EP3392002A1 - Information processing apparatus, measuring apparatus, system, interference determination method, and article manufacturing method - Google Patents

Information processing apparatus, measuring apparatus, system, interference determination method, and article manufacturing method Download PDF

Info

Publication number
EP3392002A1
EP3392002A1 EP18166245.3A EP18166245A EP3392002A1 EP 3392002 A1 EP3392002 A1 EP 3392002A1 EP 18166245 A EP18166245 A EP 18166245A EP 3392002 A1 EP3392002 A1 EP 3392002A1
Authority
EP
European Patent Office
Prior art keywords
gripped
area
image
posture
information processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18166245.3A
Other languages
German (de)
English (en)
French (fr)
Inventor
Daisuke Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of EP3392002A1 publication Critical patent/EP3392002A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • B25J13/089Determining the position of the robot with reference to its environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1612Programme controls characterised by the hand, wrist, grip control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0014Image feed-back for automatic industrial control, e.g. robot with camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/97Determining parameters from multiple pictures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39082Collision, real time collision avoidance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39083Robot interference, between two robot arms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39084Parts handling, during assembly
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39393Camera detects projected image, compare with reference image, position end effector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40053Pick 3-D object from pile of objects
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40613Camera, laser scanner on end effector, hand eye manipulator, local
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/06Recognition of objects for industrial automation

