EP3365558B1 - Releasing a blockage in a pump - Google Patents

Releasing a blockage in a pump Download PDF

Info

Publication number
EP3365558B1
EP3365558B1 EP16781725.3A EP16781725A EP3365558B1 EP 3365558 B1 EP3365558 B1 EP 3365558B1 EP 16781725 A EP16781725 A EP 16781725A EP 3365558 B1 EP3365558 B1 EP 3365558B1
Authority
EP
European Patent Office
Prior art keywords
rotor
pump
force
pauses
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16781725.3A
Other languages
German (de)
French (fr)
Other versions
EP3365558A1 (en
Inventor
Wolfgang Krauth
Volker Hofacker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3365558A1 publication Critical patent/EP3365558A1/en
Application granted granted Critical
Publication of EP3365558B1 publication Critical patent/EP3365558B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/06Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/07Electric current
    • F04C2270/075Controlled or regulated

Definitions

  • DE 10 2010 043 391 A1 discloses a pump which is designed with a drive unit, a coupling unit and a pump unit having a pump rotor.
  • the coupling unit couples the drive unit to the pump rotor.
  • the pump rotor is axially displaceably mounted with a displacement path.
  • the coupling unit is designed as a magnetic coupling, the pole arrangement of the magnetic coupling being selected such that when the pump rotor is blocked, the pump rotor is moved along the displacement path in order to release the blocking of the pump rotor.
  • the known pump has additional degrees of freedom of movement for releasing a blockage, which is why the production of the pump is complex.
  • EP 1 783 264 A2 discloses a washer pump control for draining water.
  • EP 0 771 065 A1 a method for starting speed-variable electrical machines
  • a pump according to the invention with the features of claim 15 and a pump in which a method according to the invention is used, according to the features of claim 1, has a significantly simplified production and a reduction in manufacturing costs.
  • the rotary vibrating movement of the rotor is generated by an alternately acting force or torque in a first direction of rotation and a further force or torque in a second direction of rotation opposite to the first direction of rotation .
  • This generation is technically easy to implement.
  • the forces or the torques are generated by energizing the pump.
  • the forces or torques are preferably generated by energizing at least one winding. It is an advantage that an easy to manufacture and inexpensive implementation of a pump is possible.
  • the rotary shaking movement is generated by pulse-width-modulated energization of the pump or by pulsed energization with at least one pulse.
  • pauses are formed between the alternating action of the forces or the torques. During the breaks, no force or torque acting on the rotor is generated. The breaks in particular allow the pump to cool down.
  • the shaking movements are repeated. Vibration pauses are formed between the vibrations in which no force or torque is generated on the rotor.
  • the shaking pauses allow cooling and a check of the blocking in a simple manner.
  • the rotor can be turned on a solution to the blocking can be closed.
  • the shaking pauses from shaking to shaking become longer, which means that the constant heating can be compensated for in a simple manner.
  • the shaking movement is divided into one or more sequences.
  • the strength of the forces or torques generated and the duration of the generation of the forces or torques are essentially the same.
  • pauses within a sequence in which no force or torque acting on the rotor is generated are essentially of the same length.
  • sequence pauses are inserted between the individual sequences in which no force acts on the rotor.
  • the amount of the force or the torque and the duration of the formation of the force or the torque on the rotor are varied between the individual sequences.
  • the amount of force or torque and the duration of the formation of the force or torque on the rotor are preferably increased from sequence to sequence. The increase increases the probability of the blocking being released.
  • the method is ended when a rotary movement is detected.
  • the rotary movement can take place in particular by means of a Hall sensor, in particular the detection of a Hall edge.
  • the rotary movement can also take place on the basis of the evaluation of a course of the energization of the pump.
  • the rotary movement is monitored continuously. Furthermore, the monitoring of the Rotational movement in the breaks, in particular the shaking breaks or the sequence breaks, between the action of a force on the rotor.
  • the energization is interrupted and an energization pause is inserted, with the rotary vibrating movement being started after the energization pause.
  • FIG 1 is one of the prior art, or the document DE 10 2010 043 391 A1 known pump 100 shown.
  • the pump has a drive unit 109, a coupling unit 112 and a pump rotor 113, the pump rotor 113 being part of a pump unit 110.
  • the coupling unit 112 couples the pump rotor 113 and the drive unit 109.
  • the pump rotor 113 is axially displaceably mounted with a predefined displacement path d.
  • the coupling unit 112 is designed as a magnetic coupling, the pole arrangement of the magnetic coupling 112 being selected such that when the pump rotor 113 is blocked, the pump rotor 113 is moved along the displacement path in order to release the blocking of the pump rotor 113.
  • a pump 1 according to the invention can be used as a coolant pump in a motor vehicle.
  • the pump is preferably arranged within a coolant circuit.
  • the pump 1 comprises a pump housing 10 and a motor housing 30.
  • the pump housing 10 and the motor housing 30 are firmly connected to one another by means of screws.
  • the pump housing 10 has a first opening 12 and a second opening 14.
  • the first opening 12 forms in particular an inlet and the second opening 14 an outlet for the fluid to be conveyed, in particular the cooling liquid for cooling an internal combustion engine and / or an electric motor in a means of transportation, preferably a vehicle.
  • FIG 3 is an exploded view of a pump according to the invention Figure 2 shown.
  • the pump 1 has a pump housing 10 and a motor housing 30.
  • the pump 1 also has a pump pot 20.
  • the pump bowl 20 forms, together with the pump housing 10, a flow area for the fluid.
  • a seal 18 is formed between the pump housing 10 and the pump bowl 20.
  • the seal 18 prevents the fluid from escaping from the flow area, in particular between the pump cup 20 and the pump housing 10.
  • the seal 18 is in particular designed as an O-ring, preferably as an O-ring seal.
  • the pump pot 20 has in particular the shape of a pot.
  • the pump pot 20 has a flange 26.
  • the flange 26 is assigned to the pump housing 10.
  • the flange 26 preferably comprised a groove in which the seal 18 is arranged.
  • the flange 26 also has recesses that enable the pump bowl 20 to be connected to the pump housing 10.
  • the recesses are in particular designed as four holes in the edge region of the flange.
  • the pump pot 20 further comprises a labyrinth 27.
  • the labyrinth 27 prevents the ingress of dirt, in particular sand particles, into the area of the pump pot 20 in which the rotor is arranged.
  • the labyrinth 27 is in particular circular. It has gradations running radially inwards. The gradations are circular and circumferential.
  • a ring 29 is formed between the flange 26 and the labyrinth 27. The ring 29 is arranged all around. The ring 29 separates the flange region 26 from the labyrinth 27.
  • the pump pot 20 has an axis 24.
  • the axis 24 runs in the longitudinal direction of the pump bowl 20 or in the longitudinal direction of the pump 1.
  • the axis 24 is firmly connected to the pump bowl 20.
  • a rotor 50 is arranged within the flow area.
  • the rotor 50 has a recess within which the axis 24 is arranged.
  • the rotor 50 is rotatably supported by the axis 24.
  • the rotor 50 comprises magnets which enable it to interact with the stator 40.
  • the rotor 50 has at least one magnet, preferably a plurality of magnets.
  • the rotor 50 has vanes 52.
  • the vanes 52 are designed in such a way that the rotor 50 sucks the fluid axially and presses it radially out of the pump housing 10.
  • the suction of the fluid takes place in particular via the pump inlet 12 and the radial expression of the fluid takes place via the outlet 14.
  • the vanes 52 are arranged on the side of the rotor 50 which faces the pump housing 10 axially. They are arranged in particular in the part of the flow area which is formed by the pump housing 10.
  • the part of the rotor 50, which comprises the magnets, is arranged essentially within the pump pot 20.
  • the rotor 50 is rotatably held on the axis 24 by a thrust washer 28.
  • the thrust washer 28 also forms a slide bearing for the rotor 24.
  • the thrust washer 28 has three feet for fastening the thrust washer to the pump housing 10.
  • the axis 24 runs through a recess in the thrust washer 28.
  • the rotor 50 and the labyrinth 27 prevent dirt from penetrating into the flow area within the pump bowl.
  • the flange 26 of the pump bowl 20 serves to connect the motor housing 30 to the pump bowl 20.
  • the stator 40 is arranged inside the motor housing 30.
  • the stator 40 consists of two pole plates 42 with axial Pole teeth 44 bent against one another. In the fully assembled state, the pole plates 42 are nested in one another with a small tangential distance such that the poles of the two pole plates 42 of the stator 40 alternate on the circumference, in particular when the current is energized, the magnetic poles.
  • the pole teeth 44 of the two pole plates 42 are in this case nested in one another in such a way that a uniform, small distance is formed in the circumferential direction between the individual pole teeth 44.
  • Poles or the pole plate teeth 44 are wrapped by at least one winding 46.
  • the pole teeth 44 or the poles are preferably wrapped in at least two opposite windings 46.
  • a yoke ring 48 is formed all around the stator 40.
  • the return ring consists of a material suffering from the magnetic field.
  • the yoke ring 48 consists of a sheet metal which has been formed into a circular shape.
  • a Hall sensor 32 is arranged within the motor housing 30 to determine the rotor position relative to the stator 40. The accuracy of the rotor position determination depends on the number of magnets of the rotor 50.
  • the Hall sensor 32 outputs a Hall flank when a magnet is turned past. Electronics 60 recognizes this Hall flank and can use the frequency and the intervals between the detection of the Hall flanks to infer the speed of the rotor 50. It can also be concluded whether the rotor 50 is rotating.
  • Another sealing element 34 is arranged between the flange 26 of the pump pot 20 and the motor housing 30.
  • the further sealing element 34 prevents fluid, in particular liquids or gases, from entering the area of the stator 40.
  • the motor housing 30 On the side of the motor housing 30 facing away from the pump housing 10, the motor housing 30 has an electronics area 36.
  • the electronics 60, or the control means, or the control is arranged protected by the motor housing 30 and a cover within the electronics area 36.
  • the electronics 60 serve for the electrical control of the pump 1.
  • the electronics 60 has in particular a first and a second output stage.
  • Each output stage is connected in series with at least one winding 46.
  • the first output stage with the first winding 46 and the second output stage with the second winding 46 are connected in series.
  • the output stages are connected in parallel to each other.
  • the windings are also connected in parallel to each other.
  • a force or torque acts on the rotor 50, in particular the magnets of the rotor 50. If, for example, the first winding 46 is energized by means of the first output stage, a rotary movement is formed in one first direction of rotation. If, however, the second winding is energized by means of the second output stage, a rotary movement of the rotor 50 is formed in a second direction of rotation, the second direction of rotation being opposite to the first direction of rotation.
