80°C und 50%r.F und Zielgrößen von 10°C und 90%r.F zu einem Befeuchten kommen, wobei jedoch bei der Zieltemperatur ein Entfeuchten erforderlich wäre. Daher muss zunächst abgewartet werden, bis die Temperatur erreicht bzw. eingeschwungen ist, bevor die relative Luftfeuchte eingestellt werden kann. Auch kann die Regeleinrichtung bzw. eine Software der Regeleinrichtung so programmiert werden, dass es unter bestimmten Betriebsbedingungen zu einer Verstärkung oder einer Abschwächung der einen oder anderen Regelgröße kommt, was jedoch sehr aufwändig ist. Eine entsprechende Software wird hierdurch wesentlich komplexer und damit auch fehleranfälliger. Auch dadurch, dass eine Sättigungsmenge von Wasserdampf in der Luft mit steigender Temperatur exponentiell ansteigt ergibt sich je nach verwendetem Regler für den Befeuchterregelkreis eine zu geringe oder eine zu große Verstärkung des Reglers in die eine oder andere Richtung, was ein Überschwingen und eine Ausregelzeit und damit eine Regelabweichung in unerwünschter Weise beeinflusst.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Konditionierung von Luft eines Prüfraums einer Prüfkammer und eine Prüfkammer vorzuschlagen, welches bzw. welche bei sich ändernden Prüfbedingungen eine geringe Regelabweichung einer relativen Luftfeuchte in einem Prüfraum ermöglicht.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 und einer Prüfkammer mit den Merkmalen des Anspruchs 8 gelöst.
  • Bei dem erfindungsgemäßen Verfahren zur Konditionierung von Luft eines Prüfraums einer Prüfkammer, insbesondere Klimakammer oder dergleichen, wird in dem gegenüber einer Umgebung verschließbaren und temperaturisolierten Prüfraum Prüfgut angeordnet, wobei mittels einer Temperiervorrichtung der Prüfkammer die Luft in dem Prüfraum temperiert und mittels eines Befeuchters der Prüfkammer befeuchtet wird, wobei eine Temperatur der Luft in dem Prüfraum mit einem Temperatursensor eines Prüfkammerregelkreises einer Regeleinrichtung der Prüfkammer gemessen wird, wobei mit dem Prüfkammerregelkreis die Temperatur mittels der Temperiervorrichtung geregelt wird, wobei eine Feuchte der Luft in dem Prüfraum mit einem Feuchtesensor eines Befeuchterregelkreises der Regeleinrichtung gemessen wird, wobei mit dem Befeuchterregelkreis die Feuchte mittels des Befeuchters geregelt wird, wobei mit dem Feuchtesensor eine absolute Luftfeuchtigkeit in dem Prüfraum gemessen wird, wobei mit dem Befeuchterregelkreis die Feuchte nach der absoluten Luftfeuchte als Regelgröße geregelt wird, und die Regeleinrichtung als eine Kaskadenregelung mit dem Prüfkammerregelkreis als ein Führungsregler und dem Befeuchterregelkreis als ein Folgeregler ausgebildet ist.
  • Der Befeuchter ist hier derart ausgebildet, dass mit dem Befeuchter die Befeuchtung der Luft in dem Prüfraum möglich ist. Weiter kann der Befeuchter auch für eine Entfeuchtung der Luft in dem Prüfraum genutzt werden. Der Befeuchter kann dann über weitere Einrichtungen zur Entfeuchtung der Luft verfügen, wie beispielsweise einem Kondensator. Der Temperatursensor des Prüfkammerregelkreises ist im Prüfraum angeordnet, so dass die Temperatur der im Prüfraum befindlichen Luft mit dem Temperatursensor gemessen werden kann. Ebenso ist der Feuchtesensor des Befeuchterregelkreises innerhalb des Prüfraums angeordnet, so dass die Feuchte der Luft in dem Prüfraum