EP3730792A1 - Flügelzellenpumpe mit druckausgleichsverbindung - Google Patents

Flügelzellenpumpe mit druckausgleichsverbindung Download PDF

Info

Publication number
EP3730792A1
EP3730792A1 EP20170948.2A EP20170948A EP3730792A1 EP 3730792 A1 EP3730792 A1 EP 3730792A1 EP 20170948 A EP20170948 A EP 20170948A EP 3730792 A1 EP3730792 A1 EP 3730792A1
Authority
EP
European Patent Office
Prior art keywords
rotor
end wall
vane pump
rotor body
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20170948.2A
Other languages
English (en)
French (fr)
Inventor
Tobias Iser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwaebische Huettenwerke Automotive GmbH
Original Assignee
Schwaebische Huettenwerke Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwaebische Huettenwerke Automotive GmbH filed Critical Schwaebische Huettenwerke Automotive GmbH
Publication of EP3730792A1 publication Critical patent/EP3730792A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3446Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3441Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C2/3442Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • F01M2001/0207Pressure lubrication using lubricating pumps characterised by the type of pump
    • F01M2001/0238Rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • F04C15/0046Internal leakage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • F04C15/0049Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/14Lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors

Definitions

  • the invention relates to a vane pump.
  • the vane pump comprises a delivery chamber for a fluid, which has an inlet and an outlet, a rotor which is arranged in the delivery chamber and which has a rotor body and vanes which are received in a radially displaceable manner by the rotor body, an end wall which the delivery chamber on an axial End face limited, and a support element arranged axially between the end wall and the rotor body, which supports the blades at their radially inner blade ends, the rotor body, the support element and two blades adjacent in the circumferential direction of the rotor forming chambers, the volume of which changes when the rotor rotates .
  • the invention is based in particular on the object of providing an inexpensive vane pump with a long service life.
  • the invention relates to an adjustable vane pump with a delivery chamber which has an inlet and an outlet, a rotor arranged in the delivery chamber for delivering a fluid, which has a rotor body and vanes which are received radially displaceably by the rotor body, an end wall which the delivery chamber limited at an axial end face, and a support element arranged axially between the end wall and the rotor body, which supports the blades at their radially inner blade ends and presses or pushes the radially outer blade ends against a delivery chamber wall.
  • the rotor body, the support element and two circumferentially adjacent blades each form chambers, the volume of which changes when the rotor is rotating or driven.
  • the Vane pump has a pressure equalization connection which connects at least two of the chambers to one another fluidically or fluidically.
  • an axially outwardly directed surface of the rotor body Preferably, an axially outwardly directed surface of the rotor body, a radially inwardly directed surface of the rotor body, an axially inwardly directed surface of the end wall, a radially outwardly directed surface of the support element, a surface of a vane directed in the direction of rotation of the rotor and one against the direction of rotation of the rotor directed surface of an adjacent wing, wherein the surfaces of the wings are facing each other, a chamber which is formed between the rotor body, the support element and two adjacent blades in the circumferential direction.
  • the pressure equalization connection advantageously connects at least one chamber which decreases in size when the rotor is rotating with at least one chamber which increases in size when the rotor is rotating.
  • the pressure equalization connection preferably sets up a fluid exchange between at least two of the chambers which is larger, advantageously at least twice greater, than a fluid exchange in the absence of a pressure equalization connection, which results or can result only from component play.
  • the terms “radial” and “axial” relate in particular to an axis of rotation of the rotor, so that the term “axial” denotes a direction which runs on or parallel to the axis of rotation. Furthermore, the term “radial” denotes a direction which is perpendicular to the axis of rotation.
  • circumferential direction relates in particular to the axis of rotation of the rotor, so that the term “circumferential direction” denotes a direction that runs around the axis of rotation, advantageously in and / or against the direction of rotation of the rotor.
  • the pressure compensation connection allows a fluid enclosed or located in the chambers to be exchanged between the chambers in a targeted manner, whereby the fluid compressed in the decreasing chamber can escape into another chamber, advantageously into an enlarging chamber.
  • a pressure difference in particular between an expanding chamber and a shrinking chamber, can thereby be compensated for with one another.
  • high pressures in the chambers can be relieved, reduced or avoided, whereby the load on the support element, the blades, the rotor body and / or the conveying chamber wall can be reduced particularly easily.
  • the wear on the support element, the vanes, the rotor and / or the delivery chamber wall can be reduced, as a result of which an inexpensive vane pump with a long service life can be provided.
  • the rotor body forms an axial sealing gap with the upper side of the end wall facing it.
  • the top of the end wall facing the rotor body is an inner side of the axial end wall facing the delivery chamber.
  • the support element forms a further axial sealing gap with the end wall, the axial sealing gap formed between the support element and the end wall being arranged radially inside the axial sealing gap formed between the rotor body and the end wall.
  • the axial sealing gap and the further axial sealing gap are preferably annular, for example circular.
  • a diameter of the axial sealing gap which is formed between the end wall and the rotor body is greater than a diameter of the axial sealing gap which is formed between the end wall and the support element.
  • the axial sealing gap which is formed between the rotor body and the end wall, preferably separates the chambers that the rotor body, the support element and two circumferentially adjacent blades of the rotor form, and the delivery cells that form the rotor body, the delivery chamber wall and two in each case Circumferentially adjacent blades of the rotor form, in particular fluidically, from one another.
  • the chambers which are formed by the rotor body, the support element and two blades that are adjacent in the circumferential direction, are formed radially inside the axial sealing gap that is formed between the rotor body and the end wall.
  • the vanes delimit the chambers, which are formed by the rotor body, the support element and two vanes that are adjacent in the circumferential direction, in the circumferential direction radially inside the rotor body.
  • the rotor body that The conveying chamber wall and two wings that are adjacent in the circumferential direction form the conveying cells.
  • the delivery cells which form the rotor body, the delivery chamber wall and two blades that are adjacent in the circumferential direction, are formed radially outside the axial sealing gap that is formed between the rotor body and the end wall.
  • the vanes delimit the delivery cells, which are formed by the rotor body, the delivery chamber wall and two vanes that are adjacent in the circumferential direction, in the circumferential direction radially outside the rotor body.
  • the fluid is transported from the inlet to the outlet.
  • the pressure equalization connection according to the invention is preferably formed radially within the axial sealing gap which is formed between the rotor body and the end wall.
  • the vane pump can in particular have a base and a cover, the base and the cover each having or forming an end wall as described above.
  • the vane pump preferably has an adjusting ring for adjusting an eccentricity between the rotor and the delivery chamber and thus for adjusting the delivery volume which has or forms the delivery chamber wall which radially delimits the delivery chamber.
  • the support element advantageously presses or pushes the wings against the delivery chamber wall of the adjusting ring.
  • the delivery chamber wall preferably forms a running surface for the radially outer wing ends of the wings.
  • the delivery chamber wall is preferably designed as an inner circumferential wall of the adjusting ring.
  • the adjusting ring can be mounted displaceably, rotatably or pivotably.
  • the pressure compensation connection can have at least one groove in the end wall and / or a groove in at least one of the wings and / or at least one through hole in one of the wings and / or an enlarged sealing gap between the support element and the end wall and / or an enlarged sealing gap between at least one the wing and the end wall.
  • the pressure equalization connection fluidly connects at least two chambers with one another in such a way that different fluid pressures in the chambers, which can occur, for example, due to the different chamber volume, are advantageously equalized.
  • a groove has a depth or an axial extent that is greater, advantageously at least 50% and is particularly advantageously at least 100% larger than the axial sealing gap which is formed between the rotor body and the end wall, and / or is larger than the axial sealing gap which is formed between the support element and the end wall.
  • an enlarged axial sealing gap is larger, advantageously at least 50% and particularly advantageously at least 100% larger, than the axial sealing gap that is formed between the rotor body and the end wall, and / or larger than an axial sealing gap that is formed between a wing and the end wall, in particular radially outside of the rotor body.
  • the enlarged axial sealing gap in a region of the chambers, which is formed between a wing and the end wall within the rotor body can be realized by reducing the axial extent of the wing, the reduction of the axial extent only on the radially inner wing end and thus on the conveyor chamber wall or the radial side of the wing facing away from the adjusting ring takes place.
  • the wing thus has different axial extensions when viewed along its radial extension.
  • the wing has a step, a bevel, a bevel, a rounding, etc. on its radially inner wing end.
  • the reduced axial extension or the step, incline, etc. is preferably not located in any rotational position of the rotor and / or in any setting position of the adjusting ring radially outside the axial sealing gap that is formed between the rotor body and the end wall.
  • At least one axial end of the rotor body can be cup-shaped or can have a receiving space for the support element which is open towards the end wall.
  • the axial end of the rotor body has an axially protruding edge which faces the end wall.
  • the axially protruding edge radially surrounds the receiving space and thus the support element.
  • the support element is arranged radially inside the axially protruding edge.
  • the axially protruding edge forms with its axially outwardly directed surface an annular contact surface of the rotor body which, together with the end wall, forms the axial sealing gap which is formed between the rotor body and the end wall.
  • the groove can be formed in the side of the end wall facing the rotor body.
  • the support element is preferably arranged in the receiving space which is delimited by the cup-shaped axial end or the axially protruding edge of the rotor body and the end wall.
  • a groove has a depth or an axial extent that is smaller than a depth or axial extent of the receiving space and / or the support element, advantageously half, preferably less than half the depth or axial extent of the receiving space and / or the support element.
  • the rotor can be mounted in a bearing in the cover and / or in the base.
  • the vane pump can include a drive shaft for driving the rotor, which is rotatably mounted in at least one bearing, such as a plain bearing, in the cover and / or the base.
  • the groove in the end wall is open to the receiving space.
  • the groove in the end wall can be formed by a circle, a segment of a circle or several separate segments of a circle.
  • the groove preferably runs concentrically to the axis of rotation of the rotor, the groove in the end wall running radially at least substantially outside the support element, preferably outside the area surrounded by the support element.
  • the separate circular segments can lie on a circular line or on different circular lines that are spaced differently from the rotor axis / drive shaft.
  • a groove or annular groove designed as a circle preferably has a uniform width and depth. If the groove consists of several separate circular segments, each circular segment preferably has a uniform width and depth, wherein the width and / or the depth of a first separate circular segment can differ from the width and / or the depth of a further separate circular segment. Individual or all of the separate circle segments can have a width and / or depth which varies over the extent of the separate circle segment. The transition of the separate circle segment into the surface surrounding it at the beginning and at the end in the longitudinal direction of the circle segment can be abrupt, step-shaped or gentle. Individual of the separate circle segments, especially when the separate circle segments different circular lines can be connected to one another via a channel.
