EP3395463B1 - Cooling of a product which is to be rolled - Google Patents

Cooling of a product which is to be rolled Download PDF

Info

Publication number
EP3395463B1
EP3395463B1 EP17168241.2A EP17168241A EP3395463B1 EP 3395463 B1 EP3395463 B1 EP 3395463B1 EP 17168241 A EP17168241 A EP 17168241A EP 3395463 B1 EP3395463 B1 EP 3395463B1
Authority
EP
European Patent Office
Prior art keywords
coolant
cooling
nozzle
jet nozzles
full
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17168241.2A
Other languages
German (de)
French (fr)
Other versions
EP3395463A1 (en
Inventor
Erich Opitz
Lukas PICHLER
Alois Seilinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Original Assignee
Primetals Technologies Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58632897&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3395463(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Primetals Technologies Austria GmbH filed Critical Primetals Technologies Austria GmbH
Priority to EP17168241.2A priority Critical patent/EP3395463B1/en
Priority to US16/607,399 priority patent/US11358195B2/en
Priority to JP2019555876A priority patent/JP6946458B2/en
Priority to CN201880027555.1A priority patent/CN110536761B/en
Priority to PCT/EP2018/056437 priority patent/WO2018197100A2/en
Priority to EP18719050.9A priority patent/EP3615237A2/en
Publication of EP3395463A1 publication Critical patent/EP3395463A1/en
Publication of EP3395463B1 publication Critical patent/EP3395463B1/en
Application granted granted Critical
Priority to US17/716,000 priority patent/US11786949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • B21B2027/103Lubricating, cooling or heating rolls externally cooling externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/44Control of flatness or profile during rolling of strip, sheets or plates using heating, lubricating or water-spray cooling of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads

