EP3626973B1 - Vakuumsystem und verfahren zum identifizieren elektronischer module in einem solchen - Google Patents

Vakuumsystem und verfahren zum identifizieren elektronischer module in einem solchen Download PDF

Info

Publication number
EP3626973B1
EP3626973B1 EP19191304.5A EP19191304A EP3626973B1 EP 3626973 B1 EP3626973 B1 EP 3626973B1 EP 19191304 A EP19191304 A EP 19191304A EP 3626973 B1 EP3626973 B1 EP 3626973B1
Authority
EP
European Patent Office
Prior art keywords
module
modules
contact point
addressing
vacuum system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19191304.5A
Other languages
English (en)
French (fr)
Other versions
EP3626973A1 (de
Inventor
Jochen BÖTTCHER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP19191304.5A priority Critical patent/EP3626973B1/de
Publication of EP3626973A1 publication Critical patent/EP3626973A1/de
Priority to JP2020089694A priority patent/JP7164564B2/ja
Application granted granted Critical
Publication of EP3626973B1 publication Critical patent/EP3626973B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring

Definitions

  • the invention relates to a vacuum system and a method for identifying multiple electronic modules in such a vacuum system.
  • the vacuum system includes at least one vacuum device, multiple electronic modules, and a connector that establishes at least one electrical connection between the multiple modules.
  • a vacuum device usually includes one or more vacuum pumps and/or pressure gauges as well as control and/or regulating devices, each of which can have a number of electronic modules.
  • the vacuum device can be connected to several external electronic modules with which, for example, a vacuum plant or a vacuum system as a whole can be controlled.
  • the connection between the components and the several internal modules of the vacuum device as well as between the internal and external modules is usually established by means of lines, with a common transmission path for data transmission between the internal and external electronic modules being referred to as a bus.
  • each type of a specific electronic module is assigned a respective offset address that characterizes this type of the respective module.
  • each type of a specific electronic module is assigned a respective offset address that characterizes this type of the respective module.
  • there is another distinguishing feature in addition to the respective offset address of the module type necessary to create a unique identifier or addressing of a specific module for correct data transmission to it.
  • switches on the respective module have hitherto been used in order to produce a unique identification or addressing of identically constructed modules in a vacuum device or vacuum system.
  • Each of several identical modules has a different switch position when installed in a vacuum system or vacuum device.
  • a respective programming interface can be provided on each of the modules, on which an individual and unique identifier or address is stored or programmed when the module is manufactured.
  • means are therefore required on the respective module in order to achieve a unique identification or addressing of the module as soon as several modules of the same construction are present in a vacuum device or in a vacuum system. This is associated with additional effort. If switches are used on the respective module, the maximum number of different switch positions and thus the maximum number of identical modules within the vacuum device or vacuum system is also limited.
  • the DE 20 2014 005 481 U1 describes a similar vacuum system and method, but without providing a contact point with a unique identifier.
  • the EP 3 029 687 A1 describes a system with multiple electrical modules in which a junction box has addressing as part of wiring.
  • One object of the present invention is to provide a vacuum system and a method for identifying electronic modules of such a system, in which electronic modules of the same type are unambiguously identified in each case, without additional tools being required on the respective electronic modules.
  • the vacuum system includes at least one vacuum device, multiple electronic modules, and a connector that establishes at least one electrical connection between the multiple modules.
  • the connecting device has an electrical contact point for each of the several modules. Each of these contact points includes a unique identifier.
  • the unique identifier is assigned to the respective contact point and not to one of the plurality of modules, similar modules can be distinguished based on the respective unique identifier of the contact point at which the respective similar modules are arranged. Therefore, no tools such as switches on the respective modules are required in order to be able to differentiate between modules of the same type. Since each of the contact points has a unique identification feature, the identification features of all contact points of the vacuum system, each of which is assigned to one of the plurality of modules, are different from one another. In other words, a unique identifier occurs only once within the vacuum system. This is in turn the maximum number of similar or structurally identical modules that can be installed within the vacuum system is not limited.
  • Each module has a type identifier associated with a module type.
  • the type identifier can be combined or combined with the unique identifier of the contact point of the respective module to provide a unique identifier for each module.
  • Identical or structurally identical modules therefore each have the same type identifier and can still be distinguished within the vacuum system, since the unique identifier of each module is generated by combining the type identifier with the respective unique identifier of the contact point with which the respective module is connected. In other words, the distinguishing feature between the respective modules, which can be structurally identical, is shifted from the module to the respective contact point.
  • connection device within the vacuum system is preferably set up in such a way that the spatial position of the respective electrical contact point within the vacuum system is known, the respective spatial position of modules of a certain type is also known due to the unique identifier of the module, as soon as they are connected to the corresponding electrical Contact point are connected. Since the unique identifier of a module is the combination of its type identifier with the unique identifier of its contact point, if the type identifier is known, the identifier of the respective contact point can be derived from the unique identifier. Furthermore, conversely, the known spatial position of the contact point can be assigned via the unique identifier to a type identifier of the module, so that it is subsequently known which module type is present at which contact point.
  • the unique identifier can be provided or is provided in particular by combining the type identifier with the respective unique identifier on the respective module or by the respective module.
  • a central or higher-level module can, for example, read both the type identifier of the respective module and the unique identifier of the contact point that is assigned to this module, in order to then use the unique identifier of the module To generate a combination of the type identifier and the identifier of the contact point and to provide it to the respective module, for example in a memory that can be present in the respective module anyway.
  • the respective module can generate the unique identifier itself by using the unique identifier reads out its contact point and combines it with its type identifier. In both cases, no individual distinguishing features are required on the respective modules, since the unique identifier of the respective module is generated by combining the type identifier with the respective unique identifier of the contact point.
  • the unique identifier preferably includes a respective addressing of the contact point, while the type identifier preferably includes a basic addressing of the module type.
  • a unique addressing of a respective module is based on a combination of the basic addressing of the respective module type with the addressing of the contact point for the respective module.
  • the unique identifier of each module is thus realized by the unique addressing of the respective module, which is made up of the addressing of the respective contact point and the basic addressing of the module type.
  • the connection device can comprise a communication channel for addressing.
  • the unique addressing of the respective module can be generated in such a way that the basic addressing of the module type and the addressing of the respective contact point are added. This allows a particularly simple generation of the unique addressing of the respective module.
  • the multiple modules include a main module which is designed to identify the unique identifier of each contact point and/or a unique addressing of the respective module.
  • the main module can therefore be able to check the presence of the respective modules when the vacuum system is started up.
  • the identification of the respective modules by means of the main module can also be used to communicate via the main module, for example, between internal electronic modules of the vacuum device and external electronic modules.
  • the connecting device for establishing the electrical connection between the individual modules can include one or more individual lines, which are designed in particular as a ribbon cable or a conductor track arrangement and preferably in the form of a flexible printed circuit board or printed circuit board.
  • the connecting device can be implemented in a simple and cost-effective manner.
  • the unique identification feature of each contact point includes at least one characteristic resistor.
  • the connection means may further include an identification line and a ground line.
  • the characteristic resistance of a respective contact point is in each case arranged between the identification line and the grounding line.
  • the characteristic resistance can be arranged between other individual lines.
  • the realization of the unique identifier by means of at least one characteristic resistor is simple and robust.
  • the identification line can provide a power supply for the modules. Consequently, the identification line can be used not only in connection with the unique identification feature of the contact point, but also to support the operation of the respective modules.
  • the unique identifier of each contact point can include a code.
  • the coding can be stored, for example, in a memory device at the respective contact point, for example in a read-only memory (EPROM).
  • EPROM read-only memory
  • the contact points When the contact points are installed, they can then be provided with an individual coding, for example by means of firmware, which represents the unique identification feature of the respective contact point.