  • the end wall preferably has at least two sealing webs axially facing the rotor, each of which separates the inlet from the outlet or a low-pressure area from a high-pressure area of the delivery chamber.
  • the sealing webs are each arranged between the inlet and the outlet, viewed along the direction of rotation of the rotor.
  • the sealing webs are preferably arranged opposite one another.
  • One of the sealing webs is formed in the area of the largest conveying cell volume, in particular with full delivery and thus with the greatest eccentricity.
  • the other sealing web is formed in an area of the smallest delivery cell volume, especially with full delivery and thus with the greatest eccentricity, and is also referred to as the drive web.
  • the pressure equalization connection in particular the groove in the end wall, preferably connects at least one chamber on the one sealing web and at least one chamber on the other sealing web to one another.
  • the pressure equalization connection does not connect the delivery cells to one another. It connects only the chambers with one another which are formed radially inside the axially protruding edge of the rotor body between the rotor body, two blades which are adjacent in the circumferential direction and the support element. The axially protruding edge of the rotor seals the chambers and the delivery cells from one another.
  • the groove in the end wall formed by the cover and / or the base is preferably separated or sealed from the inlet formed in the cover and / or in the base.
  • the groove in the end wall formed by the cover and / or the base is preferably separated or sealed from the outlet formed in the cover and / or in the base.
  • the groove in the end wall formed by the cover and / or the base is preferably separated or sealed from the bearing of the rotor and / or the drive shaft in the cover and / or base.
  • the groove in the end wall does not open into the inlet, not into the outlet and not into the bearing; neither in the lid nor in the bottom.
  • the groove in the end wall runs radially inside the inlet and outlet and radially outside the bearing.
  • the groove advantageously runs radially between the inlet / outlet and the bearing.
  • the groove in the end wall advantageously runs at a radial distance from the inlet, the outlet and the bearing.
  • the rotor body can have blade mounts which each include a slot area in which the blade is guided and a bottom area, preferably radially adjoining the slot area, in which the blade is not guided.
  • the bottom area forms a radially inner area of the wing receptacle and can have a shape that deviates from the slot shape of the slot area, for example be round.
  • the bottom area is arranged radially inside the axial sealing gap which is formed between the rotor body and the end wall. It is formed radially between the axial sealing gap, which is formed between the rotor body and the end wall, and the bearing.
  • the groove in the end wall is separated or sealed from the base area of the wing mounts.
  • the groove preferably does not open into any of the bottom areas of the wing receptacles.
  • the groove in the end wall preferably runs radially outside the base area of the wing receptacles.
  • the groove in the end wall advantageously runs radially between the bottom area of the wing mounts and the axial sealing gap which is formed between the rotor body and the end wall.
  • the bottom areas of the wing receptacles each have a bottom which forms a radially inner end of the respective wing receptacle.
  • the groove in the end wall is preferably radially spaced from the bottom of the wing receptacles.
  • the groove in the end wall advantageously extends radially outside the base of the wing receptacles.
  • the groove in the end wall advantageously runs radially between the bottom of the wing receptacles and the axial sealing gap which is formed between the rotor body and the end wall.
  • the delivery cell pump can comprise an adjusting ring with which the delivery rate of the vane pump can be changed.
  • the adjusting ring can form the delivery chamber. If the vane pump comprises an adjusting ring, the adjusting ring can preferably at least partially form the delivery chamber wall against which the blades are tensioned by the support element.
  • the collar can be act any known device with which the delivery volume of a vane pump can be changed, this device does not have to have a ring shape.
  • the vane pump is intended in particular for use in a motor vehicle. It is designed as a motor vehicle pump.
  • the vane pump is preferably provided for pumping a liquid, in particular a lubricant, coolant and / or actuator. It is designed as a liquid pump.
  • the vane pump is preferably provided for the supply, lubrication and / or cooling of a motor vehicle drive engine or a motor vehicle transmission.
  • the liquid is preferably designed as an oil, in particular as an engine lubricating oil or gear oil.
  • the vane pump can be designed as an engine lubricant pump for a motor vehicle or as a gear pump for a motor vehicle.
  • the Figure 1 shows a longitudinal section of a tandem pump of a motor vehicle with a vane pump 1 and a further pump 22, which are driven via a common drive shaft 12.
  • the vane pump 1 can be designed as an engine lubricating oil pump and the further pump 22 as a vacuum pump.
  • the invention is not limited to an arrangement of the vane pump 1 in a tandem pump.
  • the design as a tandem pump and the design of the further pump 22 are not relevant for the implementation of the invention.
  • the vane pump 1 can easily be designed as a stand-alone or independent pump, for example as an engine lubricating oil pump.
  • the vane pump 1 has a rotor 3, 4 with a rotor body 3 and vanes 4, which are received in a radially displaceable manner by the rotor body 3.
  • the rotor 3, 4 is arranged in a delivery chamber 2.
  • the delivery chamber 2 comprises a delivery chamber wall 21 which forms a running surface for the radially outer wing ends of the wings 4.
  • the vane pump 1 comprises a drive shaft 12 which is non-rotatably connected to the rotor 3, 4 and to a drive not shown in detail.
  • the rotor 3, 4 can be driven about its axis of rotation by the drive.
  • the vane pump 1 has a first end wall 5 and a second end wall 6, each of which axially delimits the delivery chamber 2 on one end face.
  • the first end wall 5 is formed by a base or a base plate.
  • the second end wall 6 is formed by a cover or a cover plate.
  • the axial ends of the rotor body 3 are cup-shaped, so that the rotor body 3 forms an annular, axially protruding edge 33 at each of its axial ends, which runs off on a contact surface 51 of the bottom end wall 5 or a contact surface 61 of the cover-side end wall 6, if the rotor 3, 4 is driven.
  • the axially protruding edge 33 of the first axial end of the rotor body 3 forms an axial sealing gap 31 with the running surface 51 of the bottom end wall 5.
  • the axially protruding edge 33 of the second axial end of the rotor body 3 forms an axial sealing gap with the running surface 61 of the cover-side end wall 6 32.
  • the rotor body 3 has one at each of its axial ends Receiving space 34, which is surrounded by the axially protruding edge 33 of the respective end.
  • the receiving space 34 is provided for receiving or arranging a support element 8 for supporting the wings 4.
  • the vane pump 1 comprises a pressure equalization connection 10 which, in the exemplary embodiment shown, has a groove 9 which is formed in the upper side of the end wall 5 and the end wall 6 facing the rotor body 3.
  • the axial sealing gaps 31, 32 seal off the respective receiving space 34 in which the support element 8 is arranged.
  • the support element 8 forms an axial sealing gap 81 with the bottom-side end wall 5 or a sealing gap 82 with the cover-side end wall 6.
  • the support element 8, the rotor body 3, two blades 4 adjacent in the circumferential direction of the rotor 3, 4 and the respective end wall 5, 6 form chambers 18 or rotor interior chambers in the receiving space 34, the volume of which changes periodically when the rotor 3, 4 is driven.
  • the groove 9 of the pressure equalization connection 10 connects at least two adjacent chambers 18 to one another, so that pressure equalization takes place between these chambers 18.
  • the groove 9 is designed as a closed annular groove. It fluidically connects all the chambers 18 to one another permanently.
  • the groove 9 can, however, also be formed as one or more circular segments, so that only selected chambers 18 are connected to one another.
  • the vane pump 1 further comprises an inlet E, which is assigned to a low-pressure side of the vane pump 1, through which fluid can flow into the delivery chamber 2.
  • the fluid can leave the delivery chamber 2 again through an outlet A, which is assigned to a high-pressure side of the vane pump 1.
  • the Figure 2 shows in a longitudinal section and in a top view the end wall 6 on the cover side, respectively the upper side of the end wall 6 facing the rotor 3, 4
  • Figure 2 the running surface 61 for the rotor body 3, the inlet E, the outlet A and the bearing 11 for the drive shaft 12 can be seen.
  • the groove 9 can be seen, which is formed in the upper side of the end wall 6 facing the rotor 3, 4.
  • a first sealing web 13 with an apex 14 and a second sealing web 15 with an apex 16 can also be seen.
  • the groove 9 is designed as a continuous annular groove which opens neither into the inlet E, the outlet A nor into the bearing 11.
  • the pressure equalization connection 10, here the groove 9 connects all the chambers 18 to one another in the exemplary embodiment shown.
  • the groove 9 can, however, also be formed as one or more separate circular segments. A segment of a circle can then, for example, only extend from the apex 16 of the sealing web 15 to the apex 14 of the sealing web 13. As a result, not all of the chambers 18 are connected to one another, but the smallest chamber 18 and the largest chamber 18, whereby the pressure in the smallest chamber 18 and thus the most heavily loaded chamber 18 can be relieved.
  • FIG. 3 shows essentially the same thing as that Figure 2 , this time carried out on the bottom end wall 5. It is therefore referred to the description for Figure 2 which shows the same characteristics as the Figure 3 .
  • the Figure 4 shows the vane pump of the Figure 1 with the adjusting ring 19, with which the delivery rate of the vane pump 1 can be adjusted.
  • the adjusting ring 19 forms the delivery chamber wall 21.
  • the delivery chamber wall 21 forms a running surface for the radially outer vane ends of the vanes 4.
  • the vane pump 1 comprises an end wall 6 on which the axially protruding edge 33 of the rotor body 3 runs at the first axial end along the running surface 61 , and an axially opposite end wall 5 on which the axially opposite, axially protruding edge 33 of the rotor body 3 runs at the second axial end along the running surface 51.
  • the axial sealing gap 31 which the edge 33 of the rotor body 3 forms with the upper side of the end wall 5 facing it is shown in detail.
  • the support element 8 is arranged, which together with the rotor body 3 and two blades 4 adjacent in the circumferential direction of the rotor 3, 4 forms the chambers 18, which are fluidically connected to one another via the pressure compensation connection 10, here the groove 9, see above that a pressure equalization takes place between the chambers 18.
  • the Figure 5 shows in a view into a vane pump 1 the adjusting ring 19, which is pretensioned by a spring element 20 in the direction of greatest eccentricity between the rotor 3, 4 and the adjusting ring 19 and thus full delivery.
  • the adjusting ring 19 can be adjusted hydraulically against the spring force of the spring element 20 by an adjusting pressure in an adjusting chamber.
  • the rotor 3, 4 can be seen with the axially protruding edge 33 which, together with the end wall 5 on the bottom side, forms the axial sealing gap 31 along the running surface 51.
  • the rotor 3, 4 comprises vanes 4 which are pressed or pushed by the support element 8 against the conveying chamber wall 21 of the conveying chamber 2 in each setting position of the adjusting ring 19.
  • the vanes 4 divide the delivery chamber 2 into delivery cells 7 in which fluid can be transported from inlet E to outlet A.
  • the rotor body 3 further comprises wing receptacles 41, which comprise a slot area 42 and a base area 43 with a base 17.
  • the support element 8, two blades 4 adjacent in the circumferential direction of the rotor 3, 4, and the rotor body 3 form the chambers 18, the volume of which changes when the rotor 3, 4 rotates.
  • dashed lines is in the Figure 5 the pressure equalization connection 10 indicated in the form of the groove 9.
  • the groove 9 lies in the receiving space 34, which is radially delimited by the axially protruding edge 33 of the rotor body 3, and outside the bottom areas 43 of the wing mounts 41.
  • the groove 9 does not open into any of the bottom areas 43 of the wing mounts 41 axially protruding edge 33 and the bottom area 43.