gemessen werden kann. Mit dem Feuchtesensor ist zumindest die absolute Luftfeuchte in g/m3 oder g/kg der Luft in dem Prüfraum bestimmbar. Weiter kann mit dem Feuchtesensor auch die relative Luftfeuchte und/oder ein Taupunkt in dem Prüfraum gemessen werden. Die absolute Luftfeuchte kann je nach verwendetem Temperatursensor auf vielfältige Art und Weise bestimmt werden, beispielsweise durch Messung der Temperatur und der Sättigungsmenge über Wasser oder über Eis der Luft in dem Prüfraum. Weiter kann die absolute Luftfeuchte aus einer Trockentemperatur und einer Feuchtetemperatur oder einem Dampfdruck, einer individuellen Gaskonstante des Wassers und einer absoluten Temperatur leicht bestimmt bzw. berechnet werden. Mit dem Feuchtesensor wird daher die absolute Luftfeuchte im Wesentlichen indirekt gemessen und basiert stets auf einem bekannten Verhältnis von Wassergehalt, Temperatur und Druck der Luft. Die mit dem Feuchtesensor gemessene bzw. bestimmte absolute Luftfeuchte wird von dem Befeuchterregelkreis als Regelgröße genutzt.
  • Die Verwendung der absoluten Luftfeuchte als Regelgröße bewirkt, dass der Prüfkammerregelkreis und der Befeuchterregelkreis nicht gegeneinander arbeiten können. Selbst bei einer Temperaturänderung der Luft im Prüfraum bleibt die absolute Luftfeuchte im Gegensatz zur relativen Luftfeuchte prinzipiell konstant. Bereits hierdurch wird eine Regelgenauigkeit wesentlich verbessert, da unerwünschte Verstärkungen bzw. Abschwächungen ausgeschlossen werden können. Ein weiterer vorteilhafter Effekt ergibt sich dadurch, dass die absolute Feuchte im Prüfraum an allen Stellen stets gleich ist. Da an verschiedenen Stellen im Prüfraum Temperaturabweichungen vorliegen können, kann eine relative Luftfeuchte an diesen Stellen unterschiedlich groß sein. Es war daher bisher erforderlich, eine räumliche Messung der relativen Luftfeuchte an verschiedenen Messstellen im Prüfraum vorzunehmen, um die relative Luftfeuchte überhaupt genau bestimmen zu können. Durch die Verwendung der absoluten Luftfeuchte als Regelgröße kann auf diese räumliche Messung verzichtet werden, da lediglich eine Kenntnis der Temperatur an einer Messstelle erforderlich ist, wenn an dieser Messstelle die absolute Luftfeuchte gemessen bzw. bestimmt wurde. Eine Kalibrierung bzw. Einstellung der Prüfkammer vor einer Durchführung eines Prüfablaufs wird dadurch wesentlich erleichtert.
  • Weiter kann vorgesehen sein, die Feuchte ausschließlich nach der absoluten Luftfeuchte als Regelgröße zu regeln. Grundsätzlich wäre es auch möglich unter bestimmten Betriebsbedingungen der Prüfkammer alternativ nach der relativen Luftfeuchte und/oder einem Taupunkt als Regelgröße zu regeln. Dies wäre jedoch nachteilig, da dann eine Umschaltung der Regelgrößen während eines Prüfablaufs erfolgen müsste. Eine Software der Regeleinrichtung würde dadurch noch komplexer.
