EP3561367B1 - Light apparatus with enlightened pattern - Google Patents

Light apparatus with enlightened pattern Download PDF

Info

Publication number
EP3561367B1
EP3561367B1 EP18168861.5A EP18168861A EP3561367B1 EP 3561367 B1 EP3561367 B1 EP 3561367B1 EP 18168861 A EP18168861 A EP 18168861A EP 3561367 B1 EP3561367 B1 EP 3561367B1
Authority
EP
European Patent Office
Prior art keywords
light guide
light
optical light
optical
led module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18168861.5A
Other languages
German (de)
French (fr)
Other versions
EP3561367A1 (en
Inventor
Xianghua Lin
Liangliang Cao
Yi Yang
Hongkui JIANG
Yanzeng GAO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Eco Lighting Co Ltd
Original Assignee
Xiamen Eco Lighting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Eco Lighting Co Ltd filed Critical Xiamen Eco Lighting Co Ltd
Priority to EP18168861.5A priority Critical patent/EP3561367B1/en
Publication of EP3561367A1 publication Critical patent/EP3561367A1/en
Application granted granted Critical
Publication of EP3561367B1 publication Critical patent/EP3561367B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/61Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/504Cooling arrangements characterised by the adaptation for cooling of specific components of refractors

Definitions

  • the present invention is related to a light apparatus and more particularly related to a light apparatus with an enlightened pattern.
  • GB 2539190 A relates to a LED light bulb simultaneously using as nightlight.
  • a light apparatus has a driver circuit, a LED plate, an optical light guide, a connector and a bulb shell.
  • the light apparatus is a light bulb with a cap for storing the driver circuit and for installing into a standard Edison socket.
  • the driver circuit converts an external power source to a driving current.
  • the LED plate is connected to the driver circuit and has a first LED module for emitting a first light with the driving current.
  • the term 'plate' does not need to a flat board with a surface.
  • a surrounding belt for mounting a plurality of LED modules may also be regarded as a 'LED plate' mentioned in this application.
  • the 'plate' does not need to be limited to one board. Multiple units may be referred as a 'plate' in this application, too.
  • the optical light guide has a bottom end facing to the first LED module for receiving the first light and has a top end forming an enlightened pattern where the first light escaped from the top end of the optical light guide.
  • the optical light guide is transparent like using transparent PMMA material or PC material and the top end forms a curved edge for light to escape and to form the enlightened pattern, e.g. a Tungsten filament.
  • the connector is used for fixing the LED plate to the optical light guide for aligning the first LED module to emit the first light into the bottom end and for transmitting heat of the LED plate to the optical light guide.
  • the connector may be a ring with screw structures so as to match to the bulb shell, the optical light guide and the LED plate.
  • the connector may be a part of a cap of a light bulb.
  • the connector may be a part of the bulb shell.
  • the connector may be any part for directly or indirectly connecting the optical light guide and the LED plate.
  • the bulb shell covers the optical light guide.
  • the surface of the bulb shell may be mixed or coated with certain material for optimizing light output effect.
  • the optical light guide is a tube structure.
  • the top end of the tube structure has a plurality of protruding structures, a surface of the plurality of protruding structures forming the enlightened pattern.
  • the LED plate further has a second LED module not directly emitting a second light into the optical light guide for emitting the second light as a luminous source.
  • the optical light guide is a plate with two fork patterns extended from the bottom end of the optical light guide to the top end of the optical light guide and the enlightened pattern appears like a Tungsten filament supported by the two fork patterns to simulate a Tungsten light bulb.
  • the two fork patterns may be made by coloring paints on the optical guide.
  • the two fork patterns may be made by placing two metal strips. In such design, when the LED module emits the first light into the optical light guide, the enlightened pattern seems like a Tungsten filament supported by two metal strips, which provides a vivid replacement of traditional Tungsten filament bulb and particularly helpful for designing attractive light devices.
  • the optical light guide is composed of multiple components to form a three-dimensional extended structure.
  • two or more units of plastic units may be made separately and assembled to form a three-dimension structure expanding in the bulb shell to provide a complicated three-dimension enlightened pattern.
  • a lateral side of the optical light guide has grooves providing a part of the first light to escape.
  • the lateral side of the optical light guide may provide one or more other enlightened patterns, too.
  • the groove near the top end of the optical light guide has different dimension as the groove near the bottom end so as to make escaped light strengths similar to each other. As the first light passing in the optical light guide, its strength gets weaker and weaker. Therefore, to make enlightened patterns more evenly, the groove near the bottom end of the optical light guide may have different processing, e.g. escaping less ratio of light, as the groove near the top end of the optical light guide.
  • the optical light guide is made of Polymethyl Methacrylate (PMMA) material and the top end of the optical light guide is made by polished cutting.
  • the polished cutting may be applied on surface of the optical light guide to form grooves, lens, or other optical structures for light to escape in different manners.
  • the optical light guide is mixed with a coloring material for depressing a part of predetermined spectrum to adjust the color of the enlightened pattern. Its principle is like sun glasses. By using certain coloring into a transparent plastic material, certain parts of frequency may be depressed or blocked to change output color and output light characteristic.
  • a fluorescent layer is applied on the optical light guide to change spectrum composition of the enlightened pattern.
  • the LED light may be converted to another spectrum, e.g. from blue LED light to red or green light by using different fluorescent material.
  • the fluorescent material may be mixed or applied in different places of the optical light guide.
  • the fluorescent material may be applied on the bottom end, the top end, or middle part of the optical light guide for adjusting output light and enlightened pattern characteristic.
  • the optical light guide comprises multiple components having bending parts to form a three-dimension structure.
  • the optical light guide may have two arms extending from the LED plate and the arms are bent for an angle near the top end of the arm.
