EP3194547A1 - Whitening composition - Google Patents

Whitening composition

Info

Publication number
EP3194547A1
EP3194547A1 EP15750275.8A EP15750275A EP3194547A1 EP 3194547 A1 EP3194547 A1 EP 3194547A1 EP 15750275 A EP15750275 A EP 15750275A EP 3194547 A1 EP3194547 A1 EP 3194547A1
Authority
EP
European Patent Office
Prior art keywords
detergent composition
laundry detergent
composition according
uncharged
acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP15750275.8A
Other languages
German (de)
French (fr)
Inventor
Stephen Norman Batchelor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever Global IP Ltd
Unilever IP Holdings BV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Publication of EP3194547A1 publication Critical patent/EP3194547A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • C11D2111/12

Definitions

  • the present invention concerns the use of whitening and brightening laundry
  • a problem is the redeposition of soil removed from one garment onto another. The problem is exacerbated by the presence of human oils (sebum) on garments and in the wash which serves to enhance the deposition of soil in the wash. This process leads to an overall loss of whiteness and cleaning across the washing load.
  • EP1321510 (Shipley) describes an industrial cleaning composition that contain an alkoxylated polyalkylphenol for stripping organic chemical residues from photoresists that are used in the manufacture of semi-conductors and other electronic devices and circuits.
  • the organic chemical residues are materials left over from the production process and include photointiators, thermoinitiators, acrylic and methacrylic monomers.
  • the present invention provides a laundry detergent composition
  • a laundry detergent composition comprising
  • (i) charged surfactant preferably the level of charged surfactant is from 4 to 50 wt%, more preferably 6 to 30 wt%, most preferably 8 to 20 wt%;
  • the present invention provides a laundry detergent composition
  • a laundry detergent composition comprising:
  • anionic surfactant selected from: linear alkyi benzene sulphonates; alkyi sulphates; and, alkyi ether sulphates and mixtures thereof.
  • n is selected from: 6; 7; 8; 9; 10; 1 1 ; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21 ; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31 ; 32; 33; 34; 35; 36; 37; 38; 39; 40; 41 ; 42; 43; 44; 45; 46; 47; 48; 49; and 50 perfume, preferably 0.001 to 3 wt% perfume.
  • polyalkylphenols the aqueous solution comprising from 10 ppm to 5000 ppm of uncharged alkoxylated polyalkylphenol; and, up to 6 g/L, preferably 0.2 to 4 g/L, of surfactant; and,
  • the level of the perfume in the aqueous solution is from preferably 0.1 to 100 ppm, more preferably 1 to 10 ppm.
  • the surfactant used is preferably as preferred for the composition aspects of the present invention .
  • the textile is preferably an item of clothing, bedding or table cloth.
  • Preferred items of clothing are cotton containing shirts, trousers, underwear and jumpers.
  • Alkoxylated polyalkylphenol Preferably the or each uncharged (neutral) alkoxylated polyalkylphenol is alkoxylated trialkylphenol, most preferably alkoxylated tributylphenol.
  • the alkoxylated trialkylphenol is polyethylene glycol mono(2,4,6-tris(n-butyl) phenyl) ether.
  • the alkoxylated polyalkylphenol contains an average of 2 to 70 alkoxy groups, most preferably 6 to 50 alkoxy groups.
  • the alkoxylation is ethoxylation.
  • the alkyl group in the alkoxylated polyalkylphenol is preferably selected from, linear or branched C3 to C15 alkyl groups.
  • the uncharged alkoxylated polyalkylphenol has 3 alkyl groups attached to the phenol. Preferably they are in the 2,4,6 positions on the phenol.
  • the alkoxylate is attached to the 1 position.
  • the alkoxylate is capped by a hydrogen atom.
  • n is the average numbers of moles of alkoxy units in the polyalkoxy chain.
  • the alkoxylated polyarylphenol is not considered a surfactant and does not contribute numerically to the surfactant as defined herein.
  • the laundry composition comprises charged surfactant and it is most preferred that the charged surfactant is anionic surfactant (which includes a mixture of the same).
  • Suitable anionic detergent compounds which may be used are usually water- soluble alkali metal salts of organic sulphates and sulphonates having alkyi radicals containing from about 8 to about 22 carbon atoms, the term alkyi being used to include the alkyi portion of higher -alkyi radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyi sulphates, especially those obtained by sulphating higher Cs to Ci8 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyi C9 to C20 benzene sulphonates, particularly sodium linear secondary alkyi C10 to C15 benzene sulphonates; and sodium alkyi glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the anionic surfactant is preferably selected from: linear alkyi benzene
  • alkyi sulphates alkyi ether sulphates; soaps; alkyi (preferably methyl) ester sulphonates, and mixtures thereof.
  • anionic surfactants are selected from: linear alkyi benzene sulphonate; alkyi sulphates; alkyi ether sulphates and mixtures thereof.
  • alkyi ether sulphate is a C12-C14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units.
  • Sodium lauryl ether sulphate is
  • the linear alkyi benzene sulphonate is a sodium C11 to C15 alkyi benzene sulphonates.
  • the alkyi sulphates is a linear or branched sodium C12 to C18 alkyi sulphates.
  • Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyi sulphate).
  • the level of anionic surfactant in the laundry composition is preferably from 4 to 50 wt%, more preferably 6 to 30 wt%, and most preferably 8 to 20 wt%.