Definitions

  • the invention relates to a chilled beam for cooling a rolling stock moving in a transport direction.
  • the rolling stock When hot rolling of rolling stock, for example a slab, the rolling stock is formed by rolling at high temperatures. In order to cool the rolling stock, a coolant, usually water, is applied to the rolling stock. The temperature of the rolling stock often varies across the direction of transport. Such temperature differences can affect the quality of the rolling stock. Various cooling devices and methods are known to reduce these temperature differences.
  • WO 2014/170139 A1 discloses a cooling device for a flat rolling stock with a plurality of spray bars which extend transversely to a transport direction of the rolling stock.
  • the spray bars each have two outer regions and a central region arranged between the two outer regions, seen transversely to the transport direction, a liquid cooling medium being able to be fed into the regions each via a separate, individually controllable valve device.
  • DE 10 2007 053 523 A1 discloses a device for influencing the temperature distribution across the width of a slab or a strip, wherein at least one cooling device with nozzles is provided for applying a coolant to the slab or the strip.
  • the nozzles are arranged and / or controlled so as to be distributed over the width in such a way that a coolant is applied in particular to positions at which an elevated temperature can be determined.
  • WO 2006/076771 A1 discloses a hot rolling mill and a method of operating the same wherein the shape of a rolled strip is controlled by localized cooling devices.
  • the cooling devices are arranged at intervals along work rolls in at least three lateral zones.
  • DE 199 34 557 A1 discloses a device for cooling metal belts or metal sheets conveyed on a conveyor line, in particular hot-rolled steel belts in the outlet of a rolling mill, with at least one cooling beam, which extends essentially over the width of the conveyor line, for applying coolant to the metal belt or sheet to be cooled.
  • EP 0 081 132 A1 discloses a cooling device for uniformly cooling a thick steel plate, wherein a desired amount of water is discharged with a plurality of rod-like distributors in the width direction of the steel plate.
  • DE 198 54 675 A1 discloses a device for cooling a metal strip, in particular a hot wide strip, in the outlet of a rolling mill with at least two nozzles distributed over the width of the metal strip, with a control device regulating a cooling fluid stream emerging from each nozzle individually as a function of a detected temperature of a width section of the Metal strip controls which is assigned to the respective nozzle.
  • the JP 2011-194417 shows a chilled beam for cooling a rolling stock moving in a transport direction, the chilled beam comprising - a spray chamber that can be filled with a coolant, - a distributor chamber for temporarily storing the coolant, which is connected to the spray chamber through at least one passage opening for filling the spray chamber with coolant from the distributor chamber , wherein each passage opening is arranged between the distributor chamber and the spray chamber on an upper side of the distributor chamber, and a plurality of nozzles which can be fed with coolant from the spray chamber and through which a coolant jet of a coolant can be dispensed in a direction of discharge to the rolling stock, each nozzle has a tubular nozzle body which has an open end arranged in an upper region of the cooling beam within the spray chamber for feeding coolant into the full jet nozzle.
  • the invention has for its object a device for cooling a moving in a transport direction Specify rolling stock and a method for operating the device, which are improved in particular with regard to the compensation of temperature differences of the rolling stock transverse to the direction of transport.
  • a cooling beam designed according to an embodiment of the invention for cooling a rolling stock moving in a transport direction comprises a spray chamber which can be filled with a coolant and a plurality of full jet nozzles which can be fed with coolant from the spray chamber and through which in each case a coolant jet of a coolant with an almost constant jet diameter in a discharge direction to the rolling stock can be spent.
  • Each full jet nozzle has a tubular nozzle body which has an open end, which is arranged in an upper region of the cooling beam within the spray chamber, for feeding coolant into the full jet nozzle Filling the spray chamber with coolant from the distribution chamber is connected.
  • Each passage opening is arranged between the distributor chamber and the spray chamber on an upper side of the distributor chamber and the open end of the tubular nozzle body of a full jet nozzle is arranged above the height of the upper side of the distributor chamber.
  • a full jet nozzle is understood to mean a nozzle through which an essentially straight coolant jet with an almost constant jet diameter can be emitted.
  • the use of full jet nozzles has the advantage that the distance of the chilled beam from the rolling stock is not critical in a wide range, typically up to approximately 1500 mm, due to the essentially straight coolant jets and can therefore be varied in this range without the To have a negative influence on the cooling effect, since the cooling effect essentially only occurs at the direct impact points of the coolant jets.
  • full jet nozzles in comparison to the commonly used cone or flat jet nozzles results from the fact that full jet nozzles generate a higher impact pressure of the coolant on the rolling stock than cone or flat jet nozzles due to the bundled output of the coolant at the same coolant pressure in the cooling beam.
  • the higher impact pressure has a positive effect on the cooling effect on the surface of the rolling stock because there is always a certain coolant film with a thickness of typically several millimeters to centimeters due to the large amount of coolant applied, which should be penetrated as completely as possible by the incident coolant jets by one high relative speed of the coolant to the surface of the rolling stock and thus good heat dissipation.
  • the coolant jets from full jet nozzles do not influence one another, as can be the case with the cone or flat jet nozzles.
  • full jet nozzles for example, in contrast to cone or flat jet nozzles, which cause a jet expansion and therefore require a higher operating pressure - offer the possibility, due to the high impact pressure, of operating a cooling beam according to the invention at a relatively low coolant pressure, which has an advantageous effect on the energy consumption and the selection cheaper peripheral devices such as pumps.
  • a chilled beam according to the invention is fed with a coolant pressure of up to 10 bar in a high-pressure operation, a pressure which is still less than 1 bar below this coolant pressure still being achieved at a single full jet nozzle.
  • a chilled beam according to the invention can also be used in a laminar operation (low-pressure operation) Coolant pressure of, for example, only about 1 bar can be used.
  • full jet nozzles are considerably less sensitive to mechanical influences in comparison to the cone or flat jet nozzles, which is advantageous, for example, in the event of a strip break of the rolling stock with a striking strip end.
  • the division of the chilled beam into a spray chamber and a distributor chamber and the design of the chilled beam with full jet nozzles is particularly advantageous if the chilled beam is arranged above the rolling stock and the coolant is discharged downward onto the rolling stock, ie if the dispensing direction is at least approximately in the direction of the Gravity matches.
  • the embodiment according to the invention advantageously enables a relatively small amount of coolant to run out of the chilled beam and to be discharged onto the rolling stock when the rolling stock is interrupted after the coolant supply to the chilled beam is interrupted, while a large amount of coolant flows in the chilled beam remains.
  • the cooling beam can also be filled with coolant more quickly when the cooling is restarted due to the smaller volume to be filled than in the event that the cooling beam is completely emptied when the cooling is interrupted.
  • This is achieved by the intermediate storage of coolant in the distribution chamber, so that with a suitable arrangement of the at least one passage opening between the spray chamber and the distribution chamber, in particular with an arrangement on an upper side of the distribution chamber, the distribution chamber in whole or at least in part when the coolant supply is interrupted Coolant remains filled.
  • nozzle bodies of the full jet nozzles extend within the spray chamber into an upper region of the chilled beam, so that one Interruption of the coolant supply Coolant can only run from the area of the spray chamber above the open ends of the nozzle body and from the nozzle body itself, while the remaining volume of the spray chamber remains filled with coolant.
  • the design of a chilled beam with a distributor chamber also advantageously enables pressure gradients and flow turbulences in the spray chamber to be reduced by a suitable arrangement of the at least one passage opening to the spray chamber, in particular by an arrangement on an upper side of the distributor chamber, so that essentially all full jet nozzles of a chilled beam are subjected to the same pressure and an essentially laminar flow is achieved in the spray chamber.
  • An embodiment of a chilled beam provides that a nozzle density and / or an outlet diameter of the full jet nozzles varies transversely to the transport direction.
  • the nozzle density here means a number of nozzles per surface.
  • a further embodiment of a chilled beam according to the invention provides that the full jet nozzles are arranged in at least one row of nozzles running transversely to the transport direction.
  • a further development of this embodiment of a chilled beam provides that the full jet nozzles are arranged in a plurality of rows of nozzles running transversely to the transport direction, and that the full jet nozzles of different nozzle rows are arranged offset with respect to one another in the transport direction. This means an arrangement of the full jet nozzles of different nozzle rows in which the full jet nozzles of different nozzle rows are not arranged one behind the other along the transport direction and therefore do not form any nozzle rows running in the transport direction.
  • This staggered arrangement of the full jet nozzles of different nozzle rows advantageously achieves a particularly uniform cooling effect of the nozzle rows by avoiding "cooling fins" running in the transport direction, in which no coolant is dispensed onto the rolling stock.
  • a nozzle spacing of adjacent full jet nozzles of each row of nozzles can vary.
  • temperature differences in the temperature of the rolling stock which advantageously vary transversely to the transport direction can be reduced particularly well.
  • the distance between the nozzles may be the smallest in a central region of the discharge side of the chilled beam and may increase in each case to the edge regions.
  • Such a distribution of the full jet nozzles can advantageously be used for cooling a rolling stock, the temperature of which is highest in a central region and decreases towards the edge regions.
  • a further embodiment of a chilled beam according to the invention provides at least one coolant discharge device for discharging coolant, which is emitted by full jet nozzles arranged in an edge region of the spray chamber.
  • This so-called edge masking can advantageously prevent too much coolant from reaching an edge region of the rolling stock and thereby cooling the edge region too much.
  • FIGs 1 to 3 schematically show a first embodiment of a chilled beam 1 for cooling a rolling stock 5 moved in a transport direction 3 (see Figure 12 ).
  • Figure 1 1 shows a perspective view of the chilled beam 1
  • Figure 2 shows a sectional view of the chilled beam 1
  • Figure 3 shows a bottom view of the cooling beam 1.
  • the transport direction 3 defines a Y direction of a Cartesian coordinate system with coordinates X, Y, Z, the Z axis of which runs vertically upward, ie opposite to the direction of gravity.
  • the cooling beam 1 extends transversely to the transport direction 3 in the X direction across the width of the rolling stock 5.
  • the cooling beam 1 comprises a spray chamber 7, a distributor chamber 9, a plurality of full jet nozzles 11 and two optional coolant discharge devices 12.
  • the spray chamber 7 and the distributor chamber 9 are each designed as a cavity with a longitudinal axis running transversely to the transport direction 3 in the X direction.
  • the distribution chamber 9 has an essentially rectangular cross section in a plane perpendicular to its longitudinal axis.
  • the spray chamber 7 has a cross section in a plane perpendicular to its longitudinal axis, which essentially has the shape of the Greek capital letter gamma, the horizontal section of the gamma running above the distributor chamber 9.
  • the spray chamber 7 and the distributor chamber 9 are connected to one another by a plurality of passage openings 13.
  • the passage openings 13 are arranged transversely to the transport direction 3 in the X direction one behind the other on an upper side of the distribution chamber 9.
  • the distribution chamber 9 can be filled from the outside with a coolant, for example with cooling water, via a coolant inlet (not shown).
  • the spray chamber 7 can be filled with the coolant via the passage openings 13 from the distributor chamber 9.
  • each full jet nozzle 11 a coolant jet of the coolant with an almost constant jet diameter can be emitted from the spray chamber 7 from an output side 17 of the cooling beam 1 in an output direction 15 to the rolling stock 5.
  • the output direction 15 in this case is the direction of gravity, i.e. H. opposite to the Z direction.
  • the output side 17 is in this case the underside of the cooling beam 1.
  • Each full jet nozzle 11 has a tubular nozzle body 19 with a vertical, ie. H. parallel to the Z axis.
  • the nozzle body 19 runs inside the spray chamber 7 from a bottom of the spray chamber 7 to an open end 21 of the nozzle body 19, which is arranged in an upper region of the spray chamber 7 above the height of the upper side of the distributor chamber 9 and through the coolant from the spray chamber 7 in the full jet nozzle 11 can be fed.
  • the nozzle bodies 19 are designed, for example, as hollow cylinders or in each case narrow conically from their open end 21 to the bottom of the spray chamber 7.
  • the full jet nozzles 11 each have an outlet opening 22, the outlet diameter D of which is, for example, between 3 mm and 20 mm, preferably up to 12 mm.
  • This design of the cooling beam 1 advantageously has the effect that, in the event of an interruption in the cooling of the rolling stock 5 after the interruption of the coolant supply to the distribution chamber 9, coolant only comes from the area of the spray chamber 7 above the open ends 21 of the nozzle bodies 19 and from the nozzle bodies 19 themselves can run after the rolling stock 5, while the remaining volume of the spray chamber 7 and the distributor chamber 9 remain filled with coolant.
  • the cooling beam 1 also has a nozzle density of the full jet nozzles 11 which varies transversely to the transport direction 3, the nozzle density being in one middle area of the chilled beam 1 is maximal and decreases transversely to the transport direction 3 towards the edge areas of the chilled beam 1 (see Figure 3 ).
  • the full jet nozzles 11 are arranged in three nozzle rows 23 to 25 running transversely to the transport direction 3, the full jet nozzles 11 of different nozzle rows 23 to 25 being arranged offset with respect to one another in the transport direction 3.
  • the variation of the nozzle density transversely to the transport direction 3 is achieved in that a nozzle spacing d of adjacent full jet nozzles 11 of each row of nozzles 23 to 25 varies, the nozzle spacing d being minimal in the central region of the cooling beam 1 and transverse to the transport direction 3 to the edge regions of the Chilled beam 1 increases.
  • the nozzle distance d increases parabolically from the central area to each edge area of the chilled beam 1.
  • temperature differences of the rolling stock 5 can advantageously be reduced if the temperature of the rolling stock 5 decreases from a central region of the rolling stock 5 to the edge regions of the rolling stock 5.
  • the nozzle spacing d varies, for example, between 25 mm and 70 mm.
  • the optional coolant discharge devices 12 are each arranged under an edge region of the spray chamber 7 and are designed to collect and discharge coolant that is emitted by full jet nozzles 11 arranged in the respective edge region of the spray chamber 7 (so-called edge masking), so that the coolant does not fall onto the corresponding one Edge area of the rolling stock 5 arrives and the edge area of the rolling stock 5 cools too much.
  • each coolant discharge device 12 has a coolant collecting container 12.1 and a coolant discharge pipe 12.2.
  • the coolant discharge pipe 12.2 is arranged on an underside of the coolant collecting container 12.1 and serves to discharge coolant caught in the coolant collecting container 12.1.
  • the Figures 4 to 7 each show a further exemplary embodiment of a chilled beam 1 in a bottom view of the respective chilled beam 1.
  • the chilled beam 1 of each of these exemplary embodiments differs from that in FIGS Figures 1 to 3 shown cooling beam 1 only by the distribution of the full jet nozzles 11 transversely to the transport direction 3.
  • the full jet nozzles 11 are arranged in three nozzle rows 23 to 25 running transversely to the transport direction 3, the full jet nozzles 11 of different nozzle rows 23 to 25 being arranged offset with respect to one another in the transport direction 3.
  • Figure 4 shows a chilled beam 1 in which the nozzle spacing d of adjacent full jet nozzles 11 of each row of nozzles 23 to 25 decreases (for example parabolically) from the central region of the chilled beam 1 transversely to the transport direction 3 to the edge regions of the chilled beam 1, so that the nozzle density of the full jet nozzles 11 increases from the central region of the chilled beam 1 to the edge regions of the chilled beam 1.
  • temperature differences of the rolling stock 5 can advantageously be reduced if the temperature of the rolling stock 5 increases from a central region of the rolling stock 5 to the edge regions of the rolling stock 5.
  • Figure 5 shows a chilled beam 1, in which the nozzle spacing d of adjacent full jet nozzles 11 of all nozzle rows 23 to 25 is the same, but the nozzle rows 23 to 25 differ from one another in Figure 5 extend the right-hand edge area of the chilled beam 1 to the left, so that the nozzle density in the right-hand edge area has a maximum nozzle density.
  • temperature differences of the rolling stock 5 can advantageously be reduced if the temperature of the rolling stock 5 decreases from the right-hand edge area of the rolling stock 5 to the left-hand edge area of the rolling stock 5.
  • Figure 6 shows a chilled beam 1, in which the nozzle spacing d of adjacent full jet nozzles 11 of all nozzle rows 23 to 25 is also the same, but the nozzle rows 23 to 25 differ in distance from one another Figure 6 the left edge area of the chilled beam 1 extend to the right so that the nozzle density in the left edge area has a maximum nozzle density.
  • temperature differences of the rolling stock 5 can advantageously be reduced if the temperature of the rolling stock 5 decreases from the left-hand edge region of the rolling stock 5 to the right-hand edge region of the rolling stock 5.
  • Figure 7 shows a chilled beam 1, in which the nozzle spacing d of adjacent full jet nozzles 11 of all nozzle rows 23 to 25 is the same and the nozzle density transverse to the transport direction 3 is also constant.
  • a cooling beam 1 therefore effects uniform cooling of the rolling stock 5 transversely to the transport direction 3.
  • Figure 8 shows a chilled beam 1, which differs from that in Figure 7
  • the cooling beam 1 shown only differs in that the outlet diameter D of the full jet nozzles 11 varies transversely to the transport direction 3.
  • the outlet diameter D is maximum in the central region of the cooling beam 1 and decreases transversely to the transport direction 3 towards the edge regions of the cooling beam 1, the decrease being, for example, parabolic.
  • Exemplary embodiments of chilled beams 1 shown can be modified in various ways.
  • the distributor chamber 9 can be omitted in each case, the spray chamber 7 being filled with coolant directly instead of via the distributor chamber 9.
  • the full jet nozzles 11 can extend less or not at all into the spray chamber 7, ie the nozzle bodies 19 can be made shorter or can be omitted entirely.
  • the full jet nozzles 11 in one of Three different numbers of nozzle rows 23 to 25 can be arranged.
  • the exemplary embodiment shown can also be modified in such a way that the outlet diameter D of the full jet nozzles 11 transversely to the transport direction 3 in a different way than that in FIG Figure 8 shown cooling beam 1 varies.
  • the outlet diameter D in the central region of the chilled beam 1 can be minimal and increase transversely to the transport direction 3 towards the edge regions of the chilled beam 1, or the outlet diameter D can be maximal in an edge region of the chilled beam 1 and transversely to the transport direction 3 to the remove the edge area opposite this edge area.
  • Figure 9 shows schematically from in the Figures 1 to 8 Volume flow V 1 to V 5 of a coolant as a function of a position transversely to the direction of transport 3 shown cooling beam.
  • a first volume flow V 1 is in the Figures 3 and 8th shown cooling beam 1 generates and decreases from a central region of the cooling beam 1 to the edge regions, the decrease being, for example, parabolic.
  • a second volume flow V 2 is from the in Figure 4 shown cooling beam 1 generates and increases from a central region of the cooling beam 1 to the edge regions, the increase being parabolic, for example.
  • a third volume flow V 3 is from the in Figure 5 shown cooling bar 1 generates and decreases from a first edge area to the second Ran area of the cooling bar 1 down.
  • a fourth volume flow V 4 is from the in Figure 6 shown cooling beam 1 generates and takes from the second Edge area towards the first ran area of the chilled beam 1.
  • a fifth volume flow V 5 is from the in Figure 7 shown cooling beam 1 is generated and is constant across the transport direction 3.
  • FIG 10 shows a sectional view of a further embodiment of a chilled beam 1.
  • the distributor chamber 9 is arranged below the spray chamber 7.
  • the spray chamber 7 and the distributor chamber 9 are connected to one another by a plurality of passage openings 13, and the cooling beam 1 has a plurality of full jet nozzles 11, each of which has a tubular nozzle body 19 with a cylinder axis running vertically, ie parallel to the Z axis.
  • the nozzle bodies 19 each run from a bottom of the distributor chamber 9 through the distributor chamber 9 into the spray chamber 7, where they each have an open end 21 through which coolant can be fed from the spray chamber 7 into the full jet nozzle 11.
  • the full jet nozzles 11 in turn have a nozzle density that varies transversely to the transport direction 3 and can, for example, be analogous to any of those shown in FIGS Figures 1 to 6 shown embodiments can be arranged distributed.
  • Figure 11 shows a sectional view of a further exemplary embodiment of a cooling beam 1.
  • the distributor chamber 9 is arranged below the spray chamber 7.
  • the spray chamber 7 and the distributor chamber 9 are in turn connected to one another by a plurality of passage openings 13 and the cooling beam 1 has a plurality of full jet nozzles 11.
  • the full jet nozzles 11 are led out of the spray chamber 7 on an upper side and directed straight upwards, so that they discharge coolant upwards.
  • An in Figure 11 The cooling beam 1 shown is therefore intended to be arranged below the rolling stock 5 and to output coolant to an underside of the rolling stock 5.
  • the Full jet nozzles 11 can in turn have a nozzle density that varies transversely to the transport direction 3.
  • FIG 12 shows schematically a rolling train 27 for hot rolling a rolling stock 5, which is transported in a transport direction 3 through the rolling train 27.
  • the rolling train 27 comprises a finishing train 29 and a cooling section 31.
  • a plurality of rolling stands 33 are arranged one behind the other, with which the rolling stock 5 is formed.
  • two roll stands 33 are shown by way of example; However, the finishing train 29 can also have a different number of roll stands 33.
  • the cooling section 31 adjoins the finishing train 29 and has a cooling device 35 for cooling the rolling stock 5.
  • the cooling device 35 comprises a plurality of cooling beams 1, a temperature measuring device 37 and a control device 39.
  • Each cooling beam 1 has a plurality of full jet nozzles 11, through which a coolant jet of a coolant with an almost constant jet diameter can be emitted to the rolling stock 5.
  • Some chilled beams 1 are arranged one behind the other above the rolling stock 5 and emit coolant jets downwards onto an upper side of the rolling stock 5.
  • the other chilled beams 1 are arranged one behind the other below the rolling stock 5 and emit coolant jets upwards onto an underside of the rolling stock 5.
  • five cooling beams 1 arranged above and five below the rolling stock 5 are shown by way of example; however, the cooling device 35 can also have other numbers of cooling beams 1 arranged above and / or below the rolling stock 5.
  • the remaining chilled beams 1 have a constant nozzle density like that in Figure 7 shown embodiment.
  • the cooling bars 1 with varying nozzle densities and / or varying outlet diameters D are preferably (in relation to the transport direction 3) arranged in front of the cooling bars 1 with constant nozzle densities. It is thereby achieved that at the beginning of the cooling section 31, where the temperature of the rolling stock 5 is still very high, local temperature differences transversely to the transport direction 3 can be reduced by cooling bars 1 with nozzle densities varying transversely to the transport direction 3, while subsequent cooling beams 1 with constant nozzle densities only reduce the total temperature of the rolling stock 5 which is tempered uniformly transversely to the transport direction 3.
  • the first four cooling beams 1 arranged above the rolling stock 5 and the first four cooling beams 1 arranged below the rolling stock 5 each comprise a cooling beam 1 with a nozzle density that is analogous to Figure 3 decreases from a central region of the chilled beam 1 to the edge regions of the chilled beam 1, a chilled beam 1 with a nozzle density that is analogous to Figure 4 increases from a central region of the chilled beam 1 to the edge regions of the chilled beam 1, a chilled beam 1 with a nozzle density that is analogous to Figure 5 from one (in Figure 5 right edge) of the first edge area of the chilled beam 1 to the (in Figure 5 left) second edge area of the cooling beam 1 decreases, and a cooling beam 1 with a nozzle density, which is analogous to Figure 6 increases from the first edge region of the cooling beam 1 to the second edge region of the cooling beam 1.
  • the chilled beams 1 arranged above the rolling stock 5 preferably each have full jet nozzles 11 and / or a spray chamber 7 and a distributor chamber 9 as shown in FIGS Figures 1 and 2 shown cooling beam 1, in order to keep coolant from these cooling beams 1 on the rolling stock 5 when the coolant supply is interrupted Reduce chilled beams 1.
  • the cooling beams 1 arranged below the rolling stock 5 can be of simpler design, ie these cooling beams 1 can have simply designed full jet nozzles 11 without elongated nozzle bodies 19 and / or cannot be divided into a spray chamber 7 and a distribution chamber 9, since they are arranged below the rolling stock 5 Chilled beam 1 in the event of an interruption in the coolant supply to the chilled beam 1, no coolant can run onto the rolling stock 5.
  • the temperature measuring device 37 is preferably as in FIG Figure 12 shown arranged in front of the cooling beam 1 of the cooling device 35.
  • a further temperature measuring device 37 can be arranged behind a chilled beam 1 of the cooling device 35.
  • the temperature measuring device 37 is designed to determine a temperature distribution of a temperature of the rolling stock 5 transverse to the transport direction 3.
  • the temperature measuring device 37 has an infrared scanner for temperature detection with an accuracy of preferably ⁇ 2 ° C.
  • the control device 39 is designed to control flow rates of coolant to the individual chilled beams 1 as a function of the temperature distribution of the temperature of the rolling stock 5 ascertained with the temperature measuring device 37 transversely to the transport direction 3.
  • the control device 39 comprises a control unit 47, two coolant pumps 49 and a control valve 51 for each chilled beam 1.
  • the flow rate of coolant to one of the chilled beams 1 can be set by each control valve 51.
  • the control valves 51 of the cooling beam 1 arranged above the rolling stock 5 are connected to one of the two coolant pumps 49, the control valves 51 of the cooling beam 1 arranged below the rolling stock 5 are connected to the other coolant pump 49.
  • Coolant pumps 49 can also be provided with a different number of coolant pumps 49, for example only one coolant pump 49, which is connected to all control valves 51, or more than two coolant pumps 49, which are each connected to only one control valve 51 or to a subset of the control valves 51 .
  • an elevated tank filled with coolant can also be provided, which is arranged at a suitable height above the control valves 51 and through which the control valves 51 are supplied with coolant.
  • coolant pumps 49 or an elevated tank can even be dispensed with entirely. Since the chilled beams 1 each have full jet nozzles 11, it is generally sufficient to supply the chilled beams 1 with a coolant pressure of approximately 4 bar.
  • a typical flow rate of coolant in a chilled beam 1 is approximately 175 m 3 / h.
  • the control unit 47 is supplied with the measurement signals detected by the temperature measurement device 37.
  • the coolant pumps 49 and control valves 51 can be controlled by the control unit 47.
  • Flow rates of coolant to the individual chilled beams 1 - in particular to those with varying nozzle densities - are calculated by the control unit 47 as a function of the temperature distribution detected by the temperature measuring device 37 and adjusted by control of the control valves 51 in order to make temperature differences in the temperature of the rolling stock 5 transverse to that Transport direction 3 by using and a suitable combination of the cooling beams 1 with varying nozzle densities and to reduce the temperature of the rolling stock 5 overall to a desired value, for example a reel temperature.
  • the flow rates of coolant to the individual chilled beams 1 are determined by the control unit 47, for example on the basis of a model from parameters of the Rolled stock 5 calculated as its thickness, temperature and / or heat capacity.

Description

Die Erfindung betrifft einen Kühlbalken zur Kühlung eines in einer Transportrichtung bewegten Walzguts.The invention relates to a chilled beam for cooling a rolling stock moving in a transport direction.

