EP3283733A1 - Dispositif de réglage d'aubes directrices et turbomachine - Google Patents

Dispositif de réglage d'aubes directrices et turbomachine

Info

Publication number
EP3283733A1
EP3283733A1 EP16712909.7A EP16712909A EP3283733A1 EP 3283733 A1 EP3283733 A1 EP 3283733A1 EP 16712909 A EP16712909 A EP 16712909A EP 3283733 A1 EP3283733 A1 EP 3283733A1
Authority
EP
European Patent Office
Prior art keywords
vane
guide
vanes
coupled
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16712909.7A
Other languages
German (de)
English (en)
Other versions
EP3283733B1 (fr
Inventor
Lennart Leopold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Diesel and Turbo SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Diesel and Turbo SE filed Critical MAN Diesel and Turbo SE
Publication of EP3283733A1 publication Critical patent/EP3283733A1/fr
Application granted granted Critical
Publication of EP3283733B1 publication Critical patent/EP3283733B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/50Kinematic linkage, i.e. transmission of position
    • F05D2260/57Kinematic linkage, i.e. transmission of position using servos, independent actuators, etc.

Definitions

  • the invention relates to a Leitschaufelverstellvortechnische for a turbomachine and a turbomachine with a Leitschaufelverstellvortechnische.
  • Turbomachines known from practice have a rotor and a stator.
  • the rotor of a turbomachine comprises a shaft and several rotor blades rotating together with the shaft, wherein the rotor blades form at least one rotor blade ring.
  • the stator of a turbomachine comprises a housing and a plurality of stationary vanes, wherein the vanes form at least one vane ring.
  • the known from practice vanes are made in one piece. From practice, it is already known to adjust the one-piece vanes of a blade ring of a turbomachine via a Leitschaufelverstellvorraumraum such that the vanes are rotatable about an extending in the radial direction of the rotor vane rotation axis.
  • Leitschaufelverstell- known from practice have a drive shaft to which a drive motor can be coupled and which is driven by the drive motor.
  • the rotation of the drive shaft via the drive motor with the aid of a control ring on all vanes of a vane ring is transferred, so therefore all vanes of a vane ring indirectly adjusted or rotated starting with the interposition of the control ring from the drive shaft.
  • each guide blade has in each case a front blade part and a rear blade part, which are each rotatable relative to one another about a common axis of rotation, namely the respective guide blade rotational axis.
  • the drive shaft is directly coupled to one of the vanes of the vane ring such that the vane parts of this vane ring vane are directly rotatable from the drive shaft without interposition of the control ring.
  • the drive shaft is indirectly coupled to the other vanes of the vane ring, such that the vane parts of the other vanes of the vane ring are indirectly rotatable from the drive shaft with the interposition of the control ring.
  • a drive lever engages in each case on a bearing journal of the front blade part and a bearing journal of the rear blade part of each guide blade, the drive levers of the blade parts of the guide blades being coupled to each other via a coupling device such that the blade parts of the guide blades can be rotated synchronously.
  • the vane adjusting device allows the rotation of multi-part Leitschau- fine to radially extending guide vane rotation axes, namely such that a front blade portion and a rear blade portion of each vane are synchronously rotated about a common axis of rotation.
  • the synchronous rotation of the blade parts of each vane to each other can be proportional or non-proportional.
  • Blade parts of a Leitschaufei are directly rotatable without the interposition of the control ring from the drive shaft, whereas the blade parts of the other vanes are rotatable indirectly with the interposition of the control ring of the drive shaft.
  • the control ring is preferably displaceable in the circumferential direction and in the axial direction and fixed exclusively in the radial direction.
  • Showfileile multi-part vanes of a vane ring can be rotated synchronously with the vane adjusting device according to the invention under attack of low friction and Torsionsbelastung.
  • the respective coupling device in the region of each vane, is coupled to one of the drive levers about an axis parallel to the respective vane rotation axis, whereas the respective coupling device is coupled to the other drive lever via a pin in a guide groove of the respective other drive lever and is guided in a guide groove of a housing structure of the vane ring.