  • two or more anionic surfactant are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.
  • the laundry composition in addition to the anionic surfactant comprises alkyl exthoylated non-ionic surfactant, preferably from 2 to 8 wt% of alkyl alkoxylated, preferably ethoxylated, non-ionic surfactant.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide.
  • Specific nonionic detergent compounds are the condensation products of aliphatic Cs to Cie primary or secondary linear or branched alcohols with ethylene oxide.
  • the alkyl ethoxylated non-ionic surfactant is a Cs to Cie primary alcohol with an average ethoxylation of 7EO to 9EO units.
  • nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents” Vol. 1 , by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon's Emulsifiers and Detergents” published by Manufacturing Confectioners Company or in "Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 .
  • surfactants used are saturated. Also applicable are surfactants such as those described in EP-A-328 177
  • the charged surfactant may be a cationic such that the formulation is a fabric conditioner.
  • the detergent compositions based on anionic or anionic/non-ionic surfactants is however the more preferred embodiment.
  • the present invention When the present invention is used as a fabric conditioner it needs to contain a cationic compound.
  • the quaternary ammonium compound is a quaternary ammonium compound having at least one C12 to C22 alkyl chain.
  • the quaternary ammonium compound has the following formula:
  • a preferred compound of this type is the quaternary ammonium compound cetyl trimethyl quaternary ammonium bromide.
  • a second class of materials for use with the present invention are the quaternary ammonium of the above structure in which R 1 and R 2 are independently selected from Ci to C22 alkyl or alkenyl chain; R 3 and R 4 are independently selected from Ci to C 4 alkyl chains and X " is a compatible anion.
  • the composition optionally comprises a silicone.
  • Builders or Complexinq Agents Builder materials may be selected from 1 ) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • calcium sequestrant builder materials examples include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of water- insoluble crystalline or amorphous aluminosilicates, of which zeolites are well known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070.
  • the composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.
  • Zeolite and carbonate carbonate (including bicarbonate and sesquicarbonate) are preferred builders, with carbonates being particularly preferred.
  • the composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15%w.
  • Aluminosilicates are materials having the general formula:
  • the preferred sodium aluminosilicates contain 1.5-3.5 S1O2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. The ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
  • phosphate builders may be used.
  • 'phosphate' embraces diphosphate, triphosphate, and phosphonate species.
  • Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
  • the laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt% of phosphate.
  • powder laundry detergent formulations are predominantly carbonate built.
  • Powders should preferably give an in use pH of 9.5-1 1 .
  • the laundry detergent is an aqueous liquid laundry detergent, preferably with a pH of from 7 to 9.
  • mono propylene glycol is present at a level from 1 to 30 wt%, most preferably 2 to 18 wt%, to provide the formulation with appropriate, pourable viscosity.
  • the composition preferably comprises a fluorescent agent (optical brightener).
  • Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Preferred fluorescers are: sodium 2 (4-styryl-3-sulphophenyl)-2H-napthol[1 ,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1 ,3,5-triazin-2- yl)]amino ⁇ stilbene-2-2' disulphonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1 ,3,5- triazin-2-yl)]amino ⁇ stilbene-2-2' disulphonate, and disodium 4,4'-bis(2- sulphostyryl)biphenyl.
  • the composition comprises a perfume.
  • the perfume is preferably in the range from 0.001 to 3 wt %, more preferably 0.05 to 0.5 wt%, most preferably 0.1 to 1 wt %.
  • CTFA Cosmetic, Toiletry and
  • the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2- methyl-, ethyl ester; octanal; benzyl acetate; 1 ,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1 ,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester; amyl salicylate; beta-caryophyllene; ethyl undecylenate;
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA).
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]).
  • Preferred top- notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • Perfume top note may be used to cue the whiteness and brightness benefit of the invention.
  • perfume components which it is advantageous to encapsulate include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also advantageous to encapsulate perfume components which have a low CLog P (ie. those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0.
  • CLog P ie. those which will have a greater tendency to be partitioned into water
  • These materials, of relatively low boiling point and relatively low CLog P have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole,
  • benzaldehyde benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo-carvone, d-carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3- hexenyl acetate, cuminic alcohol, cyclal c, dimethyl benzyl carbinol, dimethyl benzyl carbinol acetate, ethyl acetate, ethyl aceto acetate, ethyl amyl ketone, ethyl benzoate, ethyl butyrate, ethyl hexyl ketone, ethyl phenyl acetate, eucalyptol, eugenol,