  • the contact points of the multiple electronic modules of the vacuum system can thus initially be produced as identical units, which each receive a unique, individual identification feature by means of the coding during the installation of the vacuum system. An individual production of the respective contact points, for example with a clearly defined characteristic resistance, is not necessary in such an embodiment.
  • Another object of the invention is a method for identifying a plurality of electronic modules of a vacuum system comprising at least one vacuum device.
  • the vacuum system also includes a connection device for establishing at least one electrical connection between the plurality of modules.
  • Each module has a type identifier associated with a module type, while the connector has a contact point for each of the plurality of modules.
  • Each of these contact points also has a unique identifier.
  • the modules are each identified using a combination of the unique identifier of their contact point with their type identifier.
  • the unique identifier includes a respective addressing of the contact point, while the type identifier includes a basic addressing of the module type.
  • a unique addressing of a respective module can then be generated using a combination of the basic addressing of the respective module type with the addressing of the contact point for the respective module.
  • the unique addressing thus represents a unique identifier for the respective module.
  • the respective addresses are added when the basic addressing is combined with the addressing of the contact point.
  • the unique identifier can be combined with the type identifier on the respective module or by the respective module.
  • a higher-level module can combine the unique identifier of the contact point with the type identifier of the module in order to store this combination as a unique identifier on the respective module.
  • the respective module itself can read out the unique identifier of the contact point and combine it with the type identifier.
  • the multiple modules comprise a main module, and the unique identifier of each contact point and/or a unique addressing of the respective module are identified by means of the main module.
  • the main module has a respective unique identifier for all electronic modules of the vacuum system, in order to control data transmission between the respective modules, for example.
  • FIG. 1 shows a schematic representation of a vacuum system 11 which includes a vacuum device 13 .
  • the vacuum device 13 in turn includes a vacuum pump 15.
  • the vacuum system 11 also includes a pressure gauge 17 and a plurality of electronic modules 19 which are connected to the vacuum pump 15 and/or to the pressure gauge 17.
  • the vacuum device 13 includes internal electronic modules 21 .
  • the vacuum system 11 also includes modules 23 that are provided for controlling the pressure gauge 17 , but not for controlling the vacuum pump 15 . Therefore, the modules 23 are referred to as external modules 23 with respect to the vacuum device 13 .
  • the multiple modules 19 are connected to one another and to the vacuum pump 15 and/or the pressure gauge 17 by means of a connecting device 25 .
  • the connecting device 25 comprises a plurality of individual lines 26 which are designed in the form of a ribbon cable 37 (cf. 3 ).
  • the plurality of individual lines 26 can also be designed in the form of a flexible printed circuit board or printed circuit board. Since the connecting device 25 represents a common transmission path for data transmission between the several modules 19 among themselves and between these and the vacuum pump 15 or the pressure measuring device 17, the connecting device 25 can be referred to as a bus.
  • Each of the plurality of modules 19 has a type identifier 18 embodied in the form of a base address 20 .
  • the internal modules 21 comprise a main module 22 having #1 as a type identifier 18 or base address 20, and a slave module 24 having #2 as a type identifier 18 or base address 20. Furthermore, the internal modules 21 include a module with the base address #10 and two modules with the base address #20, which are provided for controlling accessories of the vacuum pump 15. Of the external electronic modules 23 which have the base address #30 or #40, the module with the base address #30 is provided for carrying out a pressure measurement using the pressure measuring device 17 .
  • the two modules with the base address #20 require another distinguishing feature that can be used to uniquely address the respective modules.
  • FIG. 2 shows a section of the schematic representation of 1 , in which only the connecting device 25 and the two internal modules 21 are shown, each having #20 as type identifier 18 or base address 20.
  • the connecting device 25 has a respective contact point 27, which is assigned to one of the modules 21 and connected to it are connected.
  • the individual lines 26 extend through the respective contact point 27 and are provided for the power supply of the electronic modules 21 and for data transmission or communication between the modules 21 shown and the further modules 19 .
  • each contact point 27 has a unique identification feature 29 that includes a unique addressing i1, i2 of the respective contact point 27 in each case.
  • the identifiers 29 of all contact points 27 to which a module of the vacuum system 11 is connected differ from one another, ie each identifier 29 occurs within the vacuum system 11 only once.
  • the respective addressing i1, i2 of the contact points 27 is used to create a unique identifier 28 in the form of a unique addressing for each of the two in 2 generate electronic modules 21 shown.
  • the respective addressing i1, i2 of the contact points is added to the respective base address 20 of the respective module 21 in order to generate the unique addressing of the respective module 21. Since the two addresses i1, i2 of the contact points 27 differ, the addresses of the respective modules 21 of the same type differ despite the same basic addressing 20 or type identifier 18, since the two addresses i1 and i2 of the respective contact points 27 are different.
  • the modules 21 can thus be structurally identical and do not require any distinguishing features with which different addressing could be produced when the modules are installed in the vacuum system 11 .
  • the position, ie the spatial location, of the respective contact point 27 is also known.
  • the physical position or the installation site of the respective module 19, 21 is known. This would not be the case, for example, if the distinguishing feature were attached to the respective module 19, 21, e.g. in the form of switch positions.
  • the modules 19, 21 could be interchanged without another module reading the addressing of the two modules receiving information about the exchange of the modules 19, 21. The address of the respective modules would remain the same regardless of the physical position or installation site.
  • each contact point 27 has a different identifier 29 or a different addressing i1, i2, based on which, together with the basic addressing 20 or type identifier 18, it can be identified at which contact point 27 and thus at which location within the vacuum system 11 which module type is located.
  • the connecting device 25 comprises a plurality of individual lines 26, one of which is in the form of a grounding line 31 or GND and another is in the form of an identification line 33 or GND/ID.
  • the connecting device 25 electrically connects the main module 22 to three further modules 19-1, 19-2 and 19-3.
  • the main module 22 provides the power supply for the modules 19-1, 19-2 and 19-3 by means of two lines (+24 V or +5 V).
  • two additional lines CAN_H and CAN_L are shown for data transmission.
  • Different characteristic resistors 35 are arranged between the grounding line 31 and the identification line 33 for each contact point 27 of the respective modules 19 - 1 , 19 - 2 or 19 - 3 , which act as a respective unique identification feature 29 of the respective contact point 27 .
  • the respective characteristic resistor 35 generates an address offset of the respective contact point 27-1, 27-2 or 27-3, which are assigned to the respective modules 19-1, 19-2 or 19-3.
  • each module receives its unique identifier 28 or addressing.
  • the type-specific addressing of each module 19-1, 19-2 and 19-3 is added to the address offset of the respective contact point 27-1, 27-2 and 27-3.
  • the identification line 33 and the grounding line 31 are conductively connected to one another, so that the characteristic resistance 35 of the contact point 27-1 is almost zero.
  • the identification line 33 is thus used as an additional grounding line and thereby enables an increased power supply for the first module 19-1.
  • Such a module 19-1 with an increased power supply can, for example, enable a heating or outgassing process (degas) to be enabled on a measuring device that is connected to the module 19-1.
  • a predetermined address offset Y which is associated with the characteristic resistance 35 of approximately zero, is defined for the corresponding contact point 27-1.
  • Another contact point 27, for which the characteristic resistance 35 would also be approximately equal to zero, would receive the same address offset Y and would therefore not be distinguishable from the contact point 27-1.
  • the contact point 27-3 is assigned an address offset of zero, so that again only one module of this type 19-3 is possible within the vacuum system 11. Since the modules should already be distinguishable based on the address offset of their associated contact point 27-1, 27-2 or 27-3, the contact points 27 of all other modules must have an address offset greater than 0.
  • the individual lines 26 of the connecting device 25 are designed as ribbon cables 37 .
  • the identification lines 33 of the respective contact points 27-1, 27-3 and 27-3 are not connected to one another, as in FIG 3 can be seen to allow independent identification of the contact points 27-1, 27-2 and 27-3.
  • the connecting device 25 can also include flexible printed circuit boards instead of ribbon cables 37, which have a corresponding printed circuit board routing in order to be able to implement the contact points of the type 27-1, 27-2 or 27-3.
  • the type 27-1 pad there is a conductive connection between the traces corresponding to the ground line 31 and the identification line 33 in this embodiment with flex circuit boards.
  • the identification feature 29 of the respective contact point 27 is not realized by characteristic resistors, but by a respective coding that is stored in the respective contact point 27 and the respective addressing i1, i2 (cf. 2 ) of the respective contact point 27 determines.
  • the respective module 19, 21 of the vacuum system 11 is set up to read out the respective coding and thus the individual addressing of the respective contact point 27 and add it to the respective base address 20 of the respective module 19 as an address offset.
  • each module 19 in turn receives its unique identifier in the form of a unique address of the respective module 19 by means of the addressing i1, i2 as an identifier 29 of the contact point 27.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Programmable Controllers (AREA)