  • the fluid to be pumped can be contaminated. This contamination can lead to the rotor 50 or the blades 52 becoming stuck. In particular, particles can become jammed in the fluid between the rotor 50 and the labyrinth 27 of the pump pot 20 and block the pump 1. Furthermore, it is also conceivable that contaminants settle between the rotor 50 and the pump pot 20 and lead to a blockage of the pump 1. In particular, the dirt can prevent the pump 1 from restarting. The contamination during the operation of the pump 1 can also lead to the rotor 50 coming to a standstill and thus to a failure of the pump 1.
  • a method according to the invention enables a blocking of a pump 1 to be solved.
  • the method can be used in motor vehicle pumps that convey cooling liquids.
  • a blocking is released by a rotary shaking movement 82 of the rotor 50. With the rotating shaking movement 82 of the rotor 50, forces or torques alternately act in a first direction of rotation and further forces or further torques in a second direction of rotation opposite to the first direction of rotation , on the rotor 50. The forces or
  • the forces or torques are generated by energizing the pump 1, in particular energizing the windings of the stator 40.
  • energizing the windings of the stator 40 By energizing the windings of the stator 40, a magnetic field is generated which attracts or repels the magnets of the rotor 50. A force or torque acts on the rotor 50 through the magnetic field.
  • the process flow is shown as an example.
  • the course 70 shows when the pump 1 is switched on or off.
  • the curve 72 shows the generation of a pulse or the energization or the generation of a force or a torque in a first direction of rotation.
  • the curve 74 shows the generation of a pulse or the energization or the generation of a force or a torque in a second direction of rotation.
  • the current supply to the windings through the output stages can be taken from the curves 72 and 74, for example.
  • the second winding is energized by means of the second output stage.
  • a corresponding current supply is shown as block 80 in Figure 4 shown.
  • the pump is energized for an ordinary rotary movement. If, however, after a defined time, which is chosen such that there is no damage to the windings or the pump, in particular 300 to 1000 ms, preferably 500 ms, no rotary movement is detected, it can be assumed that the pump 1 is blocked. If a blockage is found, the method according to the invention is started automatically.
  • the method starts after a pause, which is selected so that the heated windings 46 can cool sufficiently within the stator 40.
  • the first pause lasts between 100 ms and 20 s, preferably one second.
  • the process starts with the generation of a force or a torque in the direction of rotation opposite to the previous start attempt.
  • the pump 1 is controlled by the electronics 60 in such a way that vibrations of the rotor 50 can develop.
  • the shaking movement can also consist of only a single pulse, in particular Current pulse, force pulse or torque pulse exist if this leads in particular to a solution of the blocking.
  • the shaking movement can be limited to an alternating action of a first force in a first direction and a second force in a second direction of rotation, but there is no significant movement of the rotor 50 in a first or second direction of rotation.
  • the shaking movement is generated by an alternating action of a force or the torque in a first direction of rotation and a further force or a further torque in a second direction of rotation, the first direction of rotation being opposite to the further direction of rotation.
  • Breaks 86 are formed between the alternating effects of the forces or the torques. The length of the breaks 86 varies depending on the course of the method.
  • the pauses 86 prevent simultaneous energization of both or all of the windings 56.
  • a force or torque can be generated in the opposite direction of rotation.
  • a pause 86 is inserted in the opposite direction of rotation.
  • the shaking movement 82 is divided into one or more sequences.
  • the shaking movement 82 is divided into three sequences 84a, 84b and 84c.
  • the strength of the forces generated or the torque and the duration of the generation of the forces or torques are essentially the same.
  • the energization during a sequence has essentially the same amplitude and the same energization time.
  • the energization time is 3ms in sequence 84a and in sequence 84b the energization time is 5ms
  • the forces or torques on the rotor 50 are formed during the energization of the windings.
  • a pulse modulation method is preferably used, the force or the torque being formed during the pulse and no force during the pulse pause or no torque acts on the rotor.
  • the pulse-width-modulated control of the first output stage or the first winding and the second output stage or the second winding are synchronized with one another. The synchronization prevents simultaneous energization of the first and second windings.
  • the second power stage is energized during the pause 90 of the first power stage.
  • a force or torque acts in particular 35 times in the first direction and in particular 35 times a force or torque in the second direction of rotation.
  • the current supply takes place in particular for one to 10 ms, preferably 3 ms. According to one development, the number of times the force acts is not fixed at 35.
  • a rapid shaking movement should take place.
  • the second sequence 84b follows the first sequence 84a. In the second sequence 84b, the pulse length or the length of the current supply or the length in which a force or a torque acts on the rotor 50 is increased.
  • the pulse length or the length of the current supply is in particular 3-15 ms, preferably 5 ms.
  • the pause between the pulses is in particular 10-50 ms, preferably 20 ms.
  • the third sequence 84c follows the second sequence.
  • the force or the torque acts on the rotor 50 over a longer period of time than in the two sequences 84a, 84b.
  • windings are energized for 100-1000 ms, preferably 300 ms.
  • a force or a torque is thus exerted on the rotor 50 for the period of the energization.
  • a pause 86 is formed between the pulses, in particular the energization impulse, which leads to the formation of a force or a torque on the rotor.
  • the pause is particularly between 10 and 100 ms, preferably 20 ms.
  • Sequence breaks can also be formed between the individual sequences 84a, 84b and 84c. In the sequence breaks there is no current supply and therefore no force or torque is formed which acts on the rotor 50.
  • the amount of force or torque is increased by lengthening the pulse.
  • the force or the torque and the duration of the training the force or the torque on the rotor 50 varies between the individual sequences. According to Figure 4 the current impulse and thus the force or the torque is increased from sequence to sequence.
  • the number of generated forces or torques that act on the rotor 50 become less from sequence to sequence, while for example according to Figure 4 35 pulses per direction of rotation are generated in the first sequence 84 A, only 5 pulses are generated in the second sequence 84 b. Only a single pulse is generated in the third sequence 84c. If the first pulse already leads to a solution of the rotor, the shaking movement 82 according to the invention consists of only a single pulse. In particular, the number of forces or torques generated decreases with increasing number of sequences, but the duration of the effect increases.
  • Vibrating pauses 88 are formed between the vibrating movements 82, with no force or torque acting on the rotor 50 during the vibrating pauses 88.
  • the vibration pauses 88 serve to cool the stator 50, in particular the windings and the output stages.
  • the vibrating pauses 88 can be smaller, since the pump 1 is cold, particularly when restarting.
  • the pump 1 is heated.
  • the windings and the output stage are heated. In order to prevent damage to the windings and the output stages, breaks are taken.
  • the first vibration pause 88 lasts one second between the first and the second vibration, whereas the second vibration pause already 5 seconds, the 3 further vibration pauses 10 seconds, the five further vibration pauses 20 seconds and the 10 further vibration pauses 88 2 minutes.
  • the vibration pauses 88 can vary by the values specified above.
  • the method is ended as soon as a rotary movement of the rotor 50 is detected.
  • the rotary movement is recognized in particular by the detection of a Hall edge of the Hall sensor 32. If a rotary movement is detected, the blockage has been released and the pump 1 can deliver the fluid.
  • the detection of the rotary movement by means of the Hall sensor 32 the rotary movement can be detected by evaluating the course of the energization of the pump 1. The course of the energization with which the windings are energized is monitored. The rotary movement is monitored continuously during the shaking movement 82, in particular during the breaks and during the energization.
  • the rotational movement can be monitored during the breaks, in particular during the shaking breaks
  • the number of repetitions of the shaking movement 82 is limited to a fixed value. If no rotation of the motor is detected after the repetitions limited to a fixed value have ended, the process is terminated and no attempt is made to start pump 1.
  • the method according to the invention can also be used in pumps which have no claw pole stator, in particular pumps with an EC or DC drive.
  • the stator can also have more than two windings.
  • FIG. 5 Another embodiment of a pump 200 according to the invention is shown.
  • the pump 200 comprises a large number of identical components or components with a similar function to the pump 1 Figure 2 and 3rd .
  • the components pump housing 210, seal 218, pump cup 220, motor housing 230 essentially correspond to the corresponding components in FIG Figure 2 and 3rd .
  • the rotor 250 has a slightly modified structure compared to the rotor 50.
  • the rotor 250 has a part equipped with magnets, which is arranged inside the pump pot 220.
  • the part of the rotor 250 which carries the magnets 251 is connected to an impeller 254 via a connecting element 253.
  • the impeller 254 has vanes that convey the fluid.
  • the impeller conveys the fluid when rotating.
  • the inventive method according to claim 1 can be used in a pump corresponding to the further embodiment.
  • the stator 240 has a laminated core with a plurality of stator teeth directed radially inwards.
  • the stator teeth are each wrapped by at least one winding.
  • the stator teeth each have a stator head.
  • the stator head points in the direction of the rotor 250.
  • the stator head serves to improve the guidance of the magnetic flux to the rotor 250.
  • the stator 240 is arranged within the motor housing 230.
  • a fixing element 264 presses the stator in the axial direction in the direction of a stop which is formed on the motor housing 230.
  • the fixing element 264 has a plurality of spring elements, which are each arranged around a guide pin. The fixation element presses itself against the pump cup flange 226.
  • Electronics 260 is arranged on the side of pump 1 facing away from the pump housing.
  • the electronics are protected by a cover 239.
  • a sealing ring 237 between the cover and the motor housing 230 prevents fluids from penetrating into the electronics 260.
  • the shaking movements 82 are generated by a corresponding generation of forces or torques in a first or a second direction of rotation.
  • the forces or torques are generated by means of output stages in a bridge circuit, in particular the control of a B6 bridge.
  • the force or the torque in one direction of rotation is generated by energization in accordance with a desired rotational movement in this direction of rotation.
  • the control is preferably carried out by means of a pulse width modulated current. The course of the control accordingly Figure 4 and the associated description.
  • the pump pot 220 of the further embodiment can likewise correspond to a ring 29 and / or a labyrinth 27 Figure 3 exhibit.
  • the mode of operation and the training are correspondingly the same.
  • An output stage can in particular comprise MosFETs or transistors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Stand der TechnikState of the art

Es sind bereits Verfahren zur Lösung einer Blockierung bei einer Pumpe bekannt. Auch sind Pumpen bekannt, die Verfahren zur Lösung einer Blockierung einsetzen.Methods for solving a blockage in a pump are already known. Pumps are also known which use methods for solving a blockage.