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.
  • perfumes with which the present invention can be applied are the so-called aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as clary sage, eucalyptus, geranium, lavender, mace extract, neroli, nutmeg, spearmint, sweet violet leaf and valerian.
  • the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
  • composition may comprise one or more further polymers. Examples are:
  • carboxymethylcellulose poly (ethylene glycol), polyvinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • Polymers present to prevent dye deposition may be present, for example
  • One or more enzymes are preferred present in a laundry composition of the invention and when practicing a method of the invention.
  • the level of each enzyme in the laundry composition of the invention is from 0.0001 wt% to 0.1 wt% protein.
  • the enzyme is preferably selected from: proteases; lipases; and, cellulases, preferably protease.
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from
  • Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in
  • WO 96/13580 a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1 ,372,034), P. fluorescens,
  • Pseudomonas sp. strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1 131 , 253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422).
  • Other examples are lipase variants such as those described in WO 92/05249,
  • Preferred commercially available lipase enzymes include LipolaseTM and Lipolase UltraTM, LipexTM and LipocleanTM(Novozymes A/S).
  • the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1 .4 and/or EC 3.1.1 .32.
  • phospholipase is an enzyme which has activity towards phospholipids.
  • Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1 ) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
  • Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
  • phospholipases Ai and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
  • lysophospholipase or phospholipase B which can hydrolyze the remaining fatty acyl group in lysophospholipid.
  • Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
  • proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included.
  • the protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease.
  • Preferred commercially available protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM, DuralaseTM, DyrazymTM, EsperaseTM, EverlaseTM, PolarzymeTM, and KannaseTM, (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, and FN3TM (Genencor International Inc.).
  • the method of the invention may be carried out in the presence of cutinase. classified in EC 3.1.1 .74.
  • the cutinase used according to the invention may be of any origin.
  • Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Suitable amylases include those of bacterial or fungal origin.
  • Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain
  • B. licheniformis described in more detail in GB 1 ,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060.
  • Commercially available amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM, StainzymeTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (from Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691 ,178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307.
  • CelluzymeTM Commercially available cellulases include CelluzymeTM, CarezymeTM, CellucleanTM, EndolaseTM, RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation). CellucleanTM is preferred.
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin.
  • peroxidases Chemically modified or protein engineered mutants are included.
  • useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257.
  • peroxidases include GuardzymeTM and NovozymTM 51004 (Novozymes A/S).
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains.
  • the alkyl groups are preferably linear or branched, most preferably linear.
  • indefinite article “a” or “an” and its corresponding definite article “the” as used herein means at least one, or one or more, unless specified otherwise.
  • An aqueous liquid laundry detergent was prepared of the following formulation:
  • the formulation was used to wash eight 5x5cm knitted cotton cloth pieces in a tergotometer set at 200rpm. A one hour wash was conducted in 800ml of 6° French Hard water at 20°C, with 2.3g/L of the formulation. To simulate particulate soil 0.04g/L of 100% compressed carbon black (ex Sigma-Aldrich ) was added to the wash liquor. To simulate oily soil (6.3 g) of an SBL2004 soil strip (ex Warwick Equest) was added to the wash liquor. Once the wash had been completed the cotton monitors were removed and dried and the reflectance measured on a reflectometer. The greyness was assessed from the reflectance value at 460nm, R 4 6o, (UV-excluded).
  • Formulations were tested containing 8.7wt% Sokalan HP20 (BASF), an ethoxylated polyethylene imine polymer PEI(600) 20EO, as a comparison polymer for anti- redeposition benefits.
  • Formulation were tested containing 8.7wt% Alkoxylated polyalkylphenol: polyethylene glycol mono(2,4,6-tris(n-butyl)phenyl) ether with various length of ethoxylate chains (Sapogenat ex Clariant).
  • the results are summarised in the table below.
  • the 95% confidence limits are also given calculated from the standard deviation on the measurements from the 8 monitors.
  • the R 4 6o value is the mean of the measurements from the 8 monitors.
  • the alkoxylated polyalkylphenol increased the R 4 6o of the monitors. High 3 ⁇ 46 ⁇ values equate to a cleaner whiter fabrics.
  • the alkoxylated polyalkylphenol provides significantly better benefits than the ethoxylated polyethyleneimine, Sokalan HP20, which under current conditions provided no significant benefit.