  • In der Regeleinrichtung kann ein vorgegebener Prüfablauf mit einer Temperatur und einer Feuchte als Sollgrößen gespeichert werden, wobei die Feuchte als eine relative Luftfeuchte gespeichert werden kann, wobei die Regeleinrichtung für die relative Luftfeuchte die korrespondierende absolute Luftfeuchte bestimmen kann. Demnach kann vorgesehen sein, vorgegebene Prüfabläufe in der Regeleinrichtung zu speichern, so dass die Regeleinrichtung über einen Zeitintervall bzw. einen Prüfzeitabschnitt die Temperatur und Feuchte für beispielsweise einen genormten Prüfablauf regeln kann. Die Zielgrößen bzw. Sollgrößen der Temperatur und Feuchte können daher für den gesamten Prüfablauf gespeichert werden. Dabei kann bei der Feuchte von der relativen Luftfeuchte als Sollgröße ausgegangen werden, da diese regelmäßig für genormte Prüfabläufe angegeben ist. Die Regeleinrichtung kann nun für diese relative Luftfeuchte die korrespondierende, absolute Luftfeuchte rechnerisch bestimmen. So ist es auch möglich, dass die absolute Luftfeuchte von dem Befeuchterregelkreis als Sollgröße bzw. Regelgröße verwendet wird.
  • Die Regeleinrichtung kann daher die vorgegebene absolute Luftfeuchte als die Sollgröße und die gemessene absolute Luftfeuchte als eine Ist-Größe in dem Befeuchterregelkreis verwenden. So kann der Befeuchterregelkreis allein die absolute Luftfeuchte als Regelgröße verwenden.
  • Die Temperatur der Luft in dem Prüfraum kann in einem Prüfzeitabschnitt eines vorgegebenen Prüfablaufs von der Regeleinrichtung geändert bzw. erhöht oder vermindert werden, wobei die Temperatur mit dem Prüfkammerregelkreis geregelt werden kann, und zeitgleich die Feuchte der Luft in dem Prüfraum mit dem Befeuchterregelkreis geregelt werden kann. Dadurch dass der Prüfkammerregelkreis und der Befeuchterregelkreis gleichzeitig betrieben werden können, wird es möglich, gleichzeitig die Temperatur und Feuchte zu regeln. Da der Befeuchterregelkreis die absolute Luftfeuchte als Regelgröße verwendet, kann in diesem Fall ausgeschlossen werden, dass der Prüfkammerregelkreis und der Befeuchterregelkreis sich gegenseitig behindern.
  • Als ein Regler des Befeuchterregelkreises kann ein PID-Regler verwendet werden. Dies ist besonders vorteilhaft, da die absolute Luftfeuchte mit dem konstanten P-Anteil des PID-Reglers besser zu regeln ist als eine relative Luftfeuchte als Regelgröße. Dadurch dass mit steigender Temperatur ein möglicher Wassergehalt der Luft exponentiell ansteigt, ist mit der absoluten Luftfeuchte als Regelgröße diese exponentielle Funktion bereits in den Werten der absoluten Luftfeuchte enthalten, was bei der relativen Luftfeuchte als Regelgröße nicht der Fall ist. So wird es erst durch die Verwendung der absoluten Luftfeuchte als Regelgröße möglich, einen PID-Regler vorteilhaft einzusetzen und eine höhere Regelqualität zu erzielen.
  • Mittels des Befeuchterregelkreises kann eine Feuchtekonstanz in dem Prüfraum mit einer Toleranz von < ±1 % absolute Luftfeuchte geregelt werden.
  • Die erfindungsgemäße Prüfkammer, insbesondere Klimakammer oder dergleichen, zur Konditionierung von Luft, umfasst einen gegenüber einer Umgebung verschließbaren und temperaturisolierten Prüfraum zur Aufnahme von Prüfgut, eine Temperiervorrichtung zur Temperierung und einen Befeuchter zur Befeuchtung der Luft in dem Prüfraum, wobei die Prüfkammer eine Regeleinrichtung mit einem Prüfkammerregelkreis und einem Befeuchterregelkreis aufweist, wobei der Prüfkammerregelkreis einen Temperatursensor zur Messung einer Temperatur der Luft in dem Prüfraum aufweist und zur Regelung der Temperatur mittels der Temperiervorrichtung dient, wobei der Befeuchterregelkreis einen Feuchtesensor zur Messung einer Feuchte der Luft in dem Prüfraum aufweist und zur Regelung der Feuchte mittels des Befeuchters dient, wobei mit dem Feuchtesensor eine absolute Luftfeuchte in dem Prüfraum messbar ist, wobei mit dem Befeuchterregelkreis die Feuchte nach der absoluten Luftfeuchte als Regelgröße regelbar ist. Zu den Vorteilen der erfindungsgemäßen Prüfkammer wird auf die Vorteilsbeschreibung des erfindungsgemäßen Verfahrens verwiesen.