Abstract

Flügelzellenpumpe (1) mit einer Förderkammer (2), die einen Einlass (E) und einen Auslass (A) aufweist, einem in der Förderkammer (2) angeordneten Rotor (3, 4), der einen Rotorkörper (3) und Flügel (4), welche radial verschieblich von dem Rotorkörper (3) aufgenommen sind, aufweist, einer Stirnwand (5, 6), die die Förderkammer (2) an einer axialen Stirnseite begrenzt, und einem axial zwischen der Stirnwand (5, 6) und dem Rotorkörper (3) angeordneten Stützelement (8), das die Flügel (4) an ihren radial inneren Flügelenden abstützt, wobei der Rotorkörper (3), das Stützelement (8) und je zwei in Umfangsrichtung des Rotors (3, 4) benachbarte Flügel (4) Kammern (18) bilden, deren Volumen sich bei drehendem Rotor (3, 4) verändert, umfassend eine Druckausgleichsverbindung (10), die wenigstens zwei der Kammern (18) fluidisch miteinander verbindet.

Description

  • Die Erfindung betrifft eine Flügelzellenpumpe. Die Flügelzellenpumpe umfasst eine Förderkammer für ein Fluid, die einen Einlass und einen Auslass aufweist, einen in der Förderkammer angeordneten Rotor, der einen Rotorkörper und Flügel, welche radial verschieblich von dem Rotorkörper aufgenommen sind, aufweist, eine Stirnwand, die die Förderkammer an einer axialen Stirnseite begrenzt, und ein axial zwischen der Stirnwand und dem Rotorkörper angeordnetes Stützelement, das die Flügel an ihren radial inneren Flügelenden abstützt, wobei der Rotorkörper, das Stützelement und je zwei in Umfangsrichtung des Rotors benachbarte Flügel Kammern bilden, deren Volumen sich bei drehendem Rotor verändert.
  • Der Erfindung liegt insbesondere die Aufgabe zugrunde, eine preiswerte Flügelzellenpumpe mit einer langen Lebensdauer bereitzustellen.
  • Diese Aufgabe wird durch den Gegenstand des Anspruchs 1 gelöst. In den abhängigen Ansprüchen werden vorteilhafte Weiterbildungen des Gegenstands der Erfindung offenbart.
  • Die Erfindung betrifft eine verstellbare Flügelzellenpumpe mit einer Förderkammer, die einen Einlass und einen Auslass aufweist, einem in der Förderkammer angeordneten Rotor zur Förderung eines Fluids, der einen Rotorkörper und Flügel, welche radial verschieblich von dem Rotorkörper aufgenommen sind, aufweist, einer Stirnwand, die die Förderkammer an einer axialen Stirnseite begrenzt, und einem axial zwischen der Stirnwand und dem Rotorkörper angeordneten Stützelement, das die Flügel an ihren radial inneren Flügelenden abstützt und die radial äußeren Flügelenden gegen eine Förderkammerwand drückt oder schiebt. Der Rotorkörper, das Stützelement und je zwei in Umfangsrichtung benachbarte Flügel bilden Kammern, deren Volumen sich bei drehendem oder angetriebenen Rotor verändert. Erfindungsgemäß umfasst die Flügelzellenpumpe eine Druckausgleichsverbindung, die wenigstens zwei der Kammern fluidisch oder fluidtechnisch miteinander verbindet.
  • Vorzugsweise begrenzen eine axial nach außen gerichtete Fläche des Rotorkörpers, eine radial nach innen gerichtete Fläche des Rotorkörpers, eine axial nach innen gerichtete Fläche der Stirnwand, eine radial nach außen gerichtete Fläche des Stützelements, eine in Drehrichtung des Rotors gerichtete Fläche eines Flügels und eine gegen die Drehrichtung des Rotors gerichtete Fläche eines benachbarten Flügels, wobei die Flächen der Flügel einander zugewandt sind, eine Kammer, die zwischen dem Rotorkörper, dem Stützelement und je zwei in Umfangsrichtung benachbarten Flügeln gebildet ist. Vorteilhaft verbindet die Druckausgleichsverbindung zumindest eine bei drehendem Rotor sich verkleinernde Kammer mit zumindest einer bei drehendem Rotor sich vergrößernden Kammer. Vorzugsweise stellt die Druckausgleichsverbindung einen Fluidaustausch zwischen zumindest zwei der Kammern ein, der größer ist, vorteilhaft mindestens zweimal größer ist, als ein Fluidaustausch bei fehlender Druckausgleichsverbindung, der lediglich durch Bauteilspiele resultiert oder resultieren kann. Die Begriffe "radial" und "axial" sind insbesondere auf eine Rotationsachse des Rotors bezogen, sodass der Ausdruck "axial" eine Richtung bezeichnet, die auf der Rotationsachse oder parallel zu dieser verläuft. Ferner bezeichnet der Ausdruck "radial" eine Richtung, die senkrecht zur Rotationsachse verläuft. Der Begriff "Umfangsrichtung" bezieht sich insbesondere auf die Rotationsachse des Rotors, sodass der Begriff "Umfangsrichtung" eine Richtung bezeichnet, die um die Rotationsachse, vorteilhaft in und/oder gegen die Drehrichtung des Rotors gerichtet, verläuft.
  • Durch die erfindungsgemäße Druckausgleichsverbindung kann ein in den Kammern eingeschlossenes oder befindliches Fluid zwischen den Kammern gezielt ausgetauscht werden, wodurch das in der sich verkleinernden Kammer komprimierte Fluid in eine andere Kammer, vorteilhaft in eine sich vergrößernde Kammer, entweichen kann. Ein Druckunterschied insbesondere zwischen einer sich vergrößernden Kammer und einer sich verkleinernden Kammer kann dadurch untereinander ausgeglichen werden. Dadurch können hohe Drücke in den Kammern abgebaut, reduziert oder vermieden werden, wodurch die Belastung des Stützelements, der Flügel, des Rotorkörpers und/oder der Förderkammerwand besonders einfach reduziert werden kann. Dadurch kann der Verschleiß des Stützelements, der Flügel, des Rotors und/oder der Förderkammerwand verringert werden, wodurch eine preiswerte Flügelzellenpumpe mit einer langen Lebensdauer bereitgestellt werden kann.
  • Der Rotorkörper bildet mit der ihm zugewandten Oberseite der Stirnwand einen axialen Dichtspalt. Die dem Rotorkörper zugewandte Oberseite der Stirnwand ist eine der Förderkammer zugewandte Innenseite der axialen Stirnwand. Einen weiteren axialen Dichtspalt mit der Stirnwand bildet das Stützelement, wobei der axiale Dichtspalt, der zwischen dem Stützelement und der Stirnwand gebildet ist, radial innerhalb des axialen Dichtspalts, der zwischen dem Rotorkörper und der Stirnwand gebildet ist, angeordnet ist.
  • Der axiale Dichtspalt und der weitere axiale Dichtspalt sind bevorzugt ringförmig, zum Beispiel kreisförmig. Ein Durchmesser des axialen Dichtspalts, der zwischen der Stirnwand und dem Rotorkörper gebildet ist, ist größer als ein Durchmesser des axialen Dichtspalts, der zwischen der Stirnwand und dem Stützelement gebildet ist.
  • Der axiale Dichtspalt, der zwischen dem Rotorkörper und der Stirnwand gebildet ist, trennt bevorzugt die Kammern, die der Rotorkörper, das Stützelement und je zwei in Umfangsrichtung benachbarte Flügel des Rotors bilden, und die Förderzellen, die der Rotorkörper, die Förderkammerwand und je zwei in Umfangsrichtung benachbarte Flügel des Rotors bilden, insbesondere fluidisch, voneinander.
  • Die Kammern, die der Rotorkörper, das Stützelement und je zwei in Umfangsrichtung benachbarte Flügel bilden, sind radial innerhalb des axialen Dichtspalts, der zwischen dem Rotorkörper und der Stirnwand gebildet ist, gebildet. Die Kammern, die der Rotorkörper, das Stützelement und je zwei in Umfangsrichtung benachbarte Flügel bilden, sind radial außerhalb des axialen Dichtspalts, der zwischen dem Stützelement und der Stirnwand gebildet ist, gebildet. Die Flügel begrenzen die Kammern, die der Rotorkörper, das Stützelement und je zwei in Umfangsrichtung benachbarte Flügel bilden, in Umfangsrichtung radial innerhalb des Rotorkörpers. Der Rotorkörper, die Förderkammerwand und je zwei in Umfangsrichtung benachbarte Flügel bilden die Förderzellen. Die Förderzellen, die der Rotorkörper, die Förderkammerwand und je zwei in Umfangsrichtung benachbarte Flügel bilden, sind radial außerhalb des axialen Dichtspalts, der zwischen dem Rotorkörper und der Stirnwand gebildet ist, gebildet. Die Flügel begrenzen die Förderzellen, die der Rotorkörper, die Förderkammerwand und je zwei in Umfangsrichtung benachbarte Flügel bilden, in Umfangsrichtung radial außerhalb des Rotorkörpers. In den Förderzellen wird das Fluid von dem Einlass zu dem Auslass transportiert. Die erfindungsgemäße Druckausgleichsverbindung ist bevorzugt radial innerhalb des axialen Dichtspalts, der zwischen dem Rotorkörper und der Stirnwand gebildet ist, gebildet.