Abstract

The present invention provides a laundry detergent composition comprising (i) from 4 to 50 wt% of a charged surfactant, (ii) from 0.1 to 20 wt% of an uncharged alkoxylated polyalkylphenol and (iii) from 0.001 to 3 wt % perfume. A domestic method of treating a textile, the method comprising the steps of (i) treating said textile with an aqueous solution of the laundry detergent composition, the aqueous solution comprising from 10 ppm to 5000 ppm of uncharged alkoxylated polyalkylphenol and up to 6 g/L of surfactant and (ii) optionally rinsing and drying said textile.

Description

WHITENING COMPOSITION
Field of Invention
The present invention concerns the use of whitening and brightening laundry
compositions.
Background of the Invention
Maintaining and improving the whiteness and brightness of textiles during domestic laundry are desirable. A problem is the redeposition of soil removed from one garment onto another. The problem is exacerbated by the presence of human oils (sebum) on garments and in the wash which serves to enhance the deposition of soil in the wash. This process leads to an overall loss of whiteness and cleaning across the washing load. To ameliorate this problem, dispersing polymer such as an alkoxylated polyethylene imines have been widely added to washing detergents. Ethoxylated PEI (PEI = polyethylene imine) is known as an anti redeposition polymer from CA 121 0009. Certain Cellulase enzymes have also been used to prevent redeposition by altering the surface properties of cotton fabrics. Novozymes describes in WO02/099091 and WO04/053039 cellulases for use in domestic laundry.
EP1321510 (Shipley) describes an industrial cleaning composition that contain an alkoxylated polyalkylphenol for stripping organic chemical residues from photoresists that are used in the manufacture of semi-conductors and other electronic devices and circuits. The organic chemical residues are materials left over from the production process and include photointiators, thermoinitiators, acrylic and methacrylic monomers.
Summary of the Invention
There is a need for further technologies to reduce redeposition and enhance cleaning in domestic laundry products. We have found that uncharged alkoxylated polyalkylphenols enhance whiteness and brightness of garments during domestic laundry.
In one aspect the present invention provides a laundry detergent composition comprising
(i) charged surfactant, preferably the level of charged surfactant is from 4 to 50 wt%, more preferably 6 to 30 wt%, most preferably 8 to 20 wt%;
(ii) uncharged alkoxylated polyalkylphenol, preferably at a level of from 0.1 to
20 wt%, more preferably 0.5 to 10 wt%, most preferably 2 to 9 wt%; and.
(iii) perfume.
In another aspect the present invention provides a laundry detergent composition comprising:
(i) from 4 to 50 wt%, more preferably 6 to 30 wt%, most preferably 8 to 20 wt%, of anionic surfactant selected from: linear alkyi benzene sulphonates; alkyi sulphates; and, alkyi ether sulphates and mixtures thereof.
(ii) from 0.5 to 10 wt%, most preferably 2 to 9 wt%, of uncharged alkoxylated
polyalkylphenol of the following structure:
wherein n is selected from: 6; 7; 8; 9; 10; 1 1 ; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21 ; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31 ; 32; 33; 34; 35; 36; 37; 38; 39; 40; 41 ; 42; 43; 44; 45; 46; 47; 48; 49; and 50 perfume, preferably 0.001 to 3 wt% perfume. ln a further aspect the present invention provides a domestic method of treating a textile, the method comprising the steps of:
(i) treating a textile with an aqueous solution of uncharged alkoxylated
polyalkylphenols, the aqueous solution comprising from 10 ppm to 5000 ppm of uncharged alkoxylated polyalkylphenol; and, up to 6 g/L, preferably 0.2 to 4 g/L, of surfactant; and,
(ii) optionally rinsing and drying the textile.
In the method the level of the perfume in the aqueous solution is from preferably 0.1 to 100 ppm, more preferably 1 to 10 ppm.
In the method aspects of the present invention the surfactant used is preferably as preferred for the composition aspects of the present invention .
The textile is preferably an item of clothing, bedding or table cloth. Preferred items of clothing are cotton containing shirts, trousers, underwear and jumpers.
Detailed Description of the Invention
Alkoxylated polyalkylphenol Preferably the or each uncharged (neutral) alkoxylated polyalkylphenol is alkoxylated trialkylphenol, most preferably alkoxylated tributylphenol.
Preferably the alkoxylated trialkylphenol is polyethylene glycol mono(2,4,6-tris(n-butyl) phenyl) ether. Preferably the alkoxylated polyalkylphenol contains an average of 2 to 70 alkoxy groups, most preferably 6 to 50 alkoxy groups.
Preferably the alkoxylation is ethoxylation. The alkyl group in the alkoxylated polyalkylphenol is preferably selected from, linear or branched C3 to C15 alkyl groups.
Preferably the uncharged alkoxylated polyalkylphenol has 3 alkyl groups attached to the phenol. Preferably they are in the 2,4,6 positions on the phenol. The alkoxylate is attached to the 1 position. Preferably the alkoxylate is capped by a hydrogen atom.
Most preferably the or each uncharged alkoxylated polyalkylphenol of the following structure:
Preferably n = 2 to 70, more preferably n= 6 to 50, even more preferably 6 to 18, most preferably n = 6, n = 1 1 , n = 13 and n = 18.
The designation n is the average numbers of moles of alkoxy units in the polyalkoxy chain.
Compounds are available from industrial suppliers, for example Rhodia, Clariant; Aoki Oil, Stepan, and TOHO Chemical Industry Co.
In the context of the current invention, the alkoxylated polyarylphenol is not considered a surfactant and does not contribute numerically to the surfactant as defined herein. Surfactant
The laundry composition comprises charged surfactant and it is most preferred that the charged surfactant is anionic surfactant (which includes a mixture of the same).
Suitable anionic detergent compounds which may be used are usually water- soluble alkali metal salts of organic sulphates and sulphonates having alkyi radicals containing from about 8 to about 22 carbon atoms, the term alkyi being used to include the alkyi portion of higher -alkyi radicals.
Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyi sulphates, especially those obtained by sulphating higher Cs to Ci8 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyi C9 to C20 benzene sulphonates, particularly sodium linear secondary alkyi C10 to C15 benzene sulphonates; and sodium alkyi glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum. The anionic surfactant is preferably selected from: linear alkyi benzene
sulphonate; alkyi sulphates; alkyi ether sulphates; soaps; alkyi (preferably methyl) ester sulphonates, and mixtures thereof.
The most preferred anionic surfactants are selected from: linear alkyi benzene sulphonate; alkyi sulphates; alkyi ether sulphates and mixtures thereof.
Preferably the alkyi ether sulphate is a C12-C14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units. Sodium lauryl ether sulphate is