  • Der Feuchtesensor kann ein Psychrometer zur Messung einer Trockentemperatur und einer Feuchtetemperatur sein. Das Psychrometer kann beispielsweise ein Aspirationspsychrometer sein, welches ein Thermometer bzw. Trockenthermometer und eine Feuchtethermometer umfasst, dessen Sensorelement bzw. dessen zur Temperaturmessung maßgeblicher Abschnitt mit einer mit Wasser benetzbaren Hülle umgeben ist. In Abhängigkeit einer Feuchte der Luft in dem Prüfraum verdunstet die Flüssigkeit der Hülle schneller oder langsamer, wobei durch die Verdunstung das Sensorelement gekühlt wird und sich eine Temperaturdifferenz zwischen dem Feuchtethermometer und dem nicht mit der Hülle umgebenen Trockenthermometer ergibt. Aus der Temperaturdifferenz kann mit Hilfe von Tafeln oder Algorithmen eine relative Luftfeuchte, ein Taupunkt und/oder die absolute Luftfeuchte bestimmt bzw. gemessen werden. Prinzipiell kann der Feuchtesensor jedoch auch jede andere Art von Sensor sein, der zur Messung der absoluten Luftfeuchte geeignet ist.
  • Der Befeuchter kann einem Behälter mit einem Behälterinnenraum zur Aufnahme eines Wasserbades, einer Heizvorrichtung zur Temperierung des Wasserbades, und eine Belüftungsvorrichtung zur Erzeugung von Luftblasen in dem Wasserbad, aufweisen, wobei oberhalb des Wasserbades in dem Behälter eine Behälteröffnung ausgebildet sein kann, die den Behälterinnenraum mit dem Prüfraum verbindet. Der Behälter des Befeuchters kann im Wesentlichen geschlossen und temperaturisoliert ausgebildet sein. Die Heizvorrichtung kann in dem Wasserbad angeordnet sein, so dass das Wasserbad mittels der Heizvorrichtung erwärmt werden kann. Die Behälteröffnung dient dann zur dichten Verbindung mit dem Prüfraum, so dass befeuchtete Luft aus dem Behälter über beispielsweise einen Luftkanal oder Schlauch in den Prüfraum eingeleitet werden kann. Optional kann der Befeuchter auch so ausgebildet sein, dass er unmittelbar innerhalb des Prüfraums angeordnet ist. Mit der Belüftungsvorrichtung können die Luftblasen im Wasserbad erzeugt werden, wodurch die Luftblasen im Bereich der Heizvorrichtung aufsteigen können, so dass vergleichsweise schnell mit Wasser gesättigte Luft für den Prüfraum erzeugt werden kann.
  • Mittels der Temperiervorrichtung kann eine Temperatur in einem Temperaturbereich von -70°C bis +180°C, vorzugsweise -80°C bis +200°C, innerhalb des Prüfraums ausbildbar sein.
  • Die Temperiervorrichtung kann eine Kühleinrichtung mit einem Kühlkreislauf mit einem Kältemittel, einem Wärmeübertrager, der in dem Prüfraum angeordnet sein kann, einem Verdichter, einem Kondensator und einem Expansionsorgan aufweisen, wobei die Temperiervorrichtung eine Heizeinrichtung mit einer Heizung und einem weiteren Wärmeübertrager aufweisen kann. Die Heizeinrichtung kann beispielsweise eine elektrische Widerstandsheizung sein, die den Prüfraum beheizt, derart, dass über den weiteren Wärmeübertrager eine Temperaturerhöhung in dem Prüfraum möglich wird. Die Kühleinrichtung weist dann den Wärmeübertrager zur Kühlung der im Prüfraum befindlichen Luft auf. Die