  • Die Flügelzellenpumpe kann insbesondere einen Boden und einen Deckel aufweisen, wobei der Boden und der Deckel jeweils eine vorbeschriebene Stirnwand aufweisen oder bilden. Die Flügelzellenpumpe weist vorzugsweise einen Stellring zur Verstellung einer Exzentrizität zwischen dem Rotor und der Förderkammer und damit zur Verstellung des Fördervolumens auf, der die Förderkammerwand aufweist oder bildet, die die Förderkammer radial begrenzt. Das Stützelement drückt oder schiebt vorteilhaft die Flügel gegen die Förderkammerwand des Stellrings. Die Förderkammerwand bildet bevorzugt eine Lauffläche für die radial äußeren Flügelenden der Flügel. Die Förderkammerwand ist vorzugsweise als eine Innenumfangswand des Stellrings ausgebildet. Zur Verstellung der Förderleistung kann der Stellring verschiebbar, drehbar oder schwenkbar gelagert sein.
  • Die Druckausgleichsverbindung kann wenigstens eine Nut in der Stirnwand und/oder eine Nut in zumindest einem der Flügel und/oder zumindest ein Durchgangsloch in einem der Flügel und/oder einen vergrößerten Dichtspalt zwischen dem Stützelement und der Stirnwand und/oder einen vergrößerten Dichtspalt zwischen zumindest einem der Flügel und der Stirnwand aufweisen. Die Druckausgleichsverbindung verbindet fluidtechnisch zumindest zwei Kammern so miteinander, dass unterschiedliche Fluiddrücke in den Kammern, die beispielsweise aufgrund des unterschiedlichen Kammervolumens auftreten können, vorteilhaft ausgeglichen werden. Eine Nut weist eine Tiefe oder eine Axialerstreckung auf, die größer ist, vorteilhaft mindestens um 50% und besonders vorteilhaft um mindestens 100% größer ist, als der axiale Dichtspalt, der zwischen dem Rotorkörper und der Stirnwand gebildet ist, und/oder größer ist als der axiale Dichtspalt, der zwischen dem Stützelement und der Stirnwand gebildet ist.
  • Zur Ausbildung der Druckausgleichsverbindung ist ein vergrößerter axialer Dichtspalt größer, vorteilhaft mindestens um 50% und besonders vorteilhaft um mindestens 100% größer, als der axiale Dichtspalt, der zwischen dem Rotorkörper und der Stirnwand gebildet ist, und/oder größer als ein axialer Dichtspalt, der zwischen einem Flügel und der Stirnwand, insbesondere radial außerhalb des Rotorkörpers, gebildet ist. Der vergrößerte axiale Dichtspalt in einem Bereich der Kammern, der zwischen einem Flügel und der Stirnwand innerhalb des Rotorkörpers gebildet ist, kann durch Reduzierung der Axialerstreckung des Flügels realisiert werden, wobei die Reduzierung der Axialerstreckung lediglich am radial inneren Flügelende und damit an der der Förderkammerwand oder dem Stellring abgewandten radialen Seite des Flügels erfolgt. Der Flügel weist damit entlang seiner Radialerstreckung betrachtet unterschiedliche Axialerstreckungen auf. Beispielsweise weist der Flügel an seinem radial inneren Flügelende eine Stufe, eine Schräge, eine Fase, eine Verrundung etc. auf. Die reduzierte Axialerstreckung bzw. die Stufe, Schräge etc. befindet sich vorzugsweise in keiner Drehposition des Rotors und/oder in keiner Stellposition des Stellrings radial außerhalb des axialen Dichtspalts, der zwischen dem Rotorkörper und der Stirnwand gebildet ist.
  • Wenigstens ein axiales Ende des Rotorkörpers kann topfförmig gebildet sein oder kann einen zur Stirnwand hin offenen Aufnahmeraum für das Stützelement aufweisen. Das axiale Ende des Rotorkörpers weist einen axial vorstehenden Rand auf, der der Stirnwand zugewandt ist. Der axial vorstehende Rand umgibt radial den Aufnahmeraum und damit das Stützelement. Das Stützelement ist radial innerhalb des axial vorstehenden Rands angeordnet. Der axial vorstehende Rand bildet mit seiner axial nach außen gerichteten Fläche eine ringförmige Anlauffläche des Rotorkörpers, die gemeinsam mit der Stirnwand den axialen Dichtspalt, der zwischen dem Rotorkörper und der Stirnwand gebildet ist, bildet. Die Nut kann in der dem Rotorkörper zugewandten Seite der Stirnwand ausgebildet sein. Sie ist zum Rotor hin bevorzugt offen. Das Stützelement ist bevorzugt in dem Aufnahmeraum, der durch das topfförmige axiale Ende bzw. den axial vorstehenden Rand des Rotorkörpers und der Stirnwand begrenzt ist, angeordnet. Eine Nut weist eine Tiefe oder eine Axialerstreckung auf, die kleiner ist als eine Tiefe oder Axialerstreckung des Aufnahmeraums und/oder des Stützelements, vorteilhaft die Hälfte, bevorzugt weniger als die Hälfte der Tiefe oder Axialerstreckung des Aufnahmeraums und/oder des Stützelements aufweist.
  • Der Rotor kann im Deckel und/oder im Boden in einem Lager gelagert sein. Die Flügelzellenpumpe kann eine Antriebswelle zum Antrieb des Rotors umfassen, die in zumindest einem Lager, wie beispielsweise einem Gleitlager, in dem Deckel und/oder dem Boden drehgelagert ist.
  • Die Nut in der Stirnwand ist zum Aufnahmeraum hin offen. Die Nut in der Stirnwand kann durch einen Kreis, ein Kreissegment oder mehrere separate Kreissegmente gebildet sein. Bevorzugt verläuft die Nut konzentrisch zu der Rotationsachse des Rotors, wobei die Nut in der Stirnwand radial zumindest im Wesentlichen außerhalb des Stützelements, vorzugsweise außerhalb des von dem Stützelement umgebenen Bereichs, verläuft. Die separaten Kreissegmente können auf einer Kreislinie oder auf unterschiedlichen Kreislinien, die von der Rotorachse/ Antriebswelle unterschiedlich beabstandet sind, liegen.
  • Eine als Kreis ausgebildete Nut oder Ringnut weist bevorzugt eine einheitliche Breite und Tiefe auf. Besteht die Nut aus mehreren separaten Kreissegmenten weist jedes Kreissegment bevorzugt eine einheitliche Breite und Tiefe auf, wobei sich die Breite und/oder die Tiefe eines ersten separaten Kreissegments von der Breite und/oder der Tiefe eines weiteren separaten Kreissegments unterscheiden kann. Einzelne oder alle der separaten Kreissegmente können eine Breite und/oder Tiefe aufweisen, die über die Erstreckung des separaten Kreissegments variiert/variieren. Der Übergang des separaten Kreissegments in die ihn umgebende Oberfläche am Anfang und am Ende in Kreissegmentlängsrichtung kann abrupt, stufenförmig oder sanft sein. Einzelne der separaten Kreissegmente, insbesondere wenn die separaten Kreissegmente auf unterschiedlichen Kreislinien liegen, können über einen Kanal miteinander verbunden sein.
  • Die Stirnwand weist vorzugsweise mindestens zwei dem Rotor axial zugewandte Dichtstege auf, die jeweils den Einlass vom Auslass oder einen Niederdruckbereich von einem Hochdruckbereich der Förderkammer trennen. Die Dichtstege sind entlang der Drehrichtung des Rotors betrachtet jeweils zwischen dem Einlass und dem Auslass angeordnet. Die Dichtstege sind vorzugsweise gegenüberliegend angeordnet. Einer der Dichtstege ist, insbesondere bei Vollförderung und damit bei größter Exzentrizität, in dem Bereich des größten Förderzellenvolumens gebildet. Der andere Dichtsteg ist, insbesondere bei Vollförderung und damit bei größter Exzentrizität, in einem Bereich des kleinsten Förderzellenvolumens gebildet und wird auch als Triebsteg bezeichnet. Vorzugsweise verbindet die Druckausgleichsverbindung, insbesondere die Nut in der Stirnwand, mindestens eine Kammer an dem einen Dichtsteg und mindestens eine Kammer an dem anderen Dichtsteg miteinander.