particularly preferred (SLES). Preferably the linear alkyi benzene sulphonate is a sodium C11 to C15 alkyi benzene sulphonates. Preferably the alkyi sulphates is a linear or branched sodium C12 to C18 alkyi sulphates. Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyi sulphate). The level of anionic surfactant in the laundry composition is preferably from 4 to 50 wt%, more preferably 6 to 30 wt%, and most preferably 8 to 20 wt%.
Preferably two or more anionic surfactant are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.
Preferably the laundry composition in addition to the anionic surfactant comprises alkyl exthoylated non-ionic surfactant, preferably from 2 to 8 wt% of alkyl alkoxylated, preferably ethoxylated, non-ionic surfactant.
Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide. Specific nonionic detergent compounds are the condensation products of aliphatic Cs to Cie primary or secondary linear or branched alcohols with ethylene oxide.
Preferably the alkyl ethoxylated non-ionic surfactant is a Cs to Cie primary alcohol with an average ethoxylation of 7EO to 9EO units.
The nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents" Vol. 1 , by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon's Emulsifiers and Detergents" published by Manufacturing Confectioners Company or in "Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 .
Preferably the surfactants used are saturated. Also applicable are surfactants such as those described in EP-A-328 177
(Unilever), which show resistance to salting-out, the alkyl polyglycoside
surfactants described in EP-A-070 074, and alkyl monoglycosides. In another aspect the charged surfactant may be a cationic such that the formulation is a fabric conditioner. The detergent compositions based on anionic or anionic/non-ionic surfactants is however the more preferred embodiment.
Cationic Compound
When the present invention is used as a fabric conditioner it needs to contain a cationic compound.
Most preferred are quaternary ammonium compounds.
It is advantageous if the quaternary ammonium compound is a quaternary ammonium compound having at least one C12 to C22 alkyl chain.
It is preferred if the quaternary ammonium compound has the following formula:
R2
U
R1 -N-R3 X
I
R4 in which R1 is a C12 to C22 alkyl or alkenyl chain; R2, R3 and R4 are independently selected from Ci to C4 alkyl chains and X" is a compatible anion. A preferred compound of this type is the quaternary ammonium compound cetyl trimethyl quaternary ammonium bromide.
A second class of materials for use with the present invention are the quaternary ammonium of the above structure in which R1 and R2 are independently selected from Ci to C22 alkyl or alkenyl chain; R3 and R4 are independently selected from Ci to C4 alkyl chains and X" is a compatible anion. The composition optionally comprises a silicone.
Builders or Complexinq Agents Builder materials may be selected from 1 ) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate. Examples of calcium ion-exchange builder materials include the various types of water- insoluble crystalline or amorphous aluminosilicates, of which zeolites are well known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070. The composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below. Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions. Zeolite and carbonate (carbonate (including bicarbonate and sesquicarbonate) are preferred builders, with carbonates being particularly preferred.
The composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15%w. Aluminosilicates are materials having the general formula:
0.8-1.5 M20. AI2O3. 0.8-6 S1O2 where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g. The preferred sodium aluminosilicates contain 1.5-3.5 S1O2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. The ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
Alternatively, or additionally to the aluminosilicate builders, phosphate builders may be used. In this art the term 'phosphate' embraces diphosphate, triphosphate, and phosphonate species. Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
Preferably the laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt% of phosphate. Preferably powder laundry detergent formulations are predominantly carbonate built.
Powders, should preferably give an in use pH of 9.5-1 1 .
Most preferably the laundry detergent is an aqueous liquid laundry detergent, preferably with a pH of from 7 to 9.
In the aqueous liquid laundry detergent it is preferred that mono propylene glycol is present at a level from 1 to 30 wt%, most preferably 2 to 18 wt%, to provide the formulation with appropriate, pourable viscosity.
Fluorescent Agent
The composition preferably comprises a fluorescent agent (optical brightener).
Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts. Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
Preferred fluorescers are: sodium 2 (4-styryl-3-sulphophenyl)-2H-napthol[1 ,2-d]triazole, disodium 4,4'-bis{[(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1 ,3,5-triazin-2- yl)]amino}stilbene-2-2' disulphonate, disodium 4,4'-bis{[(4-anilino-6-morpholino-1 ,3,5- triazin-2-yl)]amino} stilbene-2-2' disulphonate, and disodium 4,4'-bis(2- sulphostyryl)biphenyl.
Perfume
The composition comprises a perfume. The perfume is preferably in the range from 0.001 to 3 wt %, more preferably 0.05 to 0.5 wt%, most preferably 0.1 to 1 wt %. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and
Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
Preferably the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2- methyl-, ethyl ester; octanal; benzyl acetate; 1 ,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1 ,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester; amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl anthranilate; alpha-irone; beta-phenyl ethyl benzoate; alpa-santalol; cedrol; cedryl acetate; cedry formate; cyclohexyl salicyate; gamma-dodecalactone; and, beta phenylethyl phenyl acetate.
Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA).
It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
In perfume mixtures preferably 15 to 25 wt% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Preferred top- notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
The International Fragrance Association has published a list of fragrance ingredients (perfums) in 201 1. (http://www.ifraorq.Org/en-us/inqredients#.U7Z4hPldWzk)
The Research Institute for Fragrance Materials provides a database of perfumes
(fragrances) with safety information. Perfume top note may be used to cue the whiteness and brightness benefit of the invention.
Some or all of the perfume may be encapsulated, typical perfume components which it is advantageous to encapsulate, include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also advantageous to encapsulate perfume components which have a low CLog P (ie. those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0. These materials, of relatively low boiling point and relatively low CLog P have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole,
benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo-carvone, d-carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3- hexenyl acetate, cuminic alcohol, cyclal c, dimethyl benzyl carbinol, dimethyl benzyl carbinol acetate, ethyl acetate, ethyl aceto acetate, ethyl amyl ketone, ethyl benzoate, ethyl butyrate, ethyl hexyl ketone, ethyl phenyl acetate, eucalyptol, eugenol, fenchyl acetate, flor acetate (tricyclo decenyl acetate) , frutene (tricyclco decenyl propionate) , geraniol, hexenol, hexenyl acetate, hexyl acetate, hexyl formate, hydratropic alcohol, hydroxycitronellal, indone, isoamyl alcohol, iso menthone, isopulegyl acetate, isoquinolone, ligustral, linalool, linalool oxide, linalyl formate, menthone, menthyl acetphenone, methyl amyl ketone, methyl