Beim Warmwalzen von Walzgut, beispielsweise einer Bramme, wird das Walzgut durch Walzen bei hohen Temperaturen umgeformt. Um das Walzgut abzukühlen, wird ein Kühlmittel, in der Regel Wasser, auf das Walzgut aufgebracht. Die Temperatur des Walzguts variiert oft quer zur Transportrichtung. Derartige Temperaturunterschiede können die Qualität des Walzguts beeinträchtigen. Um diese Temperaturunterschiede zu reduzieren, sind verschiedene Kühlvorrichtungen und - verfahren bekannt.When hot rolling of rolling stock, for example a slab, the rolling stock is formed by rolling at high temperatures. In order to cool the rolling stock, a coolant, usually water, is applied to the rolling stock. The temperature of the rolling stock often varies across the direction of transport. Such temperature differences can affect the quality of the rolling stock. Various cooling devices and methods are known to reduce these temperature differences.

WO 2014/170139 A1 offenbart eine Kühleinrichtung für ein flaches Walzgut mit mehreren Spritzbalken, die sich quer zu einer Transportrichtung des Walzguts erstrecken. Die Spritzbalken weisen jeweils quer zur Transportrichtung gesehen zwei äußere Bereiche und einen zwischen den beiden äußeren Bereichen angeordneten mittleren Bereich auf, wobei in die Bereiche über je eine eigene, individuell ansteuerbare Ventileinrichtung ein flüssiges Kühlmedium einspeisbar ist. WO 2014/170139 A1 discloses a cooling device for a flat rolling stock with a plurality of spray bars which extend transversely to a transport direction of the rolling stock. The spray bars each have two outer regions and a central region arranged between the two outer regions, seen transversely to the transport direction, a liquid cooling medium being able to be fed into the regions each via a separate, individually controllable valve device.

DE 10 2007 053 523 A1 offenbart eine Vorrichtung zur Beeinflussung der Temperaturverteilung über die Breite einer Bramme oder eines Bandes, wobei zumindest eine Kühlvorrichtung mit Düsen zur Aufbringung eines Kühlmittels auf die Bramme oder auf das Band vorgesehen ist. Die Düsen werden über die Breite derart verteilt angeordnet und/oder angesteuert, dass insbesondere Positionen, an welchen eine erhöhte Temperatur ermittelbar ist, ein Kühlmittel appliziert wird. DE 10 2007 053 523 A1 discloses a device for influencing the temperature distribution across the width of a slab or a strip, wherein at least one cooling device with nozzles is provided for applying a coolant to the slab or the strip. The nozzles are arranged and / or controlled so as to be distributed over the width in such a way that a coolant is applied in particular to positions at which an elevated temperature can be determined.

WO 2006/076771 A1 offenbart ein Warmwalzwerk und ein Verfahren zu dessen Betrieb, wobei die Form eines gewalzten Bandes durch lokalisierte Kühlvorrichtungen gesteuert wird. WO 2006/076771 A1 discloses a hot rolling mill and a method of operating the same wherein the shape of a rolled strip is controlled by localized cooling devices.

Die Kühlvorrichtungen sind in Abständen entlang von Arbeitswalzen in mindestens drei seitlichen Zonen angeordnet.The cooling devices are arranged at intervals along work rolls in at least three lateral zones.

DE 199 34 557 A1 offenbart eine Vorrichtung zum Kühlen von auf einer Förderstrecke geförderten Metallbändern oder Metallblechen, insbesondere von warmgewalzten Stahlbändern im Auslauf einer Walzstraße, mit mindestens einem sich im Wesentlichen über die Breite der Förderstrecke erstreckenden Kühlbalken zum Aufbringen von Kühlflüssigkeit auf das zu kühlende Metallband oder -blech. DE 199 34 557 A1 discloses a device for cooling metal belts or metal sheets conveyed on a conveyor line, in particular hot-rolled steel belts in the outlet of a rolling mill, with at least one cooling beam, which extends essentially over the width of the conveyor line, for applying coolant to the metal belt or sheet to be cooled.

EP 0 081 132 A1 offenbart eine Kühlvorrichtung zur gleichmäßigen Kühlung einer dicken Stahlplatte, wobei eine gewünschte Wassermenge mit mehreren stabartigen Verteilern in der Breitenrichtung der Stahlplatte ausgegeben wird. EP 0 081 132 A1 discloses a cooling device for uniformly cooling a thick steel plate, wherein a desired amount of water is discharged with a plurality of rod-like distributors in the width direction of the steel plate.

DE 198 54 675 A1 offenbart eine Vorrichtung zum Kühlen eines Metallbandes, insbesondere eines Warmbreitbandes, im Auslauf einer Walzstraße mit mindestens zwei über die Breite des Metallbandes verteilt angeordneten Düsen, wobei eine Steuer- und Regeleinrichtung einen aus jeder Düse austretenden Kühlfluidstrom einzeln in Abhängigkeit von einer erfassten Temperatur eines Breitenabschnitts des Metallbandes steuert, welcher der jeweiligen Düse zugeordnet ist. DE 198 54 675 A1 discloses a device for cooling a metal strip, in particular a hot wide strip, in the outlet of a rolling mill with at least two nozzles distributed over the width of the metal strip, with a control device regulating a cooling fluid stream emerging from each nozzle individually as a function of a detected temperature of a width section of the Metal strip controls which is assigned to the respective nozzle.

Die JP 2011-194417 zeigt einen Kühlbalken zur Kühlung eines in einer Transportrichtung bewegten Walzguts, der Kühlbalken umfassend- eine mit einem Kühlmittel befüllbare Sprühkammer,- eine Verteilerkammer zur Zwischenspeicherung des Kühlmittels, die mit der Sprühkammer durch wenigstens eine Durchlassöffnung zur Befüllung der Sprühkammer mit Kühlmittel aus der Verteilerkammer verbunden ist,-wobei jede Durchlassöffnung zwischen der Verteilerkammer und der Sprühkammer an einer Oberseite der Verteilerkammer angeordnet ist,- und mehrere aus der Sprühkammer mit Kühlmittel speisbare Düsen, durch die jeweils ein Kühlmittelstrahl eines Kühlmittels in einer Ausgaberichtung zu dem Walzgut ausgebbar ist,- wobei jede Düse einen rohrartigen Düsenkörper aufweist, der ein in einem oberen Bereich des Kühlbalkens innerhalb der Sprühkammer angeordnetes offenes Ende zur Einspeisung von Kühlmittel in die Vollstrahldüse aufweist.The JP 2011-194417 shows a chilled beam for cooling a rolling stock moving in a transport direction, the chilled beam comprising - a spray chamber that can be filled with a coolant, - a distributor chamber for temporarily storing the coolant, which is connected to the spray chamber through at least one passage opening for filling the spray chamber with coolant from the distributor chamber , wherein each passage opening is arranged between the distributor chamber and the spray chamber on an upper side of the distributor chamber, and a plurality of nozzles which can be fed with coolant from the spray chamber and through which a coolant jet of a coolant can be dispensed in a direction of discharge to the rolling stock, each nozzle has a tubular nozzle body which has an open end arranged in an upper region of the cooling beam within the spray chamber for feeding coolant into the full jet nozzle.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Kühlung eines in einer Transportrichtung bewegten Walzguts und ein Verfahren zum Betrieb der Vorrichtung anzugeben, die insbesondere hinsichtlich des Ausgleichs von Temperaturunterschieden des Walzguts quer zur Transportrichtung verbessert sind.The invention has for its object a device for cooling a moving in a transport direction Specify rolling stock and a method for operating the device, which are improved in particular with regard to the compensation of temperature differences of the rolling stock transverse to the direction of transport.

Die Aufgabe wird erfindungsgemäß durch einen Kühlbalken mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved by a chilled beam with the features of claim 1.

Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.Advantageous embodiments of the invention are the subject of the dependent claims.

Ein gemäß einer erfindungsgemäßen Ausführungsform ausgebildeter Kühlbalken zur Kühlung eines in einer Transportrichtung bewegten Walzguts umfasst eine mit einem Kühlmittel befüllbare Sprühkammer und mehrere aus der Sprühkammer mit Kühlmittel speisbare Vollstrahldüsen, durch die jeweils ein Kühlmittelstrahl eines Kühlmittels mit einem nahezu konstanten Strahldurchmesser in einer Ausgaberichtung zu dem Walzgut ausgebbar ist. Jede Vollstrahldüse weist einen rohrartigen Düsenkörper auf, der ein in einem oberen Bereich des Kühlbalkens innerhalb der Sprühkammer angeordnetes offenes Ende zur Einspeisung von Kühlmittel in die Vollstrahldüse aufweist.Dabei ist eine Verteilerkammer zur Zwischenspeicherung des Kühlmittels vorgesehen, die mit der Sprühkammer durch wenigstens eine Durchlassöffnung zur Befüllung der Sprühkammer mit Kühlmittel aus der Verteilerkammer verbunden ist. Jede Durchlassöffnung ist zwischen der Verteilerkammer und der Sprühkammer an einer Oberseite der Verteilerkammer angeordnet und das offene Ende des rohrartigen Düsenkörpers einer Vollstrahldüse ist oberhalb der Höhe der Oberseite der Verteilerkammer angeordnet.A cooling beam designed according to an embodiment of the invention for cooling a rolling stock moving in a transport direction comprises a spray chamber which can be filled with a coolant and a plurality of full jet nozzles which can be fed with coolant from the spray chamber and through which in each case a coolant jet of a coolant with an almost constant jet diameter in a discharge direction to the rolling stock can be spent. Each full jet nozzle has a tubular nozzle body which has an open end, which is arranged in an upper region of the cooling beam within the spray chamber, for feeding coolant into the full jet nozzle Filling the spray chamber with coolant from the distribution chamber is connected. Each passage opening is arranged between the distributor chamber and the spray chamber on an upper side of the distributor chamber and the open end of the tubular nozzle body of a full jet nozzle is arranged above the height of the upper side of the distributor chamber.

Diese Ausführung eines Kühlbalkens ermöglicht die Ausgabe von Kühlmittel aus der Sprühkammer zu dem Walzgut durch Vollstrahldüsen. Unter einer Vollstrahldüse wird eine Düse verstanden, durch die ein im Wesentlichen gerader Kühlmittelstrahl mit einem nahezu konstanten Strahldurchmesser ausgebbar ist. Die Verwendung von Vollstrahldüsen hat den Vorteil, dass der Abstand des Kühlbalkens von dem Walzgut aufgrund der im Wesentlichen geraden Kühlmittelstrahlen in einem weiten Bereich, typischerweise bis etwa 1500 mm, unkritisch ist und daher in diesem Bereich variiert werden kann, ohne dabei die Kühlwirkung negativ zu beeinflussen, da die Kühlwirkung im Wesentlichen nur an den unmittelbaren Aufprallstellen der Kühlmittelstrahlen auftritt.This design of a chilled beam enables coolant to be discharged from the spray chamber to the rolling stock through full jet nozzles. A full jet nozzle is understood to mean a nozzle through which an essentially straight coolant jet with an almost constant jet diameter can be emitted. The use of full jet nozzles has the advantage that the distance of the chilled beam from the rolling stock is not critical in a wide range, typically up to approximately 1500 mm, due to the essentially straight coolant jets and can therefore be varied in this range without the To have a negative influence on the cooling effect, since the cooling effect essentially only occurs at the direct impact points of the coolant jets.

Ein weiterer Vorteil von Vollstrahldüsen im Vergleich zu üblicherweise verwendeten Kegel- oder Flachstrahldüsen resultiert daraus, dass Vollstrahldüsen durch die gebündelte Ausgabe des Kühlmittels bei gleichem Kühlmitteldruck in dem Kühlbalken einen höheren Aufschlagdruck des Kühlmittels auf dem Walzgut als Kegel- oder Flachstrahldüsen erzeugen. Der höhere Aufschlagdruck wirkt sich positiv auf die Kühlwirkung an der Walzgutoberfläche aus, weil dort aufgrund der insgesamt großen aufgebrachten Kühlmittelmenge stets ein bestimmter Kühlmittelfilm mit einer Dicke von typischerweise mehreren Millimetern bis Zentimetern besteht, der von den auftreffenden Kühlmittelstrahlen möglichst vollständig durchstoßen werden sollte, um eine hohe Relativgeschwindigkeit des Kühlmittels zur Walzgutoberfläche und damit eine gute Wärmeabfuhr zu erreichen. Zudem beeinflussen sich auch bei sehr enger Düsenanordnung die Kühlmittelstrahlen von Vollstrahldüsen nicht gegenseitig, wie dies bei den Kegel- oder Flachstrahldüsen der Fall sein kann.Another advantage of full jet nozzles in comparison to the commonly used cone or flat jet nozzles results from the fact that full jet nozzles generate a higher impact pressure of the coolant on the rolling stock than cone or flat jet nozzles due to the bundled output of the coolant at the same coolant pressure in the cooling beam. The higher impact pressure has a positive effect on the cooling effect on the surface of the rolling stock because there is always a certain coolant film with a thickness of typically several millimeters to centimeters due to the large amount of coolant applied, which should be penetrated as completely as possible by the incident coolant jets by one high relative speed of the coolant to the surface of the rolling stock and thus good heat dissipation. In addition, even with a very narrow nozzle arrangement, the coolant jets from full jet nozzles do not influence one another, as can be the case with the cone or flat jet nozzles.

Zudem bieten Vollstrahldüsen - beispielsweise im Unterschied zu Kegel- oder Flachstrahldüsen, die eine Strahlaufweitung verursachen und daher einen höheren Betriebsdruck benötigen - aufgrund des hohen Aufschlagdrucks die Möglichkeit, einen erfindungsgemäßen Kühlbalken bei relativ geringem Kühlmitteldruck zu betreiben, was sich vorteilig auf den Energieverbrauch und die Auswahl kostengünstigerer Peripheriegeräte wie Pumpen auswirkt. Beispielsweise wird ein erfindungsgemäßer Kühlbalken in einem Hochdruckbetrieb mit einem Kühlmitteldruck von bis zu 10 bar angespeist, wobei an einer einzelnen Vollstrahldüse noch immer ein Druck erreicht wird, der um weniger als 1 bar unter diesem Kühlmitteldruck liegt. Alternativ kann ein erfindungsgemäßer Kühlbalken aber auch in einem Laminarbetrieb (Niederdruckbetrieb) bei einem Kühlmitteldruck von beispielsweise etwa nur 1 bar eingesetzt werden.In addition, full jet nozzles - for example, in contrast to cone or flat jet nozzles, which cause a jet expansion and therefore require a higher operating pressure - offer the possibility, due to the high impact pressure, of operating a cooling beam according to the invention at a relatively low coolant pressure, which has an advantageous effect on the energy consumption and the selection cheaper peripheral devices such as pumps. For example, a chilled beam according to the invention is fed with a coolant pressure of up to 10 bar in a high-pressure operation, a pressure which is still less than 1 bar below this coolant pressure still being achieved at a single full jet nozzle. Alternatively, a chilled beam according to the invention can also be used in a laminar operation (low-pressure operation) Coolant pressure of, for example, only about 1 bar can be used.