  • Die Druckausgleichsverbindung verbindet nicht die Förderzellen miteinander. Sie verbindet nur die Kammern miteinander, die radial innerhalb des axial vorstehenden Rands des Rotorkörpers zwischen dem Rotorkörper, zwei in Umfangsrichtung benachbarten Flügeln und dem Stützelement gebildet sind. Der axial vorstehende Rand des Rotors dichtet die Kammern und die Förderzellen voneinander ab.
  • Die Nut in der von dem Deckel und/oder dem Boden gebildeten Stirnwand ist bevorzugt von dem im Deckel und/oder im Boden gebildeten Einlass getrennt oder abgedichtet. Die Nut in der von dem Deckel und/oder dem Boden gebildeten Stirnwand ist bevorzugt von dem im Deckel und/oder im Boden gebildeten Auslass getrennt oder abgedichtet. Die Nut in der von dem Deckel und/oder dem Boden gebildeten Stirnwand ist bevorzugt von dem Lager des Rotors und/oder der Antriebswelle im Deckel und/oder Boden getrennt oder abgedichtet. Insbesondere mündet die Nut in der Stirnwand nicht in den Einlass, nicht in den Auslass und nicht in das Lager; weder im Deckel noch im Boden. Vorzugsweise verläuft die Nut in der Stirnwand radial innerhalb des Einlasses und Auslasses sowie radial außerhalb des Lagers. Vorteilhaft verläuft die Nut radial zwischen dem Einlass/Auslass und dem Lager. Die Nut in der Stirnwand verläuft vorteilhaft radial beabstandet zum Einlass, zum Auslass und zum Lager.
  • Zur radial verschieblichen Aufnahme der Flügel kann der Rotorkörper Flügelaufnahmen aufweisen, die jeweils einen Schlitzbereich, in dem der Flügel geführt ist, und einen sich bevorzugt an den Schlitzbereich radial anschließenden Bodenbereich, in dem der Flügel keine Führung erfährt, umfassen. Der Bodenbereich bildet einen radial inneren Bereich der Flügelaufnahme und kann eine Form haben, die von der Schlitzform des Schlitzbereichs abweicht, zum Beispiel rund sein. Der Bodenbereich ist radial innerhalb des axialen Dichtspalts, der zwischen dem Rotorkörper und der Stirnwand gebildet ist, angeordnet. Er ist radial zwischen dem axialen Dichtspalt, der zwischen dem Rotorkörper und der Stirnwand gebildet ist, und dem Lager gebildet. Die Nut in der Stirnwand ist von dem Bodenbereich der Flügelaufnahmen getrennt oder abgedichtet. Die Nut mündet vorzugsweise in keinen der Bodenbereiche der Flügelaufnahmen. Bevorzugt verläuft die Nut in der Stirnwand radial außerhalb des Bodenbereichs der Flügelaufnahmen. Die Nut in der Stirnwand verläuft vorteilhaft radial zwischen dem Bodenbereich der Flügelaufnahmen und dem axialen Dichtspalt, der zwischen dem Rotorkörper und der Stirnwand gebildet ist.
  • Die Bodenbereiche der Flügelaufnahmen weisen jeweils einen Boden auf, der ein radial inneres Ende der jeweiligen Flügelaufnahme bildet. Die Nut in der Stirnwand ist von dem Boden der Flügelaufnahmen radial vorzugsweise beabstandet. Die Nut in der Stirnwand verläuft radial vorteilhaft außerhalb des Bodens der Flügelaufnahmen. Die Nut in der Stirnwand verläuft vorteilhaft radial zwischen dem Boden der Flügelaufnahmen und dem axialen Dichtspalt, der zwischen dem Rotorkörper und der Stirnwand gebildet ist.
  • Wie bereits erwähnt, kann die Förderzellenpumpe einen Stellring umfassen, mit dem die Förderleistung der Flügelzellenpumpe verändert werden kann. Der Stellring kann die Förderkammer bilden. Umfasst die Flügelzellenpumpe einen Stellring, so kann der Stellring bevorzugt zumindest teilweise die Förderkammerwand bilden, gegen die die Flügel durch das Stützelement gespannt werden. Bei dem Stellring kann es sich um jede bekannte Vorrichtung handeln, mit der das Fördervolumen einer Flügelzellenpumpe verändert werden kann, diese Vorrichtung muss keine Ringform haben.
  • Die Flügelzellenpumpe ist insbesondere für den Einsatz in einem Kraftfahrzeug vorgesehen. Sie ist als eine Kraftfahrzeugpumpe ausgebildet. Die Flügelzellenpumpe ist vorzugsweise zur Förderung einer Flüssigkeit, insbesondere eines Schmier-, Kühl- und/oder Betätigungsmittels, vorgesehen. Sie ist als eine Flüssigkeitspumpe ausgebildet. Die Flügelzellenpumpe ist vorzugsweise zur Versorgung, Schmierung und/oder Kühlung eines Kraftfahrzeugantriebsmotors oder eines Kraftfahrzeuggetriebes vorgesehen. Vorzugsweise ist die Flüssigkeit als ein Öl, insbesondere als ein Motorschmieröl oder Getriebeöl, ausgeführt. Die Flügelzellenpumpe kann als eine Motorschmiermittelpumpe für ein Kraftfahrzeug oder als eine Getriebepumpe für ein Kraftfahrzeug ausgebildet sein.
  • Im Folgenden wird ein Ausführungsbeispiel einer erfindungsgemäßen Flügelzellenpumpe anhand von Figuren näher erläutert. Erfindungswesentliche Merkmale, die nur den Figuren entnommen werden können, zählen zum Umfang der Erfindung.
  • Die Figuren zeigen:
  • Figur 1:
    Einen Längsschnitt einer Tandempumpe mit einer erfindungsgemäßen Flügelzellenpumpe plus Detailansicht X;
    Figur 2:
    Eine Draufsicht und einen Längsschnitt einer deckelseitigen Stirnwand der Flügelzellenpumpe;
    Figur 3:
    Eine Draufsicht und einen Längsschnitt einer bodenseitigen Stirnwand der Flügelzellenpumpe;
    Figur 4:
    Den Längsschnitt der Figur 1 mit Detailansicht Y;
    Figur 5:
    Eine Draufsicht der Flügelzellenpumpe bei fehlender bodenseitiger Stirnwand.
  • Die Figur 1 zeigt einen Längsschnitt einer Tandempumpe eines Kraftfahrzeugs mit einer Flügelzellenpumpe 1 und einer weiteren Pumpe 22, die über eine gemeinsame Antriebswelle 12 angetrieben werden. Die Flügelzellenpumpe 1 kann als eine Motorschmierölpumpe und die weitere Pumpe 22 als eine Vakuumpumpe ausgebildet sein. Die Erfindung ist nicht auf eine Anordnung der Flügelzellenpumpe 1 in einer Tandempumpe beschränkt. Für die Ausführung der Erfindung sind die Ausbildung als Tandempumpe und die Ausbildung der weiteren Pumpe 22 nicht relevant. Die Flügelzellenpumpe 1 kann ohne Weiteres als eine eigenständige oder unabhängige Pumpe ausgebildet sein, beispielsweise als Motorschmierölpumpe.
  • Die Flügelzellenpumpe 1 weist einen Rotor 3, 4 mit einem Rotorkörper 3 und Flügeln 4, die radial verschieblich von dem Rotorkörper 3 aufgenommen sind, auf. Der Rotor 3, 4 ist in einer Förderkammer 2 angeordnet. Die Förderkammer 2 umfasst eine Förderkammerwand 21, die eine Lauffläche für die radial äußeren Flügelenden der Flügel 4 bildet. Die Flügelzellenpumpe 1 umfasst eine Antriebswelle 12, die drehfest mit dem Rotor 3, 4 und mit einem nicht näher dargestellten Antrieb verbunden ist. Durch den Antrieb kann der Rotor 3, 4 um seine Rotationsachse angetrieben werden.
  • Die Flügelzellenpumpe 1 weist eine erste Stirnwand 5 und eine zweite Stirnwand 6 auf, die die Förderkammer 2 jeweils an einer Stirnseite axial begrenzen. Die erste Stirnwand 5 ist durch einen Boden oder eine Bodenplatte gebildet. Die zweite Stirnwand 6 ist durch einen Deckel oder eine Deckelplatte gebildet.