Regeleinrichtung kann die Kühleinrichtung und die Heizeinrichtung bzw. die Temperiervorrichtung so steuern, dass eine Kühlung oder Erwärmung der im Prüfraum umgewälzten Luft möglich ist und eine Lufttemperatur innerhalb des Prüfraums in einem für einen Prüfablauf vorgesehenen Temperaturbereich ausgebildet werden kann. Dabei kann unabhängig vom Prüfgut bzw. eines Betriebszustandes des Prüfguts eine zeitliche Temperaturkonstanz von ±1k, vorzugsweise ±0,3k bis ±0,5k, während eines Prüfintervalls bzw. Prüfablaufs in dem Prüfraum ausgebildet werden. Unter einem Prüfintervall wird hier ein Teilabschnitt eines vollständigen Prüfzeitraums verstanden, in dem das Prüfgut einer im Wesentlichen gleichbleibenden Temperatur oder Klimabedingung ausgesetzt wird.
  • Die Regeleinrichtung ist als eine Kaskadenregelung mit dem Prüfkammerregelkreis als ein Führungsregler und dem Befeuchterregelkreis als ein Folgeregler ausgebildet. Die Feuchte kann dann in Abhängigkeit der Temperatur geregelt werden, so dass stets sichergestellt ist, dass die Feuchte an die in der Prüfkammer vorherrschende Temperatur angepasst wird.
  • Weitere vorteilhafte Ausführungsformen einer Prüfkammer ergeben sich aus den Merkmalsbeschreibungen der auf den Verfahrensanspruch 1 zurückbezogenen Unteransprüche.
  • Nachfolgend wird eine bevorzugte Ausführungsform unter Bezugnahme auf die beigefügte Zeichnung näher erläutert.
  • Die Figur zeigt eine schematische Darstellung einer Prüfkammer 10, die einen Prüfraum 11 aufweist, in dem Prüfgut 12 angeordnet ist. In dem Prüfraum 11 ist weiterhin ein Umluftkanal 13 angeordnet, der einen Luftbehandlungsraum 14 im Prüfraum 11 ausbildet. In dem Luftbehandlungskanal 14 ist ein Wärmeübertrager 15 zur Erwärmung oder Kühlung der den Umluftkanal 13 durchströmenden Luft angeordnet. Dabei saugt ein Lüfter 16 die im Prüfraum 11 befindliche Luft an und leitet sie im Umluftkanal 13 zu dem Wärmeübertrager 15. Das Prüfgut 12 wird so von einem hier mit Pfeilen 17 dargestellten Luftstrom umströmt und einem definierten Temperaturwechsel ausgesetzt. Die Prüfkammer 10 verfügt über eine hier nicht dargestellte Regeleinrichtung mit einem Prüfkammerregelkreis und einem Befeuchterregelkreis. Der Prüfkammerregelkreis umfasst einen Temperatursensor 18, mittels dem eine Lufttemperatur einer Zuluft an einem Auslass 20 des Umluftkanals 13 messbar ist. Ein weiterer Temperatursensor 19 des Prüfkammerregelkreises ist an einem Einlass 21 des Umluftkanals 13 angeordnet, so dass hier eine Lufttemperatur einer Abluft innerhalb des Prüfraums 11 gemessen werden kann.
  • Die Regeleinrichtung kann eine Temperaturdifferenz der Temperatur der Zuluft und der Temperatur der Abluft innerhalb eines Prüfzeitabschnitts bzw. eines vorgegebenen Prüfablaufs erfassen, speichern und/oder verarbeiten. Die genaue Anpassung der Temperatur der Luft an eine Sollgröße erfolgt mit dem Prüfkammerregelkreis. Weiter ist in dem Umluftkanal ein Feuchtesensor 22 des Befeuchterregelkreises angeordnet mit dem eine absolute Luftfeuchte in g/m3 oder g/kg in dem Prüfraum 11 gemessen wird. Der Befeuchterregelkreis regelt die Feuchte der Luft in dem Prüfraum 11, vorzugsweise ausschließlich, nach der absoluten Luftfeuchte als Regelgröße. Auch die Feuchte wird entsprechend des vorgegebenen Prüfablaufs von in der Regeleinrichtung gespeicherten Sollgrößen eingestellt.