Definitions

  • the present invention relates to an information processing apparatus, a measuring apparatus, a system, an interference determination method, and an article manufacturing method.
  • the on-hand camera may control a robot hand, and capture an image in an arbitrary position and posture. For this reason, this camera is often used to measure a relatively narrow area with high accuracy.
  • a technology for recognizing a three-dimensional position and posture of a target object using an on-hand camera there is a technology for performing recognition robustly and with high accuracy by performing two-stage imaging.
  • a technology for measuring a distance image using an on-hand camera and calculating an accurate position and posture of a target object after the imaging position and posture are decided such that concealment at the time of distance measurement decreases based on the position and posture of the target object estimated from a firstly captured image (Japanese Patent Laid-Open No. 2016-99257 ).
  • the method of Japanese Patent Laid-Open No. 2015-9314 is based on the assumption that a determination area, that is, an area in which interference between a robot hand and nearby objects is of concern, is included within a measurement range of a camera. For this reason, if an area in which the bulk workpieces are present exceeds the measurement area of a camera, the presence or absence of interference in a place outside the measurement area is not known.
  • a determination area that is, an area in which interference between a robot hand and nearby objects is of concern
  • an imaging position and posture for recognizing the position and posture of a workpiece with high accuracy are decided, and the presence or absence of interference is not considered a problem when the workpiece is gripped. For this reason, when bulk workpieces are picked using a camera that measures a relatively narrow visual field such as an on-hand camera, determination of the presence or absence of interference in an area exceeding the measured visual field is not performed.
  • the present invention aims, for example, to increase accuracy in interference determination between a hand gripping a workpiece and nearby objects.
  • An information processing apparatus includes a decision unit configured to decide an object to be gripped among a plurality of objects on the basis of a first image of the imaged objects, a specifying unit configured to specify an attention area for determining, when a gripping device grips the object to be gripped, whether the gripping device interferes with objects near the object to be gripped, a change unit configured to change an imaging range of an imaging device on the basis of the attention area, and a determination unit configured to determine, when the gripping device grips the object to be gripped, whether the gripping device interferes with the objects near the object to be gripped on the basis of a second image of the objects imaged in a changed imaging range.
  • FIG. 1 is a diagram which shows a system for picking bulk workpieces.
  • an imaging device 40 attached to a robot hand 30 images a bulk state of the workpieces 10 in a pallet 20, and performs picking by detecting one individual piece among the plurality of workpieces 10.
  • the picking system includes an information processing apparatus 1, the imaging device 40, and a robot arm 31 and a robot hand 30 which are gripping devices.
  • the imaging device 40 is an on-hand camera which can be controlled to an arbitrary position and posture, and is mounted on the robot hand 30.
  • the imaging device 40 can be controlled in an arbitrary position and posture by driving the robot arm 31 and the robot hand 30 which are articulated robots.
  • the information processing apparatus 1 is a control center which performs operation control on the entire picking system, and includes a processor including a central processing unit (CPU) 2, a memory 3, and the like.
  • the information processing apparatus 1 is connected to the imaging device 40 and the robot arm 31.
  • the information processing apparatus 1 acquires an image captured by the imaging device 40, performs interference determination and the like between the robot hand 30 and nearby objects when measurement of the position and posture of the workpieces 10 and gripping of the workpieces 10 are performed on the basis of the image, and detects one of the workpieces 10 suitable for picking.
  • the information processing apparatus 1 sends a drive command to the robot arm 31, and controls drive of the robot arm 31 and the robot hand 30 on the basis of information on the position and posture of the workpieces 10 which is a result of the measurement.
  • the robot hand 30 is attached to the tip of the robot arm 31, and is a gripping member which can grip (that is, pick) the workpieces 10 and cause it to translate or rotate.
  • the robot hand 30 can manufacture an article constituted by a plurality of parts such as an electronic circuit board, a machine, or the like by assembling the workpieces 10 with other parts.
  • the shape of the robot hand 30 may be any shape as long as it has a function of holding the workpieces 10 such as gripping the workpieces 10, adsorbing the workpieces 10, and the like.
  • the workpieces 10 are loaded in bulk in the pallet 20.
  • a space in which the workpieces 10 are stored exceeds an imaging range that the imaging device 40 captures in an image at one time, that is, a measurement range. Therefore, capturing an image is performed by controlling the robot arm 31 and moving the imaging device 40 to an arbitrary position and posture, and thereby detection of the workpieces 10 is performed. At this time, interference determination between the robot hand 30 and nearby objects when the workpieces 10 are gripped is also performed on an area not included in the image that is captured when the workpieces 10 are detected.
  • FIG. 2 shows the configuration of the information processing apparatus 1 according to the present embodiment.
  • the information processing apparatus 1 includes an image acquisition unit 201, a measuring unit 202, a specifying unit 203, a controller 204, an interference determination unit 205, a storage unit 206, and a robot controller 207.
  • an image acquisition unit 201 a measuring unit 202
  • a specifying unit 203 a specifying unit 203
  • a controller 204 controls the configuration of the information processing apparatus 1 according to the present embodiment.
  • the image acquisition unit 201 acquires an image captured by the imaging device 40.
  • the image acquisition unit 201 may acquire a distance image and a gray-scale image.
  • the measuring unit 202 detects one individual piece among the plurality of workpieces 10 and calculates the position and posture thereof on the basis of the acquired image. Therefore, the measuring unit 202 functions as a decision unit for deciding one individual piece among the plurality of workpieces 10 and a measuring unit for measuring the position and posture thereof .
  • a workpiece coordinate system and an imaging device coordinate system are set as unique coordinate systems for the workpiece 10 and the imaging device 40, respectively.
  • the measuring unit 202 calculates a relative position and a relative posture of the imaging device coordinate system and the workpiece coordinate system as the position and posture of the workpiece.
  • FIG. 3 is a diagram which shows the workpiece 10 to be picked and the workpiece coordinate system 11.
  • the workpiece coordinate system 11 is a coordinate system set for the workpiece 10 detected as a gripping target.
  • an XY plane constituted by an X axis and a Y axis is set on a plane having the widest area of the workpiece 10, and the Y axis is set parallel to the longest side of the sides of the workpiece 10.
  • a Z axis is set to perpendicularly intersect the XY plane.
  • the shape of the workpiece 10 and the setting of the workpiece coordinate system 11 are not limited to those shown in FIG. 3 .
  • the specifying unit 203 specifies an area in which interference is of concern when the recognized workpiece is gripped as an attention area, and determines whether the specified attention area is included within an acquired image, that is, whether the attention area is included in an imaging range. This determination is performed to determine whether an image necessary for interference determination has been acquired. This is because the presence or absence of interference outside the measurement area cannot be determined if the attention area is not included in the measurement area of the imaging device 40, that is, if the attention area is outside the imaging range.