  • Die axialen Enden des Rotorkörpers 3 sind topfförmig ausgebildet, so dass der Rotorkörper 3 an seinen axialen Enden jeweils einen ringförmigen, axial vorstehenden Rand 33 bildet, der auf einer Anlauffläche 51 der bodenseitigen Stirnwand 5 bzw. einer Anlauffläche 61 der deckelseitigen Stirnwand 6 abläuft, wenn der Rotor 3, 4 angetrieben wird. Der axial vorstehende Rand 33 des ersten axialen Endes des Rotorkörpers 3 bildet mit der Lauffläche 51 der bodenseitigen Stirnwand 5 einen axialen Dichtspalt 31. Der axial vorstehende Rand 33 des zweiten axialen Endes des Rotorkörpers 3 bildet mit der Lauffläche 61 der deckelseitigen Stirnwand 6 einen axialen Dichtspalt 32. Durch die topfförmige Ausbildung weist der Rotorkörper 3 an seinen axialen Enden jeweils einen Aufnahmeraum 34 auf, der von dem axial vorstehenden Rand 33 des jeweiligen Endes umgeben wird. Der Aufnahmeraum 34 ist zur Aufnahme oder Anordnung eines Stützelements 8 zur Abstützung der Flügel 4 vorgesehen.
  • Die Flügelzellenpumpe 1 umfasst eine Druckausgleichsverbindung 10, die im gezeigten Ausführungsbeispiel eine Nut 9 aufweist, die in der dem Rotorkörper 3 zugewandten Oberseite der Stirnwand 5 und der Stirnwand 6 gebildet ist.
  • Die axialen Dichtspalte 31, 32 dichten den jeweiligen Aufnahmeraum 34 ab, in dem das Stützelement 8 angeordnet ist. Das Stützelement 8 bildet einen axialen Dichtspalt 81 mit der bodenseitigen Stirnwand 5 bzw. einen Dichtspalt 82 mit der deckelseitigen Stirnwand 6. Das Stützelement 8, der Rotorkörper 3, je zwei in Umfangsrichtung des Rotors 3, 4 benachbarte Flügel 4 und die jeweilige Stirnwand 5, 6 bilden Kammern 18 oder Rotorinnenraumkammern in dem Aufnahmeraum 34 aus, deren Volumen sich bei angetriebenem Rotor 3, 4 periodisch verändert. Die Nut 9 der Druckausgleichsverbindung 10 verbindet wenigstens zwei benachbarte Kammern 18 miteinander, so dass zwischen diesen Kammern 18 ein Druckausgleich stattfindet. Die Nut 9 ist als geschlossene Ringnut ausgebildet. Sie verbindet fluidisch alle Kammern 18 permanent miteinander. Die Nut 9 kann aber auch als ein oder mehrere Kreissegmente gebildet sein, so dass lediglich ausgewählte Kammern 18 miteinander verbunden sind.
  • Die Flügelzellenpumpe 1 umfasst ferner einen Einlass E, der einer Niederdruckseite der Flügelzellenpumpe 1 zugeordnet ist, durch den Fluid in die Förderkammer 2 einströmen kann. Durch einen Auslass A, der einer Hochdruckseite der Flügelzellenpumpe 1 zugeordnet ist, kann das Fluid die Förderkammer 2 wieder verlassen.
  • Die Figur 2 zeigt in einem Längsschnitt und in einer Draufsicht die deckelseitige Stirnwand 6, respektive die dem Rotor 3, 4 zugewandte Oberseite der Stirnwand 6. In der Figur 2 ist die Lauffläche 61 für den Rotorkörper 3, der Einlass E, der Auslass A und das Lager 11 für die Antriebswelle 12 zu sehen. Ferner ist die Nut 9 erkennbar, die in der dem Rotor 3, 4 zugewandten Oberseite der Stirnwand 6 gebildet ist.
  • In der Draufsicht sind ferner ein erster Dichtsteg 13 mit einem Scheitelpunkt 14 und ein zweiter Dichtsteg 15 mit einem Scheitelpunkt 16 zu sehen. Die Nut 9 ist als durchgehende Ringnut ausgebildet, die weder in den Einlass E, den Auslass A noch in das Lager 11 mündet. Die Druckausgleichsverbindung 10, hier die Nut 9, verbindet im gezeigten Ausführungsbeispiel alle Kammern 18 miteinander. Die Nut 9 kann aber auch als ein oder mehrere separate Kreisabschnitte gebildet sein. Ein Kreisabschnitt kann dann zum Beispiel sich lediglich von dem Scheitelpunkt 16 des Dichtstegs 15 bis zu dem Scheitelpunkt 14 des Dichtstegs 13 erstrecken. Dadurch werden zwar nicht alle Kammern 18 miteinander verbunden, aber die kleinste Kammer 18 und die größte Kammer 18, wodurch der Druck in der kleinsten Kammer 18 und damit die am stärksten belastete Kammer 18 entlastet werden kann.
  • Die Figur 3 zeigt im Wesentlichen das Gleiche wie die Figur 2, diesmal ausgeführt an der bodenseitigen Stirnwand 5. Es wird daher auf die Beschreibung zur Figur 2 verwiesen, die die gleichen Merkmale zeigt wie die Figur 3.
  • Die Figur 4 zeigt die Flügelzellenpumpe der Figur 1 mit dem Stellring 19, mit dem die Fördermenge der Flügelzellenpumpe 1 verstellt werden kann. Der Stellring 19 bildet die Förderkammerwand 21. Die Förderkammerwand 21 bildet eine Lauffläche für die radial äußeren Flügelenden der Flügel 4. Die Flügelzellenpumpe 1 umfasst eine Stirnwand 6, auf der der axial vorstehende Rand 33 des Rotorkörpers 3 am ersten axialen Ende entlang der Lauffläche 61 abläuft, und eine axial gegenüberliegende Stirnwand 5, auf der der axial gegenüberliegende, axial vorstehende Rand 33 des Rotorkörpers 3 am zweiten axialen Ende entlang der Lauffläche 51 abläuft.
  • Im Detail ist der axiale Dichtspalt 31 dargestellt, den der Rand 33 des Rotorkörpers 3 mit der ihm zugewandten Oberseite der Stirnwand 5 bildet. In dem Aufnahmeraum 34 ist das Stützelement 8 angeordnet, das zusammen mit dem Rotorkörper 3 und zwei in Umfangsrichtung des Rotors 3, 4 benachbarten Flügeln 4 die Kammern 18 bildet, die über die Druckausgleichsverbindung 10, hier die Nut 9, miteinander fluidisch verbunden sind, so dass ein Druckausgleich zwischen den Kammern 18 stattfindet.
  • Die Figur 5 zeigt in einer Sicht in eine Flügelzellenpumpe 1 den Stellring 19, der durch ein Federelement 20 in Richtung größte Exzentrizität zwischen dem Rotor 3, 4 und dem Stellring 19 und damit Vollförderung vorgespannt ist. Zur Verstellung des Stellrings 19 und damit der Förderleistung ist der Stellring 19 hydraulisch durch einen Stelldruck in einer Stellkammer gegen die Federkraft des Federelements 20 verstellbar. Zu sehen ist der Rotor 3, 4 mit dem axial vorstehenden Rand 33, der mit der bodenseitigen Stirnwand 5 entlang der Lauffläche 51 den axialen Dichtspalt 31 bildet. Der Rotor 3, 4 umfasst Flügel 4, die in jeder Stellposition des Stellrings 19 von dem Stützelement 8 gegen die Förderkammerwand 21 der Förderkammer 2 gedrückt oder geschoben werden. Die Flügel 4 unterteilen die Förderkammer 2 in Förderzellen 7, in denen Fluid vom Einlass E zum Auslass A transportiert werden kann. Der Rotorkörper 3 umfasst ferner Flügelaufnahmen 41, die einen Schlitzbereich 42 und einen Bodenbereich 43 mit einem Boden 17 umfassen.
  • Das Stützelement 8, zwei in Umfangsrichtung des Rotors 3, 4 benachbarte Flügel 4 und der Rotorkörper 3 bilden die Kammern 18, deren Volumen sich bei drehendem Rotor 3, 4 verändert. In gestrichelten Linien ist in der Figur 5 die Druckausgleichsverbindung 10 in Form der Nut 9 angedeutet. Die Nut 9 liegt in dem Aufnahmeraum 34, der durch den axial vorstehenden Rand 33 des Rotorkörpers 3 radial begrenzt wird, und außerhalb der Bodenbereiche 43 der Flügelaufnahmen 41. Die Nut 9 mündet in keinen der Bodenbereiche 43 der Flügelaufnahmen 41. Sie verläuft radial zwischen dem axial vorstehenden Rand 33 und dem Bodenbereich 43.
  • Bezugszeichenliste
  • 1
    Flügelzellenpumpe
    2
    Förderkammer
    21
    Förderkammerwand
    3
    Rotorkörper
    31
    Dichtspalt
    32
    Dichtspalt
    33
    Rand
    34
    Aufnahmeraum
    4
    Flügel
    41
    Flügelaufnahme
    42
    Schlitzbereich
    43
    Bodenbereich
    5
    Stirnwand
    51
    Anlauffläche
    6
    Stirnwand
    61
    Anlauffläche
    7
    Förderzelle
    8
    Stützelement
    81
    Dichtspalt
    82
    Dichtspalt
    9
    Nut
    10
    Druckausgleichsverbindung
    11
    Lager
    12
    Antriebswelle
    13
    Dichtsteg
    14
    Scheitelpunkt
    15
    Dichtsteg
    16
    Scheitelpunkt
    17
    Boden
    18
    Kammer
    19
    Stellring
    20
    Federelement
    22
    Pumpe
    A
    Auslass
    E
    Einlass