Des Weiteren sind Vollstrahldüsen aufgrund ihres kompakten und stabilen Aufbaus gegenüber mechanischen Einwirkungen wesentlich unempfindlicher im Vergleich zu den Kegel- oder Flachstrahldüsen, was beispielsweise im Falle eines Bandrisses des Walzguts mit einem schlagenden Bandende von Vorteil ist.Furthermore, due to their compact and stable construction, full jet nozzles are considerably less sensitive to mechanical influences in comparison to the cone or flat jet nozzles, which is advantageous, for example, in the event of a strip break of the rolling stock with a striking strip end.

Die Aufteilung des Kühlbalkens in eine Sprühkammer und eine Verteilerkammer und die Ausführung des Kühlbalkens mit Vollstrahldüsen ist besonders vorteilhaft, wenn der Kühlbalken oberhalb des Walzguts angeordnet ist und das Kühlmittel nach unten auf das Walzgut ausgegeben wird, d. h. wenn die Ausgaberichtung wenigstens annähernd mit der Richtung der Schwerkraft übereinstimmt. In diesem Fall ermöglicht nämlich die erfindungsgemäße Ausführung vorteilhaft, dass bei einer Unterbrechung der Kühlung des Walzguts nach der Unterbrechung der Kühlmittelzuführung zu dem Kühlbalken eine relativ geringe Menge von Kühlmittel aus dem Kühlbalken nachläuft und auf das Walzgut ausgegeben wird, während eine große Menge von Kühlmittel in dem Kühlbalken verbleibt. Dadurch kann der Kühlbalken bei einer Wiederaufnahme der Kühlung durch das geringere zu befüllende Volumen auch schneller mit Kühlmittel gefüllt werden als im Falle, dass der Kühlbalken bei einer Unterbrechung der Kühlung vollständig geleert wird. Dies wird durch die Zwischenspeicherung von Kühlmittel in der Verteilerkammer erreicht, wodurch bei einer geeigneten Anordnung der wenigstens einen Durchlassöffnung zwischen der Sprühkammer und der Verteilerkammer, insbesondere bei einer Anordnung an einer Oberseite der Verteilerkammer, die Verteilerkammer bei einer Unterbrechung der Kühlmittelzuführung ganz oder zumindest teilweise mit Kühlmittel befüllt bleibt. Zudem wird dies dadurch erreicht, dass sich die Düsenkörper der Vollstrahldüsen innerhalb der Sprühkammer bis in einen oberen Bereich des Kühlbalkens erstrecken, so dass bei einer Unterbrechung der Kühlmittelzuführung Kühlmittel nur aus dem oberhalb der offenen Enden der Düsenkörper liegenden Bereich der Sprühkammer sowie aus den Düsenkörpern selbst nachlaufen kann, während das übrige Volumen der Sprühkammer mit Kühlmittel befüllt bleibt.The division of the chilled beam into a spray chamber and a distributor chamber and the design of the chilled beam with full jet nozzles is particularly advantageous if the chilled beam is arranged above the rolling stock and the coolant is discharged downward onto the rolling stock, ie if the dispensing direction is at least approximately in the direction of the Gravity matches. In this case, the embodiment according to the invention advantageously enables a relatively small amount of coolant to run out of the chilled beam and to be discharged onto the rolling stock when the rolling stock is interrupted after the coolant supply to the chilled beam is interrupted, while a large amount of coolant flows in the chilled beam remains. As a result, the cooling beam can also be filled with coolant more quickly when the cooling is restarted due to the smaller volume to be filled than in the event that the cooling beam is completely emptied when the cooling is interrupted. This is achieved by the intermediate storage of coolant in the distribution chamber, so that with a suitable arrangement of the at least one passage opening between the spray chamber and the distribution chamber, in particular with an arrangement on an upper side of the distribution chamber, the distribution chamber in whole or at least in part when the coolant supply is interrupted Coolant remains filled. In addition, this is achieved in that the nozzle bodies of the full jet nozzles extend within the spray chamber into an upper region of the chilled beam, so that one Interruption of the coolant supply Coolant can only run from the area of the spray chamber above the open ends of the nozzle body and from the nozzle body itself, while the remaining volume of the spray chamber remains filled with coolant.

Die Ausführung eines Kühlbalkens mit einer Verteilerkammer ermöglicht ferner vorteilhaft, durch eine geeignete Anordnung der wenigstens einen Durchlassöffnung zu der Sprühkammer, insbesondere durch eine Anordnung an einer Oberseite der Verteilerkammer, Druckgradienten und Strömungsturbulenzen in der Sprühkammer zu reduzieren, so dass alle Vollstrahldüsen eines Kühlbalkens im Wesentlichen mit demselben Druck beaufschlagt werden und eine im Wesentlichen laminare Strömung in der Sprühkammer erzielt wird.The design of a chilled beam with a distributor chamber also advantageously enables pressure gradients and flow turbulences in the spray chamber to be reduced by a suitable arrangement of the at least one passage opening to the spray chamber, in particular by an arrangement on an upper side of the distributor chamber, so that essentially all full jet nozzles of a chilled beam are subjected to the same pressure and an essentially laminar flow is achieved in the spray chamber.

Eine Ausgestaltung eines Kühlbalkens sieht vor, dass eine Düsendichte oder/und ein Auslassdurchmesser der Vollstrahldüsen quer zu der Transportrichtung variiert. Unter der Düsendichte wird hier eine Düsenanzahl pro Fläche verstanden. Durch die Variation der Düsendichte oder/und des Auslassdurchmessers der Vollstrahldüsen quer zu der Transportrichtung wird eine entsprechende Variation der Kühlwirkung des Kühlbalkens quer zu der Transportrichtung erreicht, durch die vorteilhaft Temperaturunterschiede des Walzguts quer zu der Transportrichtung reduziert werden können.An embodiment of a chilled beam provides that a nozzle density and / or an outlet diameter of the full jet nozzles varies transversely to the transport direction. The nozzle density here means a number of nozzles per surface. By varying the nozzle density and / or the outlet diameter of the full jet nozzles transversely to the transport direction, a corresponding variation of the cooling effect of the chilled beam transversely to the transport direction is achieved, by means of which temperature differences of the rolling stock transversely to the transport direction can advantageously be reduced.

Eine weitere Ausgestaltung eines erfindungsgemäßen Kühlbalkens sieht vor, dass die Vollstrahldüsen in wenigstens einer quer zur Transportrichtung verlaufenden Düsenreihe angeordnet sind. Eine Weitergestaltung dieser Ausgestaltung eines Kühlbalkens sieht vor, dass die Vollstrahldüsen in mehreren quer zur Transportrichtung verlaufenden Düsenreihen angeordnet sind, und dass die Vollstrahldüsen verschiedener Düsenreihen in Transportrichtung gegeneinander versetzt angeordnet sind. Darunter wird eine Anordnung der Vollstrahldüsen verschiedener Düsenreihen verstanden, bei der die Vollstrahldüsen verschiedener Düsenreihen nicht entlang der Transportrichtung hintereinander angeordnet sind und daher keine in der Transportrichtung verlaufenden Düsenreihen bilden. Durch diese gegeneinander versetzte Anordnung der Vollstrahldüsen verschiedener Düsenreihen wird vorteilhaft eine besonders gleichmäßige Kühlwirkung der Düsenreihen erreicht, indem in Transportrichtung verlaufende "Kühlriefen" vermieden werden, in denen kein Kühlmittel auf das Walzgut ausgegeben wird.A further embodiment of a chilled beam according to the invention provides that the full jet nozzles are arranged in at least one row of nozzles running transversely to the transport direction. A further development of this embodiment of a chilled beam provides that the full jet nozzles are arranged in a plurality of rows of nozzles running transversely to the transport direction, and that the full jet nozzles of different nozzle rows are arranged offset with respect to one another in the transport direction. This means an arrangement of the full jet nozzles of different nozzle rows in which the full jet nozzles of different nozzle rows are not arranged one behind the other along the transport direction and therefore do not form any nozzle rows running in the transport direction. This staggered arrangement of the full jet nozzles of different nozzle rows advantageously achieves a particularly uniform cooling effect of the nozzle rows by avoiding "cooling fins" running in the transport direction, in which no coolant is dispensed onto the rolling stock.

Ferner kann ein Düsenabstand einander benachbarter Vollstrahldüsen jeder Düsenreihe variieren. Dadurch können vorteilhaft quer zur Transportrichtung variierende Temperaturunterschiede der Temperatur des Walzguts besonders gut reduziert werden. Beispielsweise kann der Düsenabstand in einem mittleren Bereich der Ausgabeseite des Kühlbalkens am geringsten sein und zu den Randbereichen jeweils zunehmen. Eine derartige Verteilung der Vollstrahldüsen kann vorteilhaft zur Kühlung eines Walzguts verwendet werden, dessen Temperatur in einem mittleren Bereich am höchsten ist und zu den Randbereichen hin abnimmt.Furthermore, a nozzle spacing of adjacent full jet nozzles of each row of nozzles can vary. As a result, temperature differences in the temperature of the rolling stock which advantageously vary transversely to the transport direction can be reduced particularly well. For example, the distance between the nozzles may be the smallest in a central region of the discharge side of the chilled beam and may increase in each case to the edge regions. Such a distribution of the full jet nozzles can advantageously be used for cooling a rolling stock, the temperature of which is highest in a central region and decreases towards the edge regions.

Eine weitere Ausgestaltung eines erfindungsgemäßen Kühlbalkens sieht wenigstens eine Kühlmittelableitvorrichtung zur Ableitung von Kühlmittel vor, das von in einem Randbereich der Sprühkammer angeordneten Vollstrahldüsen ausgegeben wird. Durch dieses so genannte Edge Masking kann vorteilhaft verhindert werden, dass zu viel Kühlmittel auf einen Randbereich des Walzguts gelangt und der Randbereich dadurch zu stark abgekühlt wird.A further embodiment of a chilled beam according to the invention provides at least one coolant discharge device for discharging coolant, which is emitted by full jet nozzles arranged in an edge region of the spray chamber. This so-called edge masking can advantageously prevent too much coolant from reaching an edge region of the rolling stock and thereby cooling the edge region too much.

Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung von Ausführungsbeispielen, die im Zusammenhang mit den Zeichnungen näher erläutert werden. Dabei zeigen:

  • FIG 1 eine perspektivische Darstellung eines ersten Ausführungsbeispiels eines Kühlbalkens,
  • FIG 2 eine Schnittdarstellung des in Figur 1 gezeigten Kühlbalkens,
  • FIG 3 eine Untersicht auf den in Figur 1 gezeigten Kühlbalken,
  • FIG 4 eine Untersicht auf ein zweites Ausführungsbeispiel eines Kühlbalkens,
  • FIG 5 eine Untersicht auf ein drittes Ausführungsbeispiel eines Kühlbalkens,
  • FIG 6 eine Untersicht auf ein viertes Ausführungsbeispiel eines Kühlbalkens,
  • FIG 7 eine Untersicht auf ein fünftes Ausführungsbeispiel eines Kühlbalkens,
  • FIG 8 eine Untersicht auf ein sechstes Ausführungsbeispiel eines Kühlbalkens,
  • FIG 9 von in den Figuren 1 bis 8 dargestellten Kühlbalken ausgegebene Volumenströme eines Kühlmittels in Abhängigkeit von einer Position,
  • FIG 10 eine Schnittdarstellung eines siebten Ausführungsbeispiels eines Kühlbalkens,
  • FIG 11 eine Schnittdarstellung eines achten Ausführungsbeispiels eines Kühlbalkens, und
  • FIG 12 eine Walzstraße zum Warmwalzen eines Walzguts mit einer Kühlvorrichtung zum Kühlen des Walzguts.
The above-described properties, features and advantages of this invention and the manner in which they are achieved can be more clearly understood in connection with the following description of exemplary embodiments which are explained in more detail in connection with the drawings. Show:
  • FIG. 1 1 shows a perspective illustration of a first exemplary embodiment of a chilled beam,
  • FIG 2 a sectional view of the in Figure 1 shown chilled beam,
  • FIG 3 a bottom view of the in Figure 1 shown chilled beams,
  • FIG 4 a bottom view of a second embodiment of a chilled beam,
  • FIG 5 a bottom view of a third embodiment of a chilled beam,
  • FIG 6 a bottom view of a fourth embodiment of a chilled beam,
  • FIG 7 a bottom view of a fifth embodiment of a chilled beam,
  • FIG 8 a bottom view of a sixth embodiment of a chilled beam,
  • FIG. 9 from in the Figures 1 to 8 shown cooling beams output volume flows of a coolant depending on a position,
  • FIG 10 3 shows a sectional illustration of a seventh exemplary embodiment of a chilled beam,
  • FIG 11 a sectional view of an eighth embodiment of a chilled beam, and
  • FIG 12 a rolling mill for hot rolling a rolling stock with a cooling device for cooling the rolling stock.

Einander entsprechende Teile sind in allen Figuren mit denselben Bezugszeichen versehen.Corresponding parts are provided with the same reference symbols in all figures.

Die Figuren 1 bis 3 zeigen schematisch ein erstes Ausführungsbeispiel eines Kühlbalkens 1 zur Kühlung eines in einer Transportrichtung 3 bewegten Walzguts 5 (siehe Figur 12). Dabei zeigt Figur 1 eine perspektivische Darstellung des Kühlbalkens 1, Figur 2 zeigt eine Schnittdarstellung des Kühlbalkens 1 und Figur 3 zeigt eine Untersicht auf den Kühlbalken 1. Die Transportrichtung 3 definiert in den Figuren eine Y-Richtung eines kartesischen Koordinatensystems mit Koordinaten X, Y, Z, dessen Z-Achse vertikal nach oben, d. h. der Richtung der Schwerkraft entgegengesetzt verläuft. Der Kühlbalken 1 erstreckt sich quer zu der Transportrichtung 3 in X-Richtung über die Breite des Walzguts 5.The Figures 1 to 3 schematically show a first embodiment of a chilled beam 1 for cooling a rolling stock 5 moved in a transport direction 3 (see Figure 12 ). It shows Figure 1 1 shows a perspective view of the chilled beam 1, Figure 2 shows a sectional view of the chilled beam 1 and Figure 3 shows a bottom view of the cooling beam 1. In the figures, the transport direction 3 defines a Y direction of a Cartesian coordinate system with coordinates X, Y, Z, the Z axis of which runs vertically upward, ie opposite to the direction of gravity. The cooling beam 1 extends transversely to the transport direction 3 in the X direction across the width of the rolling stock 5.