  • the enlightened pattern when the enlightened pattern is at the top end of the optical light guide, the enlightened pattern is an extended three-dimension shape with a size larger than the bottom distance of the two arms.
  • Three or more components may be adjusted to design various combination and variations of enlightened patterns.
  • the LED plate has a second LED module for not directly emitting a second light into the optical light guide and for emitting the second light as a luminous source.
  • the second LED module and the first LED module are controlled by the driver circuit independently to provide multiple operation combination of the first LED module and the second LED module. For example, in the night bed time, the second LED module is turned while the first LED module is turned on to provide a night light. In other time, the first LED and the second LED may be both turned on to provide a stronger luminous effect.
  • a third LED module is provided and is able to be operated independently from the first LED module.
  • users may change different enlightened patterns in the same light bulb. More interesting applications maybe derived based on this spirit and direction.
  • the bottom end of the optical light guide has concave lens for distributing the first light evenly into the optical light guide.
  • the bottom end of the optical light guide has a convex lens for condensing the first light as a light beam into the optical light guide.
  • the two different approaches may be used in different light device requirements.
  • the optical light guide is made of Polycarbonate (PC) material and the enlightened pattern is formed with a laser light.
  • PC Polycarbonate
  • the bulb shell has a thickness and the LED module emits a part of light transmitted in the bulb shell forming a second enlightened pattern.
  • Fig. 1 is an exploded diagram of component in a light apparatus embodiment.
  • Fig. 2 is a side view of the embodiment in Fig. 1 .
  • Fig. 3 is cross-sectional view of the embodiment in Fig. 2 .
  • the same reference numerals in Fig. 1 , Fig. 2 and Fig. 3 refer to the same component.
  • the light apparatus includes a bulb shell 10, an optical light guide 11, a connector 12, a LED plate 13, a cap 14 and a cap terminal 141.
  • the cap 14 and the cap terminal 141 provides two electrodes connecting to a traditional Edison socket for receiving external power of 110V or 220V.
  • a driver circuit (not shown) contains circuits for converting the external power to a driving current supplying the LED modules mounted on the LED plate 13 to emit light.
  • Some LED modules emit a first light into the optical light guide.
  • the first light firstly enters the bottom end 113 of the optical light guide 11, then travels in the optical light guide 11 and then escapes from the top end 111 to form an enlightened pattern.
  • the top end 111 of the optical light guide 11 has multiple protruding structures 111 and the enlightened pattern is a beautiful crown shape.
  • the optical light guide is a tube with a hollow spacing i112 n the middle of the tube.
  • Some LED modules 131 on the LED plate 13 do not emit light directly into the optical light guide 11 and emits light as a luminous source.
  • some LED modules 132 are used for creating the enlightened pattern while some other LED modules 131 may be used for providing luminous effect.
  • Fig. 2 shows a cross-sectional points A - A and Fig. 3 shows the associated cross-sectional view of this embodiment.
  • Fig. 4 illustrates examples of multiple bulb shells types that may be used to implement the invention.
  • various bulb shells as illustrated in Fig. 4 may be used in the present invention.
  • One or two alphabet letters commonly used in the art are attached below each of the bulb shell images.
  • Fig. 5 illustrates an optical light guide example.
  • the optical light guide 52 has a narrower bottom and wider top portion.
  • the optical light guide in this example is made of two units 51, 52 assembled together. With such design, when a manufacturer wants to change enlightened pattern, the top unit 51 may be replaced while keeping the same bottom unit 52 unchanged. This saves certain stocking cost and molding cost and increases flexibility of design at the same time.
  • Fig. 6 illustrates another optical light guide example.
  • the optical light guide has two arms 61, 62.
  • the two arms are bent at a portion 612 to enlarge the expanded range of the top portion of the arms 61, 62.
  • the enlightened pattern may be designed at the top edge 611, 621, or the lateral edge 622.
  • certain pattern 623 may be formed like cutting grooves for light to escape on the lateral side of the optical light guide.
  • Fig. 7 illustrates relation of LED modules and optical light guide parts.
  • the optical light guide 72 has a portion of bottom end forming concave lens 722 for distributing light from the LED module 712 more evenly in the optical light guide 72.
  • the optical light guide 72 has another portion of bottom end forming convex lens 721 for converging light emitting from the LED modules 711 on the LED plate 71.
  • One or multiple types of lens may be applied on the optical light guide to achieve different design goals and requirements.
  • the LED plate 71 may be integrated and aligned with the optical light guide 72 with a connector 73.
  • the connector 73 engages with both the optical light guide 72 and the LED plate 71. Since the LED plate 71 is a major heat source, the connector 73, in addition to fix and align the LED plate 71 to the optical light guide 72, heat of the LED plate 71 may be also transmitted to the optical light guide 72 to provide heat dissipation.
  • the connector 73 may be made of metal ring or plastic material for heat dissipation.
  • Fig. 8 illustrates another way to simulate a Tungsten light bulb.
  • two fork patterns 821, 822 are made on the optical light guide 81 by placing two metal strips to simulate a traditional Tungsten filament bulb.
  • the enlightened pattern 811 is designed to show between the top ends of the two metal strips.
  • Fig. 9 illustrates another embodiment of the present invention.
  • the bulb shell 91 has certain thickness and part of light 911 is transmitted into the bulb shell.
  • the bulb shell 91 has a thicker part 913 at the top of the bulb shell 91.
  • Certain enlightened pattern like Tungsten filament or other geometric shapes 912 may be formed to enrich design possibility of the present invention.
  • the optical light guide may be integrated with the bulb shell.
  • the optical light guide may replace the bulb shell.
  • the optical light guide may be made as a bulb shell and part of LED light is guided into the optical light guide.
  • heat dissipation gas like He, H2 may be filled in the sealed chamber of the bulb shell, in this case the optical light guide, within 100 to 2000Torr.
  • a light apparatus has a driver circuit, a LED plate, an optical light guide, a connector and a bulb shell.
  • the light apparatus is a light bulb with a cap for storing the driver circuit and for installing into a standard Edison socket.