Claims (12)

  1. Verfahren zur Konditionierung von Luft eines Prüfraums (11) einer Prüfkammer (10), insbesondere Klimakammer oder dergleichen, wobei in dem gegenüber einer Umgebung verschließbaren und temperaturisolierten Prüfraum Prüfgut (12) angeordnet wird, wobei mittels einer Temperiervorrichtung der Prüfkammer die Luft in dem Prüfraum temperiert und mittels eines Befeuchters der Prüfkammer befeuchtet wird, wobei eine Temperatur der Luft in dem Prüfraum mit einem Temperatursensor (18, 19) eines Prüfkammerregelkreises einer Regeleinrichtung der Prüfkammer gemessen wird, wobei mit dem Prüfkammerregelkreis die Temperatur mittels der Temperiervorrichtung geregelt wird, wobei eine Feuchte der Luft in dem Prüfraum mit einem Feuchtesensor (22) eines Befeuchterregelkreises der Regeleinrichtung gemessen wird, wobei mit dem Befeuchterregelkreis die Feuchte mittels des Befeuchters geregelt wird,
    dadurch gekennzeichnet,
    dass mit dem Feuchtesensor eine absolute Luftfeuchte in dem Prüfraum gemessen wird, wobei mit dem Befeuchterregelkreis die Feuchte nach der absoluten Luftfeuchte als Regelgröße geregelt wird, und dass die Regeleinrichtung als eine Kaskadenregelung mit dem Prüfkammerregelkreis als ein Führungsregler und dem Befeuchterregelkreis als ein Folgeregler ausgebildet ist.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Feuchte ausschließlich nach der absoluten Luftfeuchte als Regelgröße geregelt wird.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass in der Regeleinrichtung ein vorgegebener Prüfablauf mit einer Temperatur und einer Feuchte als Sollgrößen gespeichert wird, wobei die Feuchte als eine relative Luftfeuchte gespeichert wird, wobei die Regeleinrichtung für die relative Luftfeuchte die korrespondierende absolute Luftfeuchte bestimmt.
  4. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet,
    dass die Regeleinrichtung die vorgegebene absolute Luftfeuchte als die Sollgröße und die gemessene absolute Luftfeuchte als eine Ist-Größe in dem Befeuchterregelkreis verwendet.
  5. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Temperatur in einem Prüfzeitabschnitt eines vorgegebenen Prüfablaufs von der Regeleinrichtung geändert wird, wobei die Temperatur mit dem Prüfkammerregelkreis geregelt wird, und zeitgleich die Feuchte mit dem Befeuchterregelkreis geregelt wird.
  6. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass als ein Regler des Befeuchterregelkreises ein PID-Regler verwendet wird.
  7. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass mittels des Befeuchterregelkreises eine Feuchtekonstanz in dem Prüfraum mit einer Toleranz von < ±1 % absolute Luftfeuchte geregelt wird.