Der Kühlbalken 1 umfasst eine Sprühkammer 7, eine Verteilerkammer 9, mehrere Vollstrahldüsen 11 und zwei optionale Kühlmittelableitvorrichtungen 12. Die Sprühkammer 7 und die Verteilerkammer 9 sind jeweils als ein Hohlraum mit einer quer zu der Transportrichtung 3 in X-Richtung verlaufenden Längsachse ausgebildet. Dabei weist die Verteilerkammer 9 einen im Wesentlichen rechteckigen Querschnitt in einer zu ihrer Längsachse senkrechten Ebene auf. Die Sprühkammer 7 weist in einer zu ihrer Längsachse senkrechten Ebene einen Querschnitt auf, der im Wesentlichen die Form des griechischen Großbuchstaben Gamma hat, wobei der horizontal verlaufende Abschnitt des Gamma oberhalb der Verteilerkammer 9 verläuft.The cooling beam 1 comprises a spray chamber 7, a distributor chamber 9, a plurality of full jet nozzles 11 and two optional coolant discharge devices 12. The spray chamber 7 and the distributor chamber 9 are each designed as a cavity with a longitudinal axis running transversely to the transport direction 3 in the X direction. The distribution chamber 9 has an essentially rectangular cross section in a plane perpendicular to its longitudinal axis. The spray chamber 7 has a cross section in a plane perpendicular to its longitudinal axis, which essentially has the shape of the Greek capital letter gamma, the horizontal section of the gamma running above the distributor chamber 9.

Die Sprühkammer 7 und die Verteilerkammer 9 sind durch mehrere Durchlassöffnungen 13 miteinander verbunden. Die Durchlassöffnungen 13 sind quer zu der Transportrichtung 3 in X-Richtung hintereinander an einer Oberseite der Verteilerkammer 9 angeordnet. Die Verteilerkammer 9 ist über einen nicht dargestellten Kühlmitteleinlass von außen mit einem Kühlmittel, beispielsweise mit Kühlwasser, befüllbar. Die Sprühkammer 7 ist über die Durchlassöffnungen 13 aus der Verteilerkammer 9 mit dem Kühlmittel befüllbar.The spray chamber 7 and the distributor chamber 9 are connected to one another by a plurality of passage openings 13. The passage openings 13 are arranged transversely to the transport direction 3 in the X direction one behind the other on an upper side of the distribution chamber 9. The distribution chamber 9 can be filled from the outside with a coolant, for example with cooling water, via a coolant inlet (not shown). The spray chamber 7 can be filled with the coolant via the passage openings 13 from the distributor chamber 9.

Durch jede Vollstrahldüse 11 ist ein Kühlmittelstrahl des Kühlmittels mit einem nahezu konstanten Strahldurchmesser aus der Sprühkammer 7 von einer Ausgabeseite 17 des Kühlbalkens 1 in einer Ausgaberichtung 15 zu dem Walzgut 5 ausgebbar. Die Ausgaberichtung 15 ist in diesem Fall die Richtung der Schwerkraft, d. h. der Z-Richtung entgegengesetzt. Die Ausgabeseite 17 ist in diesem Fall die Unterseite des Kühlbalkens 1. Jede Vollstrahldüse 11 weist einen rohrartigen Düsenkörper 19 mit einer vertikal, d. h. parallel zur Z-Achse verlaufenden Längsachse auf. Der Düsenkörper 19 verläuft innerhalb der Sprühkammer 7 von einem Boden der Sprühkammer 7 zu einem offenen Ende 21 des Düsenkörpers 19, das in einem oberen Bereich der Sprühkammer 7 oberhalb der Höhe der Oberseite der Verteilerkammer 9 angeordnet ist und durch das Kühlmittel aus der Sprühkammer 7 in die Vollstrahldüse 11 einspeisbar ist. Die Düsenkörper 19 sind beispielsweise hohlzylindrisch ausgeführt oder verengen sich jeweils konisch von ihrem offenen Ende 21 zu dem Boden der Sprühkammer 7 hin. Die Vollstrahldüsen 11 weisen jeweils eine Auslassöffnung 22 auf, deren Auslassdurchmesser D beispielsweise zwischen 3 mm und 20 mm, vorzugsweise bis 12 mm beträgt.Through each full jet nozzle 11, a coolant jet of the coolant with an almost constant jet diameter can be emitted from the spray chamber 7 from an output side 17 of the cooling beam 1 in an output direction 15 to the rolling stock 5. The output direction 15 in this case is the direction of gravity, i.e. H. opposite to the Z direction. The output side 17 is in this case the underside of the cooling beam 1. Each full jet nozzle 11 has a tubular nozzle body 19 with a vertical, ie. H. parallel to the Z axis. The nozzle body 19 runs inside the spray chamber 7 from a bottom of the spray chamber 7 to an open end 21 of the nozzle body 19, which is arranged in an upper region of the spray chamber 7 above the height of the upper side of the distributor chamber 9 and through the coolant from the spray chamber 7 in the full jet nozzle 11 can be fed. The nozzle bodies 19 are designed, for example, as hollow cylinders or in each case narrow conically from their open end 21 to the bottom of the spray chamber 7. The full jet nozzles 11 each have an outlet opening 22, the outlet diameter D of which is, for example, between 3 mm and 20 mm, preferably up to 12 mm.

Diese Ausführung des Kühlbalkens 1 bewirkt vorteilhaft, dass bei einer Unterbrechung der Kühlung des Walzguts 5 nach der Unterbrechung der Kühlmittelzuführung zu der Verteilerkammer 9 Kühlmittel nur aus dem oberhalb der offenen Enden 21 der Düsenkörper 19 liegenden Bereich der Sprühkammer 7 sowie aus den Düsenkörpern 19 selbst zu dem Walzgut 5 nachlaufen kann, während das übrige Volumen der Sprühkammer 7 und die Verteilerkammer 9 mit Kühlmittel befüllt bleiben.This design of the cooling beam 1 advantageously has the effect that, in the event of an interruption in the cooling of the rolling stock 5 after the interruption of the coolant supply to the distribution chamber 9, coolant only comes from the area of the spray chamber 7 above the open ends 21 of the nozzle bodies 19 and from the nozzle bodies 19 themselves can run after the rolling stock 5, while the remaining volume of the spray chamber 7 and the distributor chamber 9 remain filled with coolant.

Der Kühlbalken 1 weist ferner eine quer zu der Transportrichtung 3 variierende Düsendichte der Vollstrahldüsen 11 auf, wobei die Düsendichte in einem mittleren Bereich des Kühlbalkens 1 maximal ist und quer zu der Transportrichtung 3 zu den Randbereichen des Kühlbalkens 1 hin abnimmt (siehe Figur 3). Dabei sind die Vollstrahldüsen 11 in drei quer zur Transportrichtung 3 verlaufenden Düsenreihen 23 bis 25 angeordnet, wobei die Vollstrahldüsen 11 verschiedener Düsenreihen 23 bis 25 in Transportrichtung 3 gegeneinander versetzt angeordnet sind. Die Variation der Düsendichte quer zur Transportrichtung 3 wird dadurch erreicht, dass ein Düsenabstand d einander benachbarter Vollstrahldüsen 11 jeder Düsenreihe 23 bis 25 variiert, wobei der Düsenabstand d in dem mittleren Bereich des Kühlbalkens 1 minimal ist und quer zu der Transportrichtung 3 zu den Randbereichen des Kühlbalkens 1 hin zunimmt. Beispielsweise nimmt der Düsenabstand d von dem mittleren Bereich zu jedem Randbereich des Kühlbalkens 1 parabolisch zu. Dadurch können vorteilhaft Temperaturunterschiede des Walzguts 5 reduziert werden, wenn die Temperatur des Walzguts 5 von einem mittleren Bereich des Walzguts 5 zu den Randbereichen des Walzguts 5 abnimmt. Der Düsenabstand d variiert beispielsweise zwischen 25 mm und 70 mm.The cooling beam 1 also has a nozzle density of the full jet nozzles 11 which varies transversely to the transport direction 3, the nozzle density being in one middle area of the chilled beam 1 is maximal and decreases transversely to the transport direction 3 towards the edge areas of the chilled beam 1 (see Figure 3 ). The full jet nozzles 11 are arranged in three nozzle rows 23 to 25 running transversely to the transport direction 3, the full jet nozzles 11 of different nozzle rows 23 to 25 being arranged offset with respect to one another in the transport direction 3. The variation of the nozzle density transversely to the transport direction 3 is achieved in that a nozzle spacing d of adjacent full jet nozzles 11 of each row of nozzles 23 to 25 varies, the nozzle spacing d being minimal in the central region of the cooling beam 1 and transverse to the transport direction 3 to the edge regions of the Chilled beam 1 increases. For example, the nozzle distance d increases parabolically from the central area to each edge area of the chilled beam 1. As a result, temperature differences of the rolling stock 5 can advantageously be reduced if the temperature of the rolling stock 5 decreases from a central region of the rolling stock 5 to the edge regions of the rolling stock 5. The nozzle spacing d varies, for example, between 25 mm and 70 mm.

Die optionalen Kühlmittelableitvorrichtungen 12 sind jeweils unter einem Randbereich der Sprühkammer 7 angeordnet und dazu ausgebildet, Kühlmittel aufzufangen und abzuleiten, das von in dem jeweiligen Randbereich der Sprühkammer 7 angeordneten Vollstrahldüsen 11 ausgegeben wird (so genanntes Edge Masking), damit das Kühlmittel nicht auf den entsprechenden Randbereich des Walzguts 5 gelangt und den Randbereich des Walzguts 5 zu stark abkühlt. Dazu weist jede Kühlmittelableitvorrichtung 12 einen Kühlmittelauffangbehälter 12.1 und ein Kühlmittelableitrohr 12.2 auf. Das Kühlmittelableitrohr 12.2 ist an einer Unterseite des Kühlmittelauffangbehälters 12.1 angeordnet und dient der Ableitung von in dem Kühlmittelauffangbehälter 12.1 aufgefangenen Kühlmittels.The optional coolant discharge devices 12 are each arranged under an edge region of the spray chamber 7 and are designed to collect and discharge coolant that is emitted by full jet nozzles 11 arranged in the respective edge region of the spray chamber 7 (so-called edge masking), so that the coolant does not fall onto the corresponding one Edge area of the rolling stock 5 arrives and the edge area of the rolling stock 5 cools too much. For this purpose, each coolant discharge device 12 has a coolant collecting container 12.1 and a coolant discharge pipe 12.2. The coolant discharge pipe 12.2 is arranged on an underside of the coolant collecting container 12.1 and serves to discharge coolant caught in the coolant collecting container 12.1.

Die Figuren 4 bis 7 zeigen jeweils ein weiteres Ausführungsbeispiel eines Kühlbalkens 1 in einer Untersicht auf den jeweiligen Kühlbalken 1. Der Kühlbalken 1 jedes dieser Ausführungsbeispiele unterscheidet sich von dem in den Figuren 1 bis 3 dargestellten Kühlbalken 1 lediglich durch die Verteilung der Vollstrahldüsen 11 quer zu der Transportrichtung 3. Wie bei dem in den Figuren 1 bis 3 dargestellten Kühlbalken 1 sind die Vollstrahldüsen 11 in drei quer zur Transportrichtung 3 verlaufenden Düsenreihen 23 bis 25 angeordnet, wobei die Vollstrahldüsen 11 verschiedener Düsenreihen 23 bis 25 in Transportrichtung 3 gegeneinander versetzt angeordnet sind.The Figures 4 to 7 each show a further exemplary embodiment of a chilled beam 1 in a bottom view of the respective chilled beam 1. The chilled beam 1 of each of these exemplary embodiments differs from that in FIGS Figures 1 to 3 shown cooling beam 1 only by the distribution of the full jet nozzles 11 transversely to the transport direction 3. As with that in the Figures 1 to 3 shown cooling beam 1, the full jet nozzles 11 are arranged in three nozzle rows 23 to 25 running transversely to the transport direction 3, the full jet nozzles 11 of different nozzle rows 23 to 25 being arranged offset with respect to one another in the transport direction 3.

Figur 4 zeigt einen Kühlbalken 1, bei dem der Düsenabstand d einander benachbarter Vollstrahldüsen 11 jeder Düsenreihe 23 bis 25 von dem mittleren Bereich des Kühlbalkens 1 quer zu der Transportrichtung 3 zu den Randbereichen des Kühlbalkens 1 hin (beispielsweise parabolisch) abnimmt, so dass die Düsendichte der Vollstrahldüsen 11 von dem mittleren Bereich des Kühlbalkens 1 zu den Randbereichen des Kühlbalkens 1 zunimmt. Dadurch können vorteilhaft Temperaturunterschiede des Walzguts 5 reduziert werden, wenn die Temperatur des Walzguts 5 von einem mittleren Bereich des Walzguts 5 zu den Randbereichen des Walzguts 5 zunimmt. Figure 4 shows a chilled beam 1 in which the nozzle spacing d of adjacent full jet nozzles 11 of each row of nozzles 23 to 25 decreases (for example parabolically) from the central region of the chilled beam 1 transversely to the transport direction 3 to the edge regions of the chilled beam 1, so that the nozzle density of the full jet nozzles 11 increases from the central region of the chilled beam 1 to the edge regions of the chilled beam 1. As a result, temperature differences of the rolling stock 5 can advantageously be reduced if the temperature of the rolling stock 5 increases from a central region of the rolling stock 5 to the edge regions of the rolling stock 5.

Figur 5 zeigt einen Kühlbalken 1, bei dem der Düsenabstand d einander benachbarter Vollstrahldüsen 11 aller Düsenreihen 23 bis 25 gleich ist, aber die Düsenreihen 23 bis 25 sich unterschiedlich weit von einem in Figur 5 rechts gelegenen Randbereich des Kühlbalkens 1 nach links erstrecken, so dass die Düsendichte im rechts gelegenen Randbereich ein Düsendichtenmaximum aufweist. Dadurch können vorteilhaft Temperaturunterschiede des Walzguts 5 reduziert werden, wenn die Temperatur des Walzguts 5 vom rechts gelegenen Randbereich des Walzguts 5 zu dem links gelegenen Randbereich des Walzguts 5 abnimmt. Figure 5 shows a chilled beam 1, in which the nozzle spacing d of adjacent full jet nozzles 11 of all nozzle rows 23 to 25 is the same, but the nozzle rows 23 to 25 differ from one another in Figure 5 extend the right-hand edge area of the chilled beam 1 to the left, so that the nozzle density in the right-hand edge area has a maximum nozzle density. As a result, temperature differences of the rolling stock 5 can advantageously be reduced if the temperature of the rolling stock 5 decreases from the right-hand edge area of the rolling stock 5 to the left-hand edge area of the rolling stock 5.