anthranilate, methyl benzoate, methyl benyl acetate, methyl eugenol,
methyl heptenone, methyl heptine carbonate, methyl heptyl ketone, methyl hexyl ketone, methyl phenyl carbinyl acetate, methyl salicylate, methyl-n-methyl anthranilate, nerol, octalactone, octyl alcohol, p-cresol, p-cresol methyl ether, p- methoxy acetophenone, p-methyl acetophenone, phenoxy ethanol, phenyl acetaldehyde, phenyl ethyl acetate, phenyl ethyl alcohol, phenyl ethyl dimethyl carbinol, prenyl acetate, propyl bornate, pulegone, rose oxide, safrole, 4- terpinenol, alpha-terpinenol, and /or viridine. It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.
Another group of perfumes with which the present invention can be applied are the so- called aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as clary sage, eucalyptus, geranium, lavender, mace extract, neroli, nutmeg, spearmint, sweet violet leaf and valerian.
It is preferred that the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid. Polymers
The composition may comprise one or more further polymers. Examples are
carboxymethylcellulose, poly (ethylene glycol), polyvinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
Polymers present to prevent dye deposition may be present, for example
poly(vinylpyrrolidone), poly(vinylpyridine-N-oxide), and poly(vinylimidazole).
Enzymes
One or more enzymes are preferred present in a laundry composition of the invention and when practicing a method of the invention.
Preferably the level of each enzyme in the laundry composition of the invention is from 0.0001 wt% to 0.1 wt% protein.
The enzyme is preferably selected from: proteases; lipases; and, cellulases, preferably protease.
Especially contemplated enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof. Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from
Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in
WO 96/13580, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1 ,372,034), P. fluorescens,
Pseudomonas sp. strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1 131 , 253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422). Other examples are lipase variants such as those described in WO 92/05249,
WO 94/01541 , EP 407 225, EP 260 105, WO 95/35381 , WO 96/00292,
WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and
WO 97/07202, WO 00/60063.
Preferred commercially available lipase enzymes include Lipolase™ and Lipolase Ultra™, Lipex™ and Lipoclean™(Novozymes A/S).
The method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1 .4 and/or EC 3.1.1 .32. As used herein, the term phospholipase is an enzyme which has activity towards phospholipids.
Phospholipids, such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1 ) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol. Phospholipases are enzymes which participate in the hydrolysis of phospholipids. Several types of phospholipase activity can be distinguished, including phospholipases Ai and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid; and lysophospholipase (or phospholipase B) which can hydrolyze the remaining fatty acyl group in lysophospholipid.
Phospholipase C and phospholipase D (phosphodiesterases) release diacyl glycerol or phosphatidic acid respectively.
Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. The protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease. Preferred commercially available protease enzymes include Alcalase™, Savinase™, Primase™, Duralase™, Dyrazym™, Esperase™, Everlase™, Polarzyme™, and Kannase™, (Novozymes A/S), Maxatase™, Maxacal™, Maxapem™, Properase™, Purafect™, Purafect OxP™, FN2™, and FN3™ (Genencor International Inc.).
The method of the invention may be carried out in the presence of cutinase. classified in EC 3.1.1 .74. The cutinase used according to the invention may be of any origin. Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin.
Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of
B. licheniformis, described in more detail in GB 1 ,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060. Commercially available amylases are Duramyl™, Termamyl™, Termamyl Ultra™, Natalase™, Stainzyme™, Fungamyl™ and BAN™ (Novozymes A/S), Rapidase™ and Purastar™ (from Genencor International Inc.).
Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691 ,178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307.
Commercially available cellulases include Celluzyme™, Carezyme™, Celluclean™, Endolase™, Renozyme™ (Novozymes A/S), Clazinase™ and Puradax HA™ (Genencor International Inc.), and KAC-500(B)™ (Kao Corporation). Celluclean™ is preferred.
Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin.
Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257.
Commercially available peroxidases include Guardzyme™ and Novozym™ 51004 (Novozymes A/S).
Further enzymes suitable for use are discussed in WO2009/087524, WO2009/090576, WO2009/107091 , WO2009/1 1 1258 and WO2009/148983. Enzyme Stabilizers
Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.
Where alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains. The alkyl groups are preferably linear or branched, most preferably linear.
The indefinite article "a" or "an" and its corresponding definite article "the" as used herein means at least one, or one or more, unless specified otherwise.
Experimental Example 1
An aqueous liquid laundry detergent was prepared of the following formulation:
The formulation was used to wash eight 5x5cm knitted cotton cloth pieces in a tergotometer set at 200rpm. A one hour wash was conducted in 800ml of 6° French Hard water at 20°C, with 2.3g/L of the formulation. To simulate particulate soil 0.04g/L of 100% compressed carbon black (ex Sigma-Aldrich ) was added to the wash liquor. To simulate oily soil (6.3 g) of an SBL2004 soil strip (ex Warwick Equest) was added to the wash liquor. Once the wash had been completed the cotton monitors were removed and dried and the reflectance measured on a reflectometer. The greyness was assessed from the reflectance value at 460nm, R46o, (UV-excluded).
Formulations were tested containing 8.7wt% Sokalan HP20 (BASF), an ethoxylated polyethylene imine polymer PEI(600) 20EO, as a comparison polymer for anti- redeposition benefits.
Formulation were tested containing 8.7wt% Alkoxylated polyalkylphenol: polyethylene glycol mono(2,4,6-tris(n-butyl)phenyl) ether with various length of ethoxylate chains (Sapogenat ex Clariant).
The results are summarised in the table below. The 95% confidence limits are also given calculated from the standard deviation on the measurements from the 8 monitors. The R46o value is the mean of the measurements from the 8 monitors.
The alkoxylated polyalkylphenol increased the R46o of the monitors. High ¾6ο values equate to a cleaner whiter fabrics. The alkoxylated polyalkylphenol provides significantly better benefits than the ethoxylated polyethyleneimine, Sokalan HP20, which under current conditions provided no significant benefit.