In DE 10 2010 043 391 A1 ist eine Pumpe offenbart, die mit einer Antriebseinheit, einer Kopplungseinheit und einer einen Pumpenrotor aufweisenden Pumpeneinheit ausgebildet ist. Die Kopplungseinheit koppelt die Antriebseinheit mit dem Pumpenrotor. Der Pumpenrotor ist mit einem Verschiebeweg axial verschiebbar gelagert. Die Kopplungseinheit ist als Magnetkupplung ausgebildet, wobei die Polanordnung der Magnetkupplung derart gewählt ist, dass bei einem blockieren des Pumpenrotors der Pumpenrotor entlang des Verschiebewegs verfahren wird, um die Blockierung des Pumpenrotors zu lösen. Die bekannte Pumpe weist zum Lösen einer Blockierung zusätzliche Bewegungsfreiheitsgrade auf, weshalb die Fertigung der Pumpe aufwendig ist.In DE 10 2010 043 391 A1 discloses a pump which is designed with a drive unit, a coupling unit and a pump unit having a pump rotor. The coupling unit couples the drive unit to the pump rotor. The pump rotor is axially displaceably mounted with a displacement path. The coupling unit is designed as a magnetic coupling, the pole arrangement of the magnetic coupling being selected such that when the pump rotor is blocked, the pump rotor is moved along the displacement path in order to release the blocking of the pump rotor. The known pump has additional degrees of freedom of movement for releasing a blockage, which is why the production of the pump is complex.

Ferner offenbart die DE 42 15 266 C1 ein Verfahren zum Deblockieren eines Rotors. EP 1 783 264 A2 offenbart eine Waschmaschinenpumpensteuerung zum Wasserablassen. Darüber hinaus offenbart die EP 0 771 065 A1 ein Verfahren zum Anlaufen drehzahlveränderlicher elektrischer Maschinen,Furthermore, the DE 42 15 266 C1 a method for unblocking a rotor. EP 1 783 264 A2 discloses a washer pump control for draining water. In addition, the EP 0 771 065 A1 a method for starting speed-variable electrical machines,

Offenbarung der ErfindungDisclosure of the invention

Demgegenüber weist eine erfindungsgemäße Pumpe mit den Merkmalen des Anspruchs 15 und eine Pumpe bei der ein erfindungsgemäßen Verfahren angewendet wird, gemäß den Merkmalen des Anspruchs 1 eine deutlich vereinfachte Fertigung und eine Herstellungskostenreduzierung auf.In contrast, a pump according to the invention with the features of claim 15 and a pump in which a method according to the invention is used, according to the features of claim 1, has a significantly simplified production and a reduction in manufacturing costs.

Durch die in den Unteransprüchen aufgeführten Maßnahmen ergeben sich vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Merkmale.The measures listed in the subclaims result in advantageous developments and improvements of the features specified in the main claim.

Besonders vorteilhaft ist, dass die rotatorische Rüttelbewegung des Rotors durch ein abwechselndes wirken einer Kraft, bzw. eines Drehmoments in eine erste Drehrichtung und einer weiteren Kraft, bzw. eines weiteren Drehmoments in eine zweite, der ersten Drehrichtung entgegengesetzte Drehrichtung, auf den Rotor erzeugt wird. Diese Erzeugung ist technisch einfach umsetzbar.It is particularly advantageous that the rotary vibrating movement of the rotor is generated by an alternately acting force or torque in a first direction of rotation and a further force or torque in a second direction of rotation opposite to the first direction of rotation . This generation is technically easy to implement.

Vorteilhaft ist, dass die Kräfte, bzw. die Drehmomente durch eine Bestromung der Pumpe erzeugt werden. Vorzugsweise werden die Kräfte, bzw. Drehmomente durch die Bestromung mindestens einer Wicklung erzeugt. Als Vorteil ist anzusehen, dass somit eine einfach zu fertigende und kostengünstige Umsetzung einer Pumpe möglich ist.It is advantageous that the forces or the torques are generated by energizing the pump. The forces or torques are preferably generated by energizing at least one winding. It is an advantage that an easy to manufacture and inexpensive implementation of a pump is possible.

Als Vorteilhaft ist anzusehen, dass die rotatorische Rüttelbewegung durch eine pulsweitenmodulierte Bestromung der Pumpe, bzw. durch eine impulsförmige Bestromung mit mindestens einem Impuls erzeugt wird. Die meisten Elektroniken, insbesondere elektrischen Ansteuerungen/Regelungen, vorzugsweise Ansteuermittel, arbeiten normalerweise mit einer pulsweitenmodulierter Ansteuerung der Pumpe, weshalb das Verfahren einfach nachgerüstet werden kann.It is to be regarded as advantageous that the rotary shaking movement is generated by pulse-width-modulated energization of the pump or by pulsed energization with at least one pulse. Most electronics, in particular electrical controls, preferably control means, normally work with pulse-width-modulated control of the pump, which is why the method can be easily retrofitted.

Von Vorteil ist, dass zwischen dem abwechselnden Wirken der Kräfte, bzw. der Drehmomente Pausen ausgebildet werden. In den Pausen werden keine auf den Rotor wirkende Kraft, bzw. Drehmoment erzeugt. Die Pausen ermöglichen insbesondere eine Abkühlung der Pumpe.It is advantageous that pauses are formed between the alternating action of the forces or the torques. During the breaks, no force or torque acting on the rotor is generated. The breaks in particular allow the pump to cool down.

Besonders vorteilhaft ist, dass die Rüttelbewegungen wiederholt werden. Zwischen den Rüttelbewegungen werden Rüttelpausen ausgebildet, in denen keine Kraft, bzw. kein Drehmoment auf den Rotor erzeugt wird. Die Rüttelpausen ermöglichen auf einfache Weise eine Abkühlung und eine Überprüfung der Blockierung. Insbesondere kann anhand eines Weiterdrehens des Rotors auf eine Lösung der Blockierung geschlossen werden. Ferner ist von Vorteil, dass insbesondere die Rüttelpausen von Rüttelbewegung zu Rüttelbewegung länger werden, womit die stetige Erwärmung auf einfach Weise kompensiert werden kann.It is particularly advantageous that the shaking movements are repeated. Vibration pauses are formed between the vibrations in which no force or torque is generated on the rotor. The shaking pauses allow cooling and a check of the blocking in a simple manner. In particular, the rotor can be turned on a solution to the blocking can be closed. It is also advantageous that the shaking pauses from shaking to shaking become longer, which means that the constant heating can be compensated for in a simple manner.

Vorteilhaft ist, dass die Rüttelbewegung in eine oder mehrere Sequenzen unterteilt ist. Während einer Sequenz sind die Stärke der erzeugten Kräfte, bzw. der erzeugten Drehmomente und die Dauer der Erzeugung der Kräfte bzw. Drehmomente im Wesentlichen gleich.It is advantageous that the shaking movement is divided into one or more sequences. During a sequence, the strength of the forces or torques generated and the duration of the generation of the forces or torques are essentially the same.

Von Vorteil ist, dass die Pausen innerhalb einer Sequenz, in denen keine auf den Rotor wirkende Kraft, bzw. Drehmoment erzeugt wird im Wesentlichen gleich lang sind.It is advantageous that the pauses within a sequence in which no force or torque acting on the rotor is generated are essentially of the same length.

Besonders vorteilhaft ist, dass zwischen den einzelnen Sequenzen Sequenzpausen eingelegt werden, in denen keine Kraft auf den Rotor wirkt.It is particularly advantageous that sequence pauses are inserted between the individual sequences in which no force acts on the rotor.

Vorteilhaft ist, dass der Betrag der Kraft, bzw. des Drehmoments und die Dauer der Ausbildung der Kraft, bzw. des Drehmoments auf den Rotor zwischen den einzelnen Sequenzen variiert werden. Vorzugsweise werden der Betrag der Kraft, bzw. des Drehmoments und die Dauer der Ausbildung der Kraft, bzw. des Drehmoments auf den Rotor von Sequenz zu Sequenz erhöht. Durch die Erhöhung wird die Wahrscheinlichkeit für die Lösung der Blockierung erhöht.It is advantageous that the amount of the force or the torque and the duration of the formation of the force or the torque on the rotor are varied between the individual sequences. The amount of force or torque and the duration of the formation of the force or torque on the rotor are preferably increased from sequence to sequence. The increase increases the probability of the blocking being released.

Als vorteilhaft ist anzusehen, dass die Anzahl der erzeugten Kräfte, bzw. Drehmomente, die auf den Rotor wirken von Sequenz zu Sequenz abnimmt.It is to be regarded as advantageous that the number of generated forces or torques that act on the rotor decrease from sequence to sequence.

Vorteilhaft ist, dass eine Beendigung des Verfahrens bei Erkennung einer Drehbewegung erfolgt. Die Drehbewegung kann insbesondere mittels eines Hallsensors, insbesondere der Erkennung einer Hallflanke erfolgen. Auch kann die Drehbewegung anhand der Auswertung eines Verlaufs der Bestromung der Pumpe erfolgt.It is advantageous that the method is ended when a rotary movement is detected. The rotary movement can take place in particular by means of a Hall sensor, in particular the detection of a Hall edge. The rotary movement can also take place on the basis of the evaluation of a course of the energization of the pump.

Als vorteilhaft ist anzusehen, dass die Überwachung der Drehbewegung kontinuierlich durchgeführt wird. Ferner kann die Überwachung der Drehbewegung in den Pausen, insbesondere den Rüttelpausen oder den Sequenzpausen, zwischen dem Wirken einer Kraft auf den Rotor durchgeführt werden.It is to be regarded as advantageous that the rotary movement is monitored continuously. Furthermore, the monitoring of the Rotational movement in the breaks, in particular the shaking breaks or the sequence breaks, between the action of a force on the rotor.

Besonders vorteilhaft ist, dass bei Erkennung einer Blockierung die Bestromung unterbrochen und eine Bestromungspause eingelegt wird, wobei im Anschluss an die Bestromungspause mit der rotatorische Rüttelbewegung begonnen wird.It is particularly advantageous that when a blockage is detected, the energization is interrupted and an energization pause is inserted, with the rotary vibrating movement being started after the energization pause.

Weitere Merkmale der Erfindung ergeben sich aus den Figuren und sind in der nachfolgenden Beschreibung näher erläutert. Es zeigen

Figur 1
einen aus dem Stand der Technik bekannte schematische Schnittdarstellung einer bekannten Pumpe,
Figur 2
ein erstes Ausführungsbeispiel,
Figur 3
eine Explosionsdarstellung einer erfindungsgemäßen Pumpe gemäß Figur 2 ,
Figur 4
eine beispielhafte Darstellung des Verfahrensablaufs und
Figur 5
ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Pumpe.
Further features of the invention result from the figures and are explained in more detail in the following description. Show it
Figure 1
2 shows a schematic sectional illustration of a known pump, known from the prior art,
Figure 2
a first embodiment,
Figure 3
an exploded view of a pump according to the invention Figure 2 ,
Figure 4
an exemplary representation of the procedure and
Figure 5
a further embodiment of a pump according to the invention.