Description

  • Die Erfindung betrifft ein Vakuumsystem und ein Verfahren zum Identifizieren mehrerer elektronischer Module in einem solchen Vakuumsystem. Das Vakuumsystem umfasst wenigstens ein Vakuumgerät, mehrere elektronische Module und eine Verbindungseinrichtung, die zumindest eine elektrische Verbindung zwischen den mehreren Modulen herstellt.
  • Ein Vakuumgerät umfasst üblicherweise eine oder mehrere Vakuumpumpen und/oder Druckmessgeräte sowie Steuerungs- und/oder Regelungseinrichtungen, die jeweils mehrere elektronische Module aufweisen können. Darüber hinaus kann das Vakuumgerät mit mehreren externen elektronischen Modulen in Verbindung stehen, mit denen beispielsweise eine Vakuumanlage oder ein Vakuumsystem als Ganzes gesteuert wird. Die Verbindung zwischen den Komponenten und den mehreren internen Modulen des Vakuumgeräts sowie zwischen den internen und externen Modulen wird üblicherweise mittels Leitungen hergestellt, wobei ein gemeinsamer Übertragungsweg zur Datenübertragung zwischen den internen und externen elektronischen Modulen als Bus bezeichnet wird.
  • Um eine zuverlässige und korrekte Steuerung bzw. Regelung eines Vakuumgeräts zu ermöglichen, benötigen die elektronischen Module eine eindeutige Kennung in der Form einer Adressierung. Bei bekannten Vakuumgeräten ist jedem Typ eines bestimmten elektronischen Moduls eine jeweilige Offsetadresse zugeordnet, die diesen Typ des jeweiligen Moduls charakterisiert. Wenn jedoch mehrere Module gleichen Typs in einem Vakuumgerät vorhanden oder mit diesem verbunden sind, ist zusätzlich zur jeweiligen Offsetadresse des Modultyps ein weiteres Unterscheidungsmerkmal notwendig, um eine eindeutige Kennung bzw. Adressierung eines bestimmten Moduls für eine korrekte Datenübertragung zu diesem herzustellen.
  • Um eine eindeutige Kennung bzw. Adressierung baugleicher Module in einem Vakuumgerät bzw. Vakuumsystem herzustellen, werden bei bekannten Systemen bisher Schalter an dem jeweiligen Modul verwendet. Jedes von mehreren baugleichen Modulen erhält bei der Installation in einem Vakuumsystem bzw. Vakuumgerät eine andere Schalterstellung. Alternativ kann an jedem der Module eine jeweilige Programmierschnittstelle vorgesehen sein, an der bei der Herstellung des Moduls eine individuelle und eindeutige Kennung bzw. Adresse hinterlegt bzw. einprogrammiert wird. In beiden Fällen sind somit Mittel an dem jeweiligen Modul erforderlich, um eine eindeutige Kennung bzw. Adressierung des Moduls zu erreichen, sobald mehrere baugleiche Module in einem Vakuumgerät bzw. in einem Vakuumsystem vorhanden sind. Dies ist mit zusätzlichem Aufwand verbunden. Wenn Schalter an dem jeweiligen Modul verwendet werden, ist darüber hinaus die maximale Anzahl unterschiedlicher Schalterstellungen und somit die maximale Anzahl baugleicher Module innerhalb des Vakuumgeräts bzw. des Vakuumsystems begrenzt.
  • Aus der EP 3 029 327 A1 ist ein Vakuumsystem mit den Merkmalen gemäß dem Oberbegriff des Anspruchs 1 und ein Verfahren mit den Merkmalen gemäß dem Oberbegriff des Anspruchs 11 bekannt.
  • Die DE 20 2014 005 481 U1 beschreibt ein ähnliches Vakuumsystem und ein ähnliches Verfahren, wobei jedoch keine Kontaktstelle mit einem eindeutigen Kennungsmerkmal vorgesehen ist.
  • In der DE 10 2010 033 545 A1 ist eine Kodierung für einen Datenbus über einen Anschlussstecker beschrieben.
  • Die EP 3 029 687 A1 beschreibt ein System mit mehreren elektrischen Modulen, bei denen ein Verbindungsgehäuse als Teil einer Verkabelung eine Adressierung aufweist.
  • Eine Aufgabe der vorliegenden Erfindung besteht darin, ein Vakuumsystem und ein Verfahren zum Identifizieren elektronischer Module eines solchen zu schaffen, bei denen eine eindeutige Identifizierung jeweils gleichartiger elektronischer Module erreicht wird, ohne dass zusätzliche Hilfsmittel an den jeweiligen elektronischen Modulen erforderlich sind.
  • Diese Aufgabe wird durch ein Vakuumsystem mit den Merkmalen des Anspruchs 1 und ein Verfahren mit den Merkmalen des Anspruchs 11 gelöst.
  • Das Vakuumsystem umfasst wenigstens ein Vakuumgerät, mehrere elektronische Module und eine Verbindungseinrichtung, die zumindest eine elektrische Verbindung zwischen den mehreren Modulen herstellt. Die Verbindungseinrichtung weist erfindungsgemäß jeweils eine elektrische Kontaktstelle für jedes der mehreren Module auf. Jede dieser Kontaktstellen umfasst dabei ein eindeutiges Kennungsmerkmal.
  • Da das eindeutige Kennungsmerkmal der jeweiligen Kontaktstelle und nicht einem der mehreren Module zugeordnet ist, können gleichartige Module anhand des jeweiligen eindeutigen Erkennungsmerkmals der Kontaktstelle unterschieden werden, an der die jeweiligen gleichartigen Module angeordnet sind. Daher sind keine Hilfsmittel wie etwa Schalter an den jeweiligen Modulen erforderlich, um gleichartige Module unterscheiden zu können. Da jede der Kontaktstellen ein eindeutiges Kennungsmerkmal aufweist, sind die Kennungsmerkmale sämtlicher Kontaktstellen des Vakuumsystems, die jeweils einem der mehreren Modulen zugeordnet sind, voneinander verschieden. Mit anderen Worten tritt ein eindeutiges Kennungsmerkmal innerhalb des Vakuumsystems nur einmal auf. Dadurch ist wiederum die maximale Anzahl gleichartiger oder baugleicher Module, die innerhalb des Vakuumsystems installiert werden können, nicht beschränkt.
  • Jedes Modul weist eine Typenkennung auf, die einem Modultyp zugeordnet ist. Die Typenkennung ist mit dem eindeutigen Kennungsmerkmal der Kontaktstelle des jeweiligen Moduls kombinierbar oder kombiniert, um eine eindeutige Kennung jedes Moduls bereitzustellen.
  • Gleichartige bzw. baugleiche Module weisen demnach jeweils die gleiche Typenkennung auf und sind dennoch innerhalb des Vakuumsystems unterscheidbar, da die eindeutige Kennung jedes Moduls durch die Kombination der Typenkennung mit dem jeweiligen eindeutigen Kennungsmerkmal der Kontaktstelle erzeugt wird, mit der das jeweilige Modul in Verbindung steht. Mit anderen Worten ist das Unterscheidungsmerkmal zwischen den jeweiligen Modulen, die baugleich sein können, von dem Modul auf die jeweilige Kontaktstelle verlagert.
  • Wenn die Verbindungseinrichtung innerhalb des Vakuumsystems vorzugsweise derart eingerichtet ist, dass die räumliche Position der jeweiligen elektrischen Kontaktstelle innerhalb des Vakuumsystems bekannt ist, ist aufgrund der eindeutigen Kennung des Moduls auch die jeweilige räumliche Position von Modulen eines bestimmten Typs bekannt, sobald diese mit der entsprechenden elektrischen Kontaktstelle verbunden sind. Da die eindeutige Kennung eines Moduls die Kombination seiner Typenkennung mit der eindeutigen Kennung seiner Kontaktstelle ist, kann bei bekannter Typenkennung das Kennungsmerkmal der jeweiligen Kontaktstelle anhand der eindeutigen Kennung abgeleitet werden. Ferner kann umgekehrt die bekannte räumliche Position der Kontaktstelle über die eindeutige Kennung einer Typenkennung des Moduls zugeordnet werden, so dass anschließend bekannt ist, welcher Modultyp an welcher Kontaktstelle vorhanden ist.
  • Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. Die eindeutige Kennung ist insbesondere durch Kombinieren der Typenkennung mit dem jeweiligen eindeutigen Kennungsmerkmal an dem jeweiligen Modul oder durch das jeweilige Modul bereitstellbar oder bereitgestellt.