  • the controller 204 sets the position and posture of the imaging device 40 and controls the imaging device 40.
  • the controller 204 functions as a change unit configured to change the imaging range when the imaging device 40 captures an image, and to set the position and posture of the imaging device, and an imaging controller configured to control the imaging device 40. If it is determined that the attention area specified by the specifying unit 203 is not included within the acquired image, the position and posture of the imaging device 40 for newly imaging the attention area that is outside of the captured image are set, and the imaging device 40 is moved to capture an image.
  • the position and posture to be decided may be a position and a posture at which all of the attention area is included within the acquired image, or may be a position and a posture in which only the attention area outside of the image can be imaged.
  • the interference determination unit 205 performs interference determination on whether the robot hand 30 interferes with objects near the workpiece 10 to be gripped when the workpiece 10 is gripped. Objects near the workpiece 10 to be gripped such as workpieces, the pallet 20, and the like are included among the nearby objects subjected to interference determination.
  • the interference determination unit 205 detects occurrence of interference by, specifically, detecting an overlap in space between three-dimensional point cloud data of the workpiece 10 and the pallet 20 obtained from a distance image obtained by imaging the bulk workpieces and the pallet 20 and an occupied area of the robot hand 30 when the detected workpiece 10 is gripped.
  • a collision determination technique generally used in game programming and the like can be used in the overlap detection in space.
  • the storage unit 206 is a memory for storing necessary information such as a hand model or a relative position and relative posture.
  • the robot controller 207 controls the robot hand 30 and the robot arm 31 to grip the workpiece 10 or to move the imaging device 40. If the robot arm 31 has a controller, an output unit for outputting information necessary for controlling the robot arm 31 such as the position and posture of an object to be gripped may be provided instead of the robot controller 207.
  • FIG. 4 is a flowchart which shows the processing procedure of interference determination in the information processing apparatus 1.
  • the image acquisition unit 201 acquires an image captured by the imaging device 40 in a first position and posture decided by the controller 204. At this time, the image acquired by the image acquisition unit 201 is a distance image and a gray-scale image.
  • a distance image For measurement based on a distance image, a well-known method of imaging reflected light of laser light and slit light with which an object is irradiated using a camera and measuring a distance by triangulation can be used.
  • a time-of-flight method using the time of flight of light a method of calculating a distance from a captured image of a stereo camera by triangulation, and the like may also be used.
  • FIG. 5 is a diagram which describes the position and posture of the imaging device 40 according to the first embodiment.
  • FIG. 5A is a diagram which shows the first position and posture.
  • the first position and posture are appropriately decided by the controller 204 in consideration of the number of workpieces in the measurement area 41 of the imaging device 40 and the pallet 20 or a disposition situation. For example, if there are a large number of workpieces remaining, imaging is performed in a position and a posture in which observation is performed vertically downward from above the center of the pallet 20.
  • the imaging device 40 may be moved into a plane parallel to the pallet bottom such that the workpieces at the end of the pallet can be measured if the number of workpieces is reduced.
  • the imaging device 40 may be brought close to the pallet bottom such that the workpieces in the vicinity of the pallet bottom can be measured.
  • the first position and posture may be set to any position and posture.
  • step S1000 as shown in FIG. 5A , the imaging device 40 is moved to the first position and posture and the image of the bulk workpieces 10 is captured. Imaging in a range (area) shown in the measurement area 41 is performed and measurement of the measurement area 41 is performed.
  • the measuring unit 202 detects one individual piece among the workpieces 10 included in the measurement area 41 using the gray-scale image and the distance image acquired in step S1000, and calculates the position and posture thereof.
  • the recognized workpiece is indicated by oblique lines.
  • This workpiece detected as a gripping target is referred to as a "gripping target workpiece 12."
  • a method of calculating positions and postures of the bulk workpieces using a gray-scale image and a distance image is well known, and thus specific description will be omitted herein. Only the gray-scale image may be used or only the distance image may be used to recognize the workpiece.
  • the position and posture of only the gripping target workpiece 12 may be calculated after the gripping target workpiece 12 is decided, or the position and posture of the plurality of workpieces 10 in an image may be calculated and the gripping target workpiece 12 may be decided on the basis of a result of this calculation.
  • the specifying unit 203 specifies an area in which interference with the robot hand 30 is of concern when the gripping target workpiece 12 is gripped as an attention area. Decision of the attention area will be described using FIGS. 5A , 6A, and 6B.
  • FIG. 6 is a diagram which describes setting of the attention area.
  • FIG. 6A is a diagram which shows a disposition relationship between a hand model 70 and a workpiece 10 when the workpiece 10 is gripped.
  • FIG. 6A shows a disposition relationship between the hand model 70 and the workpiece 10 when the workpiece 10 is gripped by the robot hand 30.
  • An attention area in the present embodiment is an occupied area of the robot hand 30 when the gripping target workpiece 12 is gripped.
  • the attention area is specified by using the hand model 70 representing a three-dimensional shape of the robot hand 30, and a relative relationship between the hand model 70 and the workpiece 10 when gripping is performed.
  • the information processing apparatus 1 stores the relative position and relative posture when the workpieces 10 of a unique coordinate system (hand coordinate system 72) set in the hand model of the storage unit 206 and the workpiece coordinate system 11 are gripped. Then, as shown in FIG. 5A , the hand model 70 is disposed on the basis of the stored relative position and relative posture with respect to the gripping target workpiece 12, and specifies an area in which the hand model 70 is disposed as an attention area 71 in the bulk space.
  • a polygon model may be used, or a model in which primitive shapes such as cylinders or rectangular parallelepipeds are combined may be used.
  • the form of a hand-shape model is not particularly limited as long as the hand-shape model is a three-dimensional shape model which can specify a determination area per interference determination.
  • a model modeled together with an area in which interference is of concern as well as a hand when the workpiece 10 is gripped may also be used.
  • the model may include the shape of the imaging device 40 attached to the hand or may include a portion of the arm tip to which the hand is attached.
  • the hand model 70 modeled to include an area occupied by the hand along the trajectory of each operation may also be used.
  • FIG. 6B is a diagram which shows a disposition relationship between a workpiece 10 and the attention area 90 when the workpiece 10 is gripped.
  • the robot hand 30 which grips a center of the main plane of the workpiece 10 using an adsorption hand is adopted as an example of the robot hand 30.
  • the information processing apparatus 1 grips the area occupied by the robot hand 30 at the time of gripping the center of the main plane of the workpiece 10 using an adsorption hand converted in advance into an expression based on the workpiece coordinate system 11 as the attention area 90.