  8. Prüfkammer (10), insbesondere Klimakammer oder dergleichen, zur Konditionierung von Luft, umfassend einen gegenüber einer Umgebung verschließbaren und temperaturisolierten Prüfraum (11) zur Aufnahme von Prüfgut (12), eine Temperiervorrichtung zur Temperierung und einen Befeuchter zur Befeuchtung der Luft in dem Prüfraum, wobei die Prüfkammer eine Regeleinrichtung mit einem Prüfkammerregelkreis und einem Befeuchterregelkreis aufweist, wobei der Prüfkammerregelkreis einen Temperatursensor (18, 19) zur Messung einer Temperatur der Luft in dem Prüfraum aufweist und zur Regelung der Temperatur mittels der Temperiervorrichtung dient, wobei der Befeuchterregelkreis einen Feuchtesensor (22) zur Messung einer Feuchte der Luft in dem Prüfraum aufweist und zur Regelung der Feuchte mittels des Befeuchters dient,
    dadurch gekennzeichnet,
    dass mit dem Feuchtesensor eine absolute Luftfeuchte in dem Prüfraum messbar ist, wobei mit dem Befeuchterregelkreis die Feuchte nach der absoluten Luftfeuchte als Regelgröße regelbar ist, und dass die Regeleinrichtung als eine Kaskadenregelung mit dem Prüfkammerregelkreis als ein Führungsregler und dem Befeuchterregelkreis als ein Folgeregler ausgebildet ist.
  9. Prüfkammer nach Anspruch 8,
    dadurch gekennzeichnet,
    dass der Feuchtesensor (22) ein Psychrometer zur Messung einer Trockentemperatur und einer Feuchtetemperatur ist.
  10. Prüfkammer nach Anspruch 8 oder 9,
    dadurch gekennzeichnet,
    dass der Befeuchter einen Behälter mit einem Behälterinnenraum zur Aufnahme eines Wasserbades, eine Heizvorrichtung zur Temperierung des Wasserbades, und eine Belüftungsvorrichtung zur Erzeugung von Luftblasen in dem Wasserbad, aufweist, wobei oberhalb des Wasserbades in dem Behälter eine Behälteröffnung ausgebildet ist, die den Behälterinnenraum mit dem Prüfraum (11) verbindet.
  11. Prüfkammer nach einem der Ansprüche 8 bis 10,
    dadurch gekennzeichnet,
    dass mittels der Temperiervorrichtung eine Temperatur in einem Temperaturbereich von -70 °C bis +180 °C, vorzugsweise -80 °C bis +200 °C, innerhalb des Prüfraums (11) ausbildbar ist.
  12. Prüfkammer nach Anspruch 11,
    dadurch gekennzeichnet,
    dass die Temperiervorrichtung eine Kühleinrichtung mit einem Kühlkreislauf mit einem Kältemittel, einem Wärmeübertrager (15), der in dem Prüfraum (11) angeordnet ist, einem Verdichter, einem Kondensator und einem Expansionsorgan aufweist, wobei die Temperiervorrichtung eine Heizeinrichtung mit einer Heizung und einem weiteren Wärmeübertrager aufweist.
EP19203078.1A 2019-10-14 2019-10-14 Prüfkammer und verfahren zur konditionierung von luft Active EP3809116B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19203078.1A EP3809116B1 (de) 2019-10-14 2019-10-14 Prüfkammer und verfahren zur konditionierung von luft
ES19203078T ES2948011T3 (es) 2019-10-14 2019-10-14 Cámara de ensayo y procedimiento de acondicionamiento de aire
JP2020171633A JP2021063805A (ja) 2019-10-14 2020-10-12 空調用試験室及び空調方法
KR1020200131750A KR20210044710A (ko) 2019-10-14 2020-10-13 공기 조절용 테스트 챔버 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19203078.1A EP3809116B1 (de) 2019-10-14 2019-10-14 Prüfkammer und verfahren zur konditionierung von luft