  • Wenn die eindeutige Kennung an dem jeweiligen Modul bereitstellbar oder bereitgestellt ist, kann beispielsweise ein zentrales oder übergeordnetes Modul sowohl die Typenkennung des jeweiligen Moduls als auch das eindeutige Kennungsmerkmal der Kontaktstelle auslesen, die diesem Modul zugeordnet ist, um anschließend die eindeutige Kennung des Moduls durch die Kombination der Typenkennung und des Kennungsmerkmals der Kontaktstelle zu erzeugen und an dem jeweiligen Modul bereitzustellen, beispielsweise in einem Speicher, der ohnehin in dem jeweiligen Modul vorhanden sein kann. Alternativ kann das jeweilige Modul die eindeutige Kennung selbst generieren, indem es das eindeutige Kennungsmerkmal seiner Kontaktstelle ausliest und mit seiner Typenkennung kombiniert. In beiden Fällen sind weiterhin keine individuellen Unterscheidungsmerkmale an den jeweiligen Modulen erforderlich, da die eindeutige Kennung des jeweiligen Moduls durch die Kombination der Typenkennung mit dem jeweiligen eindeutigen Kennungsmerkmal der Kontaktstelle generiert wird.
  • Das eindeutige Kennungsmerkmal umfasst bevorzugt eine jeweilige Adressierung der Kontaktstelle, während die Typenkennung vorzugsweise eine Basisadressierung des Modultyps umfasst. Eine eindeutige Adressierung eines jeweiligen Moduls basiert bei dieser Ausführungsform auf einer Kombination der Basisadressierung des jeweiligen Modultyps mit der Adressierung der Kontaktstelle für das jeweilige Modul.
  • Bei dieser Ausführungsform wird die eindeutige Kennung jedes Moduls somit durch die eindeutige Adressierung des jeweiligen Moduls realisiert, die sich aus der Adressierung der jeweiligen Kontaktstelle und der Basisadressierung des Modultyps zusammensetzt. Die Verbindungseinrichtung kann bei dieser Ausführungsform einen Kommunikationskanal zur Adressierung umfassen. Ferner kann die eindeutige Adressierung des jeweiligen Moduls derart generiert werden, dass die Basisadressierung des Modultyps und die Adressierung der jeweiligen Kontaktstelle addiert werden. Dies gestattet eine besonders einfache Erzeugung der eindeutigen Adressierung des jeweiligen Moduls.
  • Gemäß einer weiteren Ausführungsform umfassen die mehreren Module ein Hauptmodul, das ausgebildet ist, um das eindeutige Kennungsmerkmal jeder Kontaktstelle und/oder eine eindeutige Adressierung des jeweiligen Moduls zu identifizieren. Das Hauptmodul kann daher in der Lage sein, bei einer Inbetriebnahme des Vakuumsystems das Vorhandensein der jeweiligen Module zu überprüfen. Die Identifikation der jeweiligen Module mittels des Hauptmoduls kann ferner verwendet werden, um über das Hauptmodul beispielsweise eine Kommunikation zwischen internen elektronischen Modulen des Vakuumgeräts und externen elektronischen Modulen durchzuführen.
  • Die Verbindungseinrichtung zur Herstellung der elektrischen Verbindung zwischen den einzelnen Modulen kann eine oder mehrere Einzelleitungen umfassen, die insbesondere als ein Flachbandkabel oder eine Leiterbahnanordnung und bevorzugt in Form einer flexiblen Leiterplatte oder Leiterkarte ausgebildet sind. Dadurch lässt sich die Verbindungseinrichtung auf eine einfache und kostengünstige Weise realisieren.
  • Gemäß einer weiteren Ausführungsform umfasst das eindeutige Kennungsmerkmal jeder Kontaktstelle zumindest einen Kennwiderstand. Die Verbindungseinrichtung kann ferner eine Identifizierungsleitung und eine Erdungsleitung umfassen. Der Kennwiderstand einer jeweiligen Kontaktstelle ist bei einer solchen Ausführungsform jeweils zwischen der Identifizierungsleitung und der Erdungsleitung angeordnet. Alternativ kann der Kennwiderstand zwischen anderen Einzelleitungen angeordnet sein. Die Realisierung des eindeutigen Kennungsmerkmals mittels zumindest eines Kennwiderstands ist einfach und robust. Zusätzlich kann die Identifizierungsleitung eine Stromversorgung für die Module bereitstellen. Die Identifizierungsleitung kann folglich nicht nur im Zusammenhang mit dem eindeutigen Kennungsmerkmal der Kontaktstelle, sondern zusätzlich zur Unterstützung des Betriebs der jeweiligen Module verwendet werden.
  • Alternativ oder zusätzlich kann das eindeutige Kennungsmerkmal jeder Kontaktstelle eine Kodierung umfassen. Die Kodierung kann beispielsweise in einer Speichereinrichtung an der jeweiligen Kontaktstelle hinterlegt sein, z.B. in einem Festwertspeicher (EPROM). Bei einer Installation der Kontaktstellen können diese dann beispielsweise mittels einer Firmware mit einer individuellen Kodierung versehen werden, die das eindeutige Kennungsmerkmal der jeweiligen Kontaktstelle darstellt. Die Kontaktstellen der mehreren elektronischen Module des Vakuumsystems können somit zunächst als identische Einheiten hergestellt werden, die bei der Installation des Vakuumsystems mittels der Kodierung jeweils ein eindeutiges, individuelles Kennungsmerkmal erhalten. Eine individuelle Herstellung der jeweiligen Kontaktstellen, beispielsweise mit einem eindeutig festgelegten Kennwiderstand, ist bei einer solchen Ausführungsform nicht erforderlich.
  • Weiterer Gegenstand der Erfindung ist ein Verfahren zum Identifizieren mehrerer elektronischer Module eines wenigstens ein Vakuumgerät umfassenden Vakuumsystems. Das Vakuumsystem umfasst ferner eine Verbindungseinrichtung zum Herstellen zumindest einer elektrischen Verbindung zwischen den mehreren Modulen.
  • Jedes Modul weist eine Typenkennung auf, die einem Modultyp zugeordnet ist, während die Verbindungseinrichtung jeweils eine Kontaktstelle für jedes der mehreren Module aufweist. Jede dieser Kontaktstellen weist ferner ein eindeutiges Kennungsmerkmal auf. Gemäß dem Verfahren werden die Module jeweils anhand einer Kombination des eindeutigen Kennungsmerkmals ihrer Kontaktstelle mit ihrer Typenkennung identifiziert.
  • Die Kombination des eindeutigen Kennungsmerkmals, das der jeweiligen Kontaktstelle eines Moduls zugeordnet ist, mit der Typenkennung des Moduls ergibt somit eine eindeutige Kennung für das jeweilige Modul. Gleichartige oder baugleiche Module brauchen nur die Typenkennung und keine weiteren Unterscheidungsmerkmale aufzuweisen, um identifiziert werden zu können, da die Kontaktstelle, die dem jeweiligen Modul zugeordnet ist, das eindeutige Kennungsmerkmal aufweist. Mit anderen Worten ist die Individualisierung der jeweiligen Module, d.h. auch baugleicher oder gleichartiger Module, von dem Modul an sich auf seine jeweilige Kontaktstelle verlagert. Dadurch können baugleiche oder gleichartige Module zunächst auf identische Weise hergestellt und mit einer Typenkennung versehen werden, ohne dass die Einrichtung von individuellen Unterscheidungsmerkmalen, beispielsweise mittels Schaltern, erforderlich ist.
  • Gemäß einer Ausführungsform umfasst das eindeutige Kennungsmerkmal eine jeweilige Adressierung der Kontaktstelle, während die Typenkennung eine Basisadressierung des Modultyps umfasst. Eine eindeutige Adressierung eines jeweiligen Moduls kann dann anhand einer Kombination der Basisadressierung des jeweiligen Modultyps mit der Adressierung der Kontaktstelle für das jeweilige Modul erzeugt werden. Die eindeutige Adressierung stellt somit eine eindeutige Kennung des jeweiligen Moduls dar. In einem einfachen Fall werden bei der Kombination der Basisadressierung mit der Adressierung der Kontaktstelle die jeweiligen Adressen addiert.