Figur 6 zeigt einen Kühlbalken 1, bei dem der Düsenabstand d einander benachbarter Vollstrahldüsen 11 aller Düsenreihen 23 bis 25 ebenfalls gleich ist, aber die Düsenreihen 23 bis 25 sich unterschiedlich weit von einem in Figur 6 links gelegenen Randbereich des Kühlbalkens 1 nach rechts erstrecken, so dass die Düsendichte im links gelegenen Randbereich ein Düsendichtenmaximum aufweist. Dadurch können vorteilhaft Temperaturunterschiede des Walzguts 5 reduziert werden, wenn die Temperatur des Walzguts 5 vom links gelegenen Randbereich des Walzguts 5 zu dem rechts gelegenen Randbereich des Walzguts 5 abnimmt. Figure 6 shows a chilled beam 1, in which the nozzle spacing d of adjacent full jet nozzles 11 of all nozzle rows 23 to 25 is also the same, but the nozzle rows 23 to 25 differ in distance from one another Figure 6 the left edge area of the chilled beam 1 extend to the right so that the nozzle density in the left edge area has a maximum nozzle density. As a result, temperature differences of the rolling stock 5 can advantageously be reduced if the temperature of the rolling stock 5 decreases from the left-hand edge region of the rolling stock 5 to the right-hand edge region of the rolling stock 5.

Figur 7 zeigt einen Kühlbalken 1, bei dem der Düsenabstand d einander benachbarter Vollstrahldüsen 11 aller Düsenreihen 23 bis 25 gleich ist und auch die Düsendichte quer zu der Transportrichtung 3 konstant ist. Ein derartiger Kühlbalken 1 bewirkt daher eine gleichmäßige Kühlung des Walzguts 5 quer zu der Transportrichtung 3. Figure 7 shows a chilled beam 1, in which the nozzle spacing d of adjacent full jet nozzles 11 of all nozzle rows 23 to 25 is the same and the nozzle density transverse to the transport direction 3 is also constant. Such a cooling beam 1 therefore effects uniform cooling of the rolling stock 5 transversely to the transport direction 3.

Figur 8 zeigt einen Kühlbalken 1, der sich von dem in Figur 7 gezeigten Kühlbalken 1 lediglich dadurch unterscheidet, dass der Auslassdurchmesser D der Vollstrahldüsen 11 quer zu der Transportrichtung 3 variiert. Dabei ist der Auslassdurchmesser D in dem mittleren Bereich des Kühlbalkens 1 maximal und nimmt quer zu der Transportrichtung 3 zu den Randbereichen des Kühlbalkens 1 hin ab, wobei die Abnahme beispielsweise parabolisch sein kann. Figure 8 shows a chilled beam 1, which differs from that in Figure 7 The cooling beam 1 shown only differs in that the outlet diameter D of the full jet nozzles 11 varies transversely to the transport direction 3. The outlet diameter D is maximum in the central region of the cooling beam 1 and decreases transversely to the transport direction 3 towards the edge regions of the cooling beam 1, the decrease being, for example, parabolic.

Die in den Figuren 1 bis 8 gezeigten Ausführungsbeispiele von Kühlbalken 1 können in verschiedener Weise abgewandelt werden. Beispielsweise kann die Verteilerkammer 9 jeweils entfallen, wobei die Sprühkammer 7 direkt statt über die Verteilerkammer 9 mit Kühlmittel befüllt wird. Alternativ können sich die Vollstrahldüsen 11 weniger weit oder gar nicht in die Sprühkammer 7 hinein erstrecken, d. h. die Düsenkörper 19 können kürzer ausgeführt sein oder ganz entfallen. Ferner können die Vollstrahldüsen 11 in einer von Drei abweichenden Anzahl von Düsenreihen 23 bis 25 angeordnet sein.The in the Figures 1 to 8 Exemplary embodiments of chilled beams 1 shown can be modified in various ways. For example, the distributor chamber 9 can be omitted in each case, the spray chamber 7 being filled with coolant directly instead of via the distributor chamber 9. Alternatively, the full jet nozzles 11 can extend less or not at all into the spray chamber 7, ie the nozzle bodies 19 can be made shorter or can be omitted entirely. Furthermore, the full jet nozzles 11 in one of Three different numbers of nozzle rows 23 to 25 can be arranged.

Das in Figur 8 gezeigte Ausführungsbeispiel kann ferner dahingehend abgewandelt werden, dass der Auslassdurchmesser D der Vollstrahldüsen 11 quer zu der Transportrichtung 3 in anderer Weise als bei dem in Figur 8 gezeigten Kühlbalken 1 variiert. Beispielsweise kann der Auslassdurchmesser D in dem mittleren Bereich des Kühlbalkens 1 minimal sein und quer zu der Transportrichtung 3 zu den Randbereichen des Kühlbalkens 1 hin zunehmen, oder der Auslassdurchmesser D kann in einem Randbereich des Kühlbalkens 1 maximal sein und quer zu der Transportrichtung 3 zu dem diesem Randbereich gegenüberliegenden Randbereich hin abnehmen.This in Figure 8 The exemplary embodiment shown can also be modified in such a way that the outlet diameter D of the full jet nozzles 11 transversely to the transport direction 3 in a different way than that in FIG Figure 8 shown cooling beam 1 varies. For example, the outlet diameter D in the central region of the chilled beam 1 can be minimal and increase transversely to the transport direction 3 towards the edge regions of the chilled beam 1, or the outlet diameter D can be maximal in an edge region of the chilled beam 1 and transversely to the transport direction 3 to the remove the edge area opposite this edge area.

Figur 9 zeigt schematisch von in den Figuren 1 bis 8 dargestellten Kühlbalken ausgegebene Volumenströme V1 bis V5 eines Kühlmittels in Abhängigkeit von einer Position quer zu der Transportrichtung 3. Figure 9 shows schematically from in the Figures 1 to 8 Volume flow V 1 to V 5 of a coolant as a function of a position transversely to the direction of transport 3 shown cooling beam.

Ein erster Volumenstrom V1 wird von den in den Figuren 3 und 8 dargestellten Kühlbalken 1 erzeugt und nimmt von einem mittleren Bereich des Kühlbalkens 1 zu den Randbereichen hin ab, wobei die Abnahme beispielsweise parabolisch verläuft.A first volume flow V 1 is in the Figures 3 and 8th shown cooling beam 1 generates and decreases from a central region of the cooling beam 1 to the edge regions, the decrease being, for example, parabolic.

Ein zweiter Volumenstrom V2 wird von dem in Figur 4 dargestellten Kühlbalken 1 erzeugt und nimmt von einem mittleren Bereich des Kühlbalkens 1 zu den Randbereichen hin zu, wobei die Zunahme beispielsweise parabolisch verläuft.A second volume flow V 2 is from the in Figure 4 shown cooling beam 1 generates and increases from a central region of the cooling beam 1 to the edge regions, the increase being parabolic, for example.

Ein dritter Volumenstrom V3 wird von dem in Figur 5 dargestellten Kühlbalken 1 erzeugt und nimmt von einem ersten Randbereich zu dem zweiten Ranbereich des Kühlbalkens 1 hin ab.A third volume flow V 3 is from the in Figure 5 shown cooling bar 1 generates and decreases from a first edge area to the second Ran area of the cooling bar 1 down.

Ein vierter Volumenstrom V4 wird von dem in Figur 6 dargestellten Kühlbalken 1 erzeugt und nimmt von dem zweiten Randbereich zu dem ersten Ranbereich des Kühlbalkens 1 hin ab.A fourth volume flow V 4 is from the in Figure 6 shown cooling beam 1 generates and takes from the second Edge area towards the first ran area of the chilled beam 1.

Ein fünfter Volumenstrom V5 wird von dem in Figur 7 dargestellten Kühlbalken 1 erzeugt und ist quer zu der Transportrichtung 3 konstant.A fifth volume flow V 5 is from the in Figure 7 shown cooling beam 1 is generated and is constant across the transport direction 3.

Figur 10 zeigt eine Schnittdarstellung eines weiteren Ausführungsbeispiels eines Kühlbalkens 1. Bei diesem Ausführungsbeispiel ist die Verteilerkammer 9 unterhalb der Sprühkammer 7 angeordnet. Wiederum sind die Sprühkammer 7 und die Verteilerkammer 9 durch mehrere Durchlassöffnungen 13 miteinander verbunden und der Kühlbalken 1 weist mehrere Vollstrahldüsen 11 auf, die jeweils einen rohrartigen Düsenkörper 19 mit einer vertikal, d. h. parallel zur Z-Achse verlaufenden Zylinderachse aufweisen. Die Düsenkörper 19 verlaufen bei diesem Ausführungsbeispiel jedoch jeweils von einem Boden der Verteilerkammer 9 durch die Verteilerkammer 9 in die Sprühkammer 7 hinein, wo sie jeweils ein offenes Ende 21 aufweisen, durch das Kühlmittel aus der Sprühkammer 7 in die Vollstrahldüse 11 einspeisbar ist. Die Vollstrahldüsen 11 weisen wiederum eine quer zu der Transportrichtung 3 variierende Düsendichte auf und können beispielsweise analog zu irgendeinem der in den Figuren 1 bis 6 gezeigten Ausführungsbeispiele verteilt angeordnet sein. Figure 10 shows a sectional view of a further embodiment of a chilled beam 1. In this embodiment, the distributor chamber 9 is arranged below the spray chamber 7. Again, the spray chamber 7 and the distributor chamber 9 are connected to one another by a plurality of passage openings 13, and the cooling beam 1 has a plurality of full jet nozzles 11, each of which has a tubular nozzle body 19 with a cylinder axis running vertically, ie parallel to the Z axis. In this exemplary embodiment, however, the nozzle bodies 19 each run from a bottom of the distributor chamber 9 through the distributor chamber 9 into the spray chamber 7, where they each have an open end 21 through which coolant can be fed from the spray chamber 7 into the full jet nozzle 11. The full jet nozzles 11 in turn have a nozzle density that varies transversely to the transport direction 3 and can, for example, be analogous to any of those shown in FIGS Figures 1 to 6 shown embodiments can be arranged distributed.

Figur 11 zeigt eine Schnittdarstellung eines weiteren Ausführungsbeispiels eines Kühlbalkens 1. Auch bei diesem Ausführungsbeispiel ist die Verteilerkammer 9 unterhalb der Sprühkammer 7 angeordnet. Wiederum sind die Sprühkammer 7 und die Verteilerkammer 9 durch mehrere Durchlassöffnungen 13 miteinander verbunden und der Kühlbalken 1 weist mehrere Vollstrahldüsen 11 auf. Die Vollstrahldüsen 11 sind an einer Oberseite aus der Sprühkammer 7 herausgeführt und gerade nach oben gerichtet, so dass sie Kühlmittel nach oben ausgeben. Ein in Figur 11 dargestellter Kühlbalken 1 ist daher dazu vorgesehen, unterhalb des Walzguts 5 angeordnet zu werden und Kühlmittel auf eine Unterseite des Walzguts 5 auszugeben. Die Vollstrahldüsen 11 können wiederum eine quer zu der Transportrichtung 3 variierende Düsendichte aufweisen. Figure 11 shows a sectional view of a further exemplary embodiment of a cooling beam 1. In this exemplary embodiment too, the distributor chamber 9 is arranged below the spray chamber 7. The spray chamber 7 and the distributor chamber 9 are in turn connected to one another by a plurality of passage openings 13 and the cooling beam 1 has a plurality of full jet nozzles 11. The full jet nozzles 11 are led out of the spray chamber 7 on an upper side and directed straight upwards, so that they discharge coolant upwards. An in Figure 11 The cooling beam 1 shown is therefore intended to be arranged below the rolling stock 5 and to output coolant to an underside of the rolling stock 5. The Full jet nozzles 11 can in turn have a nozzle density that varies transversely to the transport direction 3.

Figur 12 zeigt schematisch eine Walzstraße 27 zum Warmwalzen eines Walzguts 5, das in einer Transportrichtung 3 durch die Walzstraße 27 transportiert wird. Die Walzstraße 27 umfasst eine Fertigstraße 29 und eine Kühlstrecke 31. In der Fertigstraße 29 sind mehrere Walzgerüste 33 hintereinander angeordnet, mit denen das Walzgut 5 umgeformt wird. In Figur 12 sind beispielhaft zwei Walzgerüste 33 dargestellt; die Fertigstraße 29 kann jedoch auch eine andere Anzahl von Walzgerüsten 33 aufweisen. Die Kühlstrecke 31 schließt sich an die Fertigstraße 29 an und weist eine Kühlvorrichtung 35 zur Kühlung des Walzguts 5 auf. Figure 12 shows schematically a rolling train 27 for hot rolling a rolling stock 5, which is transported in a transport direction 3 through the rolling train 27. The rolling train 27 comprises a finishing train 29 and a cooling section 31. In the finishing train 29, a plurality of rolling stands 33 are arranged one behind the other, with which the rolling stock 5 is formed. In Figure 12 two roll stands 33 are shown by way of example; However, the finishing train 29 can also have a different number of roll stands 33. The cooling section 31 adjoins the finishing train 29 and has a cooling device 35 for cooling the rolling stock 5.