  • the specifying unit 203 determines presence or absence of an interrupted view of the attention area 71 with respect to the measurement area 41 of a captured image. This will be described in detail using FIG. 5A .
  • the measurement area 41 no interference occurs between the hand model 70 that grips the gripping target workpiece 12 and nearby objects.
  • interference occurs between the hand model 70 and an interference workpiece 13 outside the measurement area 41.
  • this interference occurs outside the measurement area 41, it cannot be detected by interference determination using the imaged distance image. It is necessary to capture and acquire a new image including a portion of the hand model 70 not included in the measurement area 41.
  • step S1300 if it is determined that there is no interrupted view, that is, if all of the attention area 71 (that is, the hand model 70) is included in the space of the measurement area 41, it is possible to determine presence or absence of interference using a captured image, and thus the procedure proceeds to step S1600.
  • step S1400 if it is determined that there is an interrupted view, that is, if all of the attention area 71 is not included in the space of the measurement area 41, it is not possible to determine presence or absence of interference only with a captured image, and thus the procedure proceeds to step S1400 to capture and acquire an image including an area which is out of the image.
  • the present embodiment it is determined that there is no interrupted view in determination of the presence or absence of an interrupted view if all of the occupied area of the hand model 70 is included in the space of the measurement area 41.
  • the present embodiment is not limited thereto, and, for example, it may be determined that there is no interrupted view if a proportion of the occupied area of the hand model 70 included in the space of the measurement area 41 is higher than a threshold value (for example, 95 percent).
  • the controller 204 decides to change the imaging range of the imaging device 40 to an imaging range in which an image including the attention area 71 which is out of the image can be captured, and decides the second position and posture as a new position and posture of the imaging device 40. At this time, the controller 204 decides to change the imaging range to include an area of 80% or more (more desirably 90% or more) of the entire attention area 71 by combining an imaging range before the change and an imaging range after the change. The controller 204 may change the imaging range of the imaging device 40 to an imaging range in which an image including the entire area of the attention area 71 can be captured.
  • the new position and posture are decided such that an approaching direction of the robot hand 30 coincides with the optical axis of the imaging device 40 when the robot hand 30 grips the workpiece 10.
  • a distance image suitable for interference determination can be captured by capturing the attention area 71 at the center of the image and observing the bulk workpieces 10 in the approach direction of the robot hand 30.
  • the robot hand 30 moves in a positive direction of a Z axis of the hand coordinate system 72 and approaches the workpiece 10 to be gripped to perform gripping in FIG. 6A .
  • the robot hand 30 performs approach such that positive directions of a Z axis of the workpiece coordinate system 11 and the Z axis of the hand coordinate system 72 are close to each other in parallel.
  • the Z axis of the hand coordinate system 72 is a central axis of the hand model 70.
  • FIG. 5B is a diagram which shows a second position and posture. All of the attention area 71 is included in the measurement area 41 in the second position and posture in FIG. 5B .
  • the present invention is not limited thereto, and since all of the attention area 71 and an acquired image in the first position and posture may be measured, a position and a posture in which only an area outside of imaging in the first position and posture can be imaged may be set as the second position and posture.
  • the controller 204 decides the second position and posture such that an approach direction of the hand, that is, the Z axis of the hand coordinate system 72, coincides with the optical axis 42 of the imaging device 40.
  • an approach direction of the hand that is, the Z axis of the hand coordinate system 72
  • the controller 204 decides the second position and posture such that an approach direction of the hand, that is, the Z axis of the hand coordinate system 72, coincides with the optical axis 42 of the imaging device 40.
  • the posture of the imaging device 40 about the optical axis 42 decides the second position and posture such that an X axis of the coordinate system of the imaging device 40 coincides with an X axis of the hand coordinate system 72.
  • the position of the imaging device 40 in a direction of the optical axis 42 is set such that, for example, the hand model 70 is positioned at the center of a depth range of the imaging device 40 in which the distance measurement is possible.
  • a farthest surface of the depth range in which the distance measurement is possible may be set to coincide with a farthest surface of the hand model 70 in the direction of the Z axis.
  • a posture and a position in a direction of the optical axis around the optical axis of the imaging device 40 after the approach direction of the robot hand 30 coincides with the optical axis 42 of the imaging device 40 may also be decided by other methods. Any method can be used as long as the measurement area 41 can be decided to sufficiently include the attention area 71 which is not imaged.
  • the controller 204 moves the imaging device 40 to the second position and posture decided in step S1400, and captures a new image in the changed imaging range. Then, the image acquisition unit 201 acquires an image captured in the second position and posture. Since the image captured in step S1500 is used for interference determination, only a distance image is acquired. However, a gray-scale image may also be acquired together. As shown in FIG. 5B , it is possible to capture an image including the interference workpiece 13 which is outside the measurement area in FIG. 5A by the imaging device 40 performing imaging from the second position and posture. After the image is captured in the second position and posture, the procedure returns to step S1300.
  • step S1300 after the image captured in the second position and posture in step S1500 is acquired, it is determined whether the attention area 71 is outside of the measurement area 41 of any of images captured in each position and posture. If the attention area 71 is included in the measurement area 41 of a captured image, interference determination is possible using the captured image, and thus the procedure proceeds to step S1600. On the other hand, if there is an attention area 71 not included in any captured image, determination of the presence or absence of interference with respect to the attention area 71 which is outside of any captured image is not possible. Therefore, the procedure proceeds to step S1400 to capture an image covering the attention area 71 which is outside of the image.
  • the interference determination unit 205 determines the presence or absence of interference between the robot hand 30 gripping the gripping target workpiece 12 and nearby objects using each distance image captured in step S1000 and step S1500. Specifically, first, a minute sphere of a radius R is disposed at the position of each measurement point of a three-dimensional point group obtained from the captured distance image. Then, interference determination is performed by detecting spatial overlapping between the sphere disposed based on each measurement point and the occupied area of the robot hand 30. If a polygon model is used as the hand model 70, it is determined that there is interference if there is overlapping between the sphere and the polygon constituting the hand model 70, and it is determined that there is no interference if there is no overlapping.
  • the three-dimensional point group obtained from the distance image includes the measurement point of the gripping target workpiece 12 itself.
  • interference determination may be performed by excluding the corresponding measurement point.
  • interference determination can be performed by other methods.