  • the driver circuit converts an external power source to a driving current.
  • the LED plate is connected to the driver circuit and has a first LED module for emitting a first light with the driving current.
  • the term 'plate' does not need to a flat board with a surface.
  • a surrounding belt for mounting a plurality of LED modules may also be regarded as a 'LED plate' mentioned in this application.
  • the 'plate' does not need to be limited to one board. Multiple units may be referred as a 'plate' in this application, too.
  • the optical light guide has a bottom end facing to the first LED module for receiving the first light and has a top end forming an enlightened pattern where the first light escaped from the top end of the optical light guide.
  • the optical light guide is transparent like using transparent PMMA material or PC material and the top end forms a curved edge for light to escape and to form the enlightened pattern, e.g. a Tungsten filament.
  • the connector is used for fixing the LED plate to the optical light guide for aligning the first LED module to emit the first light into the bottom end and for transmitting heat of the LED plate to the optical light guide.
  • the connector may be a ring with screw structures so as to match to the bulb shell, the optical light guide and the LED plate.
  • the connector may be a part of a cap of a light bulb.
  • the connector may be a part of the bulb shell.
  • the connector may be any part for directly or indirectly connecting the optical light guide and the LED plate.
  • the bulb shell covers the optical light guide.
  • the surface of the bulb shell may be mixed or coated with certain material for optimizing light output effect.
  • the optical light guide is a tube structure.
  • the top end of the tube structure has a plurality of protruding structures, a surface of the plurality of protruding structures forming the enlightened pattern.
  • the LED plate further has a second LED module not directly emitting a second light into the optical light guide for emitting the second light as a luminous source.
  • the optical light guide is a plate with two fork patterns extended from the bottom end of the optical light guide to the top end of the optical light guide and the enlightened pattern appears like a Tungsten filament supported by the two fork patterns to simulate a Tungsten light bulb.
  • the two fork patterns may be made by coloring paints on the optical guide.
  • the two fork patterns may be made by placing two metal strips. In such design, when the LED module emits the first light into the optical light guide, the enlightened pattern seems like a Tungsten filament supported by two metal strips, which provides a vivid replacement of traditional Tungsten filament bulb and particularly helpful for designing attractive light devices.
  • the optical light guide is composed of multiple components to form a three-dimensional extended structure.
  • two or more units of plastic units may be made separately and assembled to form a three-dimension structure expanding in the bulb shell to provide a complicated three-dimension enlightened pattern.
  • a lateral side of the optical light guide has grooves providing a part of the first light to escape.
  • the lateral side of the optical light guide may provide one or more other enlightened patterns, too.
  • the groove near the top end of the optical light guide has different dimension as the groove near the bottom end so as to make escaped light strengths similar to each other. As the first light passing in the optical light guide, its strength gets weaker and weaker. Therefore, to make enlightened patterns more evenly, the groove near the bottom end of the optical light guide may have different processing, e.g. escaping less ratio of light, as the groove near the top end of the optical light guide.
  • the optical light guide is made of Polymethyl Methacrylate (PMMA) material and the top end of the optical light guide is made by polished cutting.
  • the polished cutting may be applied on surface of the optical light guide to form grooves, lens, or other optical structures for light to escape in different manners.
  • the optical light guide is mixed with a coloring material for depressing a part of predetermined spectrum to adjust the color of the enlightened pattern. Its principle is like sun glasses. By using certain coloring into a transparent plastic material, certain parts of frequency may be depressed or blocked to change output color and output light characteristic.
  • a fluorescent layer is applied on the optical light guide to change spectrum composition of the enlightened pattern.
  • the LED light may be converted to another spectrum, e.g. from blue LED light to red or green light by using different fluorescent material.
  • the fluorescent material may be mixed or applied in different places of the optical light guide.
  • the fluorescent material may be applied on the bottom end, the top end, or middle part of the optical light guide for adjusting output light and enlightened pattern characteristic.
  • the optical light guide comprises multiple components having bending parts to form a three-dimension structure.
  • the optical light guide may have two arms extending from the LED plate and the arms are bent for an angle near the top end of the arm.
  • the enlightened pattern is an extended three-dimension shape with a size larger than the bottom distance of the two arms.
  • Three or more components may be adjusted to design various combination and variations of enlightened patterns.
  • the LED plate has a second LED module for not directly emitting a second light into the optical light guide and for emitting the second light as a luminous source.
  • the second LED module and the first LED module are controlled by the driver circuit independently to provide multiple operation combination of the first LED module and the second LED module. For example, in the night bed time, the second LED module is turned while the first LED module is turned on to provide a night light. In other time, the first LED and the second LED may be both turned on to provide a stronger luminous effect.
  • a third LED module may be provided and may be operated independently from the first LED module.
  • users may change different enlightened patterns in the same light bulb. More interesting applications maybe derived based on this spirit and direction.
  • the bottom end of the optical light guide has concave lens for distributing the first light evenly into the optical light guide.
  • the bottom end of the optical light guide has a convex lens for condensing the first light as a light beam into the optical light guide.
  • the two different approaches may be used in different light device requirements.
  • the optical light guide is made of Polycarbonate (PC) material and the enlightened pattern is formed with a laser light.
  • PC Polycarbonate
  • the bulb shell has a thickness and the LED module emits a part of light transmitted in the bulb shell forming a second enlightened pattern.