In Figur 1 ist ein aus dem Stand der Technik, bzw. dem Dokument DE 10 2010 043 391 A1 bekannte Pumpe 100 dargestellt. Die Pumpe weist eine Antriebseinheit 109, eine Kopplungseinheit 112 und einen Pumpenrotor 113 auf, wobei der Pumpenrotor 113 Teil einer Pumpeneinheit 110 ist. Die Kopplungseinheit 112 koppelt den Pumpenrotor 113 und die Antriebseinheit 109. Der Pumpenrotor 113 ist mit einem vordefinierten Verschiebeweg d axial verschieblich gelagert. Die Kopplungseinheit 112 ist als Magnetkupplung ausgebildet, wobei die Polanordnung der Magnetkupplung 112 derart gewählt ist, dass bei einem Blockieren des Pumpenrotors 113 der Pumpenrotor 113 entlang des Verschiebewegs Verfahren wird, um die Blockierung des Pumpenrotors 113 zu lösen.In Figure 1 is one of the prior art, or the document DE 10 2010 043 391 A1 known pump 100 shown. The pump has a drive unit 109, a coupling unit 112 and a pump rotor 113, the pump rotor 113 being part of a pump unit 110. The coupling unit 112 couples the pump rotor 113 and the drive unit 109. The pump rotor 113 is axially displaceably mounted with a predefined displacement path d. The coupling unit 112 is designed as a magnetic coupling, the pole arrangement of the magnetic coupling 112 being selected such that when the pump rotor 113 is blocked, the pump rotor 113 is moved along the displacement path in order to release the blocking of the pump rotor 113.

In Figur 2 ist ein erstes Ausführungsbeispiel einer erfindungsgemäßen Pumpe 1 dargestellt. Insbesondere kann eine erfindungsgemäße Pumpe 1 als Kühlflüssigkeitspumpe in einem Kraftfahrzeug eingesetzt werden. Hierbei wird die Pumpe vorzugsweise innerhalb eines Kühlflüssigkeitskreislaufs angeordnet. Die Pumpe 1 umfasst ein Pumpengehäuse 10 und ein Motorgehäuse 30. Das Pumpengehäuse 10 und das Motorgehäuse 30 sind mittels Schrauben miteinander fest verbunden. Das Pumpengehäuse 10 weist eine erste Öffnung 12 und eine zweite Öffnung 14 auf. Die erste Öffnung 12 bildet insbesondere einen Einlass und die zweite Öffnung 14 einen Auslass für das zu fördernde Fluid, insbesondere die Kühlflüssigkeit zur Kühlung eines Verbrennungs- und/oder Elektromotors in einem Fortbewegungsmittel, vorzugsweise Fahrzeug.In Figure 2 A first embodiment of a pump 1 according to the invention is shown. In particular, a pump 1 according to the invention can be used as a coolant pump in a motor vehicle. Here, the pump is preferably arranged within a coolant circuit. The pump 1 comprises a pump housing 10 and a motor housing 30. The pump housing 10 and the motor housing 30 are firmly connected to one another by means of screws. The pump housing 10 has a first opening 12 and a second opening 14. The first opening 12 forms in particular an inlet and the second opening 14 an outlet for the fluid to be conveyed, in particular the cooling liquid for cooling an internal combustion engine and / or an electric motor in a means of transportation, preferably a vehicle.

In Figur 3 ist eine Explosionsdarstellung einer erfindungsgemäßen Pumpe gemäß Figur 2 gezeigt. Die Pumpe 1 weist ein Pumpengehäuse 10 und ein Motorgehäuse 30 auf. Ferner weist die Pumpe 1 einen Pumpentopf 20 auf. Der Pumpentopf 20 bildet zusammen mit dem Pumpengehäuse 10 einen Durchströmungsbereich für das Fluid. Zwischen dem Pumpengehäuse 10 und dem Pumpentopf 20 ist eine Dichtung 18 ausgebildet. Die Dichtung 18 verhindert ein Austreten des Fluids aus dem Durchströmungsbereich, insbesondere zwischen dem Pumpentopf 20 und dem Pumpengehäuse 10. Die Dichtung 18 ist insbesondere als O-Ring vorzugsweise als O-Ring-Dichtung ausgebildet. Der Pumpentopf 20 weist insbesondere die Form eines Topfes auf.In Figure 3 is an exploded view of a pump according to the invention Figure 2 shown. The pump 1 has a pump housing 10 and a motor housing 30. The pump 1 also has a pump pot 20. The pump bowl 20 forms, together with the pump housing 10, a flow area for the fluid. A seal 18 is formed between the pump housing 10 and the pump bowl 20. The seal 18 prevents the fluid from escaping from the flow area, in particular between the pump cup 20 and the pump housing 10. The seal 18 is in particular designed as an O-ring, preferably as an O-ring seal. The pump pot 20 has in particular the shape of a pot.

Der Pumpentopf 20 weist einen Flansch 26 auf. Der Flansch 26 ist dem Pumpengehäuse 10 zugeordnet. Vorzugsweise umfasste der Flansch 26 eine Nut, in der die Dichtung 18 angeordnet ist. Der Flansch 26 weist ferner Ausnehmungen auf, die ein Verbinden des Pumpentopfs 20 mit dem Pumpengehäuse 10 ermöglichen. Die Ausnehmungen sind insbesondere als vier Löcher im Randbereich des Flansches ausgebildet.The pump pot 20 has a flange 26. The flange 26 is assigned to the pump housing 10. The flange 26 preferably comprised a groove in which the seal 18 is arranged. The flange 26 also has recesses that enable the pump bowl 20 to be connected to the pump housing 10. The recesses are in particular designed as four holes in the edge region of the flange.

Der Pumpentopf 20 umfasst weiter ein Labyrinth 27. Das Labyrinth 27 verhindert das Eindringen von Verschmutzungen, insbesondere Sandpartikel in den Bereich des Pumpentopfs 20, in dem der Rotor angeordnet ist. Das Labyrinth 27 ist insbesondere kreisförmig ausgebildet. Es weist radial nach innen verlaufende Abstufungen auf. Die Abstufungen sind kreisrund und umlaufend ausgebildet. Beispielhaft ist zwischen dem Flansch 26 und dem Labyrinth 27 ist ein Ring 29 ausgebildet. Der Ring 29 ist umlaufend angeordnet. Der Ring 29 trennt den Flanschbereich 26 von dem Labyrinth 27.The pump pot 20 further comprises a labyrinth 27. The labyrinth 27 prevents the ingress of dirt, in particular sand particles, into the area of the pump pot 20 in which the rotor is arranged. The labyrinth 27 is in particular circular. It has gradations running radially inwards. The gradations are circular and circumferential. For example, a ring 29 is formed between the flange 26 and the labyrinth 27. The ring 29 is arranged all around. The ring 29 separates the flange region 26 from the labyrinth 27.

Der Pumpentopf 20 weist eine Achse 24 auf. Die Achse 24 verläuft in Längsrichtung des Pumpentopfs 20 bzw. in Längsrichtung der Pumpe 1. Die Achse 24 ist fest mit dem Pumpentopf 20 verbunden. Ein Rotor 50 ist innerhalb des Durchströmungsbereichs angeordnet. Der Rotor 50 weist eine Ausnehmung auf innerhalb der die Achse 24 angeordnet ist. Der Rotor 50 ist durch die Achse 24 drehbar gelagert. Ferner umfasst der Rotor 50 Magnete, die ein Zusammenwirken mit dem Stator 40 ermöglichen. Abhängig von der Art der Pumpe 1 weist der Rotor 50, mindestens einen Magnet, vorzugsweise mehrere Magnete auf.The pump pot 20 has an axis 24. The axis 24 runs in the longitudinal direction of the pump bowl 20 or in the longitudinal direction of the pump 1. The axis 24 is firmly connected to the pump bowl 20. A rotor 50 is arranged within the flow area. The rotor 50 has a recess within which the axis 24 is arranged. The rotor 50 is rotatably supported by the axis 24. Furthermore, the rotor 50 comprises magnets which enable it to interact with the stator 40. Depending on the type of pump 1, the rotor 50 has at least one magnet, preferably a plurality of magnets.

Um das Fluid zu fördern weist der Rotor 50 Flügel 52 auf. Die Flügel 52 sind so ausgebildet, dass der Rotor 50 das Fluid axial angesaugt und radial aus dem Pumpengehäuse 10 drückt. Die Ansaugung des Fluids erfolgt insbesondere über den Pumpeneinlass 12 und das radiale Ausdrücken des Fluids erfolgt über den Auslass 14. Die Flügel 52 sind auf der axial dem Pumpengehäuse 10 zugewandten Seite des Rotors 50 angeordnet. Sie sind insbesondere in dem Teil des Durchströmungsbereichs angeordnet, der von dem Pumpengehäuse 10 gebildet wird. Der Teil des Rotors 50, welcher die Magnete umfasst, ist im Wesentlichen innerhalb des Pumpentopfs 20 angeordnet. Der Rotor 50 wird durch eineft Anlaufscheibe 28 auf der Achse 24 drehbar gehalten. Die Anlaufscheibe 28 bildet gleichzeitig ein Gleitlager für den Rotor 24. Die Anlaufscheibe 28 weist drei Füße zur Befestigung der Anlaufscheibe an dem Pumpengehäuse 10 auf. Die Achse 24 verläuft durch eine Ausnehmung der Anlaufscheibe 28.In order to convey the fluid, the rotor 50 has vanes 52. The vanes 52 are designed in such a way that the rotor 50 sucks the fluid axially and presses it radially out of the pump housing 10. The suction of the fluid takes place in particular via the pump inlet 12 and the radial expression of the fluid takes place via the outlet 14. The vanes 52 are arranged on the side of the rotor 50 which faces the pump housing 10 axially. They are arranged in particular in the part of the flow area which is formed by the pump housing 10. The part of the rotor 50, which comprises the magnets, is arranged essentially within the pump pot 20. The rotor 50 is rotatably held on the axis 24 by a thrust washer 28. The thrust washer 28 also forms a slide bearing for the rotor 24. The thrust washer 28 has three feet for fastening the thrust washer to the pump housing 10. The axis 24 runs through a recess in the thrust washer 28.

Der Rotor 50 und das Labyrinth 27 verhindern ein Eindringen von Verschmutzungen in den Durchströmungsbereich innerhalb des Pumpentopfs.The rotor 50 and the labyrinth 27 prevent dirt from penetrating into the flow area within the pump bowl.