  • a polygon model expressing three-dimensional shape data of the bulk workpieces is generated by concatenating three-dimensional points between adjacent pixels of the distance image, and interference determination may also be executed by detecting an intersection between polygons with each polygon constituting the hand model 70.
  • the hand model 70 can also use a model expressing a three-dimensional shape by combination of simple primitive shapes such as cylinders, rectangular parallelepipeds, spheres, and the like. In this case, it is possible to determine the presence or absence of interference by detecting the overlapping between each primitive shape constituting the hand model 70 and the sphere or polygon generated from the measurement point group.
  • the interference determination can be performed by any method as long as it is a method that can detect spatial overlapping between the area occupied by the robot hand 30 expressed by the hand model 70 and the three-dimensional shape data of the bulk workpieces 10 and the pallet 20 generated from the captured distance image.
  • the interference determination may be performed using a plurality of distance images, and may also be performed using only a distance image captured in the second position and posture.
  • the interference determination unit 205 performs interference determination on each captured distance image. If it is determined that there is interference in any distance image, since interference occurs when the gripping target workpiece 12 is gripped, it is determined that gripping is impossible. On the other hand, if there is no interference in any distance image, it is determined that the gripping target workpiece 12 can be gripped without interference. If all of the attention area 71 is included in one captured image, interference determination may be performed using only the image.
  • step S1300 in determination of the presence or absence of an interrupted view in step S1300, it is determined whether all of the area occupied by the hand model 70 is included in a measurement area as the attention area 71. However, if it is assured that the bulk workpieces 10 do not exceed a height of the top surface of the pallet 20 and there is no object in which interference is of concern above the pallet 20, it is not necessary to perform interference determination because it is assumed that there is no interference at a position higher than the top surface of the pallet 20. That is, the interference determination may be performed on only a portion of the area occupied by the hand model 70 in a space in which the bulk workpieces 10 are accommodated in the pallet 20.
  • an overlap area between the area occupied by the hand model 70 specified in step S1200 and the space in which the bulk workpieces 10 are present may be specified as the attention area 71.
  • the imaging device 40 is provided and attached to the robot hand 30 at the tip of the robot arm 31 which is an articulated robot.
  • the imaging device 40 is moved by controlling the driving of these, if a camera can be moved to the decided position and posture, the camera and the robot may not be integrated.
  • a single axis robot which can control a position or a posture may be used, and an orthogonal robot which can control a combination of these may also be used.
  • an image in the first position and posture for workpiece recognition and an image in the second position and posture for interference determination are captured using the same imaging device 40 in the present embodiment, but each image may be captured using different imaging devices.
  • an imaging device capable of observing an entire pallet in the first position and posture may be fixed, and only workpiece recognition may be performed using this imaging device.
  • the second position and posture are detected by the method described in the present embodiment and an imaging device attached to a robot arm is moved to capture an image.
  • an imaging device attached to a robot arm is moved to capture an image.
  • step S1400 a posture in which an approach direction of the robot hand 30 in a grip operation coincides with the optical axis 42 of the imaging device 40 is decided as a second position and posture.
  • a posture in which an attention area is observed from above the center of the pallet 20 is used as the second position and posture in the present embodiment.
  • the present embodiment is particularly effective in the case of determining presence or absence of interference in the vicinity of a pallet side when there are few workpieces in the pallet.
  • FIG. 7 is a diagram which describes the position and posture of the imaging device 40 according to a second embodiment.
  • FIG. 7A is a diagram which shows the first position and posture of the imaging device 40
  • FIG. 7B is a diagram which shows the second position and posture of the imaging device 40.
  • the imaging device 40 captures images in the first position and posture as shown in FIG. 7A in step S1000, and recognizes a gripping target workpiece 12 in step S1100.
  • the imaging position and posture are decided in the same manner as in the first embodiment, they may be concealed in the side portion of the pallet and the distance measurement of the interference workpiece 13 may not be possible.
  • the second position and posture are decided in step S1400, and as shown in FIG. 7B , the second position and posture are decided such that the attention area 71 is observed from above the center of the pallet 20. As a result, a possibility of the interference workpiece 13 being concealed by the pallet 20 is avoided. Specifically, the second position and posture are decided such that the origin of the coordinate system of the imaging device 40 passes through a pallet central axis 21, and the center of the attention area 71 is positioned at the center of the measurement area 41 of the imaging device 40.
  • a height of the imaging device 40 on the pallet central axis 21 is set to a height which facilitates measurement of the inside of the pallet 20 in advance.
  • the height of the imaging device 40 may be appropriately decided such that the attention area 71 is positioned at the center of the depth range in which distance measurement is possible in the imaging device 40.
  • the posture around the optical axis is set to a posture such that transverse and longitudinal directions of a captured image coincide with longitudinal and transverse directions when an attention area on the surface of a captured image is projected.
  • the second position and posture may be switched by the decision method of the first embodiment and the present embodiment in accordance with the amount, height, or the like of the bulk workpieces in the pallet 20.
  • the second position and posture are decided such that the attention area 71 is observed from above the center of the pallet 20, it is possible to accurately perform interference determination without the pallet 20 concealing the workpiece 10 in imaging from the second position and posture in the present embodiment.
  • the interference determination unit 205 reproduces the three-dimensional shape around a workpiece to be gripped using a three-dimensional point group obtained from a distance image acquired by the imaging device 40 and executes interference determination.
  • interference determination is performed on the basis of a captured image without using a distance image. For example, only a gray-scale image is acquired and nearby workpieces other than the workpiece to be gripped are also detected from each acquired gray-scale image in step S1000 and step S1500. Then, the interference determination is performed by detecting overlapping between the detected workpieces 10 and the hand model 70 gripping the gripping target workpiece 12.
  • a workpiece model representing the three-dimensional shape of the workpiece 10 is disposed in the position and posture of each detected workpiece 10, and spatial overlapping between the area occupied by the workpiece model and the area (for example, the attention area 71) occupied by the hand model 70 gripping the workpiece to be gripped is detected. If the overlapping is detected, it is determined that there is interference, and if the overlapping is not detected, it is determined that there is no interference.
  • a distance image is not necessary for interference determination, and a captured image may be only an acquired gray-scale image if the workpiece to be gripped and nearby workpieces are recognized. If the distance image is not necessary, a projection unit configured to project a slit required for imaging the distance image becomes unnecessary and the apparatus can be simplified.