  • Ferner kann die Kombination des eindeutigen Kennungsmerkmals mit der Typenkennung an dem jeweiligen Modul oder durch das jeweilige Modul durchgeführt werden. Im ersten Fall kann beispielsweise ein übergeordnetes Modul die Kombination des eindeutigen Kennungsmerkmals der Kontaktstelle mit der Typenkennung des Moduls durchführen, um diese Kombination als eindeutige Kennung an dem jeweiligen Modul zu hinterlegen. Im zweiten Fall kann das jeweilige Modul selbst das eindeutige Kennungsmerkmal der Kontaktstelle auslesen und mit der Typenkennung kombinieren.
  • Gemäß einer weiteren Ausführungsform umfassen die mehreren Module ein Hauptmodul, und das eindeutige Kennungsmerkmal jeder Kontaktstelle und/oder eine eindeutige Adressierung des jeweiligen Moduls werden mittels des Hauptmoduls identifiziert. Mit anderen Worten steht dem Hauptmodul bei dieser Ausführungsform eine jeweilige eindeutige Kennung sämtlicher elektronischer Module des Vakuumsystems zur Verfügung, um beispielsweise eine Datenübertragung zwischen den jeweiligen Modulen zu steuern.
  • Nachfolgend wird die Erfindung beispielhaft anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen:
  • Fig. 1
    eine schematische Darstellung eines erfindungsgemäßen Vakuumsystems,
    Fig. 2
    eine schematische Darstellung von Kontaktstellen und Modulen des Vakuumsystems von Fig. 1 und
    Fig. 3
    eine schematische Darstellung einer Verbindungseinrichtung des Vakuumsystems von Fig. 1.
  • Fig. 1 zeigt eine schematische Darstellung eines Vakuumsystems 11, das ein Vakuumgerät 13 umfasst. Das Vakuumgerät 13 wiederum umfasst eine Vakuumpumpe 15. Ferner umfasst das Vakuumsystem 11 ein Druckmessgerät 17 und mehrere elektronische Module 19, die mit der Vakuumpumpe 15 und/oder mit dem Druckmessgerät 17 verbunden sind.
  • Das Vakuumgerät 13 umfasst zusätzlich zu der Vakuumpumpe 15 interne elektronische Module 21. Darüber hinaus umfasst das Vakuumsystem 11 auch Module 23, die zur Steuerung des Druckmessgeräts 17, aber nicht zur Steuerung der Vakuumpumpe 15 vorgesehen sind. Daher werden die Module 23 bezüglich des Vakuumgeräts 13 als externe Module 23 bezeichnet.
  • Die mehreren Module 19 sind mittels einer Verbindungseinrichtung 25 untereinander und mit der Vakuumpumpe 15 und/oder dem Druckmessgerät 17 verbunden. Die Verbindungseinrichtung 25 umfasst mehrere Einzelleitungen 26, die in der Form eines Flachbandkabels 37 ausgebildet sind (vgl. Fig. 3). Alternativ oder zusätzlich können die mehreren Einzelleitungen 26 auch in der Form einer flexiblen Leiterplatte oder Leiterkarte ausgebildet sein. Da die Verbindungseinrichtung 25 einen gemeinsamen Übertragungsweg zur Datenübertragung zwischen den mehreren Modulen 19 untereinander sowie zwischen diesen und der Vakuumpumpe 15 bzw. dem Druckmessgerät 17 darstellt, kann die Verbindungseinrichtung 25 als Bus bezeichnet werden.
  • Jedes der mehreren Module 19 weist eine Typenkennung 18 auf, die in der Form einer Basisadresse 20 ausgebildet ist. Die internen Module 21 umfassen ein Hauptmodul 22, das #1 als Typenkennung 18 bzw. Basisadresse 20 aufweist, und ein Nebenmodul 24, das #2 als Typenkennung 18 bzw. Basisadresse 20 aufweist. Ferner umfassen die internen Module 21 ein Modul mit der Basisadresse #10 und zwei Module mit der Basisadresse #20, die zur Steuerung von Zubehör der Vakuumpumpe 15 vorgesehen sind. Von den externen elektronischen Modulen 23, welche die Basisadresse #30 bzw. #40 aufweisen, ist das Modul mit der Basisadresse #30 zur Durchführung einer Druckmessung mittels des Druckmessgeräts 17 vorgesehen.
  • Die beiden internen Module 21, welche die umkreiste Basisadresse #20 aufweisen, sind über die Verbindungseinrichtung bzw. den Bus 25 für die weiteren Module, insbesondere für das Hauptmodul 22, nicht unterscheidbar, solange lediglich die Typenkennung 18 in der Form der Basisadresse 20 zur Adressierung verwendet wird. Um eine korrekte Datenübertragung über die Verbindungseinrichtung 25 während des Betriebs des Vakuumsystems 11 zu ermöglichen, benötigen die beiden Module mit der Basisadresse #20 ein weiteres Unterscheidungsmerkmal, das zur eindeutigen Adressierung der jeweiligen Module verwendet werden kann.
  • Fig. 2 zeigt einen Ausschnitt der schematischen Darstellung von Fig. 1, in welcher lediglich die Verbindungseinrichtung 25 und die zwei internen Module 21 dargestellt sind, die jeweils #20 als Typenkennung 18 bzw. Basisadresse 20 aufweisen. Die Verbindungseinrichtung 25 weist zusätzlich zu Einzelleitungen 26 eine jeweilige Kontaktstelle 27 auf, die jeweils einem der Module 21 zugeordnet und mit diesem verbunden sind. Die Einzelleitungen 26 erstrecken sich durch die jeweilige Kontaktstelle 27 hindurch und sind zur Stromversorgung der elektronischen Module 21 und zur Datenübertragung bzw. Kommunikation zwischen den dargestellten Modulen 21 sowie den weiteren Modulen 19 vorgesehen.
  • Zusätzlich weist jede Kontaktstelle 27 ein eindeutiges Kennungsmerkmal 29 auf, das jeweils eine eindeutige Adressierung i1, i2 der jeweiligen Kontaktstelle 27 umfasst. Die Kennungsmerkmale 29 aller Kontaktstellen 27, mit denen jeweils ein Modul des Vakuumsystems 11 verbunden ist, unterscheiden sich voneinander, d.h. jedes Kennungsmerkmal 29 tritt innerhalb des Vakuumsystems 11 nur einmal auf. Die jeweilige Adressierung i1, i2 der Kontaktstellen 27 wird verwendet, um eine eindeutige Kennung 28 in der Form einer eindeutigen Adressierung für jedes der beiden in Fig. 2 dargestellten elektronischen Module 21 zu erzeugen. Zu diesem Zweck wird die jeweilige Adressierung i1, i2 der Kontaktstellen mit der jeweiligen Basisadresse 20 des jeweiligen Moduls 21 addiert, um die eindeutige Adressierung des jeweiligen Moduls 21 zu generieren. Da sich die beiden Adressierungen i1, i2 der Kontaktstellen 27 unterscheiden, unterscheiden sich die Adressierungen der jeweiligen Module 21 gleichen Typs trotz gleicher Basisadressierung 20 bzw. Typenkennung 18, da die beiden Adressierungen i1 und i2 der jeweiligen Kontaktstellen 27 verschieden sind.
  • Somit wird die individuelle Adressierung der elektronischen Module 19 insbesondere bei Modulen wie den in Fig. 2 gezeigten Modulen 21 gleichen Typs von den jeweiligen Modulen 19, 21 auf die Kontaktstelle 27 verlagert, indem die Kontaktstellen 27 eines Vakuumsystems 11 jeweils unterschiedliche Kennungsmerkmale 29 bzw. Adressierungen i1, i2 aufweisen. Die Module 21 können somit baugleich sein und benötigen keine Unterscheidungsmerkmale, mit denen eine jeweils unterschiedliche Adressierung hergestellt werden könnte, wenn die Module in dem Vakuumsystem 11 installiert werden.