  • a single of the drive lever, which engage the bearing journal of the blade parts of the respective vane, is coupled to the control ring in the region of each vane. This allows a particularly advantageous displacement of the rotation initiated by the drive shaft rotation of the blade parts of the vanes on all vanes of the vane ring.
  • control ring is displaceable in the circumferential direction and in the axial direction, so that forces at coupling points between the control ring and the drive levers pivotally coupled to the control ring are perpendicular to the drive levers. Forces at the coupling points between the control ring and the drive levers coupled to the control ring are always perpendicular to the drive levers. In this way it can be ensured that bearings of the guide blades or guide blade parts are not loaded by parasitic force components. Ultimately, this reduces the load on the vane parts and bearings, whereby the vane adjusting is exposed to lower loads and therefore can be dimensioned with less space requirement.
  • turbomachine is defined in claim 10. Preferred embodiments of the invention will become apparent from the dependent claims and the description below. Embodiments of the invention will be described, without being limited thereto, with reference to the drawings. Showing:
  • FIG. 1 a perspective section of a turbomachine in the region of a vane ring and a Leitschaufelverstellvorrich- device for multi-part vanes of the vane ring; a plan view of the arrangement of Figure 1 in a first state. a plan view of the arrangement of Figure 1 in a second state. a perspective view of the arrangement of Fig. 3; the arrangement of Figure 1 with fully closed vanes in a 90 ° position to block a flow. the arrangement of Figure 1 with fully open vanes in a 0 ° position to produce a swirl-free flow. the arrangement of Figure 1 with partially open vanes in a 45 ° position to produce a flow with Vordrall.
  • the present invention relates to a Leitschaufelverstellvorutter for a turbomachine and a turbomachine with at least one such Leitschaufelverstellvortechnisch.
  • the basic structure of a turbomachine is familiar to the person mentioned here.
  • a turbomachine comprises a rotor with rotor-side rotor blades and a stator with stator-side stator blades.
  • the blades of the rotor form at least one blade ring, wherein the or each blade ring rotates together with a shaft of the rotor.
  • the vanes of the stator form at least one vane ring which is connected to a stator-side housing.
  • Fig. 1 and Fig. 5 to 8 each show a perspective section of a turbomachine, namely a perspective view of a so-called inlet guide of a turbomachine, by means of which the flow of a process gas can be selectively influenced before entering an impeller.
  • a vane ring 20 of a plurality of vanes each vane 21 is a plurality of parts of a front blade portion 22 and a rear blade portion 23 is formed.
  • each guide vane 21 In the region of each guide vane 21, the two vane parts 22, 23 are rotatable relative to each other about a common axis of rotation which extends in the radial direction and is referred to as the vane rotation axis, so that the parting plane of the vane parts 22, 23 of each vane 21 passes through the common guide vane axis of rotation of the vanes extends.
  • the bearing pin 24 of the front vane parts 22 are designed as hollow shafts and the bearing pin 25 of the rear vane parts 23 as solid waves, namely such that the hollow shaft formed as bearing journals 24 of the front blade parts 22 concentrically enclose the solid shaft bearing pin 25 of the rear blade parts 23.
  • the bearing pin of the front blade parts as solid waves
  • the bearing pin of the rear blade parts can be designed as hollow shafts, which in turn are concentric with each other.
  • the vane adjusting device according to the invention for the multi-part vanes 21 of the vane ring 20, by means of which the vane parts 22, 23 of each vane 21 can be rotated about guide axis axes extending in the radial direction, comprises a drive shaft 38 (shown dashed in FIG a drive motor, not shown, can be coupled and which can be driven by the drive motor.
  • the drive shaft 38 is directly coupled to one of the guide vanes 21 of the vane ring 20, namely such that the vane parts 22, 23 of these directly connected to the drive shaft 38 Leitschau- fei 21 starting from the drive shaft 38 without the interposition of a control ring 27 are directly rotatable.
  • the drive shaft 38 preferably runs coaxially with the bearing journals 24, 25 of this guide blade 21 and thus preferably coaxially with the guide-blade rotation axis of this directly rotatable guide blade 21.