Der Flansch 26 des Pumpentopfs 20 dient zur Verbindung des Motorgehäuses 30 mit dem Pumpentopf 20. Innerhalb des Motorgehäuses 30 ist der Stator 40 angeordnet. Der Stator 40 besteht aus zwei Polblechen 42 mit axial gegeneinander abgebogenen Polzähnen 44. Die Polbleche 42 sind im fertigmontierten Zustand bei einem geringen Tangentialabstand zueinander derart ineinander geschachtelt, dass am Umfang die Pole, insbesondere bei Bestromung die magnetischen Pole, der beiden Polbleche 42 des Stators 40 einander abwechseln. Die Polzähne 44 der beiden Polbleche 42 sind hierbei so ineinander geschachtelt angeordnet, dass in Umfangsrichtung ein gleichmäßiger geringer Abstand zwischen den einzelnen Polzähnen 44 ausgebildet ist. Pole bzw. die Polblechzähne 44 sind von mindestens einer Wicklung 46 umschlungen. Vorzugsweise sind die Polzähne 44 bzw. die Pole von mindestens zwei entgegengesetzten Wicklungen 46 umschlungen.The flange 26 of the pump bowl 20 serves to connect the motor housing 30 to the pump bowl 20. The stator 40 is arranged inside the motor housing 30. The stator 40 consists of two pole plates 42 with axial Pole teeth 44 bent against one another. In the fully assembled state, the pole plates 42 are nested in one another with a small tangential distance such that the poles of the two pole plates 42 of the stator 40 alternate on the circumference, in particular when the current is energized, the magnetic poles. The pole teeth 44 of the two pole plates 42 are in this case nested in one another in such a way that a uniform, small distance is formed in the circumferential direction between the individual pole teeth 44. Poles or the pole plate teeth 44 are wrapped by at least one winding 46. The pole teeth 44 or the poles are preferably wrapped in at least two opposite windings 46.

Umlaufend um den Stator 40 ist ein Rückschlussring 48 ausgebildet. Der Rückschlussring besteht aus einem das Magnetfeld leidenden Material. Insbesondere besteht der Rückschlussring 48 aus einem Blech, welches kreisförmig umgeformt wurde.A yoke ring 48 is formed all around the stator 40. The return ring consists of a material suffering from the magnetic field. In particular, the yoke ring 48 consists of a sheet metal which has been formed into a circular shape.

Zur Bestimmung der Rotorposition gegenüber dem Stator 40 ist innerhalb des Motorgehäuses 30 ein Hallsensor 32 angeordnet. Die Genauigkeit der Rotor Positionsbestimmung ist abhängig von der Anzahl der Magnete des Rotors 50. Der Hallsensor 32 gibt bei einem Vorbeidrehen eines Magneten eine Hallflanke aus. Eine Elektronik 60 erkennt diese Hallflanke und kann anhand der Häufigkeit und den Abständen zwischen der Erkennung der Hallflanken auf die Geschwindigkeit des Rotors 50 schließen. Auch kann darauf geschlossen werden ob sich der Rotor 50 dreht.A Hall sensor 32 is arranged within the motor housing 30 to determine the rotor position relative to the stator 40. The accuracy of the rotor position determination depends on the number of magnets of the rotor 50. The Hall sensor 32 outputs a Hall flank when a magnet is turned past. Electronics 60 recognizes this Hall flank and can use the frequency and the intervals between the detection of the Hall flanks to infer the speed of the rotor 50. It can also be concluded whether the rotor 50 is rotating.

Zwischen dem Flansch 26 des Pumpentopfs 20 und dem Motorgehäuse 30 ist ein weiteres Dichtelement 34 angeordnet. Das weitere Dichtelement 34 verhindert einen Eintritt von Fluid insbesondere Flüssigkeiten oder Gasen in den Bereich des Stators 40. Hierdurch werden insbesondere Kurzschlüsse durch Fluide während einer Bestromung des Stators 40 verhindert.Another sealing element 34 is arranged between the flange 26 of the pump pot 20 and the motor housing 30. The further sealing element 34 prevents fluid, in particular liquids or gases, from entering the area of the stator 40.

Auf der dem Pumpengehäuse 10 abgewandten Seite des Motorgehäuses 30 weist das Motorgehäuse 30 einen Elektronikbereich 36 auf. Innerhalb des Elektronikbereichs 36 ist die Elektronik 60, bzw. die Ansteuermittel, bzw. die Regelung geschützt durch das Motorgehäuse 30 und ein Cover angeordnet.On the side of the motor housing 30 facing away from the pump housing 10, the motor housing 30 has an electronics area 36. The electronics 60, or the control means, or the control is arranged protected by the motor housing 30 and a cover within the electronics area 36.

Die Elektronik 60 dient zur elektrischen Ansteuerung der Pumpe 1. Die Elektronik 60 weist insbesondere eine erste und eine zweite Endstufe auf. Wobei jede Endstufe in Reihe mit mindestens einer Wicklung 46 geschaltet ist. Insbesondere sind die erste Endstufe mit der ersten Wicklung 46 und die zweite Endstufe mit der zweiten Wicklung 46 in Reihe geschalteten. Die Endstufen sind parallel zueinander verschaltet. Auch die Wicklungen sind parallel zueinander verschaltet. Abhängig von der Bestromung der ersten oder der zweiten Wicklung 46 wirkt eine Kraft, bzw. ein Drehmoment auf den Rotor 50, insbesondere die Magnete des Rotors 50. Wird beispielsweise die erste Wicklung 46 mittels der ersten Endstufe bestromt, so bildet sich eine Drehbewegung in eine erste Drehrichtung aus. Wird hingegen die zweite Wicklung mittels der zweiten Endstufe bestromt so bildet sich eine Drehbewegung des Rotors 50 in eine zweite Drehrichtung, wobei die zweite Drehrichtung der ersten Drehrichtung entgegengesetzt ist, aus.The electronics 60 serve for the electrical control of the pump 1. The electronics 60 has in particular a first and a second output stage. Each output stage is connected in series with at least one winding 46. In particular, the first output stage with the first winding 46 and the second output stage with the second winding 46 are connected in series. The output stages are connected in parallel to each other. The windings are also connected in parallel to each other. Depending on the energization of the first or the second winding 46, a force or torque acts on the rotor 50, in particular the magnets of the rotor 50. If, for example, the first winding 46 is energized by means of the first output stage, a rotary movement is formed in one first direction of rotation. If, however, the second winding is energized by means of the second output stage, a rotary movement of the rotor 50 is formed in a second direction of rotation, the second direction of rotation being opposite to the first direction of rotation.

Das zu fördernde Fluid kann Verschmutzungen aufweisen. Diese Verschmutzungen können zu einem Festsitzen des Rotors 50 bzw. der Flügel 52 führen. Insbesondere können sich Partikel im Fluid zwischen dem Rotor 50 und dem Labyrinth 27 des Pumpentopfs 20 verklemmen und die Pumpe 1 blockieren. Ferner ist auch denkbar, dass sich Verschmutzungen zwischen den Rotor 50 und den Pumpentopf 20 setzen und zu einer Blockierung der Pumpe 1 führen. Insbesondere können die Verschmutzungen einem Wiederanlauf der Pumpe 1 verhindern. Auch können die Verschmutzungen während des Betriebs der Pumpe 1 zu einem Stillstand des Rotors 50 und damit einem Ausfall der Pumpe 1 führen.The fluid to be pumped can be contaminated. This contamination can lead to the rotor 50 or the blades 52 becoming stuck. In particular, particles can become jammed in the fluid between the rotor 50 and the labyrinth 27 of the pump pot 20 and block the pump 1. Furthermore, it is also conceivable that contaminants settle between the rotor 50 and the pump pot 20 and lead to a blockage of the pump 1. In particular, the dirt can prevent the pump 1 from restarting. The contamination during the operation of the pump 1 can also lead to the rotor 50 coming to a standstill and thus to a failure of the pump 1.

Durch ein erfindungsgemäßes Verfahren wird eine Lösung einer Blockierung bei einer Pumpe 1 ermöglicht. Insbesondere kann das Verfahren bei Kraftfahrzeugpumpen, die Kühlflüssigkeiten fördern, eingesetzt werden. Die Lösung einer Blockierung erfolgt durch eine rotatorische Rüttelbewegung 82 des Rotors 50. Bei der rotatorische Rüttelbewegung 82 des Rotors 50 wirken abwechselnd Kräfte, bzw. Drehmomente in eine erste Drehrichtung und weitere Kräfte, bzw. weitere Drehmomente in eine zweite, der ersten Drehrichtung entgegengesetzten Drehrichtung, auf den Rotor 50. Die Kräfte bzw.A method according to the invention enables a blocking of a pump 1 to be solved. In particular, the method can be used in motor vehicle pumps that convey cooling liquids. A blocking is released by a rotary shaking movement 82 of the rotor 50. With the rotating shaking movement 82 of the rotor 50, forces or torques alternately act in a first direction of rotation and further forces or further torques in a second direction of rotation opposite to the first direction of rotation , on the rotor 50. The forces or

Kräfte, bzw. weitere Drehmomente in eine zweite, der ersten Drehrichtung entgegengesetzten Drehrichtung, auf den Rotor 50. Die Kräfte bzw. Drehmomente werden durch Bestromung der Pumpe 1, insbesondere Bestromung der Wicklungen des Stators 40, erzeugt. Durch Bestromung der Wicklungen des Stators 40 wird ein Magnetfeld erzeugt, welches die Magnete des Rotors 50 anzieht bzw. abstößt. Durch das Magnetfeld wirkt somit eine Kraft, bzw. ein Drehmoment auf den Rotor 50.Forces, or further torques in a second direction of rotation opposite to the first direction of rotation, on the rotor 50. The forces or torques are generated by energizing the pump 1, in particular energizing the windings of the stator 40. By energizing the windings of the stator 40, a magnetic field is generated which attracts or repels the magnets of the rotor 50. A force or torque acts on the rotor 50 through the magnetic field.

In Figur 4 ist der Verfahrensablauf beispielhaft dargestellt. Der Verlauf 70 zeigt wann die Pumpe 1 an- oder ausgeschalten ist. Der Verlauf 72 zeigt die Erzeugung eines Impulses, bzw. die Bestromung, bzw. die Erzeugung einer Kraft, bzw. eines Drehmoments in eine erste Drehrichtung. Der Verlauf 74 zeigt die Erzeugung eines Impulses, bzw. die Bestromung, bzw. die Erzeugung einer Kraft, bzw. eines Drehmoments in eine zweite Drehrichtung.In Figure 4 the process flow is shown as an example. The course 70 shows when the pump 1 is switched on or off. The curve 72 shows the generation of a pulse or the energization or the generation of a force or a torque in a first direction of rotation. The curve 74 shows the generation of a pulse or the energization or the generation of a force or a torque in a second direction of rotation.