Claims (10)

  1. Flügelzellenpumpe (1) mit
    a. einer Förderkammer (2), die einen Einlass (E) und einen Auslass (A) aufweist,
    b. einem in der Förderkammer (2) angeordneten Rotor (3, 4), der einen Rotorkörper (3) und Flügel (4), welche radial verschieblich von dem Rotorkörper (3) aufgenommen sind, aufweist,
    c. einer Stirnwand (5, 6), die die Förderkammer (2) an einer axialen Stirnseite begrenzt,
    d. und einem axial zwischen der Stirnwand (5, 6) und dem Rotorkörper (3) angeordneten Stützelement (8), das die Flügel (4) an ihren radial inneren Flügelenden abstützt,
    e. wobei der Rotorkörper (3), das Stützelement (8) und je zwei in Umfangsrichtung des Rotors (3, 4) benachbarte Flügel (4) Kammern (18) bilden, deren Volumen sich bei drehendem Rotor (3, 4) verändert,
    gekennzeichnet durch
    f. eine Druckausgleichsverbindung (10), die wenigstens zwei der Kammern (18) fluidisch miteinander verbindet.
  2. Flügelzellenpumpe nach Anspruch 1, dadurch gekennzeichnet, dass der Rotorkörper (3) mit der Stirnwand (5, 6) einen axialen Dichtspalt (31, 32) bildet, wobei die Druckausgleichsverbindung (10) radial innerhalb des axialen Dichtspalts (31, 32) gebildet ist.
  3. Flügelzellenpumpe nach Anspruch 1 oder 2, wobei die Druckausgleichsverbindung (10) zumindest eine Nut (9) in der Stirnwand (5, 6) und/oder zumindest eine Nut in zumindest einem der Flügel (4) und/oder zumindest ein Durchgangsloch in zumindest einem der Flügel (4) und/oder einen vergrößerten axialen Dichtspalt zwischen dem Stützelement (8) und der Stirnwand (5, 6) und/oder einen vergrößerten axialen Dichtspalt zwischen zumindest einem der Flügel (4) und der Stirnwand (5, 6) aufweist.
  4. Flügelzellenpumpe nach Anspruch 3, wobei die Nut (9) durch einen Kreis, ein Kreissegment oder mehrere separate Kreissegmente gebildet ist, bevorzugt konzentrisch zu einer Rotationsachse des Rotors (3, 4).
  5. Flügelzellenpumpe nach Anspruch 3 oder 4, wobei die Nut (9) von dem Einlass (E) und/oder dem Auslass (A) getrennt ist.
  6. Flügelzellenpumpe nach einem der Ansprüche 3 bis 5, gekennzeichnet durch eine Antriebswelle (12) zum Antrieb des Rotors (3, 4), die in zumindest einem Lager (11) gelagert ist, wobei die Nut (9) von dem Lager (11) getrennt ist.
  7. Flügelzellenpumpe nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass der Rotorkörper (3) zur radial verschieblichen Aufnahme der Flügel (4) Flügelaufnahmen (41) aufweist, die jeweils einen Boden (17), der ein radial inneres Ende der Flügelaufnahme (41) bildet, umfasst, wobei die Nut (9) von dem Boden (17) der Flügelaufnahmen (41) radial beabstandet ist.
  8. Flügelzellenpumpe nach Anspruch 7, wobei die Nut (9) radial außerhalb des Bodens (17) der Flügelaufnahmen (41) verläuft.
  9. Flügelzellenpumpe nach einem der Ansprüche 3 bis 8, wobei die Nut (9) zumindest im Wesentlichen radial außerhalb des Stützelements (8) verläuft.
  10. Flügelzellenpumpe nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Ausbildung als Motorschmiermittelpumpe eines Kraftfahrzeugs oder als Getriebepumpe eines Kraftfahrzeugs.
EP20170948.2A 2019-04-26 2020-04-22 Flügelzellenpumpe mit druckausgleichsverbindung Pending EP3730792A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019110905.1A DE102019110905A1 (de) 2019-04-26 2019-04-26 Flügelzellenpumpe mit Druckausgleichsverbindung