  • the drive shaft 38 is indirectly coupled via the control ring 27, namely such that the blade parts 22, 23 of these other vanes 21 of the vane ring 20, starting from the drive shaft 38 with the interposition of the control ring 27 are indirectly rotatable.
  • each vane 21 On the bearing pin 24 of the front blade part 22 and on the bearing pin 25 of the rear blade part 23 of each vane 21 engages in each case a drive lever 28 or 29 at.
  • the drive lever 28 engages the hollow shaft designed as a journal 24 of the front blade portion 22 and the drive lever 29 on the designed as a solid shaft bearing pin 25 of the rear blade portion 23 at.
  • the drive levers 28, 29 of the blade parts 22, 23 are coupled to one another via a coupling device 30 in such a way that the blade parts 22, 23 of each guide blade 21 can be rotated synchronously with one another.
  • the respective coupling device 30 which is designed as a coupling rod, is coupled to one of the drive levers about an axis extending parallel to the respective vane rotation axis.
  • the respective coupling device 30 is coupled to the drive lever 28, which is bonded to the bearing journal 24 of the respective front blade part 22, about the axis 31 extending parallel to the respective guide blade axis of rotation.
  • the respective other drive lever namely in the illustrated embodiment with the drive lever 29 which is connected to the bearing pin 25 of the rear blade part 23
  • the respective coupling device 30 is coupled via a pin 32 which engages in a guide groove 33 of the respective other drive lever 29 and is guided in this guide groove 33.
  • the pin 32 engages with an opposite end in a guide groove 34 of the housing structure 26 of the vane ring.
  • the guide groove 33 of the respective drive lever 29 for the pin 32 is designed as a rectilinear slot and the guide groove 34 of the housing structure 26 designed as an arcuate slot.
  • the shape of the guide groove 34 in the housing structure 26 determines the ratio of the angles of rotation between the respective front blade portion 22 and the respective rear blade portion 23, thus determining, inter alia, whether the blade portions 22, 23 of each blade are rotated proportionally or non-proportionally to each other.
  • the drive lever 29 for the respective rear vane part 23 of the respective vane 21, which acts on the bearing journal 25 of this vane part 23, is coupled to the control ring 27.
  • a joint 35 is formed between the respective drive lever 29 and the control ring 27, via which the respective drive lever 29 engages on the control ring 27 in an articulated manner.
  • each vane 21 in each case a single one of the drive levers, namely the drive lever 29, which acts on the journal 25 of the rear vane portion 23 of the respective vane 21, coupled to the control ring 27, wherein the control ring 27 in the circumferential direction and axial direction ge - Can be displaced relative to the housing structure 26, but is fixed in the radial direction.
  • Forces at the coupling points between the control ring 27 and the drive levers 29 pivotally coupled to the control ring 27 are perpendicular to the drive levers 29, so that they are not strained by parasitic force components. This is a particularly advantageous rotation of the blade parts 22, 23 of each vane 21 relative to each other possible.
  • those drive levers 28, 29 are shown which serve to rotate the blade parts 22, 23 of those guide blades 21 relative to one another, which are rotatable indirectly from the drive shaft.
  • the drive levers 28, 29 of that guide vane 21, whose vane parts are rotatable directly from the drive shaft carried out in an analogous manner.
  • each drive lever which is coupled in an articulated manner to the control ring 27 via the respective joint 35, is designed as a multipart drive lever.
  • this is the drive lever 29, with which the bearing journal 25 of the rear blade part 23 of the respective guide blade 21 is coupled.
  • a first segment 36 of each of these drive levers 29 is rigidly coupled to the respective vane part 23 of the respective vane 21, namely with the bearing pin 25 of this vane part 23.
  • a second segment 27 of this drive lever 29 articulates on the control ring 27 via the respective joint 35.
  • the two segments 36, 37 of the respective drive lever 29 are coupled to one another in an articulated manner.
  • the other drive levers 28 which act on the respective other blade part 22 of the respective vane 21 or on the journal 24 of the same, are formed as one-piece lever, wherein at this, as already stated, the respective coupling element 30 via the parallel to the respective blade axis of rotation axis 31st hinged attacks.