Description

    Technical Field
  • The present invention is related to a light apparatus and more particularly related to a light apparatus with an enlightened pattern.
  • Background
  • From the time Edison invented the first Tungsten filament light bulb, light devices are quickly wide spread in human life. In recent years, due to semiconductor technology development, LED technologies bring a new page of the luminous industry.
  • Even so, people still want more features to be provided by luminous devices, though it has been a crowded art. While so many light devices are used in the world, any minor advancement may bring tremendous effect in human life.
  • Today, not only luminous efficacy is an important goal to seek, decoration purposes are also important. Sometime, designers want to use the most advanced LED technology to replace traditional beautiful Tungsten bulb but it seems there is much to do with a low cost solution.
  • Therefore, it would bring great benefit, if a decorative light effect may be achieved while cost factor is still considered.
  • GB 2539190 A relates to a LED light bulb simultaneously using as nightlight.
  • Summary of Invention
  • The present invention provides a light apparatus according to the independent claim of the present application. Various embodiments or improvements are recited in the dependent claims. According to an embodiment of the present invention, a light apparatus has a driver circuit, a LED plate, an optical light guide, a connector and a bulb shell. In an example, the light apparatus is a light bulb with a cap for storing the driver circuit and for installing into a standard Edison socket.
  • The driver circuit converts an external power source to a driving current. The LED plate is connected to the driver circuit and has a first LED module for emitting a first light with the driving current. Please be noted that the term 'plate' does not need to a flat board with a surface. For example, a surrounding belt for mounting a plurality of LED modules may also be regarded as a 'LED plate' mentioned in this application.
  • The 'plate' does not need to be limited to one board. Multiple units may be referred as a 'plate' in this application, too.
  • The optical light guide has a bottom end facing to the first LED module for receiving the first light and has a top end forming an enlightened pattern where the first light escaped from the top end of the optical light guide. For example, the optical light guide is transparent like using transparent PMMA material or PC material and the top end forms a curved edge for light to escape and to form the enlightened pattern, e.g. a Tungsten filament.
  • The connector is used for fixing the LED plate to the optical light guide for aligning the first LED module to emit the first light into the bottom end and for transmitting heat of the LED plate to the optical light guide. The connector may be a ring with screw structures so as to match to the bulb shell, the optical light guide and the LED plate. The connector may be a part of a cap of a light bulb. The connector may be a part of the bulb shell. The connector may be any part for directly or indirectly connecting the optical light guide and the LED plate.
  • The bulb shell covers the optical light guide. The surface of the bulb shell may be mixed or coated with certain material for optimizing light output effect.
  • In some embodiments, the optical light guide is a tube structure.
  • Furthermore, in some embodiments, the top end of the tube structure has a plurality of protruding structures, a surface of the plurality of protruding structures forming the enlightened pattern.
  • According to the invention, the LED plate further has a second LED module not directly emitting a second light into the optical light guide for emitting the second light as a luminous source.
  • In some other embodiments, the optical light guide is a plate with two fork patterns extended from the bottom end of the optical light guide to the top end of the optical light guide and the enlightened pattern appears like a Tungsten filament supported by the two fork patterns to simulate a Tungsten light bulb.
  • Furthermore, the two fork patterns may be made by coloring paints on the optical guide. The two fork patterns may be made by placing two metal strips. In such design, when the LED module emits the first light into the optical light guide, the enlightened pattern seems like a Tungsten filament supported by two metal strips, which provides a vivid replacement of traditional Tungsten filament bulb and particularly helpful for designing attractive light devices.
  • In some embodiments, the optical light guide is composed of multiple components to form a three-dimensional extended structure. For example, two or more units of plastic units may be made separately and assembled to form a three-dimension structure expanding in the bulb shell to provide a complicated three-dimension enlightened pattern.
  • In some embodiments, a lateral side of the optical light guide has grooves providing a part of the first light to escape. In other words, not only the top end of the optical light guide may provide enlightened pattern, the lateral side of the optical light guide may provide one or more other enlightened patterns, too.
  • In some embodiments, the groove near the top end of the optical light guide has different dimension as the groove near the bottom end so as to make escaped light strengths similar to each other. As the first light passing in the optical light guide, its strength gets weaker and weaker. Therefore, to make enlightened patterns more evenly, the groove near the bottom end of the optical light guide may have different processing, e.g. escaping less ratio of light, as the groove near the top end of the optical light guide.
  • In some embodiments, the optical light guide is made of Polymethyl Methacrylate (PMMA) material and the top end of the optical light guide is made by polished cutting. In other words, the polished cutting may be applied on surface of the optical light guide to form grooves, lens, or other optical structures for light to escape in different manners.
  • In some embodiments, the optical light guide is mixed with a coloring material for depressing a part of predetermined spectrum to adjust the color of the enlightened pattern. Its principle is like sun glasses. By using certain coloring into a transparent plastic material, certain parts of frequency may be depressed or blocked to change output color and output light characteristic.
  • In some embodiments, a fluorescent layer is applied on the optical light guide to change spectrum composition of the enlightened pattern. As known in the art of LED technologies, by applying suitable fluorescent layer for LED light to pass through, the LED light may be converted to another spectrum, e.g. from blue LED light to red or green light by using different fluorescent material. The fluorescent material may be mixed or applied in different places of the optical light guide. For example, the fluorescent material may be applied on the bottom end, the top end, or middle part of the optical light guide for adjusting output light and enlightened pattern characteristic. In some embodiments, the optical light guide comprises multiple components having bending parts to form a three-dimension structure. For example, the optical light guide may have two arms extending from the LED plate and the arms are bent for an angle near the top end of the arm. In such arrangement, when the enlightened pattern is at the top end of the optical light guide, the enlightened pattern is an extended three-dimension shape with a size larger than the bottom distance of the two arms. Three or more components may be adjusted to design various combination and variations of enlightened patterns.
  • According to the invention, the LED plate has a second LED module for not directly emitting a second light into the optical light guide and for emitting the second light as a luminous source.