Ferner kann anhand den Verläufen 72 und 74 beispielsweise die Bestromung der Wicklungen durch die Endstufen entnommen werden. Beim Starten der Pumpe 1 wird die zweite Wicklung mittels der zweiten Endstufe bestromt. Eine entsprechende Bestromung ist als Block 80 in Figur 4 dargestellt. Zu Beginn wird die Pumpe für eine gewöhnliche Drehbewegung notwendig bestromt. Wird jedoch nach einer definierten Zeit, die so gewählt ist, das es zu keiner Beschädigung der Wicklungen bzw. der Pumpe führt, insbesondere 300 bis 1000ms, vorzugsweise 500 ms, keine Drehbewegung erkannt, so kann von einer Blockierung der Pumpe 1 ausgegangen werden. Wird eine Blockierung festgestellt so wird automatisch das erfindungsgemäße Verfahren gemäß Anspruch 1 gestartet.Furthermore, the current supply to the windings through the output stages can be taken from the curves 72 and 74, for example. When pump 1 is started, the second winding is energized by means of the second output stage. A corresponding current supply is shown as block 80 in Figure 4 shown. At the beginning, the pump is energized for an ordinary rotary movement. If, however, after a defined time, which is chosen such that there is no damage to the windings or the pump, in particular 300 to 1000 ms, preferably 500 ms, no rotary movement is detected, it can be assumed that the pump 1 is blocked. If a blockage is found, the method according to the invention is started automatically.

Das Verfahren startet nach einer Pause, die so gewählt ist, dass sich die aufgewärmten Wicklungen 46 innerhalb des Stators 40 ausreichend abkühlen können. Insbesondere dauert die erste Pause zwischen 100ms und 20s, vorzugsweise eine Sekunde. Das Verfahren startet mit der Erzeugung einer Kraft oder eines Drehmoments in die dem vorherigen Startversuch entgegengesetzten Drehrichtung. Die Pumpe 1 wird durch die Elektronik 60 so angesteuert, dass sich Rüttelbewegungen des Rotors 50 ausbilden können. Insbesondere kann die Rüttelbewegung auch aus nur einem einzigen Impuls, insbesondere Stromimpuls, Kraftimpuls oder Drehmomentimpuls, bestehen, wenn dieser insbesondere zu einer Lösung der Blockierung führt. Abhängig von der Blockierung des Rotors 50 kann die Rüttelbewegung sich auf ein abwechselndes Wirken einer ersten Kraft in eine erste Richtung und einer zweiten Kraft in eine zweite Drehrichtung beschränken, wobei jedoch keine nennenswerte Bewegung des Rotor 50 in eine erster oder zweiter Drehrichtung erfolgt.The method starts after a pause, which is selected so that the heated windings 46 can cool sufficiently within the stator 40. In particular, the first pause lasts between 100 ms and 20 s, preferably one second. The process starts with the generation of a force or a torque in the direction of rotation opposite to the previous start attempt. The pump 1 is controlled by the electronics 60 in such a way that vibrations of the rotor 50 can develop. In particular, the shaking movement can also consist of only a single pulse, in particular Current pulse, force pulse or torque pulse exist if this leads in particular to a solution of the blocking. Depending on the blocking of the rotor 50, the shaking movement can be limited to an alternating action of a first force in a first direction and a second force in a second direction of rotation, but there is no significant movement of the rotor 50 in a first or second direction of rotation.

Die Rüttelbewegung wird durch ein abwechselndes Wirken einer Kraft bzw. des Drehmoments in eine erster Drehrichtung und einer weiteren Kraft, bzw. eines weiteren Drehmoments in eine zweite Drehrichtung, wobei die erste Drehrichtung entgegengesetzt der weiteren Drehrichtung ist, erzeugt. Zwischen dem abwechselnden wirken der Kräfte bzw. der Drehmomente sind Pausen 86 ausgebildet. Die Länge der Pausen 86 variiert abhängig vom Verlauf des Verfahrens.The shaking movement is generated by an alternating action of a force or the torque in a first direction of rotation and a further force or a further torque in a second direction of rotation, the first direction of rotation being opposite to the further direction of rotation. Breaks 86 are formed between the alternating effects of the forces or the torques. The length of the breaks 86 varies depending on the course of the method.

Ferner verhindern die Pausen 86 ein gleichzeitiges Bestromen beider, bzw. aller Wicklungen 56. Während einer Pause 86, in der keine Kraft, bzw. Drehmoment in eine Drehrichtung erzeugt wird, kann einer Kraft, bzw. ein Drehmoment in die entgegengesetzte Drehrichtung erzeugt werden. Während der Erzeugung einer Kraft, bzw. eines Drehmoments in eine Drehrichtung wird in die entgegengesetzte Drehrichtung eine Pause 86 eingelegt.Furthermore, the pauses 86 prevent simultaneous energization of both or all of the windings 56. During a pause 86, in which no force or torque is generated in one direction of rotation, a force or torque can be generated in the opposite direction of rotation. During the generation of a force or a torque in one direction of rotation, a pause 86 is inserted in the opposite direction of rotation.

Die Rüttelbewegung 82 ist in eine oder mehrere Sequenzen unterteilt. Gemäß Figur 4 ist beispielhaft die Rüttelbewegung 82 in drei Sequenzen 84a, 84b und 84c unterteilt. Während einer Sequenz sind die Stärke der erzeugten Kräfte, bzw. das Drehmoment und die Dauer der Erzeugung der Kräfte bzw. Drehmomente im Wesentlichen gleich. Dies wird dadurch erreicht, dass die Bestromung während einer Sequenz im Wesentlichen die gleiche Amplitude sowie die gleiche Bestromungszeit aufweist. Insbesondere beträgt die Bestromungszeit 3ms in Sequenz 84a und in Sequenz 84b beträgt die Bestromungszeit 5msThe shaking movement 82 is divided into one or more sequences. According to Figure 4 For example, the shaking movement 82 is divided into three sequences 84a, 84b and 84c. During a sequence, the strength of the forces generated or the torque and the duration of the generation of the forces or torques are essentially the same. This is achieved in that the energization during a sequence has essentially the same amplitude and the same energization time. In particular, the energization time is 3ms in sequence 84a and in sequence 84b the energization time is 5ms

Die Kräfte bzw. Drehmomente auf den Rotor 50 werden während der Bestromung der Wicklungen gebildet. Vorzugsweise wird ein Pulsmodulationsverfahren verwendet, wobei die Kraft bzw. das Drehmoment während des Impulses gebildet wird, und während der Impulspause keine Kraft bzw. kein Drehmoment auf den Rotor wirkt. Die pulsweitmodulierte Ansteuerung der ersten Endstufe bzw. der ersten Wicklung und der zweiten Endstufe bzw. der zweiten Wicklung sind miteinander synchronisiert. Die Synchronisation verhindert ein gleichzeitiges Bestromung der ersten und zweiten Wicklung. Insbesondere wird in der ersten Sequenz 84a während der Bestromungspause 90 der ersten Endstufe die zweite Endstufe bestromt.The forces or torques on the rotor 50 are formed during the energization of the windings. A pulse modulation method is preferably used, the force or the torque being formed during the pulse and no force during the pulse pause or no torque acts on the rotor. The pulse-width-modulated control of the first output stage or the first winding and the second output stage or the second winding are synchronized with one another. The synchronization prevents simultaneous energization of the first and second windings. In particular, in the first sequence 84a, the second power stage is energized during the pause 90 of the first power stage.

Während der ersten Sequenz wirkt insbesondere 35-mal eine Kraft bzw. ein Drehmoment der ersten Richtung und insbesondere 35-mal eine Kraft, bzw. ein Drehmoment in der zweiten Drehrichtung. Die Bestromung erfolgt insbesondere für ein bis 10 ms, vorzugsweise 3 ms. Gemäßer einer Weiterbildung ist die Anzahl des Wirkens der Kraft nicht auf 35 festgelegt. Während der ersten Sequenz 84a soll eine schnelle Rüttelbewegung erfolgen. An die erste Sequenz 84a schließt sich die zweite Sequenz 84b an. Bei der zweiten Sequenz 84b wird die Impulslänge bzw. die Länge der Bestromung bzw. die Länge in der eine Kraft bzw. ein Drehmoment auf den Rotor 50 wirkt erhöht. Die Impulslänge bzw. die Länge der Bestromung beträgt hierbei insbesondere 3-15 ms, vorzugsweise 5 ms. Die Pause zwischen den Impulsen beträgt insbesondere 10-50 ms, vorzugsweise 20 ms. An die zweite Sequenz schließt die dritte Sequenz 84c an. Bei der dritten Sequenz 84c wirkt die Kraft bzw. das Drehmoment über einen längeren Zeitraum als in den beiden Sequenzen 84a, 84b zuvor auf den Rotor 50. Insbesondere werden Wicklungen für 100-1000 ms, vorzugsweise 300 ms bestromt. Es wird somit für den Zeitraum der Bestromung eine Kraft bzw. ein Drehmoment auf den Rotor 50. Zwischen den Impulsen, insbesondere dem Bestromungsimpuls, der zu einer Ausbildung einer Kraft bzw. eines Drehmoments auf den Rotor führt ist eine Pause 86 ausgebildet. Die Pause beträgt besondere zwischen 10 und 100 ms, vorzugsweise 20ms.During the first sequence, a force or torque acts in particular 35 times in the first direction and in particular 35 times a force or torque in the second direction of rotation. The current supply takes place in particular for one to 10 ms, preferably 3 ms. According to one development, the number of times the force acts is not fixed at 35. During the first sequence 84a, a rapid shaking movement should take place. The second sequence 84b follows the first sequence 84a. In the second sequence 84b, the pulse length or the length of the current supply or the length in which a force or a torque acts on the rotor 50 is increased. The pulse length or the length of the current supply is in particular 3-15 ms, preferably 5 ms. The pause between the pulses is in particular 10-50 ms, preferably 20 ms. The third sequence 84c follows the second sequence. In the third sequence 84c, the force or the torque acts on the rotor 50 over a longer period of time than in the two sequences 84a, 84b. In particular, windings are energized for 100-1000 ms, preferably 300 ms. A force or a torque is thus exerted on the rotor 50 for the period of the energization. A pause 86 is formed between the pulses, in particular the energization impulse, which leads to the formation of a force or a torque on the rotor. The pause is particularly between 10 and 100 ms, preferably 20 ms.