Publications (1)

Publication Number Publication Date
EP3730792A1 true EP3730792A1 (de) 2020-10-28

Family

ID=70417367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20170948.2A Pending EP3730792A1 (de) 2019-04-26 2020-04-22 Flügelzellenpumpe mit druckausgleichsverbindung

Country Status (4)

Country Link
US (1) US11434906B2 (de)
EP (1) EP3730792A1 (de)
CN (1) CN111852849B (de)
DE (1) DE102019110905A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190914424A (en) * 1909-06-19 1910-02-10 Lentz Getriebe G M B H Improvements in Rotary Pumps or Motors.
DE112016003646T5 (de) * 2015-08-10 2018-05-09 Hitachi Automotive Systems, Ltd. Ölregelpumpe

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191514424A (en) 1915-10-12 1916-11-13 William Henry Bagley Improvements in Machines for Making Wrapped Rims for Jewel Cases and the like.
US3565558A (en) * 1969-01-31 1971-02-23 Airborne Mfg Co Rotary pump with sliding vanes
JPH1089266A (ja) * 1996-09-17 1998-04-07 Toyoda Mach Works Ltd ベーンポンプ
DE10027990A1 (de) * 2000-06-08 2001-12-20 Luk Fahrzeug Hydraulik Pumpe
DE102005040702B4 (de) * 2005-08-27 2013-06-06 Zf Lenksysteme Gmbh Rotationspumpe
DE102006036439A1 (de) * 2006-08-04 2008-02-07 Robert Bosch Gmbh Förderaggregat
CN102072150B (zh) * 2011-01-28 2012-08-15 浙江德克玛液压制造有限公司 叶片泵
JP2015169156A (ja) * 2014-03-10 2015-09-28 日立オートモティブシステムズステアリング株式会社 可変容量形ベーンポンプ
DE102016205686A1 (de) * 2016-04-06 2017-10-12 Zf Friedrichshafen Ag Flügelzellenpumpe
CN106122001A (zh) * 2016-07-29 2016-11-16 李钢 径向力平衡的叶片泵

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190914424A (en) * 1909-06-19 1910-02-10 Lentz Getriebe G M B H Improvements in Rotary Pumps or Motors.
DE112016003646T5 (de) * 2015-08-10 2018-05-09 Hitachi Automotive Systems, Ltd. Ölregelpumpe

Also Published As

Publication number Publication date
CN111852849B (zh) 2022-11-04
DE102019110905A1 (de) 2020-10-29
CN111852849A (zh) 2020-10-30
US11434906B2 (en) 2022-09-06
US20200340474A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
EP3236074B1 (de) Rotationspumpe mit schmiernut im dichtsteg
WO2016198193A1 (de) ROLLENSTÖßEL FÜR EINE KOLBENPUMPE, KOLBENPUMPE
WO2003056180A1 (de) Pumpe
DE19802461C2 (de) Kühlmittelverdichter
DE102015217169A1 (de) Hydrauliksystem für ein Automatikgetriebe
DE102012209152A1 (de) Zahnradmaschine mit hydraulischer Verlagerung der Zahnränder
EP3730792A1 (de) Flügelzellenpumpe mit druckausgleichsverbindung
DE8415459U1 (de) Rotorwellen-lagervorrichtung fuer einen drehkolbenkompressor
DE102020119893A1 (de) Rotationspumpe mit verstellbarem Fördervolumen
EP2137412B1 (de) Verdrängermaschine nach dem spiralprinzip
DE3513923C2 (de)
CH716632A1 (de) Reihenkolbenpumpe.
EP2216550B1 (de) Zahnradpumpe mit Wellendichtung
DE102004021216A1 (de) Hochdruck-Innenzahnradmaschine mit mehrfacher hydrostatischer Lagerung pro Hohlrad
DE102020116294A1 (de) Hubkolbenpumpe zum Fördern eines Mediums
DE4008522A1 (de) Fluegelzellenverdichter
DE1280056B (de) Drehkolbenmaschine mit zwei Zahnraedern im Inneneingriff
EP3536956A1 (de) Unterstützungstaschen
DE3906826C2 (de) Verdichter mit variabler Fördermenge
DE102019127388A1 (de) Fluidversorgung von Unterflügelkammern einer Flügelzellenpumpe
EP0563608A1 (de) Reversierbare Zahnradmaschine
DE102019121958A1 (de) Flügelzellenpumpe mit Druckausgleichsverbindung
DE2806965A1 (de) Verstellbare hydraulische fluegelzellenpumpe
EP1798415B1 (de) Hochdruckpumpe
DE102021115440A1 (de) Rotationspumpe mit einer Axialschubbegrenzungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210322

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHWAEBISCHE HUETTENWERKE AUTOMOTIVE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221215