  • the present invention therefore proposes a vane adjusting device for a vane ring 20, the vanes 21 of which are made in several parts, such that each vane 21 comprises a front vane part 22 and a rear vane part 23, which are rotated about a common vane rotation axis relative to one another can, wherein the parting plane of the respective blade parts 22, 23 extends through this guide vane rotation axis.
  • Each drive blade 28 or 29 is coupled to each blade part 22, 23 of each guide blade 21, the drive levers 28, 29 of each guide blade 21 being coupled to one another by a coupling element 30 designed as a coupling rod.
  • the respective coupling rod 30 is pivotally connected, namely about an axis extending parallel to the guide vane axis 31st With a pin 32, the respective coupling rod 30 is guided both in a guide groove 33 of the other drive lever 29 and in a guide groove 34 of the housing structure 26.
  • the vane parts 22, 23 of each vane 21 can be rotated synchronously with each other.
  • One of the drive levers of each vane 21 is coupled to the control ring 27 which is displaceably arranged on the housing structure 26 in the circumferential and axial directions.
  • the rotation of the guide blade field 21 can be initiated via the drive shaft 38, wherein a guide blade 21 can be rotated directly from the drive shaft 38, whereas the other guide blades 21 or their blade parts 22, 23 can be rotated indirectly via the control ring 27 from the drive shaft 38 , 5 to 8 show the vane ring 20 in different relative positions of the vane 21 and the blade parts 22, 23 thereof.
  • the guide vanes 21 or the blade parts 22, 23 thereof assume a so-called 90 ° position, in which the flow through the guide blade rim 20 is maximally closed.
  • FIG. 5 the guide vanes 21 or the blade parts 22, 23 thereof assume a so-called 90 ° position, in which the flow through the guide blade rim 20 is maximally closed.
  • the guide vanes 21 or their blade parts 22, 23 are transferred into the so-called 0 ° position, in which the flow through the guide vane ring 20 is maximally released.
  • no swirl is imparted to the flow in FIG. 7 and 8 show further relative positions of the guide vanes 21 and of the blade parts 22, 23, wherein in the so-called 45 ° position of the guide blade 21 according to FIG. 7 a so-called pre-twist and in the so-called 30 ° position of the guide blade 21 according to FIG 8, a so-called counter-rotation can be applied to the flow through the guide vane ring 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne un dispositif de réglage d'aubes directrices pour une turbomachine, permettant notamment la rotation de plusieurs aubes directrices, groupées pour former une couronne directrice, autour d'axes de rotation, s'étendant dans la direction radiale, des aubes directrices de ladite couronne, lequel dispositif comprend un arbre d'entraînement (38), auquel un moteur d'entraînement peut être accouplé et qui peut être entraîné par ledit moteur d'entraînement, et une bague de commande (27) qui transmet une rotation de l'arbre d'entraînement (38) pour permettre la rotation d'aubes directrices (21) de la couronne directrice (20) sur celui-ci. Chaque aube directrice (21) présente une partie avant (22) et une partie arrière (23) qui peuvent tourner l'une par rapport à l'autre autour d'un axe de rotation commun, à savoir l'axe de rotation de l'aube directrice concernée. L'arbre d'entraînement (38) est accouplé directement à une des aubes directrices (21) de la couronne directrice (20), de sorte que les parties (22, 23) de cette aube directrice (21) de la couronne directrice peuvent tourner en étant directement sollicitées par l'arbre d'entraînement (38) sans insertion de la bague de commande (27). L'arbre d'entraînement (38) est accouplé indirectement aux autres aubes directrices (21) de la couronne directrice (20), de sorte que les parties (22, 23) des autres aubes directrices (21) de la couronne directrice peuvent tourner en étant indirectement sollicitées par l'arbre d'entraînement (38) avec insertion de la bague de commande (27). Un levier d'entraînement respectif (28, 29) s'engage sur un tourillon (24) de la partie avant (22) et un tourillon (25) de la partie arrière (23) de l'aube directrice (21), les leviers d'entraînement (28, 29) des parties de l'aube directrice concernée (21) étant accouplés entre eux par l'intermédiaire d'un dispositif d'accouplement (30), de sorte que les parties (22, 23) de l'aube directrice concernée (21) peuvent tourner de manière synchrone.
EP16712909.7A 2015-04-15 2016-03-31 Dispositif d'actionnement des aubes de guidage variables et turbomachine Active EP3283733B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015004649.7A DE102015004649A1 (de) 2015-04-15 2015-04-15 Leitschaufelverstellvorrichtung und Strömungsmaschine
PCT/EP2016/057083 WO2016165950A1 (fr) 2015-04-15 2016-03-31 Dispositif de réglage d'aubes directrices et turbomachine