  • Bei einer Installation innerhalb des Vakuumgeräts 13 ist darüber hinaus die Position, also die räumliche Lage, der jeweiligen Kontaktstelle 27 bekannt. Dies bedeutet, dass aufgrund der eindeutigen Adressierung bzw. eindeutigen Kennung 28 der Module 19, 21 aufgrund des Kennungsmerkmals 29 der jeweiligen Kontaktstelle 27 auch die physikalische Position bzw. der Einbauort des jeweiligen Moduls 19, 21 bekannt ist. Dies wäre beispielsweise nicht der Fall, wenn das Unterscheidungsmerkmal z.B. in der Form von Schalterstellungen am jeweiligen Modul 19, 21 angebracht wäre. In diesem Fall könnten die Module 19, 21 vertauscht werden, ohne dass ein weiteres Modul, das die Adressierung der beiden Module ausliest, eine Information über den Austausch der Module 19, 21 erhalten würde. Die Adresse der jeweiligen Module würde unabhängig von der physikalischen Position bzw. dem Einbauort gleichbleiben. Beim vorliegenden Vakuumsystem 11 hingegen weist jede Kontaktstelle 27 ein verschiedenes Kennungsmerkmal 29 bzw. eine unterschiedliche Adressierung i1, i2 auf, aufgrund derer zusammen mit der Basisadressierung 20 bzw. Typenkennung 18 identifizierbar ist, bei welcher Kontaktstelle 27 und damit an welchem Ort innerhalb des Vakuumsystems 11 sich welcher Modultyp befindet.
  • In Fig. 3 ist die Verbindungseinrichtung bzw. der Bus 25 des Vakuumsystems 11 von Fig. 1 schematisch im Detail dargestellt. Die Verbindungseinrichtung 25 umfasst mehrere Einzelleitungen 26, von denen eine als Erdungsleitung 31 bzw. GND und eine weitere als Identifizierungsleitung 33 bzw. GND/ID ausgebildet ist. Die Verbindungseinrichtung 25 verbindet das Hauptmodul 22 jeweils elektrisch mit drei weiteren Modulen 19-1, 19-2 bzw. 19-3.
  • Das Hauptmodul 22 stellt mittels zweier Leitungen (+24 V bzw. +5 V) die Stromversorgung für die Module 19-1, 19-2 und 19-3 bereit. Ferner sind zwei weitere Leitungen CAN_H bzw. CAN_L für die Datenübertragung dargestellt.
  • Zwischen der Erdungsleitung 31 und der Identifizierungsleitung 33 sind für jede Kontaktstelle 27 der jeweiligen Module 19-1, 19-2 bzw. 19-3 unterschiedliche Kennwiderstände 35 angeordnet, die als jeweiliges eindeutiges Kennungsmerkmal 29 der jeweiligen Kontaktstelle 27 wirken. Im Detail erzeugt der jeweilige Kennwiderstand 35 einen Adressoffset der jeweiligen Kontaktstelle 27-1, 27-2 bzw. 27-3, die den jeweiligen Modulen 19-1, 19-2 bzw. 19-3 zugeordnet sind. Zusammen mit der typspezifischen Basisadressierung des jeweiligen Moduls 19-1, 19-2 bzw. 19-3 erhält jedes Modul seine eindeutige Kennung 28 bzw. Adressierung. Die typspezifische Adressierung jedes Moduls 19-1, 19-2 und 19-3 wird mit dem Adressoffset der jeweiligen Kontaktstelle 27-1, 27-2 und 27-3 addiert.
  • In der Kontaktstelle 27-1 des ersten Moduls 19-1 sind die Identifizierungsleitung 33 und die Erdungsleitung 31 leitend miteinander verbunden, so dass der Kennwiderstand 35 der Kontaktstelle 27-1 nahezu Null ist. Die Identifizierungsleitung 33 wird somit als zusätzliche Erdungsleitung verwendet und ermöglicht dadurch eine erhöhte Stromzufuhr für das erste Modul 19-1. Ein solches Modul 19-1 mit erhöhter Stromzufuhr kann beispielsweise ermöglichen, dass ein Heizungs- oder ein Ausgasungsvorgang (Degas) an einer Messeinrichtung ermöglicht wird, die mit dem Modul 19-1 verbunden ist. Innerhalb des Vakuumsystems 11 ist jedoch nur ein solches Modul 19-1 vorhanden, da für die entsprechende Kontaktstelle 27-1 ein vorbestimmter Adressoffset Y festgelegt wird, der dem Kennwiderstand 35 von ungefähr Null zugeordnet ist. Eine weitere Kontaktstelle 27, bei welcher der Kennwiderstand 35 ebenfalls ungefähr gleich Null wäre, würde denselben Adressoffset Y erhalten und wäre daher von der Kontaktstelle 27-1 nicht unterscheidbar.
  • Bei dem zweiten Modul 19-2, das mit der Kontaktstelle 27-2 verbunden ist, ist hingegen ein endlicher Widerstand R2 = X zwischen der Erdungsleitung 31 und der Identifizierungsleitung 33 vorgesehen, der größer als Null ist. Da dieser Widerstand bei verschiedenen Modulen unterschiedlich groß gewählt werden kann, sind mehrere Module gleicher Bauart innerhalb des Vakuumsystems 11 möglich. Da der Kennwiderstand 35 als Adressoffset verwendet wird, müssen sich jeweils nur die Kennwiderstände der Kontaktstellen 27-2 unterscheiden, um auch baugleiche Module unterscheiden zu können.
  • Bei dem dritten Modul 19-3, das mit der Kontaktstelle 27-3 verbunden ist, fehlt der Widerstand zwischen der Identifizierungsleitung 33 und der Erdungsleitung 31 (R = ∞). Der Kontaktstelle 27-3 wird in diesem Fall ein Adressoffset von Null zugeordnet, so dass wiederum nur ein Modul dieses Typs 19-3 innerhalb des Vakuumsystems 11 möglich ist. Da die Module bereits anhand des Adressoffsets ihrer zugeordneten Kontaktstelle 27-1, 27-2 bzw. 27-3 unterscheidbar sein sollen, müssen die Kontaktstellen 27 aller weiteren Module einen Adressoffset größer als 0 aufweisen.
  • Wie bereits erläutert, sind die Einzelleitungen 26 der Verbindungseinrichtung 25 als Flachbandkabel 37 ausgebildet. Für die Kontaktstelle 27-2 und 27-3 ist jeweils eine Leitung des Flachbandkabels 37 aufgetrennt, um entweder den passenden Kennwiderstand 35 mit R = X einzufügen (Kontaktstelle 27-2) oder die Erdungsleitung 31 und die Identifizierungsleitung 33 getrennt zu belassen (R = ∞, Kontaktstelle 27-3). Die Identifizierungsleitungen 33 der jeweiligen Kontaktstellen 27-1, 27-3 bzw. 27-3 sind nicht miteinander verbunden, wie in Fig. 3 zu erkennen ist, um eine unabhängige Identifizierung der Kontaktstellen 27-1, 27-2 und 27-3 zu ermöglichen.
  • Bei einer alternativen Ausführungsform kann die Verbindungseinrichtung 25 anstelle von Flachbandkabeln 37 auch Flex-Leiterkarten umfassen, die eine entsprechende Leiterbahnführung aufweisen, um die Kontaktstellen des Typs 27-1, 27-2 bzw. 27-3 realisieren zu können. Bei der Kontaktstelle des Typs 27-1 ist bei dieser Ausführungsform mit Flex-Leiterkarten eine leitende Verbindung zwischen den Leiterbahnen vorhanden, die der Erdungsleitung 31 und der Identifizierungsleitung 33 entsprechen. Bei der Kontaktstelle vom Typ 27-2 hingegen befindet sich zwischen diesen Leiterbahnen ein entsprechender Widerstand mit R = X, während bei der Kontaktstelle vom Typ 27-3 kein Widerstand zwischen den Leiterbahnen vorhanden ist, die der Erdungsleitung 31 und der Identifizierungsleitung 33 entsprechen.
  • Bei einer weiteren alternativen Ausführungsform ist das Kennungsmerkmal 29 der jeweiligen Kontaktstelle 27 nicht durch Kennwiderstände realisiert, sondern durch eine jeweilige Kodierung, die in der jeweiligen Kontaktstelle 27 gespeichert ist und die jeweilige Adressierung i1, i2 (vgl. Fig. 2) der jeweiligen Kontaktstelle 27 festlegt. Das jeweilige Modul 19, 21 des Vakuumsystems 11 ist bei dieser Ausführungsform dazu eingerichtet, die jeweilige Kodierung und damit die individuelle Adressierung der jeweiligen Kontaktstelle 27 auszulesen und als Adressoffset mit der jeweiligen Basisadresse 20 des jeweiligen Moduls 19 zu addieren. Dadurch erhält jedes Modul 19 wiederum mittels der Adressierung i1, i2 als Kennungsmerkmal 29 der Kontaktstelle 27 seine eindeutige Kennung in der Form einer eindeutigen Adressierung des jeweiligen Moduls 19.
  • Bezugszeichenliste
  • 11
    Vakuumsystem
    13
    Vakuumgerät
    15
    Vakuumpumpe
    17
    Druckmessgerät
    18
    Typenkennung
    19
    elektronisches Modul
    20
    Basisadresse
    21
    internes Modul
    22
    Hauptmodul
    23
    externes Modul
    24
    Nebenmodul
    25
    Verbindungseinrichtung
    26
    Einzelleitung
    27
    Kontaktstelle
    28
    eindeutige Kennung
    29
    eindeutiges Kennungsmerkmal
    31
    Erdungsleitung
    33
    Identifizierungsleitung
    35
    Kennwiderstand
    37
    Flachbandkabel