  • Furthermore, the second LED module and the first LED module are controlled by the driver circuit independently to provide multiple operation combination of the first LED module and the second LED module. For example, in the night bed time, the second LED module is turned while the first LED module is turned on to provide a night light. In other time, the first LED and the second LED may be both turned on to provide a stronger luminous effect.
  • In addition to having only one enlightened pattern, according to the invention, a third LED module is provided and is able to be operated independently from the first LED module. In other words, users may change different enlightened patterns in the same light bulb. More interesting applications maybe derived based on this spirit and direction.
  • In some embodiments, the bottom end of the optical light guide has concave lens for distributing the first light evenly into the optical light guide.
  • Alternatively, in some other embodiments, the bottom end of the optical light guide has a convex lens for condensing the first light as a light beam into the optical light guide. The two different approaches may be used in different light device requirements.
  • In some embodiments, the optical light guide is made of Polycarbonate (PC) material and the enlightened pattern is formed with a laser light.
  • In some embodiments, the bulb shell has a thickness and the LED module emits a part of light transmitted in the bulb shell forming a second enlightened pattern.
  • Brief Description of Drawings
    • Fig. 1 is an exploded diagram of component in a light apparatus embodiment.
    • Fig. 2 is a side view of the embodiment in Fig. 1.
    • Fig. 3 is cross-sectional view of the embodiment in Fig. 2.
    • Fig. 4 illustrates examples of multiple bulb shells types that may be used to implement the invention.
    • Fig. 5 illustrates an optical light guide example.
    • Fig. 6 illustrates another optical light guide example.
    • Fig. 7 illustrates relation of LED modules and optical light guide parts.
    • Fig. 8 illustrates another way to simulate a Tungsten light bulb.
    • Fig. 9 illustrates another embodiment of the present invention.
    Detailed Description
  • Please refer to Fig. 1, Fig. 2 and Fig. 3. Fig. 1 is an exploded diagram of component in a light apparatus embodiment. Fig. 2 is a side view of the embodiment in Fig. 1. Fig. 3 is cross-sectional view of the embodiment in Fig. 2. The same reference numerals in Fig. 1, Fig. 2 and Fig. 3 refer to the same component.
  • In the embodiment of Fig. 1, Fig. 2 and Fig. 3, the light apparatus includes a bulb shell 10, an optical light guide 11, a connector 12, a LED plate 13, a cap 14 and a cap terminal 141. The cap 14 and the cap terminal 141 provides two electrodes connecting to a traditional Edison socket for receiving external power of 110V or 220V.
  • A driver circuit (not shown) contains circuits for converting the external power to a driving current supplying the LED modules mounted on the LED plate 13 to emit light.
  • Some LED modules emit a first light into the optical light guide. The first light firstly enters the bottom end 113 of the optical light guide 11, then travels in the optical light guide 11 and then escapes from the top end 111 to form an enlightened pattern. In this example, the top end 111 of the optical light guide 11 has multiple protruding structures 111 and the enlightened pattern is a beautiful crown shape.
  • In this example, as illustrated in Fig. 3, the optical light guide is a tube with a hollow spacing i112 n the middle of the tube. Some LED modules 131 on the LED plate 13 do not emit light directly into the optical light guide 11 and emits light as a luminous source. In other words, some LED modules 132 are used for creating the enlightened pattern while some other LED modules 131 may be used for providing luminous effect.
  • Fig. 2 shows a cross-sectional points A - A and Fig. 3 shows the associated cross-sectional view of this embodiment.
  • Fig. 4 illustrates examples of multiple bulb shells types that may be used to implement the invention. In addition to the bulb shell type in Fig. 1, Fig. 2 and Fig. 3, various bulb shells as illustrated in Fig. 4 may be used in the present invention. One or two alphabet letters commonly used in the art are attached below each of the bulb shell images.
  • In other words, there are various ways to combine the optical light guide mentioned above in addition to the illustrated type T in Fig. 1, Fig. 2 and Fig. 3.
  • Fig. 5 illustrates an optical light guide example. In Fig. 5, the optical light guide 52 has a narrower bottom and wider top portion. In addition the optical light guide in this example is made of two units 51, 52 assembled together. With such design, when a manufacturer wants to change enlightened pattern, the top unit 51 may be replaced while keeping the same bottom unit 52 unchanged. This saves certain stocking cost and molding cost and increases flexibility of design at the same time.
  • Fig. 6 illustrates another optical light guide example. In Fig. 6, the optical light guide has two arms 61, 62. The two arms are bent at a portion 612 to enlarge the expanded range of the top portion of the arms 61, 62. The enlightened pattern may be designed at the top edge 611, 621, or the lateral edge 622. In addition, certain pattern 623 may be formed like cutting grooves for light to escape on the lateral side of the optical light guide.
  • Fig. 7 illustrates relation of LED modules and optical light guide parts. In Fig. 7, the optical light guide 72 has a portion of bottom end forming concave lens 722 for distributing light from the LED module 712 more evenly in the optical light guide 72. In this illustrated example, the optical light guide 72 has another portion of bottom end forming convex lens 721 for converging light emitting from the LED modules 711 on the LED plate 71.
  • One or multiple types of lens may be applied on the optical light guide to achieve different design goals and requirements.
  • In addition, the LED plate 71 may be integrated and aligned with the optical light guide 72 with a connector 73. The connector 73 engages with both the optical light guide 72 and the LED plate 71. Since the LED plate 71 is a major heat source, the connector 73, in addition to fix and align the LED plate 71 to the optical light guide 72, heat of the LED plate 71 may be also transmitted to the optical light guide 72 to provide heat dissipation. The connector 73 may be made of metal ring or plastic material for heat dissipation.
  • Fig. 8 illustrates another way to simulate a Tungsten light bulb. In Fig. 8, two fork patterns 821, 822 are made on the optical light guide 81 by placing two metal strips to simulate a traditional Tungsten filament bulb. In the example of Fig. 8, the enlightened pattern 811 is designed to show between the top ends of the two metal strips. When the light apparatus is turned on, it is just looking like a traditional Tungsten filament bulb, which is very useful on designing certain decorative light devices while keeping advantage of LED technologies.
  • Fig. 9 illustrates another embodiment of the present invention. In Fig. 9, the bulb shell 91 has certain thickness and part of light 911 is transmitted into the bulb shell. In addition, the bulb shell 91 has a thicker part 913 at the top of the bulb shell 91. Certain enlightened pattern like Tungsten filament or other geometric shapes 912 may be formed to enrich design possibility of the present invention.
  • Based on the spirit of Fig. 9, the optical light guide may be integrated with the bulb shell. In some embodiments, the optical light guide may replace the bulb shell. In other words, the optical light guide may be made as a bulb shell and part of LED light is guided into the optical light guide. Furthermore, heat dissipation gas like He, H2 may be filled in the sealed chamber of the bulb shell, in this case the optical light guide, within 100 to 2000Torr.