Publications (2)

Publication Number Publication Date
EP3809116A1 EP3809116A1 (de) 2021-04-21
EP3809116B1 true EP3809116B1 (de) 2023-05-03

Family

ID=68289824

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19203078.1A Active EP3809116B1 (de) 2019-10-14 2019-10-14 Prüfkammer und verfahren zur konditionierung von luft

Country Status (4)

Country Link
EP (1) EP3809116B1 (de)
JP (1) JP2021063805A (de)
KR (1) KR20210044710A (de)
ES (1) ES2948011T3 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7531932B2 (ja) 2020-11-10 2024-08-13 株式会社Zero Food 蒸発加湿器
CN115372285A (zh) * 2022-10-26 2022-11-22 杭州泽天春来科技有限公司 尾气分析装置及方法
KR102627262B1 (ko) * 2023-09-11 2024-01-19 김성훈 소방 기능을 갖춘 전기차 배터리 환경 적응성 테스트 장치 및 시스템

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5329325B2 (ja) * 2009-07-16 2013-10-30 エスペック株式会社 環境試験方法及び環境試験装置
JP2012211825A (ja) * 2011-03-31 2012-11-01 Suga Test Instr Co Ltd 絶対湿度による温湿度調整コントロールシステム及び、該コントロールシステムを使用した試験装置
ES2633594T3 (es) * 2013-01-29 2017-09-22 Weiss Umwelttechnik Gmbh Procedimiento para la verificación de condiciones climáticas en una cámara ambiental
DE102016204378A1 (de) 2016-03-16 2017-09-21 Weiss Umwelttechnik Gmbh Prüfkammer

Also Published As

Publication number Publication date
ES2948011T3 (es) 2023-08-25
KR20210044710A (ko) 2021-04-23
EP3809116A1 (de) 2021-04-21
JP2021063805A (ja) 2021-04-22

Similar Documents

Publication Publication Date Title
EP3809116B1 (de) Prüfkammer und verfahren zur konditionierung von luft
DE102005018142B4 (de) Klimakammer zur schnellen Erreichung und Aufrechterhaltung einer vorgegebenen Luftfeuchtigkeit und/oder einer vorgegebenen Temperatur
EP2895652B1 (de) Kondensationstrockner mit ermittlung der beladung sowie verfahren zu seinem betrieb
EP3431891B1 (de) Befeuchter und verfahren zur konditionierung von luft
DE10335295B4 (de) Verfahren und Vorrichtung zur Steuerung von Backparametern
DE2721862B2 (de) Klimakammer
EP3378928A1 (de) Verfahren zum betrieb eines befeuchtungsmoduls, befeuchtungsmodul und inkubator oder klimaschrank mit befeuchtungsmodul
EP3392396A1 (de) Trommelwäschetrockner mit raumlufttrocknungsfunktion
DE4204771B4 (de) Verfahren und Anordnung zum Betrieb eines dampfbeheizten Trockners
DE102008046472B4 (de) Verfahren und Vorrichtung zur Erzeugung von Feuchtklimaten
EP3098527A1 (de) Verfahren zum betreiben einer lüftungseinrichtung für einen raum sowie entsprechende lüftungseinrichtung
DE10222438B4 (de) Verfahren zur Einstellung oder Regelung der Gasfeuchte in nahez abgeschlossenen Räumen
EP2467705B1 (de) Vorrichtung und verfahren zum bestimmen des taupunktes eines gases
DE1698104B1 (de) Klimamess- und -pruefschrank
DE202013105854U1 (de) Wärmerückgewinnung für Lüftungsanlagen
DE102013218470A1 (de) Brennstoffzellenanordnung sowie Verfahren zum Betreiben einer Brennstoffzellenanordnung
DE102021105123B3 (de) Verfahren zum Betrieb eines Gargeräts sowie Gargerät
DE2153175C3 (de) Anlage zum Temperieren und Entfeuchten eines Luftstromes zur Klimatisierung von Räumen
DE102017116198A1 (de) Verfahren zum Betreiben eines Verdampfers und Kühlvorrichtung
DE1523322C (de) Anordnung zur Erzeugung beliebiger Temperaturen in einem abgeschlossenen Tempenergefaß
DE102022121796A1 (de) Vorrichtung zur Zuführung von Luft in einen Raum
DE102015219054B4 (de) Verfahren zur Bestimmung der Menge eines flüssigen Stoffes auf einem Objekt
DE102021209962A1 (de) Trockner und Verfahren zum Trocknen von Geweben mit einem solchen Trockner
EP3179230A1 (de) Verfahren und vorrichtung zur reaktionsbelastung wenigstens einer probe
DE1604323C3 (de) Klimaanlage, insbesondere Klimaprüf- und KlimameBschrank

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210913

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220914

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20230206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WEISS TECHNIK GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019007609

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1565006

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2948011

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230825

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230803

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230903

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231024

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231110

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231024

Year of fee payment: 5

Ref country code: FR

Payment date: 20231026

Year of fee payment: 5

Ref country code: DE

Payment date: 20231027

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019007609

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031