Claims

A laundry detergent composition comprising:
(i) from 4 to 50 wt% of a charged surfactant;
(ii) from 0.1 to 20 wt% of an uncharged alkoxylated polyalkylphenol; and,
(iii) from 0.001 to 3 wt % perfume.
A laundry detergent composition according to claim 1 , wherein the uncharged alkoxylated polyalkylphenol is uncharged alkoxylated tri(n-butyl)phenol.
A laundry detergent composition according to claim 1 , wherein the uncharged alkoxylated polyalkylphenol is uncharged ethoxylated polyalkylphenol.
A laundry detergent composition according to claim 2, wherein the uncharged alkoxylated tristyrylphenol is uncharged polyethylene glycol mono(2,4,6-tris(n-butyl) phenyl) ether.
A laundry detergent composition according to any one of claims 1 to 4, wherein the uncharged alkoxylated polyalkylphenol contains an average of 2 to 70 alkoxy groups.
A laundry detergent composition according to claim 5, wherein the uncharged alkoxylated polyalkylphenol contains an average of 6 to 18 alkoxy groups.
A laundry detergent composition according to any one of the preceding claims, wherein uncharged alkoxylated polyalkylphenol is present at a level of from 0.5 to 10 wt%, most preferably 2 to 9 wt%.
8. A laundry detergent composition according to any one of the preceding claims, wherein the charged surfactant is anionic surfactant.
9. A laundry detergent composition according to claim 8, wherein the anionic surfactant is selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; methyl ester sulphonates; and, mixtures thereof.
A laundry detergent composition according to claim 9, wherein the anionic surfactant is selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; and mixtures thereof.
1 1. A laundry detergent composition according to any one of the preceding claims, wherein the composition comprises from 2 to 8 wt% of an alkyl ethoxylated non- ionic surfactant.
12. A laundry detergent composition according to any one of the preceding claims, wherein perfume is present from 0.1 to 3 wt% and comprises one or more note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2-methyl-, ethyl ester; octanal; benzyl acetate; 1 ,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1 ,1- dimethylethyl)-, 1 -acetate; delta-damascone; beta-ionone; verdyl acetate;
dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2- phenylethyl ester; amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl anthranilate; alpha-irone; beta-phenyl ethyl benzoate; alpha-santalol; cedrol; cedryl acetate; cedry formate; cyclohexyl salicyate; gamma-dodecalactone; and, beta phenylethyl phenyl acetate.
13. A laundry detergent composition according to claim 1 comprising:
(i) from 4 to 50 wt% of anionic surfactant selected from: linear alkyl benzene sulphonate; alkyl sulphate; and, alkyl ether sulphate; and mixtures thereof.
(ii) from 0.5 to 10 wt% of uncharged alkoxylated polyalkylphenol of the following structure:
wherein n is selected from: 6; 7; 8; 9; 10; 1 1 ; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21 ; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31 ; 32; 33; 34; 35; 36; 37; 38; 39; 40; 41 ; 42; 43; 44; 45; 46; 47; 48; 49; and, 50; and,
(iii) perfume.
A laundry detergent composition according to any one of the preceding claims, wherein the composition comprises from 0.0001 wt% to 0.1 wt% protein of an enzyme selected from: proteases; lipases; cellulases; and, mixtures thereof, preferably comprising a protease.
A laundry detergent composition according to any one of the preceding claims, wherein the laundry detergent composition is a laundry aqueous liquid detergent composition.
A domestic method of treating a textile, the method comprising the steps of:
(i) treating said textile with an aqueous solution of a laundry detergent
composition as defined in any one of claims 1 to 15, the aqueous solution comprising from 10 ppm to 5000 ppm of uncharged alkoxylated
polyalkylphenol; and up to 6 g/L of surfactant; and,
(ii) optionally rinsing and drying said textile.
A domestic method of treating a textile according to claim 16, wherein the aqueous solution comprises from 0.2 to 4 g/L of surfactant.
EP15750275.8A 2014-09-18 2015-07-29 Whitening composition Pending EP3194547A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14185269 2014-09-18
PCT/EP2015/067347 WO2016041678A1 (en) 2014-09-18 2015-07-29 Whitening composition