  • According to an embodiment of the present invention, a light apparatus has a driver circuit, a LED plate, an optical light guide, a connector and a bulb shell. In an example, the light apparatus is a light bulb with a cap for storing the driver circuit and for installing into a standard Edison socket.
  • The driver circuit converts an external power source to a driving current. The LED plate is connected to the driver circuit and has a first LED module for emitting a first light with the driving current. Please be noted that the term 'plate' does not need to a flat board with a surface. For example, a surrounding belt for mounting a plurality of LED modules may also be regarded as a 'LED plate' mentioned in this application. The 'plate' does not need to be limited to one board. Multiple units may be referred as a 'plate' in this application, too.
  • The optical light guide has a bottom end facing to the first LED module for receiving the first light and has a top end forming an enlightened pattern where the first light escaped from the top end of the optical light guide. For example, the optical light guide is transparent like using transparent PMMA material or PC material and the top end forms a curved edge for light to escape and to form the enlightened pattern, e.g. a Tungsten filament.
  • The connector is used for fixing the LED plate to the optical light guide for aligning the first LED module to emit the first light into the bottom end and for transmitting heat of the LED plate to the optical light guide. The connector may be a ring with screw structures so as to match to the bulb shell, the optical light guide and the LED plate. The connector may be a part of a cap of a light bulb. The connector may be a part of the bulb shell. The connector may be any part for directly or indirectly connecting the optical light guide and the LED plate.
  • The bulb shell covers the optical light guide. The surface of the bulb shell may be mixed or coated with certain material for optimizing light output effect.
  • In some embodiments, the optical light guide is a tube structure.
  • Furthermore, in some embodiments, the top end of the tube structure has a plurality of protruding structures, a surface of the plurality of protruding structures forming the enlightened pattern.
  • In some embodiments, the LED plate further has a second LED module not directly emitting a second light into the optical light guide for emitting the second light as a luminous source.
  • In some other embodiments, the optical light guide is a plate with two fork patterns extended from the bottom end of the optical light guide to the top end of the optical light guide and the enlightened pattern appears like a Tungsten filament supported by the two fork patterns to simulate a Tungsten light bulb.
  • Furthermore, the two fork patterns may be made by coloring paints on the optical guide. The two fork patterns may be made by placing two metal strips. In such design, when the LED module emits the first light into the optical light guide, the enlightened pattern seems like a Tungsten filament supported by two metal strips, which provides a vivid replacement of traditional Tungsten filament bulb and particularly helpful for designing attractive light devices.
  • In some embodiments, the optical light guide is composed of multiple components to form a three-dimensional extended structure. For example, two or more units of plastic units may be made separately and assembled to form a three-dimension structure expanding in the bulb shell to provide a complicated three-dimension enlightened pattern.
  • In some embodiments, a lateral side of the optical light guide has grooves providing a part of the first light to escape. In other words, not only the top end of the optical light guide may provide enlightened pattern, the lateral side of the optical light guide may provide one or more other enlightened patterns, too.
  • In some embodiments, the groove near the top end of the optical light guide has different dimension as the groove near the bottom end so as to make escaped light strengths similar to each other. As the first light passing in the optical light guide, its strength gets weaker and weaker. Therefore, to make enlightened patterns more evenly, the groove near the bottom end of the optical light guide may have different processing, e.g. escaping less ratio of light, as the groove near the top end of the optical light guide.
  • In some embodiments, the optical light guide is made of Polymethyl Methacrylate (PMMA) material and the top end of the optical light guide is made by polished cutting. In other words, the polished cutting may be applied on surface of the optical light guide to form grooves, lens, or other optical structures for light to escape in different manners.
  • In some embodiments, the optical light guide is mixed with a coloring material for depressing a part of predetermined spectrum to adjust the color of the enlightened pattern. Its principle is like sun glasses. By using certain coloring into a transparent plastic material, certain parts of frequency may be depressed or blocked to change output color and output light characteristic.
  • In some embodiments, a fluorescent layer is applied on the optical light guide to change spectrum composition of the enlightened pattern. As known in the art of LED technologies, by applying suitable fluorescent layer for LED light to pass through, the LED light may be converted to another spectrum, e.g. from blue LED light to red or green light by using different fluorescent material. The fluorescent material may be mixed or applied in different places of the optical light guide. For example, the fluorescent material may be applied on the bottom end, the top end, or middle part of the optical light guide for adjusting output light and enlightened pattern characteristic.
  • In some embodiments, the optical light guide comprises multiple components having bending parts to form a three-dimension structure. For example, the optical light guide may have two arms extending from the LED plate and the arms are bent for an angle near the top end of the arm. In such arrangement, when the enlightened pattern is at the top end of the optical light guide, the enlightened pattern is an extended three-dimension shape with a size larger than the bottom distance of the two arms. Three or more components may be adjusted to design various combination and variations of enlightened patterns.
  • In some embodiments, the LED plate has a second LED module for not directly emitting a second light into the optical light guide and for emitting the second light as a luminous source.
  • Furthermore, the second LED module and the first LED module are controlled by the driver circuit independently to provide multiple operation combination of the first LED module and the second LED module. For example, in the night bed time, the second LED module is turned while the first LED module is turned on to provide a night light. In other time, the first LED and the second LED may be both turned on to provide a stronger luminous effect.
  • In addition to having only one enlightened pattern, in some embodiments, a third LED module may be provided and may be operated independently from the first LED module. In other words, users may change different enlightened patterns in the same light bulb. More interesting applications maybe derived based on this spirit and direction.
  • In some embodiments, the bottom end of the optical light guide has concave lens for distributing the first light evenly into the optical light guide.
  • Alternatively, in some other embodiments, the bottom end of the optical light guide has a convex lens for condensing the first light as a light beam into the optical light guide. The two different approaches may be used in different light device requirements.
  • In some embodiments, the optical light guide is made of Polycarbonate (PC) material and the enlightened pattern is formed with a laser light.
  • In some embodiments, the bulb shell has a thickness and the LED module emits a part of light transmitted in the bulb shell forming a second enlightened pattern.