Ferner können zwischen den einzelnen Sequenzen 84a, 84b und 84c Sequenzpausen ausgebildet sein. In den Sequenzpausen erfolgt keine Bestromung und es bildet sich somit keine Kraft bzw. Drehmoment, das auf den Rotor 50 wirkt aus.Sequence breaks can also be formed between the individual sequences 84a, 84b and 84c. In the sequence breaks there is no current supply and therefore no force or torque is formed which acts on the rotor 50.

Der Betrag der Kraft bzw. des Drehmoments wird durch Verlängerung des Impulses erhöht. Die Kraft bzw. das Drehmoment und die Dauer der Ausbildung der Kraft bzw. des Drehmoments auf den Rotor 50 variiert zwischen den einzelnen Sequenzen. Gemäß Figur 4 wird der Bestromungsimpuls und damit die Kraft bzw. das Drehmoment von Sequenz zu Sequenz erhöht.The amount of force or torque is increased by lengthening the pulse. The force or the torque and the duration of the training the force or the torque on the rotor 50 varies between the individual sequences. According to Figure 4 the current impulse and thus the force or the torque is increased from sequence to sequence.

Die Anzahl der erzeugten Kräfte bzw. Drehmomente, die auf den Rotor 50 wirken werden von Sequenz zu Sequenz weniger, während beispielsweise gemäß Figur 4 in der erster Sequenz 84 A noch jeweils 35 Impulse je Drehrichtung erzeugt werden, werden in der zweiten Sequenz 84b nur noch jeweils 5 Impulse erzeugt. In der in der dritten Sequenz 84c wird jeweils nur noch ein einziger Impuls erzeugt. Führt bereits der erste Impuls zu einer Lösung des Rotors so besteht die erfindungsgemäße Rüttelbewegung 82 lediglich aus einem einzigen Impuls. Insbesondere nimmt mit steigender Sequenzzahl die Anzahl der erzeugten Kräfte, bzw. Drehmomente ab, dafür die Dauer der Wirkung zu.The number of generated forces or torques that act on the rotor 50 become less from sequence to sequence, while for example according to Figure 4 35 pulses per direction of rotation are generated in the first sequence 84 A, only 5 pulses are generated in the second sequence 84 b. Only a single pulse is generated in the third sequence 84c. If the first pulse already leads to a solution of the rotor, the shaking movement 82 according to the invention consists of only a single pulse. In particular, the number of forces or torques generated decreases with increasing number of sequences, but the duration of the effect increases.

Sollte nach einer ersten Rüttelbewegung 82 keine Lösung der Blockierung erfolgt sein, so werden die Rüttelbewegungen 82 beliebig oft wiederholt. Zwischen den Rüttelbewegungen 82 sind Rüttelpausen 88 ausgebildet, wobei in den Rüttelpausen 88 keine Kraft bzw. kein Drehmoment auf den Rotor 50 wirkt. Die Rüttelpausen 88 dienen zur Abkühlung des Stator 50, insbesondere der Wicklungen und der Endstufen. Zu Beginn können die Rüttelpausen 88 kleiner sein, da insbesondere bei einem Wiederanlauf die Pumpe 1 kalt ist. Mit zunehmender Rüttelbewegung 82 wird die Pumpe 1 jedoch erwärmt. Insbesondere werden die Wicklungen und die Endstufe erwärmt. Um eine Beschädigung der Wicklungen und der Endstufen zu verhindern werden Pausen eingelegt. Beispielhaft dauert die erster Rüttelpause 88 zwischen der ersten und der zweiten Rüttelbewegung eine Sekunde, wohingegen die zweite Rüttelpause bereits 5 Sekunden, die 3 weiteren Rüttelpausen 10 Sekunden, die fünf weiteren Rüttelpausen 20 Sekunden und die 10 weiteren Rüttelpausen 88 2 Minuten. Erfindungsgemäß können die Rüttelpausen 88 um die oben angegebenen Werte variieren.If the blocking has not been released after a first shaking movement 82, the shaking movements 82 are repeated as often as desired. Vibrating pauses 88 are formed between the vibrating movements 82, with no force or torque acting on the rotor 50 during the vibrating pauses 88. The vibration pauses 88 serve to cool the stator 50, in particular the windings and the output stages. At the beginning, the vibrating pauses 88 can be smaller, since the pump 1 is cold, particularly when restarting. However, as the shaking movement 82 increases, the pump 1 is heated. In particular, the windings and the output stage are heated. In order to prevent damage to the windings and the output stages, breaks are taken. As an example, the first vibration pause 88 lasts one second between the first and the second vibration, whereas the second vibration pause already 5 seconds, the 3 further vibration pauses 10 seconds, the five further vibration pauses 20 seconds and the 10 further vibration pauses 88 2 minutes. According to the invention, the vibration pauses 88 can vary by the values specified above.

Das Verfahren wird sofort beendet sobald eine Drehbewegung des Rotors 50 erkannt wird. Die Drehbewegung wird insbesondere durch das Erkennen einer Hallflanke des Hallsensors 32 erkannt. Wird eine Drehbewegung erkannt so wurde die Blockierung gelöst und die Pumpe 1 kann das Fluid fördern. Neben der Erkennung der der Drehbewegung mittels des Hallsensors 32 kann eine Erkennung der Drehbewegung durch die Auswertung des Verlaufs der Bestromung der Pumpe 1 erfolgen. Hierbei wird der Verlauf der Bestromung, mit dem die Wicklungen bestromt werden, überwacht. Die Überwachung der Drehbewegung erfolgt kontinuierlich während der Rüttelbewegung 82, insbesondere während den Pausen und während der Bestromung.The method is ended as soon as a rotary movement of the rotor 50 is detected. The rotary movement is recognized in particular by the detection of a Hall edge of the Hall sensor 32. If a rotary movement is detected, the blockage has been released and the pump 1 can deliver the fluid. Next the detection of the rotary movement by means of the Hall sensor 32, the rotary movement can be detected by evaluating the course of the energization of the pump 1. The course of the energization with which the windings are energized is monitored. The rotary movement is monitored continuously during the shaking movement 82, in particular during the breaks and during the energization.

Gemäß einer Weiterbildung der Erfindung kann Überwachung der Drehbewegung während den Pausen, insbesondere den Rüttelpausen erfolgenAccording to a development of the invention, the rotational movement can be monitored during the breaks, in particular during the shaking breaks

Insgesamt wird die Anzahl der Wiederholungen der Rüttelbewegung 82 auf einen festen Wert begrenzt. Wird nach Beendigung der auf einen festen Wert begrenzten Wiederholungen keine Drehbewegung des Motors festgestellt, so wird das Verfahren abgebrochen und es wird nicht mehr versucht, die Pumpe 1 zu starten.Overall, the number of repetitions of the shaking movement 82 is limited to a fixed value. If no rotation of the motor is detected after the repetitions limited to a fixed value have ended, the process is terminated and no attempt is made to start pump 1.

Das erfindungsgemäße Verfahren kann auch bei Pumpen, die keinen Klauenpol Stator aufweisen, insbesondere Pumpen mit einem EC oder DC Antrieb eingesetzt werden. Auch kann der Stator mehr als zwei Wicklungen aufweisen.The method according to the invention can also be used in pumps which have no claw pole stator, in particular pumps with an EC or DC drive. The stator can also have more than two windings.

In Figur 5 ist eine weitere Ausführungsform einer erfindungsgemäßen Pumpe 200 dargestellt. Die Pumpe 200 umfasst eine Vielzahl gleicher Bauteile oder Bauteile mit ähnlicher Funktion wie die Pumpe 1 aus Figur 2 und 3. Insbesondere entsprechen die Bauteile Pumpengehäuse 210, Dichtung 218, Pumpentopf 220, Motorgehäuse 230 im Wesentlichen den entsprechenden Bauteilen in Figur 2 und 3. Für die Funktionsweise und das Zusammenwirken mit weiteren Bauteilen wird daher auf die Beschreibung Figuren 3 und 4 verwiesen. Der Rotor 250 weist gegenüber dem Rotor 50 einen leicht veränderten Aufbau dar. Der Rotor 250 weist einen mit Magneten bestückten Teil auf, der innerhalb des Pumpentopfs 220 angeordnet ist. Der die Magnete 251 tragende Teil des Rotors 250 ist über ein Verbindungselement 253 mit einem Flügelrad 254 verbunden. Das Flügelrad 254 weist Flügel auf, die das Fluid fördern. Das Flügelrad fördert bei Drehen das Fluid.In Figure 5 Another embodiment of a pump 200 according to the invention is shown. The pump 200 comprises a large number of identical components or components with a similar function to the pump 1 Figure 2 and 3rd . In particular, the components pump housing 210, seal 218, pump cup 220, motor housing 230 essentially correspond to the corresponding components in FIG Figure 2 and 3rd . For the functionality and the interaction with other components, please refer to the description Figures 3 and 4th referred. The rotor 250 has a slightly modified structure compared to the rotor 50. The rotor 250 has a part equipped with magnets, which is arranged inside the pump pot 220. The part of the rotor 250 which carries the magnets 251 is connected to an impeller 254 via a connecting element 253. The impeller 254 has vanes that convey the fluid. The impeller conveys the fluid when rotating.

Das erfindungsgemäße Verfahren gemäß Anspruch 1 kann bei einer Pumpe entsprechende des weiteren Ausführungsbeispiels eingesetzt werden.The inventive method according to claim 1 can be used in a pump corresponding to the further embodiment.

Der Stator 240 weist ein Blechpaket mit mehreren radial nach innen gerichteten Statorzähnen auf. Die Statorzähne sind von jeweils mindestens einer Wicklung umwickelt. Um ein Abrutschen den Wicklungen zu verhindern weisen die Statorzähne jeweils einen Statorkopf auf. Der Statorkopf zeigt in Richtung des Rotors 250. Zusätzlich dient der Statorkopf zur Verbesserung der Führung des magnetischen Flusses zum Rotor 250. Der Stator 240 ist innerhalb des Motorgehäuses 230 angeordnet. Ein Fixierungselement 264 drückt den Stator in axialer Richtung in Richtung eines Anschlags, der an dem Motorgehäuse 230 ausgebildet ist. Das Fixierungselement 264 weist hierzu mehrere Federelement, die jeweils um ein Führungsstift angeordnet sind auf. Das Fixierungselement wird drückt sich selbst am Pumpentopfflansch 226 ab.The stator 240 has a laminated core with a plurality of stator teeth directed radially inwards. The stator teeth are each wrapped by at least one winding. In order to prevent the windings from slipping, the stator teeth each have a stator head. The stator head points in the direction of the rotor 250. In addition, the stator head serves to improve the guidance of the magnetic flux to the rotor 250. The stator 240 is arranged within the motor housing 230. A fixing element 264 presses the stator in the axial direction in the direction of a stop which is formed on the motor housing 230. For this purpose, the fixing element 264 has a plurality of spring elements, which are each arranged around a guide pin. The fixation element presses itself against the pump cup flange 226.