Publications (2)

Publication Number Publication Date
EP3283733A1 true EP3283733A1 (fr) 2018-02-21
EP3283733B1 EP3283733B1 (fr) 2019-05-15

Family

ID=55642490

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16712909.7A Active EP3283733B1 (fr) 2015-04-15 2016-03-31 Dispositif d'actionnement des aubes de guidage variables et turbomachine

Country Status (9)

Country Link
US (1) US10400622B2 (fr)
EP (1) EP3283733B1 (fr)
JP (1) JP6499314B2 (fr)
KR (1) KR101985130B1 (fr)
CN (1) CN107810311B (fr)
DE (1) DE102015004649A1 (fr)
DK (1) DK3283733T3 (fr)
RU (1) RU2666260C1 (fr)
WO (1) WO2016165950A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10294813B2 (en) 2016-03-24 2019-05-21 United Technologies Corporation Geared unison ring for variable vane actuation
US10301962B2 (en) 2016-03-24 2019-05-28 United Technologies Corporation Harmonic drive for shaft driving multiple stages of vanes via gears
US10458271B2 (en) 2016-03-24 2019-10-29 United Technologies Corporation Cable drive system for variable vane operation
US10415596B2 (en) 2016-03-24 2019-09-17 United Technologies Corporation Electric actuation for variable vanes
US10329946B2 (en) 2016-03-24 2019-06-25 United Technologies Corporation Sliding gear actuation for variable vanes
US10443430B2 (en) 2016-03-24 2019-10-15 United Technologies Corporation Variable vane actuation with rotating ring and sliding links
US10288087B2 (en) 2016-03-24 2019-05-14 United Technologies Corporation Off-axis electric actuation for variable vanes
US10443431B2 (en) 2016-03-24 2019-10-15 United Technologies Corporation Idler gear connection for multi-stage variable vane actuation
US10329947B2 (en) 2016-03-24 2019-06-25 United Technologies Corporation 35Geared unison ring for multi-stage variable vane actuation
DE102020209792A1 (de) 2020-08-04 2022-02-10 MTU Aero Engines AG Leitschaufel
DE102021128979A1 (de) * 2021-11-08 2023-05-11 MTU Aero Engines AG Verstellhebel für eine strömungsmaschine

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143533U (fr) 1980-03-31 1981-10-29
JP2807498B2 (ja) 1989-02-02 1998-10-08 株式会社日立製作所 ベーンコントロール装置
EP0381399B1 (fr) * 1989-02-02 1994-07-13 Hitachi, Ltd. Régulateur de pale directrice
US4995786A (en) * 1989-09-28 1991-02-26 United Technologies Corporation Dual variable camber compressor stator vane
GB9203168D0 (en) * 1992-02-13 1992-04-01 Rolls Royce Plc Guide vanes for gas turbine engines
US5281087A (en) * 1992-06-10 1994-01-25 General Electric Company Industrial gas turbine engine with dual panel variable vane assembly
FR2696500B1 (fr) * 1992-10-07 1994-11-25 Snecma Turbomachine équipée de moyens de réglage du jeu entre les redresseurs et le rotor d'un compresseur.
RU2199670C1 (ru) * 2001-07-16 2003-02-27 Открытое Акционерное Общество "А. Люлька-Сатурн" Регулируемый входной направляющий аппарат компрессора газотурбинного двигателя
JP3933455B2 (ja) * 2001-11-30 2007-06-20 株式会社小松製作所 可変ターボ過給機
FR2856424B1 (fr) 2003-06-20 2005-09-23 Snecma Moteurs Dispositif de calage variable de deux etages d'aubes fixes sur un turboreacteur
DE10351202A1 (de) 2003-11-03 2005-06-02 Mtu Aero Engines Gmbh Vorrichtung zum Verstellen von Leitschaufeln
US7114911B2 (en) * 2004-08-25 2006-10-03 General Electric Company Variable camber and stagger airfoil and method
FR2875559B1 (fr) * 2004-09-21 2007-02-23 Snecma Moteurs Sa Levier de commande du calage angulaire d'une aube de stator dans une turbomachine
US7942632B2 (en) * 2007-06-20 2011-05-17 United Technologies Corporation Variable-shape variable-stagger inlet guide vane flap
FR2921100B1 (fr) * 2007-09-13 2009-12-04 Snecma Levier d'entrainement en rotation autour de son pivot d'aube de stator a calage variable de turbomachine
DE102009057664A1 (de) * 2009-12-09 2011-06-16 Ihi Charging Systems International Gmbh Verstelleinrichtung für eine Aufladeeinrichtung, insbesondere für einen Abgasturbolader
RU2422644C1 (ru) * 2009-12-14 2011-06-27 Открытое акционерное общество "Авиадвигатель" Система управления ступенями поворотных лопаток статора компрессора газотурбинного двигателя
EP2362070A1 (fr) * 2010-02-19 2011-08-31 Siemens Aktiengesellschaft Dispositif d'entraînement pour le pivotement d'aubes réglables d'une turbomachine
EP2525048A1 (fr) * 2011-05-18 2012-11-21 Siemens Aktiengesellschaft Système d'entraînement de levier
RU2474698C1 (ru) * 2011-10-28 2013-02-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Система управления ступенями поворотных лопаток статора компрессора высокого давления
DE102011088820A1 (de) 2011-12-16 2013-06-20 Siemens Aktiengesellschaft Strömungsmaschine und Verfahren zum Betreiben einer solchen
US20140314549A1 (en) 2013-04-17 2014-10-23 General Electric Company Flow manipulating arrangement for a turbine exhaust diffuser