Claims (13)

  1. A light apparatus, comprising:
    a driver circuit for converting an external power source to a driving current;
    a LED plate (13) being connected to the driver circuit and having a first LED module (132) for emitting a first light with the driving current;
    an optical light guide (11) having a bottom end (113) facing to the first LED module (132) for receiving the first light and having a top end (111) forming an enlightened pattern where the first light escapes from the top end (111) of the optical light guide (11);
    a connector (12) for fixing the LED plate (13) to the optical light guide (11) for aligning the first LED module (132) to emit the first light into the bottom end (113) and for transmitting heat of the LED plate (13) to the optical light guide; and
    a bulb shell (10) covering the optical light guide (11);
    wherein the LED plate (13) further has a second LED module (131) not directly emitting a second light into the optical light guide (11) for emitting the second light as a luminous source; characterized in that the LED plate further comprises a third LED module for emitting a third light into the optical light guide (11) to form a second enlightened pattern, the third LED module is operable independently from the first LED module to provide multiple operation combinations of the first LED module and the third LED module.
  2. The light apparatus of claim 1, wherein the optical light guide (11) is a tube structure; wherein the top end (111) of the tube structure has a plurality of protruding structures (1111), a surface of the plurality of protruding structures forming the enlightened pattern.
  3. The light apparatus of claim 1, wherein the optical light guide is a plate with two fork patterns (821, 822) extended from the bottom end of the optical light guide to the top end of the optical light guide and the enlightened pattern (811) appears like a Tungsten filament supported by the two fork patterns to simulate a Tungsten light bulb.
  4. The light apparatus of claim 3, wherein the two fork patterns are made by placing two metal strips.
  5. The light apparatus of claim 1, wherein the optical light guide is composed of multiple components to form a three-dimensional extended structure.
  6. The light apparatus of claim 1, wherein a lateral side of the optical light guide has grooves providing a part of the first light to escape; wherein the groove near the top end of the optical light guide has different dimension as the groove near the bottom end so as to make escaped light strengths similar to each other.
  7. The light apparatus of claim 1, wherein the optical light guide is made of Polymethyl Methacrylate (PMMA) material and the top end of the optical light guide is made by polished cutting; or wherein the optical light guide is made of Polycarbonate(PC) material and the enlightened pattern is formed with a laser light.
  8. The light apparatus of claim 1, wherein the optical light guide is mixed with a coloring material for depressing a part of predetermined spectrum to adjust the color of the enlightened pattern.
  9. The light apparatus of claim 1, wherein a fluorescent layer is applied on the optical light guide to change spectrum composition of the enlightened pattern.
  10. The light apparatus of claim 1, wherein the second LED module (131) and the first LED module (132) are controlled by the driver circuit independently to provide multiple operation combination of the first LED module and the second LED module.
  11. The light apparatus of claim 1, wherein the bottom end of the optical light guide has concave lens (722) for distributing the first light evenly into the optical light guide.
  12. The light apparatus of claim 1, wherein the bottom end of the optical light guide has a convex lens (721) for condensing the first light as a light beam into the optical light guide.
  13. The light apparatus of claim 1, wherein the bulb shell has a thickness and the LED module emits a part of light transmitted in the bulb shell forming a second enlightened pattern.
EP18168861.5A 2018-04-23 2018-04-23 Light apparatus with enlightened pattern Active EP3561367B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18168861.5A EP3561367B1 (en) 2018-04-23 2018-04-23 Light apparatus with enlightened pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18168861.5A EP3561367B1 (en) 2018-04-23 2018-04-23 Light apparatus with enlightened pattern