  • the first embodiment it is determined whether all of the occupied area of the hand model 70 is included in the space of the measurement area 41 in the determination of an interrupted view in step S1300 using three-dimensional information.
  • the determination of an interrupted view is performed using two-dimensional information which enables a faster operation. Since a basic processing flow of the present embodiment is the same as that of the first embodiment, only step S1200 and step S1300 which differ in processing will be described here.
  • the specifying unit 203 specifies an area in which interference is of concern when the gripping target workpiece 12 is gripped as the attention area 71.
  • the attention area 71 is specified by projecting the area occupied by the hand model 70 onto a captured image. Specification of the attention area 71 in the present embodiment will be described using FIG. 8.
  • FIG. 8 is a diagram which shows a method of specifying a captured image and an attention area.
  • FIG. 8A is a captured image 43 acquired in step S1000.
  • the gripping target workpiece 12 is recognized as a gripping target among the bulk workpieces 10 in step S1100.
  • the hand model 70 is disposed at a position at which the gripping target workpiece 12 is gripped, and the disposed hand model 70 is projected onto a captured image 43 as shown in FIG. 8B.
  • FIG. 8B is a diagram in which the hand model 70 is projected onto the captured image 43.
  • the specifying unit 203 sets an image area onto which the hand model 70 is projected as the attention area 71.
  • the specifying unit 203 determines the presence or absence of an interrupted view of an attention area with respect to the measurement area of a captured image. In the present embodiment, if the attention area 71 is included within an image range of the captured image 43, it is determined that there is no interrupted view. On the other hand, if the attention area 71 is not included within the image range of the captured image 43, it is determined that there is an interrupted view. In an example of FIG. 8B , since there is the attention area 71 protruding outside of a range of the captured image 43, it is determined that there is an interrupted view. On the other hand, for example, since the attention area 71 is included in the captured image 43 according to a state of FIG. 8C , it is determined that there is no interrupted view.
  • processing can be performed at high speed.
  • a method of attaching the imaging device 40 to the robot hand 30 at the tip of the robot arm 31 which is a vertically articulated robot that can arbitrarily control a position and a posture, and performing interference determination of bulk picking has been described.
  • a method of attaching the imaging device 40 to a three-axis slider which can control only positions in the XYZ directions and performing the interference determination of bulk picking will be described below.
  • the imaging device 40 attached to the three-axis slider can translate with three degrees of freedom by the slider.
  • the imaging device 40 is attached such that the three controllable directions of the slider coincide with vertical and transverse height directions of the pallet and the three controllable directions of the slider coincide with a direction of each axis of the imaging device coordinate system.
  • a method of installing the slider and a method of attaching the imaging device 40 are not limited thereto, and any methods may be used.
  • the imaging device 40 in the present embodiment is attached to a three-axis slider, positions to move to and possible postures are limited. Therefore, setting of the second position and posture in step S1400 in the present embodiment will be described.
  • the controller 204 decides the second position and posture as a new position and posture in which an image including an attention area which is out of view can be captured.
  • the imaging position is decided such that the center position of the attention area 71 indicated by a shaded area becomes a center of a captured image.
  • the imaging position may be decided by any other method as long as the attention area 71 is captured as an image center in the method such as using a center of the circumscribed rectangle of the attention area 71 instead of a center position of the attention area 71.
  • the imaging position may be decided with reference to the center position of the entire attention area 71 in the present embodiment, but the imaging position may also be decided with reference to the center position of an out-of-view area within the attention area 71.
  • a position of the imaging device 40 in the direction of an optical axis is set, as in the first embodiment, such that the hand model 70 is positioned at the center of a depth range in which distance measurement is possible in the imaging device 40.
  • a farthest surface of the depth range in which distance measurement is possible may coincide with a farthest surface of the hand model 70 in the Z axis direction.
  • FIG. 9 is a diagram which describes the position and posture of an imaging device 40 according to the fifth embodiment.
  • step S1500 a captured image is obtained as shown in FIG. 8(D) by moving the imaging device 40 to the second position and posture set in step S1400 and capturing an image.
  • the interference workpiece 13 which is outside of imaging in the first position and posture can be observed and presence or absence of interference with the hand model 70 can be determined with high accuracy.
  • the imaging device 40 is attached to the three-axis slider has been described above, but, for example, a slider that can translate along one axis or two axes may be used, and a device capable of rotation control may also be used. Moreover, in a vertical articulated robot, the present embodiment can be applied even to a case in which movement of the imaging device 40 is limited to only translation along three axes.
  • the imaging device 40 is attached to a three-axis slider that can control only the positions in XYZ directions.
  • the information processing apparatus is used for a method of manufacturing articles.
  • the method of manufacturing articles includes a process of performing measurement on an object (that is, a workpiece) using the information processing apparatus, and a process of processing the object on which measurement has been performed in the process.
  • the processing may include, for example, at least one of processing, cutting, transportation, assembly (assembly), inspection, and selection.
  • the method of manufacturing articles in the present embodiment is advantageous in at least one of performance, quality, productivity, and production cost of articles as compared with the conventional method.
  • the present invention can also be realized by processing of supplying a program for realizing one or more functions in the embodiments described above to a system or an apparatus via a network or a storage medium, and of one or more processors in a computer of the system or apparatus reading and executing the program. Furthermore, the present invention can be realized by a circuit (for example, ASIC) which realizes one or more functions.
  • a circuit for example, ASIC
  • An information processing apparatus 1 includes a measuring unit 202 configured to decide an object to be gripped among a plurality of objects on the basis of a first image of the imaged objects, a specifying unit 203 configured to specify an attention area for determining, when a gripping device grips the object to be gripped, whether the gripping device interferes with objects near the object to be gripped, a controller 20 configured to change an imaging range of an imaging device 40 on the basis of the attention area, and a determination unit 205 configured to determine, when the gripping device grips the object to be gripped, whether the gripping device interferes with the objects near the object to be gripped on the basis of a second image of an object imaged in a changed imaging range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Manipulator (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)
EP18166245.3A 2017-04-10 2018-04-09 Information processing apparatus, measuring apparatus, system, interference determination method, and article manufacturing method Withdrawn EP3392002A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017077728A JP2018176334A (ja) 2017-04-10 2017-04-10 情報処理装置、計測装置、システム、干渉判定方法および物品の製造方法