Publications (1)

Publication Number Publication Date
EP3194547A1 true EP3194547A1 (en) 2017-07-26

Family

ID=51564534

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15750275.8A Pending EP3194547A1 (en) 2014-09-18 2015-07-29 Whitening composition

Country Status (5)

Country Link
EP (1) EP3194547A1 (en)
CN (1) CN107075416A (en)
AR (1) AR101880A1 (en)
BR (1) BR112017005154A2 (en)
WO (1) WO2016041678A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3649222B1 (en) * 2017-07-07 2024-03-13 Unilever IP Holdings B.V. Whitening composition
CN110892053A (en) * 2017-07-07 2020-03-17 荷兰联合利华有限公司 Laundry cleaning compositions
JP7110356B2 (en) 2018-01-26 2022-08-01 ザ プロクター アンド ギャンブル カンパニー Water soluble unit dose article containing perfume
US10982176B2 (en) * 2018-07-27 2021-04-20 The Procter & Gamble Company Process of laundering fabrics using a water-soluble unit dose article
WO2021058022A1 (en) * 2019-09-29 2021-04-01 Novozymes A/S Use of cellulase for improvement of sustainability of detergents

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3317612A (en) * 1962-12-18 1967-05-02 Gen Aniline & Film Corp Biodegradable surface active agents
DE2029384A1 (en) * 1970-06-15 1971-12-23 Hoechst Ag Low-foaming wetting agents, detergents and cleaning agents
FR2407980A1 (en) * 1977-11-02 1979-06-01 Rhone Poulenc Ind NEW ANTI-SOILING AND ANTI-REDEPOSITION COMPOSITIONS FOR USE IN DETERGENCE
CA1210009A (en) * 1982-12-23 1986-08-19 Eugene P. Gosselink Ethoxylated amine polymers having clay soil removal/anti-redeposition properties useful in detergent compositions
KR20010027100A (en) * 1999-09-10 2001-04-06 최,앤드류 와이. Aqueous cleaning solution
CN103857781A (en) * 2011-07-21 2014-06-11 荷兰联合利华有限公司 Liquid laundry composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2016041678A1 *

Also Published As

Publication number Publication date
AR101880A1 (en) 2017-01-18
WO2016041678A1 (en) 2016-03-24
CN107075416A (en) 2017-08-18
BR112017005154A2 (en) 2018-04-24

Similar Documents

Publication Publication Date Title
EP3194543B1 (en) Whitening composition
EP3194546B1 (en) Whitening composition
EP3307862B1 (en) Laundry detergent composition
EP3194547A1 (en) Whitening composition
EP3194542B1 (en) Whitening composition
EP3194541B1 (en) Liquid whitening composition
EP3313968B1 (en) Laundry detergent composition
EP3529342B1 (en) Whitening composition
EP3417042B1 (en) Whitening composition
EP3417039B1 (en) Whitening composition
EP3194545B1 (en) Whitening composition
BR112017005495B1 (en) DETERGENT COMPOSITION FOR WASHING CLOTHES AND DOMESTIC FABRIC TREATMENT METHOD

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190315

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNILEVER GLOBAL IP LIMITED

Owner name: UNILEVER IP HOLDINGS B.V.

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNILEVER GLOBAL IP LIMITED

Owner name: UNILEVER IP HOLDINGS B.V.