Claims (14)

  1. Vakuumsystem (11) mit
    wenigstens einem Vakuumgerät (13),
    mehreren elektronischen Modulen (19, 21, 23) und
    einer Verbindungseinrichtung (25), die zumindest eine elektrische Verbindung zwischen den mehreren Modulen (19, 21, 23) herstellt,
    wobei die Verbindungseinrichtung (25) jeweils eine elektrische Kontaktstelle (27) für jedes der mehreren Module (19, 21, 23) aufweist und
    wobei jede Kontaktstelle (27) ein eindeutiges Kennungsmerkmal (29) umfasst,
    dadurch gekennzeichnet, dass
    jedes Modul (19, 21, 23) eine Typenkennung (18) aufweist, die einem Modultyp zugeordnet ist, und die Typenkennung (18) mit dem eindeutigen Kennungsmerkmal (29) der Kontaktstelle (27) des jeweiligen Moduls (19, 21, 23) kombinierbar oder kombiniert ist, um eine eindeutige Kennung (28) jedes Moduls (19, 21, 23) bereitzustellen.
  2. Vakuumsystem (11) nach Anspruch 1,
    wobei die eindeutige Kennung (28) an dem jeweiligen Modul (19, 21, 23) oder durch das jeweilige Modul (19, 21, 23) durch Kombinieren der Typenkennung (18) mit dem jeweiligen eindeutigen Kennungsmerkmal (29) bereitstellbar oder bereitgestellt ist.
  3. Vakuumsystem (11) nach Anspruch 1 oder 2,
    wobei das eindeutige Kennungsmerkmal (29) eine jeweilige Adressierung der Kontaktstelle (27) umfasst,
    wobei die Typenkennung (18) eine Basisadressierung (20) des Modultyps umfasst und
    wobei eine eindeutige Adressierung eines jeweiligen Moduls (19, 21, 23) auf einer Kombination der Basisadressierung (20) des jeweiligen Modultyps mit der Adressierung der Kontaktstelle (27) für das jeweilige Modul (19, 21, 23) basiert.
  4. Vakuumsystem (11) nach einem der vorstehenden Ansprüche,
    wobei die mehreren Module (19, 21, 23) ein Hauptmodul (22) umfassen, das ausgebildet ist, um das eindeutige Kennungsmerkmal (29) jeder Kontaktstelle (27) und/oder eine eindeutige Adressierung des jeweiligen Moduls (19, 21, 23) zu identifizieren.
  5. Vakuumsystem (11) nach einem der vorstehenden Ansprüche,
    wobei die Verbindungseinrichtung (25) zur Herstellung der elektrischen Verbindung zwischen den einzelnen Modulen (19, 21, 23) eine oder mehrere Einzelleitungen (26) umfasst.
  6. Vakuumsystem (11) nach Anspruch 5,
    wobei die Verbindungseinrichtung (25) ein Flachbandkabel (37) oder eine Leiterbahnanordnung, bevorzugt in Form einer flexiblen Leiterplatte oder Leiterkarte, umfasst.
  7. Vakuumsystem (11) nach einem der vorstehenden Ansprüche,
    wobei das eindeutige Kennungsmerkmal (29) jeder Kontaktstelle (27) zumindest einen Kennwiderstand (35) umfasst.
  8. Vakuumsystem (11) nach Anspruch 7,
    wobei die Verbindungseinrichtung (25) eine Erdungsleitung (31) und eine Identifizierungsleitung (33) umfasst und
    wobei der Kennwiderstand (35) einer jeweiligen Kontaktstelle (27) jeweils zwischen der Identifizierungsleitung (33) und der Erdungsleitung (31) angeordnet ist.
  9. Vakuumsystem (11) nach Anspruch 8,
    wobei die Identifizierungsleitung (33) eine Stromversorgung für die Module (19, 21, 23) bereitstellt.
  10. Vakuumsystem (11) nach einem der vorstehenden Ansprüche,
    wobei das eindeutige Kennungsmerkmal (29) jeder Kontaktstelle (27) eine Kodierung umfasst.
  11. Verfahren zum Identifizieren mehrerer elektronischer Module (19, 21, 23) eines wenigstens ein Vakuumgerät (13) umfassenden Vakuumsystems (11), das eine Verbindungseinrichtung (25) zum Herstellen zumindest einer elektrischen Verbindung zwischen den mehreren Modulen (19, 21, 23) umfasst,
    wobei die Verbindungseinrichtung (25) jeweils eine Kontaktstelle (27) für jedes der mehreren Module (19, 21, 23) aufweist und
    wobei jede Kontaktstelle (27) ein eindeutiges Kennungsmerkmal (29) aufweist,
    dadurch gekennzeichnet, dass
    jedes Modul (19, 21, 23) eine Typenkennung (18) aufweist, die einem Modultyp zugeordnet ist und
    das Verfahren umfasst, dass die Module (19, 21, 23) jeweils anhand einer Kombination des eindeutigen Kennungsmerkmals (29) ihrer Kontaktstelle (27) mit ihrer Typenkennung (18) identifiziert werden.
  12. Verfahren nach Anspruch 11,
    wobei das eindeutige Kennungsmerkmal (29) eine jeweilige Adressierung der Kontaktstelle (27) umfasst,
    wobei die Typenkennung (18) eine Basisadressierung (20) des Modultyps umfasst und
    wobei eine eindeutige Adressierung eines jeweiligen Moduls (19, 21, 23) anhand einer Kombination der Basisadressierung (20) des jeweiligen Modultyps mit der Adressierung der Kontaktstelle (27) für das jeweilige Modul (19, 21, 23) erzeugt wird.
  13. Verfahren nach Anspruch 11 oder 12,
    wobei die Kombination des eindeutigen Kennungsmerkmals (29) mit der Typenkennung (18) an dem jeweiligen Modul (19, 21, 23) oder durch das jeweilige Modul (19, 21, 23) durchgeführt wird.
  14. Verfahren nach einem der Ansprüche 11 bis 13,
    wobei die mehreren Module (19, 21, 23) ein Hauptmodul (22) umfassen und das Verfahren ferner umfasst, dass das eindeutige Kennungsmerkmal (29) jeder Kontaktstelle (27) und/oder eine eindeutige Adressierung des jeweiligen Moduls (19, 21, 23) mittels des Hauptmoduls (22) identifiziert werden.
EP19191304.5A 2019-08-12 2019-08-12 Vakuumsystem und verfahren zum identifizieren elektronischer module in einem solchen Active EP3626973B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19191304.5A EP3626973B1 (de) 2019-08-12 2019-08-12 Vakuumsystem und verfahren zum identifizieren elektronischer module in einem solchen
JP2020089694A JP7164564B2 (ja) 2019-08-12 2020-05-22 真空システム及び真空システム内の電子モジュールを識別するための方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19191304.5A EP3626973B1 (de) 2019-08-12 2019-08-12 Vakuumsystem und verfahren zum identifizieren elektronischer module in einem solchen