Die Kühlvorrichtung 35 umfasst mehrere Kühlbalken 1, eine Temperaturmessvorrichtung 37 und eine Steuerungsvorrichtung 39. Jeder Kühlbalken 1 weist mehrere Vollstrahldüsen 11 auf, durch die jeweils ein Kühlmittelstrahl eines Kühlmittels mit einem nahezu konstanten Strahldurchmesser zu dem Walzgut 5 ausgebbar ist. Einige Kühlbalken 1 sind hintereinander oberhalb des Walzguts 5 angeordnet und geben Kühlmittelstrahlen nach unten auf eine Oberseite des Walzguts 5 aus. Die anderen Kühlbalken 1 sind hintereinander unterhalb des Walzguts 5 angeordnet und geben Kühlmittelstrahlen nach oben auf eine Unterseite des Walzguts 5 aus. In Figur 12 sind beispielhaft fünf oberhalb und fünf unterhalb des Walzguts 5 angeordnete Kühlbalken 1 dargestellt; die Kühlvorrichtung 35 kann jedoch auch andere Anzahlen oberhalb und/oder unterhalb des Walzguts 5 angeordneter Kühlbalken 1 aufweisen.The cooling device 35 comprises a plurality of cooling beams 1, a temperature measuring device 37 and a control device 39. Each cooling beam 1 has a plurality of full jet nozzles 11, through which a coolant jet of a coolant with an almost constant jet diameter can be emitted to the rolling stock 5. Some chilled beams 1 are arranged one behind the other above the rolling stock 5 and emit coolant jets downwards onto an upper side of the rolling stock 5. The other chilled beams 1 are arranged one behind the other below the rolling stock 5 and emit coolant jets upwards onto an underside of the rolling stock 5. In Figure 12 five cooling beams 1 arranged above and five below the rolling stock 5 are shown by way of example; however, the cooling device 35 can also have other numbers of cooling beams 1 arranged above and / or below the rolling stock 5.

Wenigstens zwei der Kühlbalken 1, vorzugsweise aber jeweils mindestens vier der oberhalb des Walzguts 5 angeordneten Kühlbalken 1 und mindestens vier der unterhalb des Walzguts 5 angeordneten Kühlbalken 1, weisen voneinander verschieden quer zu der Transportrichtung 3 variierende Düsendichten und/oder Auslassdurchmesser D ihrer Vollstrahldüsen 11 auf.At least two of the cooling beams 1, but preferably in each case at least four of the cooling beams 1 arranged above the rolling stock 5 and at least four of the cooling beams 1 arranged below the rolling stock 5, have nozzle densities and / or outlet diameters D of their full jet nozzles 11 that differ from one another transversely to the transport direction 3 ,

Die übrigen Kühlbalken 1 weisen eine konstante Düsendichte wie das in Figur 7 gezeigte Ausführungsbeispiel auf. Dabei sind die Kühlbalken 1 mit variierenden Düsendichten und/oder variierenden Auslassdurchmessern D vorzugsweise (bezogen auf die Transportrichtung 3) vor den Kühlbalken 1 mit konstanten Düsendichten angeordnet. Dadurch wird erreicht, dass am Anfang der Kühlstrecke 31, wo die Temperatur des Walzguts 5 noch sehr hoch ist, lokale Temperaturunterschiede quer zur Transportrichtung 3 durch Kühlbalken 1 mit quer zu der Transportrichtung 3 variierenden Düsendichten reduziert werden können, während nachfolgende Kühlbalken 1 mit konstanten Düsendichten nur mehr die Gesamttemperatur des quer zu der Transportrichtung 3 gleichmäßig temperierten Walzguts 5 herabsetzen.The remaining chilled beams 1 have a constant nozzle density like that in Figure 7 shown embodiment. The cooling bars 1 with varying nozzle densities and / or varying outlet diameters D are preferably (in relation to the transport direction 3) arranged in front of the cooling bars 1 with constant nozzle densities. It is thereby achieved that at the beginning of the cooling section 31, where the temperature of the rolling stock 5 is still very high, local temperature differences transversely to the transport direction 3 can be reduced by cooling bars 1 with nozzle densities varying transversely to the transport direction 3, while subsequent cooling beams 1 with constant nozzle densities only reduce the total temperature of the rolling stock 5 which is tempered uniformly transversely to the transport direction 3.

Beispielsweise umfassen die ersten vier oberhalb des Walzguts 5 angeordneten Kühlbalken 1 und die ersten vier unterhalb des Walzguts 5 angeordneten Kühlbalken 1 jeweils einen Kühlbalken 1 mit einer Düsendichte, die analog zu Figur 3 von einem mittleren Bereich des Kühlbalkens 1 zu den Randbereichen des Kühlbalkens 1 abnimmt, einen Kühlbalken 1 mit einer Düsendichte, die analog zu Figur 4 von einem mittleren Bereich des Kühlbalkens 1 zu den Randbereichen des Kühlbalkens 1 zunimmt, einen Kühlbalken 1 mit einer Düsendichte, die analog zu Figur 5 von einem (in Figur 5 rechts gelegenen) ersten Randbereich des Kühlbalkens 1 zu dem (in Figur 5 links gelegenen) zweiten Randbereich des Kühlbalkens 1 abnimmt, und einen Kühlbalken 1 mit einer Düsendichte, die analog zu Figur 6 von dem ersten Randbereich des Kühlbalkens 1 zu dem zweiten Randbereich des Kühlbalkens 1 zunimmt.For example, the first four cooling beams 1 arranged above the rolling stock 5 and the first four cooling beams 1 arranged below the rolling stock 5 each comprise a cooling beam 1 with a nozzle density that is analogous to Figure 3 decreases from a central region of the chilled beam 1 to the edge regions of the chilled beam 1, a chilled beam 1 with a nozzle density that is analogous to Figure 4 increases from a central region of the chilled beam 1 to the edge regions of the chilled beam 1, a chilled beam 1 with a nozzle density that is analogous to Figure 5 from one (in Figure 5 right edge) of the first edge area of the chilled beam 1 to the (in Figure 5 left) second edge area of the cooling beam 1 decreases, and a cooling beam 1 with a nozzle density, which is analogous to Figure 6 increases from the first edge region of the cooling beam 1 to the second edge region of the cooling beam 1.

Ferner weisen die oberhalb des Walzguts 5 angeordneten Kühlbalken 1 vorzugsweise jeweils Vollstrahldüsen 11 und/oder eine Sprühkammer 7 und eine Verteilerkammer 9 wie der in den Figuren 1 und 2 dargestellte Kühlbalken 1 auf, um ein Nachlaufen von Kühlmittel aus diesen Kühlbalken 1 auf das Walzgut 5 bei einer Unterbrechung der Kühlmittelzufuhr zu den Kühlbalken 1 zu reduzieren. Die unterhalb des Walzguts 5 angeordneten Kühlbalken 1 können einfacher ausgeführt sein, d. h. diese Kühlbalken 1 können einfach ausgebildete Vollstrahldüsen 11 ohne längliche Düsenkörper 19 aufweisen und/oder nicht in eine Sprühkammer 7 und eine Verteilerkammer 9 aufgeteilt sein, da aus den unterhalb des Walzguts 5 angeordneten Kühlbalken 1 bei einer Unterbrechung der Kühlmittelzufuhr zu den Kühlbalken 1 kein Kühlmittel auf das Walzgut 5 nachlaufen kann.Furthermore, the chilled beams 1 arranged above the rolling stock 5 preferably each have full jet nozzles 11 and / or a spray chamber 7 and a distributor chamber 9 as shown in FIGS Figures 1 and 2 shown cooling beam 1, in order to keep coolant from these cooling beams 1 on the rolling stock 5 when the coolant supply is interrupted Reduce chilled beams 1. The cooling beams 1 arranged below the rolling stock 5 can be of simpler design, ie these cooling beams 1 can have simply designed full jet nozzles 11 without elongated nozzle bodies 19 and / or cannot be divided into a spray chamber 7 and a distribution chamber 9, since they are arranged below the rolling stock 5 Chilled beam 1 in the event of an interruption in the coolant supply to the chilled beam 1, no coolant can run onto the rolling stock 5.

Die Temperaturmessvorrichtung 37 ist vorzugsweise wie in Figur 12 gezeigt vor den Kühlbalken 1 der Kühlvorrichtung 35 angeordnet. Zusätzlich kann eine weitere Temperaturmessvorrichtung 37 hinter einem Kühlbalken 1 der Kühlvorrichtung 35 angeordnet sein. Die Temperaturmessvorrichtung 37 ist dazu ausgebildet, eine Temperaturverteilung einer Temperatur des Walzguts 5 quer zu der Transportrichtung 3 zu ermitteln. Beispielsweise weist die Temperaturmessvorrichtung 37 einen Infrarot-Scanner zur Temperaturerfassung mit einer Genauigkeit von vorzugsweise ±2°C auf.The temperature measuring device 37 is preferably as in FIG Figure 12 shown arranged in front of the cooling beam 1 of the cooling device 35. In addition, a further temperature measuring device 37 can be arranged behind a chilled beam 1 of the cooling device 35. The temperature measuring device 37 is designed to determine a temperature distribution of a temperature of the rolling stock 5 transverse to the transport direction 3. For example, the temperature measuring device 37 has an infrared scanner for temperature detection with an accuracy of preferably ± 2 ° C.

Die Steuerungsvorrichtung 39 ist dazu ausgebildet, Durchflussmengen von Kühlmittel zu den einzelnen Kühlbalken 1 in Abhängigkeit von der mit der Temperaturmessvorrichtung 37 ermittelten Temperaturverteilung der Temperatur des Walzguts 5 quer zu der Transportrichtung 3 zu steuern. Die Steuerungsvorrichtung 39 umfasst eine Steuereinheit 47, zwei Kühlmittelpumpen 49 und für jeden Kühlbalken 1 ein Steuerventil 51.The control device 39 is designed to control flow rates of coolant to the individual chilled beams 1 as a function of the temperature distribution of the temperature of the rolling stock 5 ascertained with the temperature measuring device 37 transversely to the transport direction 3. The control device 39 comprises a control unit 47, two coolant pumps 49 and a control valve 51 for each chilled beam 1.

Durch jedes Steuerventil 51 ist die Durchflussmenge von Kühlmittel zu einem der Kühlbalken 1 einstellbar. Die Steuerventile 51 der oberhalb des Walzguts 5 angeordneten Kühlbalken 1 sind mit einer der beiden Kühlmittelpumpen 49 verbunden, die Steuerventile 51 der unterhalb des Walzguts 5 angeordneten Kühlbalken 1 sind mit der anderen Kühlmittelpumpe 49 verbunden. Statt zweier Kühlmittelpumpen 49 kann auch eine andere Anzahl von Kühlmittelpumpen 49 vorgesehen sein, beispielsweise nur eine Kühlmittelpumpe 49, die mit allen Steuerventilen 51 verbunden ist, oder mehr als zwei Kühlmittelpumpen 49, die jeweils mit nur einem Steuerventil 51 oder mit einer Untermenge der Steuerventile 51 verbunden sind. Statt der Kühlmittelpumpen 49 kann ferner ein mit Kühlmittel befüllter Hochbehälter vorgesehen sein, der in einer geeigneten Höhe über den Steuerventilen 51 angeordnet ist und durch den die Steuerventile 51 mit Kühlmittel versorgt werden. In Fällen, in denen ein Versorgungsdruck eines Kühlmittelversorgungssystems, beispielsweise eines Wasserversorgungssystems, bereits ausreichend ist, kann sogar ganz auf Kühlmittelpumpen 49 oder einen Hochbehälter verzichtet werden. Da die Kühlbalken 1 jeweils Vollstrahldüsen 11 aufweisen, genügt es in der Regel, die Kühlbalken 1 mit einem Kühlmitteldruck von etwa 4 bar anzuspeisen. Eine typische Durchflussmenge von Kühlmittel eines Kühlbalkens 1 ist etwa 175 m3/h.The flow rate of coolant to one of the chilled beams 1 can be set by each control valve 51. The control valves 51 of the cooling beam 1 arranged above the rolling stock 5 are connected to one of the two coolant pumps 49, the control valves 51 of the cooling beam 1 arranged below the rolling stock 5 are connected to the other coolant pump 49. Instead of two Coolant pumps 49 can also be provided with a different number of coolant pumps 49, for example only one coolant pump 49, which is connected to all control valves 51, or more than two coolant pumps 49, which are each connected to only one control valve 51 or to a subset of the control valves 51 , Instead of the coolant pumps 49, an elevated tank filled with coolant can also be provided, which is arranged at a suitable height above the control valves 51 and through which the control valves 51 are supplied with coolant. In cases where a supply pressure of a coolant supply system, for example a water supply system, is already sufficient, coolant pumps 49 or an elevated tank can even be dispensed with entirely. Since the chilled beams 1 each have full jet nozzles 11, it is generally sufficient to supply the chilled beams 1 with a coolant pressure of approximately 4 bar. A typical flow rate of coolant in a chilled beam 1 is approximately 175 m 3 / h.

Der Steuereinheit 47 werden die von der Temperaturmessvorrichtung 37 erfassten Messsignale zugeführt. Die Kühlmittelpumpen 49 und Steuerventile 51 sind von der Steuereinheit 47 steuerbar. Von der Steuereinheit 47 werden Durchflussmengen an Kühlmittel zu den einzelnen Kühlbalken 1 - insbesondere zu jenen mit variierenden Düsendichten - in Abhängigkeit von der mit der Temperaturmessvorrichtung 37 erfassten Temperaturverteilung berechnet und durch Steuerung der Steuerventile 51 eingestellt, um Temperaturunterschiede der Temperatur des Walzguts 5 quer zu der Transportrichtung 3 durch den Einsatz und eine geeignete Kombination der Kühlbalken 1 mit variierenden Düsendichten auszugleichen und die Temperatur des Walzguts 5 insgesamt auf einen gewünschten Wert, beispielsweise eine Haspeltemperatur, zu reduzieren. Die Durchflussmengen an Kühlmittel zu den einzelnen Kühlbalken 1 werden dabei von der Steuereinheit 47 beispielsweise anhand eines Modells aus Parametern des Walzguts 5 wie dessen Dicke, Temperatur und/oder Wärmekapazität berechnet.The control unit 47 is supplied with the measurement signals detected by the temperature measurement device 37. The coolant pumps 49 and control valves 51 can be controlled by the control unit 47. Flow rates of coolant to the individual chilled beams 1 - in particular to those with varying nozzle densities - are calculated by the control unit 47 as a function of the temperature distribution detected by the temperature measuring device 37 and adjusted by control of the control valves 51 in order to make temperature differences in the temperature of the rolling stock 5 transverse to that Transport direction 3 by using and a suitable combination of the cooling beams 1 with varying nozzle densities and to reduce the temperature of the rolling stock 5 overall to a desired value, for example a reel temperature. The flow rates of coolant to the individual chilled beams 1 are determined by the control unit 47, for example on the basis of a model from parameters of the Rolled stock 5 calculated as its thickness, temperature and / or heat capacity.