Auf der dem Pumpengehäuse abgewandten Seite der Pumpe 1 ist die Elektronik 260 angeordnet. Die Elektronik wird geschützt durch ein Cover 239. Ein Dichtring 237 zwischen Cover und Motorgehäuse 230 verhindert ein Eindringen von Fluiden zur Elektronik 260.Electronics 260 is arranged on the side of pump 1 facing away from the pump housing. The electronics are protected by a cover 239. A sealing ring 237 between the cover and the motor housing 230 prevents fluids from penetrating into the electronics 260.

Die Rüttelbewegungen 82 werden durch eine entsprechende Erzeugung von Kräften, bzw. Drehmomenten in eine erste oder eine zweite Drehrichtung erzeugt. Die Erzeugung der Kräfte oder Drehmomente erfolgt mittels Endstufen in einer Brückenschaltung, insbesondere der Ansteuerung einer B6 Brücke. Die Kraft oder das Drehmoment in eine Drehrichtung wird hierbei durch ein Bestromung, entsprechend einer gewünschten Drehbewegung in diese Drehrichtung erzeugt. Vorzugsweise erfolgt die Ansteuerung mittels eines pulsweitenmodulierten Stroms. Wobei der Verlauf der Ansteuerung entsprechend Figur 4 und der dazugehörigen Beschreibung erfolgt.The shaking movements 82 are generated by a corresponding generation of forces or torques in a first or a second direction of rotation. The forces or torques are generated by means of output stages in a bridge circuit, in particular the control of a B6 bridge. The force or the torque in one direction of rotation is generated by energization in accordance with a desired rotational movement in this direction of rotation. The control is preferably carried out by means of a pulse width modulated current. The course of the control accordingly Figure 4 and the associated description.

Die Pumpentopf 220 der weiteren Ausführungsform kann ebenfalls einen Ring 29 und/oder ein Labyrinth 27 entsprechend Figur 3 aufweisen. Die Funktionsweise und die Ausbildung sind entsprechend gleich.The pump pot 220 of the further embodiment can likewise correspond to a ring 29 and / or a labyrinth 27 Figure 3 exhibit. The mode of operation and the training are correspondingly the same.

Eine Endstufe kann insbesondere MosFET's oder Transistoren umfassen.An output stage can in particular comprise MosFETs or transistors.

Claims (12)

  1. Method for releasing a blockage in the case of a pump (1, 200), in particular a motor vehicle pump, the pump (1, 200) having a stator (40, 240) and a rotor (20, 220) which is arranged such that it can be turned rotationally with respect to the stator (40, 240), a rotational wobbling movement (82) of the rotor (20, 220) being produced in the case of a blockage of the rotor (20, 220) in order to release the blockage, the rotational wobbling movement (82) of the rotor (20, 220) being produced by way of an alternating action on the rotor (20, 220) of a force or a torque in a first rotational direction and a further force or a further torque in a second rotational direction which is opposed to the first rotational direction, characterized in that the wobbling movement (82) is divided into a plurality of sequences (84a, 84b, 84c), the magnitude of the produced forces or the produced torques and the duration of the production of the forces or torques being substantially identical during one sequence (84a, 84b, 84c), and the magnitude of the force or the torque and the duration of the configuration of the force or the torque on the rotor (20, 220) being varied between the individual sequences (84a, 84b, 84c), in particular being increased from sequence (84a, 84b, 84c) to sequence (84a, 84b, 84c).
  2. Method according to Claim 1, characterized in that the forces or the torques are produced by way of an energization of the pump (1, 200), in particular an energization of at least one winding (46).
  3. Method according to either of the preceding claims, characterized in that the rotational wobbling movement (82) is generated by way of pulse width modulated energization of the pump (1, 200), or by way of pulse-shaped energization with at least one pulse.
  4. Method according to one of Claims 1 to 3, characterized in that pauses (86) are configured between the alternating action of the forces or the torques, in which pauses (86) no force or torque which acts on the rotor (20, 220) is produced.
  5. Method according to one of the preceding claims, characterized in that the wobbling movements (82) are repeated, wobbling pauses (88) being configured between the wobbling movements, no force or no torque being produced on the rotor (20, 220) in the wobbling pauses (88), and in that, in particular, the wobbling pauses (88) become longer from wobbling movement (82) to wobbling movement (82).
  6. Method according to one of the preceding claims, characterized in that the pauses (86), in which no force or torque which acts on the rotor (20, 220) is produced, are of substantially identical length within one sequence (84a, 84b, 84c).
  7. Method according to one of the preceding claims, characterized in that sequence pauses, in which no force acts on the rotor (20, 220), are taken between the individual sequences (84a, 84b, 84c).
  8. Method according to one of the preceding claims, characterized in that the number of produced forces or torques which act on the rotor (20, 220) decreases from sequence (84a, 84b, 84c) to sequence (84a, 84b, 84c).
  9. Method according to one of the preceding claims, characterized by ending of the method in the case of detection of a rotational movement, in particular by means of a Hall sensor (32), in particular the detection of a Hall flank, or on the basis of an evaluation of a profile of the energization of the pump (1, 200).
  10. Method according to one of the preceding claims, characterized in that the monitoring of the rotational movement is carried out continuously or in the pauses (86, 88), in particular the wobbling pauses (88) or the sequence pauses, between the action of a force on the rotor (20, 220).
  11. Method according to one of the preceding claims, characterized in that, in the case of detection of a blockage, the energization is interrupted and an energization pause (90) is taken, the rotational wobbling movement (82) being started following the energization pause (90).
  12. Electric machine comprising a pump (1, 200), in particular a motor vehicle pump, with a rotor (20, 220), and a stator (40, 240) and an actuating means (60) for the actuation of the pump (1, 200), characterized in that the electric machine carries out a method according to one of the preceding claims, in order to release a detected blockage of the rotor (20, 220).
EP16781725.3A 2015-10-22 2016-10-10 Releasing a blockage in a pump Active EP3365558B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015220657.2A DE102015220657A1 (en) 2015-10-22 2015-10-22 Solution of a blockage in a pump
PCT/EP2016/074121 WO2017067800A1 (en) 2015-10-22 2016-10-10 Releasing a blockage in a pump

Publications (2)

Publication Number Publication Date
EP3365558A1 EP3365558A1 (en) 2018-08-29
EP3365558B1 true EP3365558B1 (en) 2020-06-03

Family

ID=57136851

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16781725.3A Active EP3365558B1 (en) 2015-10-22 2016-10-10 Releasing a blockage in a pump

Country Status (4)

Country Link
EP (1) EP3365558B1 (en)
CN (1) CN108431418B (en)
DE (1) DE102015220657A1 (en)
WO (1) WO2017067800A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018208928A1 (en) * 2018-06-06 2019-12-12 Robert Bosch Gmbh A method for tearing a blocked water pump and water injection system of an internal combustion engine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876491A (en) * 1986-07-01 1989-10-24 Conner Peripherals, Inc. Method and apparatus for brushless DC motor speed control
DE4215266C1 (en) * 1992-02-14 1993-04-29 Grundfos A/S, Bjerringbro, Dk
DE19539656A1 (en) * 1995-10-25 1997-04-30 Klein Schanzlin & Becker Ag Method for starting variable-speed electric drives
DE10133861B4 (en) * 2001-07-12 2007-06-06 Netzsch-Mohnopumpen Gmbh Drive system for pumps
DE112006002944T8 (en) * 2005-11-04 2009-05-14 Fisher & Paykel Appliances Limited Washing machine pump control for draining, ventilating, releasing blockage and circulating
DE102010043391A1 (en) 2010-11-04 2012-05-10 Robert Bosch Gmbh feed pump
CN203272208U (en) * 2013-03-29 2013-11-06 大连罗斯泵业有限公司 Non-blocking centrifugal pump
CN204253339U (en) * 2014-11-11 2015-04-08 孙志恒 A kind of oil extraction operation pump
CN204239279U (en) * 2014-11-24 2015-04-01 温岭市富莱欧机电有限公司 Anti-plugging submersible pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN108431418A (en) 2018-08-21
DE102015220657A1 (en) 2017-04-27
EP3365558A1 (en) 2018-08-29
CN108431418B (en) 2021-05-07
WO2017067800A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
EP2044671B1 (en) Rotor for an electric machine and production method thereof
EP3271996B1 (en) Electric motor
EP3186880B1 (en) Method for stopping a compressor and compressor of a refrigeration device
DE102016109020A1 (en) Single-phase brushless motor and electrical appliance with the same
DE102004053907B4 (en) Brushless motor
DE102010043391A1 (en) feed pump
DE19813095A1 (en) Device for controlling a single-phase synchronous motor
WO2016026831A1 (en) Rotor for an electric machine of a domestic appliance, domestic appliance, and method for producing a rotor for an electric machine of a domestic appliance
DE112013002380T5 (en) Variable flux electric starter motor and method of operating the same
EP3252931A1 (en) Bearing shield for a brushless electric motor
EP3365558B1 (en) Releasing a blockage in a pump
EP2086104A3 (en) Electronically commuted motor
DE102004038686B3 (en) Spiral pump e.g. for integrated drive, has rotor which runs in it and driving motor connected to rotor such as fixed winding, and runners surrounding rotor and covered by housing
DE10328800A1 (en) Device, in particular electrical machine, with interconnected via a press fit components
DE10244659A1 (en) Pump motor with inclined rotor plates
DE4438569A1 (en) Starting method for electronically commutated DC motor e.g. for driving high speed fan
DE10251846A1 (en) pump drive
DE2055516A1 (en) Centrifugal pump with magnetic coupling
DE102015201160B4 (en) Brushless DC motor
EP2223131B1 (en) Method for the sensorless operation of an electric, electronically commutating machine
DE112020001847T5 (en) Integrated motor and integrated pump with axially arranged coils
DE102015220330B4 (en) Drive control device and motor control system
EP2019474A2 (en) Electric motor for a pump assembly of an antiskid system
DE102006023856A1 (en) Pumping device for use in e.g. dishwasher, has electric motor implemented as single phase synchronous motor for driving impeller, where impeller has shovel with hydraulic unit that determines driving direction of motor
EP3722611B1 (en) Pump for a laundry care machine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180522

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190724

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200131

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1277281

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010141

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200904

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200903

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200903

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201006

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201003

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010141

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

26N No opposition filed

Effective date: 20210304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201010

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201010

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1277281

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231218

Year of fee payment: 8