Publications (2)

Publication Number Publication Date
EP3626973A1 EP3626973A1 (de) 2020-03-25
EP3626973B1 true EP3626973B1 (de) 2022-08-03

Family

ID=67614509

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19191304.5A Active EP3626973B1 (de) 2019-08-12 2019-08-12 Vakuumsystem und verfahren zum identifizieren elektronischer module in einem solchen

Country Status (2)

Country Link
EP (1) EP3626973B1 (de)
JP (1) JP7164564B2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230304500A1 (en) * 2022-03-25 2023-09-28 Modine Manufacturing Company Pump with combined electrical contact

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214936A (ja) * 1993-01-13 1994-08-05 Oki Electric Ind Co Ltd 入出力装置自動判別方法
JP2000076173A (ja) * 1998-09-03 2000-03-14 Nec Corp 情報処理システム及び情報処理システム内id付与方法
JP4274648B2 (ja) * 1999-09-29 2009-06-10 住友重機械工業株式会社 クライオポンプの制御装置
JP2005048764A (ja) * 2003-07-29 2005-02-24 Sumitomo Heavy Ind Ltd 真空ポンプ制御システム
JP4761530B2 (ja) * 2004-11-25 2011-08-31 キヤノン株式会社 制御基板及びそれを備えた画像形成装置、並びに制御基板の管理方法
DE102005045283B4 (de) * 2005-09-22 2014-05-15 Pfeiffer Vacuum Gmbh Vakuumpumpsystem
DE102006045022A1 (de) * 2006-09-23 2008-03-27 Pfeiffer Vacuum Gmbh Anordnung mit Vakuumgerät und Verfahren zu derem Betrieb
DE102010033545A1 (de) * 2010-08-05 2012-02-09 Valeo Schalter Und Sensoren Gmbh Kontaktierungsvorrichtung mit Schneidklemmen zur Adresskodierung
JP6214936B2 (ja) 2013-06-13 2017-10-18 株式会社ブリヂストン 締金具およびその製造方法
DE202014005481U1 (de) * 2014-07-04 2014-07-18 Oerlikon Leybold Vacuum Gmbh Vakuumpumpvorrichtung mit mindestens einem Pumpenmodul
US9837770B2 (en) * 2014-11-25 2017-12-05 Honeywell International Inc. Fusible link cable harness and systems and methods for addressing fusible link cable harnesses
EP3029327B1 (de) * 2014-12-02 2018-02-14 Pfeiffer Vacuum Gmbh System aus Vakuumgerät und Funktionseinheit

Also Published As

Publication number Publication date
EP3626973A1 (de) 2020-03-25
JP7164564B2 (ja) 2022-11-01
JP2021028823A (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
EP2983962B1 (de) Sensoranordnung an einer lenksäule eines kraftfahrzeugs
EP1174781B1 (de) Einrichtung zur Signalübertragung
DE102010033545A1 (de) Kontaktierungsvorrichtung mit Schneidklemmen zur Adresskodierung
EP3626973B1 (de) Vakuumsystem und verfahren zum identifizieren elektronischer module in einem solchen
EP2850783B1 (de) Busteilnehmer für ein bussystem, bussystem für einen kraftwagen sowie ein verfahren zur zuordnung von adressen in einem bussystem
DE19722115A1 (de) Adressierungsvorrichtung und -verfahren
EP1441580B1 (de) Schaltungsmodul
DE10303454B4 (de) Kodierbare elektronische Schaltungsanordnung und Verfahren zu deren Herstellung
EP2693280B1 (de) Straßenbaumaschine mit Messsystem und Messverfahren
DE10052619C1 (de) Modular aufgebautes System
EP3441997B1 (de) Sicherheitsschaltvorrichtung zum sicheren aus- und/oder einschalten zumindest einer elektrischen maschine
DE4328932A1 (de) Verfahren und Einrichtung für die Fernabfrage von Meßstellen
EP0915599B1 (de) Anschlussvorrichtung zum Ankoppeln mindestens zweier Bussysteme
EP1220376B1 (de) Vorrichtung zur Definition von Teilnehmern eines Steuerungssystem einer Druckmaschine
DE10310413A1 (de) Leitungsanordnung für mehrere Steuereinheiten und Druckmaschine
DE102022202455B4 (de) Gerät mit einer Kommunikationseinrichtung zur Datenübertragung über einen Datenübertragungsbus, sowie Datenübertragungssystem mit derartigen Geräten
EP3893607B1 (de) Verfahren zur ortsgenauen automatischen adressierung von bus-teilnehmern in einem differentiellen zweidrahtdatenbussystem und differentielles zweidrahtdatenbussystem
EP3665873B1 (de) Übertragen von signalen
DE3202543C2 (de) Schaltungsanordnung zum Prüfen der Übereinstimmung von zwei Binärwörtern
DE102008044115A1 (de) Schaltelement, Busschaltsystem, Steuereinheit und Verfahren zum Erkennen von Schalterstellungen einer Mehrzahl von Schaltelementen
DE3116471C2 (de)
EP3542419B1 (de) Steckerverbinderanordnung und verfahren zum herstellen einer steckerverbinderanordnung
WO2022033965A1 (de) Sensor-anordnung eines fahrzeugs
DE102021132688A1 (de) Elektronische Komponente mit Positionskodierung für ein Kraftfahrzeug
EP4422130A1 (de) Vorrichtung und verfahren zum bereitstellen von eindeutigen kennungen für endgeräte eines datenbusses, datenübertragungssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200914

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220414

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1508955

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019005120

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221104

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220812

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019005120

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

26N No opposition filed

Effective date: 20230504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220812

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230825

Year of fee payment: 5

Ref country code: GB

Payment date: 20230822

Year of fee payment: 5

Ref country code: CZ

Payment date: 20230807

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231027

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803