Obwohl die Erfindung im Detail durch bevorzugte Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.Although the invention has been illustrated and described in detail by means of preferred exemplary embodiments, the invention is not restricted by the disclosed examples and other variations can be derived therefrom by a person skilled in the art without departing from the scope of protection of the invention.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
KühlbalkenChilled beams
33
Transportrichtungtransport direction
55
Walzgutrolling
77
Sprühkammerspray chamber
99
Verteilerkammerdistribution chamber
1111
Vollstrahldüsefull jet
1212
KühlmittelableitvorrichtungKühlmittelableitvorrichtung
12.112.1
KühlmittelauffangbehälterCoolant recovery tank
12.212.2
KühlmittelableitrohrKühlmittelableitrohr
1313
DurchlassöffnungPort
1515
Ausgaberichtungoutput direction
1717
Ausgabeseiteexpenditure side
1919
Düsenkörpernozzle body
2121
offenes Endeopen end
2222
Auslassöffnungoutlet
23 bis 2523 to 25
Düsenreihenozzle row
2727
Walzstraßerolling train
2929
Fertigstraßefinishing line
3131
Kühlstreckecooling section
3333
Walzgerüstrolling mill
3535
Kühlvorrichtungcooler
3737
TemperaturmessvorrichtungTemperature measuring device
3939
Steuerungsvorrichtungcontrol device
4747
Steuereinheitcontrol unit
4949
KühlmittelpumpeCoolant pump
5151
Steuerventilcontrol valve
dd
Düsenabstandnozzle distance
DD
Auslassdurchmesseroutlet diameter
X, Y, ZX, Y, Z
kartesische KoordinatenCartesian coordinates
V1 bis V5 V 1 to V 5
Volumenstromflow

Claims (7)

  1. Cooling bar (1) for cooling rolled stock (5) which is moved in a transporting direction (3), the cooling bar (1) comprising
    - a spray chamber (7) which can be filled with a coolant,
    - a distribution chamber (9) for intermediate storage of the coolant, which is connected to the spray chamber (7) by at least one through-opening (13) for filling the spray chamber (7) with coolant from the distribution chamber (9),
    - wherein each through-opening (13) between the distribution chamber (9) and the spray chamber (7) is arranged on an upper side of the distribution chamber (9),
    - and a number of full-jet nozzles (11), which can be fed coolant from the spray chamber (7) and by which in each case a coolant jet of a coolant with a virtually constant jet diameter can be discharged in a discharging direction (15) to the rolled stock (5),
    - wherein each full-jet nozzle (11) has a tubular nozzle body (19), which has an open end (21), arranged in an upper region of the cooling bar (1) within the spray chamber (7), for feeding coolant into the full-jet nozzle (11),
    - wherein the open end (21) is arranged above the height of the upper side of the distribution chamber (9).
  2. Cooling bar (1) according to Claim 1,
    characterized in that a nozzle density of the full-jet nozzles (11) varies transversely to the transporting direction (3).
  3. Cooling bar (1) according to one of the preceding claims,
    characterized in that an outlet diameter (D) of the full-jet nozzles (11) varies transversely to the transporting direction (3) .
  4. Cooling bar (1) according to one of the preceding claims,
    characterized in that the full-jet nozzles (11) are arranged in at least one nozzle row (23 to 25) extending transversely to the transporting direction (3).
  5. Cooling bar (1) according to one of the preceding claims,
    characterized in that the full-jet nozzles (11) are arranged in a number of nozzle rows (23 to 25) extending transversely to the transporting direction (3), and in that the full-jet nozzles (11) of different nozzle rows (23 to 25) are arranged offset with respect to one another in the transporting direction (3).
  6. Cooling bar (1) according to Claim 4 or 5,
    characterized in that a nozzle spacing (d) of full-jet nozzles (11) adjacent to one another of each nozzle row (23 to 25) varies.
  7. Cooling bar (1) according to one of the preceding claims,
    characterized by at least one coolant-diverting device (12) for diverting away coolant that is discharged by full-jet nozzles (11) arranged in a peripheral region of the spray chamber (7).
EP17168241.2A 2017-04-26 2017-04-26 Cooling of a product which is to be rolled Active EP3395463B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17168241.2A EP3395463B1 (en) 2017-04-26 2017-04-26 Cooling of a product which is to be rolled
PCT/EP2018/056437 WO2018197100A2 (en) 2017-04-26 2018-03-14 Cooling of rolled material
JP2019555876A JP6946458B2 (en) 2017-04-26 2018-03-14 Cooling of material to be rolled
CN201880027555.1A CN110536761B (en) 2017-04-26 2018-03-14 Cooling of rolled material
US16/607,399 US11358195B2 (en) 2017-04-26 2018-03-14 Cooling of rolled matertial
EP18719050.9A EP3615237A2 (en) 2017-04-26 2018-03-14 Cooling of rolled material
US17/716,000 US11786949B2 (en) 2017-04-26 2022-04-08 Cooling of rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17168241.2A EP3395463B1 (en) 2017-04-26 2017-04-26 Cooling of a product which is to be rolled

Publications (2)

Publication Number Publication Date
EP3395463A1 EP3395463A1 (en) 2018-10-31
EP3395463B1 true EP3395463B1 (en) 2019-12-25

Family

ID=58632897

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17168241.2A Active EP3395463B1 (en) 2017-04-26 2017-04-26 Cooling of a product which is to be rolled
EP18719050.9A Pending EP3615237A2 (en) 2017-04-26 2018-03-14 Cooling of rolled material

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP18719050.9A Pending EP3615237A2 (en) 2017-04-26 2018-03-14 Cooling of rolled material

Country Status (5)

Country Link
US (2) US11358195B2 (en)
EP (2) EP3395463B1 (en)
JP (1) JP6946458B2 (en)
CN (1) CN110536761B (en)
WO (1) WO2018197100A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018211177A1 (en) * 2018-04-13 2019-10-17 Sms Group Gmbh Cooling device for cooling a metallic material and method for its production and operation
EP3670682A1 (en) * 2018-12-20 2020-06-24 Primetals Technologies Austria GmbH Production of a metal strip with an austenite-martensite compound structure
EP3808466A1 (en) * 2019-10-16 2021-04-21 Primetals Technologies Germany GmbH Cooling device with coolant jets with hollow cross-section
EP3895819B1 (en) * 2020-04-14 2023-06-07 Primetals Technologies Germany GmbH Operation of a cooling device with minimum working pressure
CN115532855B (en) * 2022-10-10 2024-01-09 江苏东方成套设备制造集团有限公司 Continuous water cooling device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0099213A1 (en) 1982-07-07 1984-01-25 Kawasaki Steel Corporation Nozzle header for cooling plates
US4440584A (en) 1981-08-21 1984-04-03 Nippon Kokan Kabushiki Kaisha Method and apparatus for cooling steel sheet
DE4009868A1 (en) 1990-03-28 1991-10-02 Schloemann Siemag Ag Rolled strip cooler - with spray beams sliding across line of material travel at the cooling roller conveyor for close temp. tolerances
US6062056A (en) 1998-02-18 2000-05-16 Tippins Incorporated Method and apparatus for cooling a steel strip
JP2011194417A (en) 2010-03-18 2011-10-06 Jfe Steel Corp Cooling apparatus and cooling method for steel

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU908848A1 (en) * 1980-02-11 1982-02-28 Донецкий научно-исследовательский институт черной металлургии Apparatus for cooling rolled stock
JPS5890313A (en) 1981-11-20 1983-05-30 Nippon Steel Corp Cooling device for steel plate
JPS59137111A (en) * 1983-01-28 1984-08-07 Nippon Steel Corp Hot steel plate cooling device
SU1296599A1 (en) * 1985-03-18 1987-03-15 Всесоюзный научно-исследовательский институт металлургической теплотехники Arrangement for cooling rolled stock
JPS621789A (en) 1985-06-27 1987-01-07 ライオン株式会社 Detergent composition
JPS6293010A (en) 1985-10-17 1987-04-28 Kobe Steel Ltd Production of hot rolled steel plate
JPS63111209U (en) 1987-01-09 1988-07-16
JPH01178309A (en) * 1987-12-29 1989-07-14 Nippon Steel Corp Device for cooling of hot rolled steel sheet
JP2564400Y2 (en) 1991-10-23 1998-03-09 三菱重工業株式会社 Laminar flow cooling device
JPH05305328A (en) * 1992-04-30 1993-11-19 Kawasaki Steel Corp Method for controlling temperature of h-beam by water-cooling flange
JP3157635B2 (en) * 1993-01-20 2001-04-16 川崎製鉄株式会社 Lower surface cooling device for high temperature metal plate
DE19850253A1 (en) * 1998-10-31 2000-05-04 Schloemann Siemag Ag Method and system for controlling cooling sections
DE19854675C2 (en) 1998-11-26 2002-09-26 Thyssenkrupp Stahl Ag Device for cooling a metal strip, in particular a hot wide strip
DE19934557C2 (en) 1999-07-22 2002-10-24 Thyssenkrupp Stahl Ag Device for cooling metal strips or sheets conveyed on a conveyor line
JP3613133B2 (en) * 2000-05-09 2005-01-26 Jfeスチール株式会社 Hot strip strip cooling system
DE10207584A1 (en) * 2002-02-22 2003-09-11 Vits Maschb Gmbh I Ins Process for cooling metal strips or plates and cooling device
US7523631B2 (en) * 2002-08-08 2009-04-28 Jfe Steel Corporation Cooling device, manufacturing method, and manufacturing line for hot rolled steel band
AT414102B (en) * 2004-08-04 2006-09-15 Ebner Ind Ofenbau DEVICE FOR COOLING A TAPE BELT
US7181822B2 (en) 2005-01-20 2007-02-27 Nucor Corporation Method and apparatus for controlling strip shape in hot rolling mills
EP1938911A1 (en) * 2006-12-27 2008-07-02 VAI Industries (UK) Ltd. Apparatus and method for controlled cooling
JP5191683B2 (en) 2007-04-16 2013-05-08 新日鐵住金株式会社 Cooling system
DE102007053523A1 (en) * 2007-05-30 2008-12-04 Sms Demag Ag Device for influencing temperature distribution over width of slab or strip, particularly in one or multiple hot strip mill, has cooling device, which is provided with nozzles for applying cooling agent on slab or strip
CN100495411C (en) * 2007-12-18 2009-06-03 东北大学 Method for forecasting finite element of hot rolling process plate belt temperature field
CN101456038B (en) * 2009-01-08 2012-01-04 上海交通大学 Plate-belt temperature monitoring method during hot-rolled strip steel stream cooling process
BR112013023804B1 (en) * 2011-03-18 2021-06-29 Novelis Inc METHOD AND APPARATUS FOR COOLING A METAL STRIP AND APPARATUS FOR COLD ROLLING A METAL STRIP WITH SIDE EDGES
KR101370506B1 (en) * 2012-07-06 2014-03-06 주식회사 포스코 Accelerated cooling apparatus for thermo-mechanical control process
DE102012223848A1 (en) * 2012-12-19 2014-06-26 Sms Siemag Ag Apparatus and method for cooling rolling stock
EP2792428A1 (en) 2013-04-15 2014-10-22 Siemens VAI Metals Technologies GmbH Cooling device with width-dependent cooling effect
EP3395461B1 (en) * 2015-12-23 2021-09-22 Posco Straightening system and straightening method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440584A (en) 1981-08-21 1984-04-03 Nippon Kokan Kabushiki Kaisha Method and apparatus for cooling steel sheet
EP0099213A1 (en) 1982-07-07 1984-01-25 Kawasaki Steel Corporation Nozzle header for cooling plates
DE4009868A1 (en) 1990-03-28 1991-10-02 Schloemann Siemag Ag Rolled strip cooler - with spray beams sliding across line of material travel at the cooling roller conveyor for close temp. tolerances
US6062056A (en) 1998-02-18 2000-05-16 Tippins Incorporated Method and apparatus for cooling a steel strip
JP2011194417A (en) 2010-03-18 2011-10-06 Jfe Steel Corp Cooling apparatus and cooling method for steel

Also Published As

Publication number Publication date
CN110536761A (en) 2019-12-03
CN110536761B (en) 2022-02-01
US20220226873A1 (en) 2022-07-21
EP3395463A1 (en) 2018-10-31
EP3615237A2 (en) 2020-03-04
WO2018197100A3 (en) 2018-12-27
JP6946458B2 (en) 2021-10-06
JP2020517458A (en) 2020-06-18
WO2018197100A2 (en) 2018-11-01
US11358195B2 (en) 2022-06-14
US11786949B2 (en) 2023-10-17
US20200047230A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
EP3395463B1 (en) Cooling of a product which is to be rolled
EP2162246B1 (en) Cooling device for cooling a metal strip
DE102016217562A1 (en) Apparatus and method for descaling a moving workpiece
EP3308868B1 (en) Cooling of a roll of a roll stand
EP3612651B1 (en) Apparatus for cooling of metal sheets or bands
EP2310152B1 (en) Method for longitudinally guiding rolling stock, especially a hot-rolled steel strip, and hot-rolling mill for carrying out said method
DE60224211T2 (en) METHOD AND DEVICE FOR COOLING STEEL PLATES
EP1900449B1 (en) Spray header of a hydraulic descaling facility and method for operating such a spray header
DE3435501C2 (en) Device for the continuous cooling of a heated, horizontally lying metal plate
DE102007010375A1 (en) Device for cooling a metal strip
WO2005105334A1 (en) Device for cooling metal sheets and strips
DE102016223131A1 (en) Apparatus and method for applying a liquid medium to a roll and / or to a rolling stock and / or for removing the liquid medium
DE3537508C2 (en)
EP3606682B1 (en) Descaling device and method for chemically descaling a metal strip
DE19917725A1 (en) Cooling process for rolling stock and the corresponding cooling bed
EP0383786B1 (en) Device for producing a water curtain
EP3774100B1 (en) Cooling apparatus for cooling a metal material and method for the production and use thereof
AT394671B (en) DEVICE FOR REGULATING THE BALANCE OF ROLLING MILLS
DE2547416A1 (en) DEVICE FOR COOLING TAPE MATERIAL
EP3983145B1 (en) Sequentially cooling metal wide flat products
EP0001770B1 (en) Process and apparatus for cooling billets
DE102016216197A1 (en) Nozzle device for a cooling medium
DE102017105614A1 (en) Method and cooling device for cooling a metallic strand
DE2426828A1 (en) DEVICE FOR COOLING BAR MATERIAL
DE2143962A1 (en) Cooling and guiding continuously cast bar - avoiding formation of swellings or holes in the bar at high casting rates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190430

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190819

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1216594

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017003240

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200326

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200425

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502017003240

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SMS GROUP GMBH

Effective date: 20200918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200426

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200426

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230419

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230426

Year of fee payment: 7

Ref country code: DE

Payment date: 20230420

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230420

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230419

Year of fee payment: 7

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O