Publications (1)

Publication Number Publication Date
EP3392002A1 true EP3392002A1 (en) 2018-10-24

Family

ID=62063261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18166245.3A Withdrawn EP3392002A1 (en) 2017-04-10 2018-04-09 Information processing apparatus, measuring apparatus, system, interference determination method, and article manufacturing method

Country Status (3)

Country Link
US (1) US10894324B2 (ja)
EP (1) EP3392002A1 (ja)
JP (1) JP2018176334A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2584500A (en) * 2019-06-07 2020-12-09 Renishaw Plc Manufacturing method and apparatus

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365068B2 (en) * 2017-09-05 2022-06-21 Abb Schweiz Ag Robotic systems and methods for operating a robot
JP6687657B2 (ja) * 2018-03-20 2020-04-28 ファナック株式会社 センサ及びロボットを用いた物品取り出し装置、及び物品取り出し方法
US11945115B2 (en) * 2018-06-14 2024-04-02 Yamaha Hatsudoki Kabushiki Kaisha Machine learning device and robot system provided with same
WO2020047575A1 (en) * 2018-09-04 2020-03-12 Fastbrick Ip Pty Ltd Vision system for a robotic machine
US11312014B2 (en) * 2018-09-10 2022-04-26 Kindred Systems Inc. System and method for robotic gripping utilizing dynamic collision modeling for vacuum suction and finger control
JP7206726B2 (ja) * 2018-09-14 2023-01-18 株式会社リコー 計測装置、計測システムおよび車両
JP7156916B2 (ja) * 2018-11-14 2022-10-19 東芝テック株式会社 商品取出装置
KR102270958B1 (ko) * 2018-11-20 2021-06-30 한양대학교 산학협력단 파지 로봇 및 목표 물체 파지를 위한 주변 물체 분리 방법
US10977480B2 (en) * 2019-03-27 2021-04-13 Mitsubishi Electric Research Laboratories, Inc. Detection, tracking and 3D modeling of objects with sparse RGB-D SLAM and interactive perception
JP2020196059A (ja) 2019-05-31 2020-12-10 セイコーエプソン株式会社 ロボット
JP7328017B2 (ja) * 2019-06-11 2023-08-16 ファナック株式会社 ロボットシステム及び制御装置
JP7204587B2 (ja) * 2019-06-17 2023-01-16 株式会社東芝 物体ハンドリング制御装置、物体ハンドリング装置、物体ハンドリング方法および物体ハンドリングプログラム
CN114206565A (zh) * 2019-08-15 2022-03-18 欧姆龙株式会社 信息处理装置及信息处理方法
JP7163506B2 (ja) * 2019-09-18 2022-10-31 株式会社Fuji 作業ロボットおよび作業システム
JP7454132B2 (ja) * 2020-01-23 2024-03-22 オムロン株式会社 ロボットシステムの制御装置、ロボットシステムの制御方法、コンピュータ制御プログラム、及びロボットシステム
WO2021149429A1 (ja) * 2020-01-23 2021-07-29 オムロン株式会社 ロボットシステムの制御装置、ロボットシステムの制御方法、コンピュータ制御プログラム、及びロボットシステム
JP7535400B2 (ja) * 2020-07-14 2024-08-16 株式会社キーエンス 画像処理装置
CN111890343B (zh) * 2020-07-29 2021-10-15 浙江广合智能科技有限公司 一种机器人载物碰撞检测方法及装置
CN111879774B (zh) * 2020-08-03 2023-07-21 广州星际悦动股份有限公司 刷头磨圆率测试方法、装置和电子设备
CN112936257A (zh) * 2021-01-22 2021-06-11 熵智科技(深圳)有限公司 一种工件抓取方法、装置、计算机设备及存储介质
US11900652B2 (en) * 2021-03-05 2024-02-13 Mujin, Inc. Method and computing system for generating a safety volume list for object detection
WO2023171687A1 (ja) * 2022-03-08 2023-09-14 京セラ株式会社 ロボット制御装置及びロボット制御方法
DE102022213562A1 (de) 2022-12-13 2024-06-13 Kuka Deutschland Gmbh Greifen mit Verpackungsmaterial