Also Published As

Publication number Publication date
CN107810311A (zh) 2018-03-16
KR101985130B1 (ko) 2019-05-31
DK3283733T3 (da) 2019-08-05
EP3283733B1 (fr) 2019-05-15
JP6499314B2 (ja) 2019-04-10
CN107810311B (zh) 2020-01-03
US20180119566A1 (en) 2018-05-03
DE102015004649A1 (de) 2016-10-20
JP2018511737A (ja) 2018-04-26
US10400622B2 (en) 2019-09-03
RU2666260C1 (ru) 2018-09-06
WO2016165950A1 (fr) 2016-10-20
KR20170135944A (ko) 2017-12-08

Similar Documents

Publication Publication Date Title
EP3283733B1 (fr) Dispositif d'actionnement des aubes de guidage variables et turbomachine
EP3283732B1 (fr) Dispositif de réglage d'aubes directrices et turbomachine
DE69622091T2 (de) Statorstufe mit verstellbaren Leitschaufeln
DE69203705T2 (de) Stator zur Einführung von Luft in das Innere einer Turbomaschine und Verfahren zum Montieren einer Schaufel dieses Stators.
DE602004002049T2 (de) Niederdruck-Turbine einer Turbomaschine
EP3524781B1 (fr) Dispositif de raccordement pour une aube réglable d'une turbine à gaz
DE112016004554T5 (de) Betätigungsvorrichtung für variable Statorschaufeln
CH703871B1 (de) Verstellleitapparatanordnung für einen Verdichter.
DE3618331A1 (de) Betaetigungshebel fuer ein paar verstellbare leitschaufeln
CH702692B1 (de) Variable Leitschaufel und Verfahren zur Beseitigung einer aerodynamischen Erregung.
DE4036693A1 (de) Laufschaufelspitzenspaltbreitensteuer - vorrichtung mit mantelsegmenteinstellung durch gleichlaufring
DE2203933A1 (de) Betätigungsring für Kompressoren mit variabler Geometrie
EP1816401B1 (fr) Turbomachine
EP2342425A1 (fr) Turbine à gaz avec plaque de fixation entre la base d'aube et le disque
EP2730751B1 (fr) Dispositif de réglage d'aubes directrices d'une turbine à gaz
EP3176386B1 (fr) Système de virole interne, virole interne, boîtier intermédiaire et turbomachine associés
EP3287608A1 (fr) Bague intérieure d'une couronne d'aubes directrices d'une turbomachine
EP3078808A1 (fr) Rangée d'aubes pour une turbomachine
EP3379037B1 (fr) Étanchéité sur une bague intérieure d'une couronne d'aubes directrices
EP2149677A1 (fr) Dispositif de fixation destiné à la fixation d'une pale de rotor sur une turbomachine
WO2018162306A1 (fr) Turbine comprenant des aubes directrices ajustables
WO2005045202A1 (fr) Dispositif de reglage d'aubes directrices
DE10209444A1 (de) Turbolader für Fahrzeuge mit verbesserter Aufhängung für den Betätigungsmechanismus der variablen Düsen
DE10352789B4 (de) Gasturbine
EP2982834B1 (fr) Palier a roulement, en particulier palier a aiguilles, destine a l'agencement sur un pivot d'une aube variable de turbomachine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN ENERGY SOLUTIONS SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 17/16 20060101AFI20181205BHEP

Ipc: F01D 9/04 20060101ALI20181205BHEP

INTG Intention to grant announced

Effective date: 20190107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004705

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190731

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190915

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190815

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 31813

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190815

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190816

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004705

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

26N No opposition filed

Effective date: 20200218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1133678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 9

Ref country code: CZ

Payment date: 20240325

Year of fee payment: 9

Ref country code: GB

Payment date: 20240320

Year of fee payment: 9

Ref country code: SK

Payment date: 20240325

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240329

Year of fee payment: 9

Ref country code: FR

Payment date: 20240328

Year of fee payment: 9

Ref country code: DK

Payment date: 20240326

Year of fee payment: 9