Publications (2)

Publication Number Publication Date
EP3561367A1 EP3561367A1 (en) 2019-10-30
EP3561367B1 true EP3561367B1 (en) 2020-12-02

Family

ID=62063340

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18168861.5A Active EP3561367B1 (en) 2018-04-23 2018-04-23 Light apparatus with enlightened pattern

Country Status (1)

Country Link
EP (1) EP3561367B1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9228702B2 (en) * 2009-03-23 2016-01-05 Eldolab Holding B.V. LED lamp comprising light guide including first and second diffusing surfaces
EP2578920A4 (en) * 2010-05-26 2014-10-29 Skg Co Ltd Illumination device
EP2574835A1 (en) * 2011-09-29 2013-04-03 Sumitronics Taiwan Co., Ltd. Light-guiding member and light bulb having the same
CN102506316A (en) * 2011-10-24 2012-06-20 宁波市佰仕电器有限公司 Light diffusion light-emitting diode (LED) lamp
US20130107516A1 (en) * 2011-10-27 2013-05-02 Chih-Shen Chou High-efficiency light-emitting diode lamp
CN103975189A (en) * 2011-12-14 2014-08-06 通用电气照明解决方案有限责任公司 Side-emitting guidepipe technology on led lamp to make filament effect
US9097396B2 (en) * 2012-09-04 2015-08-04 Cree, Inc. LED based lighting system
WO2014196498A1 (en) * 2013-06-04 2014-12-11 三菱化学株式会社 Lighting device and optical member
US10309585B2 (en) * 2013-08-06 2019-06-04 Signify Holding B.V. Light emitting device
GB201503487D0 (en) * 2015-03-02 2015-04-15 Buster & Punch Ltd Light Bulb
GB2539190B (en) * 2015-06-05 2021-02-03 Graphene Lighting Plc An LED light bulb
CN107339621B (en) * 2017-08-16 2023-06-16 常州市福兴电器有限公司 LED lamp with light guide body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3561367A1 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
US6472823B2 (en) LED tubular lighting device and control device
JP5669479B2 (en) Lighting device
CN107178712A (en) Light source module and the lighting device including it
US10948168B2 (en) Downlight apparatus
US8267565B2 (en) LED illumination device and LED illumination module for generating uniform stripped light source
CN103307481A (en) Light emitting device, and illumination apparatus and luminaire using same
CN103982838B (en) Ligthing paraphernalia
US20070133204A1 (en) Illumination device with hue transformation
US10837611B2 (en) Downlight apparatus
US11112064B2 (en) LED light bulb
JP6588570B2 (en) A luminaire containing multiple diffusers for mixing light
US9989222B2 (en) Light-emitting device
EP3561367B1 (en) Light apparatus with enlightened pattern
US11519563B2 (en) Light-emitting device
US10645768B2 (en) Light apparatus with enlightened pattern
US10006591B2 (en) LED lamp
EP2499425A1 (en) Diffusely radiating led light system
CN209880072U (en) Display device
EP3953639B1 (en) Solid state lamp
JP2014203793A (en) Illumination device
US20030016537A1 (en) Soft shell for a lighting bulb assembly
EP4042063B1 (en) A lighting device
WO2019228836A1 (en) Lighting module having a communication element
CN105156992A (en) White light source special for ceramic lampshade and manufacturing method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F21K 9/232 20160101ALI20200506BHEP

Ipc: F21V 29/504 20150101ALI20200506BHEP

Ipc: F21K 9/64 20160101ALI20200506BHEP

Ipc: F21K 9/61 20160101AFI20200506BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200623

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1341313

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018010251

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210302

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201202

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1341313

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210302

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210405

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018010251

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210402

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602018010251

Country of ref document: DE

26N No opposition filed

Effective date: 20210903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210423

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230309

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180423