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090113A (ja) 2000-09-20 2002-03-27 Fanuc Ltd 位置姿勢認識装置
EP1428634A2 (en) * 2002-12-13 2004-06-16 Fanuc Ltd Workpiece taking-out robot with a three-dimensional visual sensor
US20120029686A1 (en) * 2010-07-27 2012-02-02 FANUC Corpoartion Workpiece removing device and method
JP2015009314A (ja) 2013-06-28 2015-01-19 キヤノン株式会社 干渉判定装置、干渉判定方法、コンピュータプログラム
JP2016099257A (ja) 2014-11-21 2016-05-30 キヤノン株式会社 情報処理装置及び情報処理方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263480A (ja) * 1999-03-12 2000-09-26 Meidensha Corp ビンピッキング装置
JP3782679B2 (ja) * 2001-05-09 2006-06-07 ファナック株式会社 干渉回避装置
JP3805310B2 (ja) * 2003-01-30 2006-08-02 ファナック株式会社 ワーク取出し装置
JP4167954B2 (ja) * 2003-09-02 2008-10-22 ファナック株式会社 ロボット及びロボット移動方法
JP4226623B2 (ja) * 2006-09-29 2009-02-18 ファナック株式会社 ワーク取り出し装置
WO2011031523A2 (en) * 2009-08-27 2011-03-17 Abb Research Ltd. Robotic picking of parts from a parts holding bin
JP5500926B2 (ja) * 2009-09-29 2014-05-21 キヤノン株式会社 物体把持制御方法及び装置
JP5458807B2 (ja) 2009-10-30 2014-04-02 富士電機株式会社 対象物把持領域抽出装置および対象物把持領域抽出装置を用いたロボットシステム
JP5539001B2 (ja) 2010-05-07 2014-07-02 本田技研工業株式会社 制御装置
JP5767464B2 (ja) * 2010-12-15 2015-08-19 キヤノン株式会社 情報処理装置、情報処理装置の制御方法、およびプログラム
US9132546B2 (en) * 2011-04-14 2015-09-15 Mitsubishi Electric Corporation Robot control apparatus
WO2013027251A1 (ja) * 2011-08-19 2013-02-28 株式会社安川電機 ロボットシステム、ロボット制御装置、ロボットハンド及びロボットの制御方法
JP5852364B2 (ja) * 2011-08-26 2016-02-03 キヤノン株式会社 情報処理装置、情報処理装置の制御方法、およびプログラム
JP2013099815A (ja) * 2011-11-08 2013-05-23 Fanuc Ltd ロボットプログラミング装置
JP5266377B2 (ja) * 2011-12-19 2013-08-21 ファナック株式会社 物品の姿勢を修正する機能を備えた取出し装置
JP6000579B2 (ja) * 2012-03-09 2016-09-28 キヤノン株式会社 情報処理装置、情報処理方法
JP5765355B2 (ja) * 2013-03-18 2015-08-19 株式会社安川電機 ロボットピッキングシステム及び被加工物の製造方法
JP6088563B2 (ja) * 2015-02-10 2017-03-01 ファナック株式会社 位置及び姿勢の変換演算機能を備えたワーク取出しロボットシステム、及びワーク取出し方法
JP6823502B2 (ja) * 2017-03-03 2021-02-03 株式会社キーエンス ロボット設定装置、ロボット設定方法、ロボット設定プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
JP6438512B2 (ja) * 2017-03-13 2018-12-12 ファナック株式会社 機械学習により補正した計測データでワークの取り出しを行うロボットシステム、計測データ処理装置および計測データ処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090113A (ja) 2000-09-20 2002-03-27 Fanuc Ltd 位置姿勢認識装置
EP1428634A2 (en) * 2002-12-13 2004-06-16 Fanuc Ltd Workpiece taking-out robot with a three-dimensional visual sensor
US20120029686A1 (en) * 2010-07-27 2012-02-02 FANUC Corpoartion Workpiece removing device and method
JP2015009314A (ja) 2013-06-28 2015-01-19 キヤノン株式会社 干渉判定装置、干渉判定方法、コンピュータプログラム
JP2016099257A (ja) 2014-11-21 2016-05-30 キヤノン株式会社 情報処理装置及び情報処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2584500A (en) * 2019-06-07 2020-12-09 Renishaw Plc Manufacturing method and apparatus
GB2584500B (en) * 2019-06-07 2024-02-28 Renishaw Plc Manufacturing method and apparatus

Also Published As

Publication number Publication date
US20180290307A1 (en) 2018-10-11
US10894324B2 (en) 2021-01-19
JP2018176334A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
US10894324B2 (en) Information processing apparatus, measuring apparatus, system, interference determination method, and article manufacturing method
US9415511B2 (en) Apparatus and method for picking up article randomly piled using robot
JP5778311B1 (ja) ピッキング装置およびピッキング方法
CN114061580B (zh) 基于对称程度的机器人抓取方法、装置、电子设备及介质
JP2018176334A5 (ja)
JP5620445B2 (ja) 選択条件に基づいてロボットの保持位置姿勢を決定する物品取出装置
US9089966B2 (en) Workpiece pick-up apparatus
US9089971B2 (en) Information processing apparatus, control method thereof and storage medium
EP2636493B1 (en) Information processing apparatus and information processing method
US8244402B2 (en) Visual perception system and method for a humanoid robot
US20150120055A1 (en) Robot control device, robot system, and robot
CN113272106A (zh) 基于由相机生成的图像信息执行运动规划的方法和计算系统
JP2014205209A (ja) ロボットシステム、及びロボットシステムの制御方法
JP2014161965A (ja) 物品取り出し装置
JP2011093014A (ja) ハンドアイ式ビンピッキングロボットの制御装置
US20230347509A1 (en) Robot control apparatus, robot control method, and program
JP2020163502A (ja) 物体検出方法、物体検出装置およびロボットシステム
JP2017217726A (ja) ロボット
JP2008168372A (ja) ロボット装置及び形状認識方法
JP5983506B2 (ja) 把持対象物の把持パターン検出方法およびロボット
JP2023524607A (ja) ロボット多面グリッパアセンブリ及びその操作方法
CN109983299A (zh) 工业机器人的测量系统和方法
JP7454132B2 (ja) ロボットシステムの制御装置、ロボットシステムの制御方法、コンピュータ制御プログラム、及びロボットシステム
CN117794704A (zh) 机器人控制设备、机器人控制系统以及机器人控制方法
EP4094904B1 (en) Robot system control device, robot system control method, computer control program, and robot system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20190424

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20201126