EP3171451B1 - Combineur spatial de puissance - Google Patents

Combineur spatial de puissance Download PDF

Info

Publication number
EP3171451B1
EP3171451B1 EP16200051.7A EP16200051A EP3171451B1 EP 3171451 B1 EP3171451 B1 EP 3171451B1 EP 16200051 A EP16200051 A EP 16200051A EP 3171451 B1 EP3171451 B1 EP 3171451B1
Authority
EP
European Patent Office
Prior art keywords
power combiner
spatial power
transmission lines
spatial
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16200051.7A
Other languages
German (de)
English (en)
Other versions
EP3171451A1 (fr
Inventor
Hadrien THEVENEAU
Matthieu Werquin
Christophe GAQUIÈRE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Lille 1 Sciences et Technologies
Microwave Characterization Center
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Universite de Lille 1 Sciences et Technologies
Commissariat a lEnergie Atomique CEA
Microwave Characterization Center
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite de Lille 1 Sciences et Technologies, Commissariat a lEnergie Atomique CEA, Microwave Characterization Center, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Universite de Lille 1 Sciences et Technologies
Publication of EP3171451A1 publication Critical patent/EP3171451A1/fr
Application granted granted Critical
Publication of EP3171451B1 publication Critical patent/EP3171451B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/028Transitions between lines of the same kind and shape, but with different dimensions between strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/30Auxiliary devices for compensation of, or protection against, temperature or moisture effects ; for improving power handling capability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/22Attenuating devices
    • H01P1/23Attenuating devices using ferromagnetic material

Definitions

  • the present invention relates to a spatial power combiner comprising several inputs and an output.
  • a power combiner is a device for combining in a single output the power of several inputs.
  • the generation of high powers is necessary in certain applications, for example in radar systems in order to transmit a high power signal or in communication systems in order to deliver a high power signal to a communication channel.
  • a power combiner is necessary to add or combine powers output from several power amplifiers.
  • power combiners are frequently used with a set of power amplifiers, each power amplifier amplifying an input signal and providing an output signal.
  • the power combiner combines the power of the output signals of the power amplifiers and generates a total output power.
  • a spatial power combiner is a type of power combiner consisting of a cavity supplied with signals originating respectively from a set of input transmission lines. Power from each line is combined and recovered in a central output transmission line.
  • each input of the combiner has an influence on the other inputs, a failure at the level of one input or of the components connected to this input being able to be propagated at the level of the other inputs.
  • the failure of a single power amplifier can cause a significant degradation in the performance of the power combiner, which can lead to a failure in the operation of a device in which the power combiner is used.
  • the documents US 5,142,253 and US 4,424,496 disclose a spatial power combiner comprising absorbent in the cavity.
  • the document US 4,371,845 discloses transmission lines at the input of a spatial power combiner which extend in a radial direction with respect to the longitudinal axis of the combiner.
  • the object of the present invention is to resolve at least one of the aforementioned drawbacks and to propose an improved spatial power combiner.
  • the present invention proposes, according to a first aspect, a spatial power combiner according to claim 1.
  • the absorbing element makes it possible to isolate the transmission lines from one another, the signals carried by the transmission lines thus not having any influence between them.
  • this transmission line has no effect on the other transmission lines of the assembly and the power combiner always delivers an adequate output signal, in the worst case. In some cases, the power at the output may be reduced.
  • the length of the absorbent element is equivalent to the length of the transmission lines in the space power combiner.
  • the absorbent element extends longitudinally over the entire length of the transmission lines, which improves the insulation of the inputs between them and can facilitate the assembly of the power combiner during its manufacture.
  • the length of the absorbent element is less than the length of the transmission lines in the space power combiner.
  • the absorbent element extends starting from the input of said space power combiner.
  • the absorbent element extends starting from the output of said spatial power combiner.
  • the spatial power combiner further comprises heat dissipation means extending longitudinally in the cavity, the absorbing element surrounding the dissipation means.
  • the heat dissipation means comprise a metal rod.
  • the absorbent element extends from the inlet and the length of the absorbent element is less than the length of the transmission lines, the distance traveled by the heat along the rod metal is reduced.
  • the transmission lines are microstrip transmission lines.
  • the inputs of the spatial power combiner have a low impedance.
  • connection of the inputs of the combiner to circuits or electronic components having low impedance outputs is thus facilitated. Indeed, when the impedance values are close, the implementation of the impedance matching is simplified.
  • the spatial power combiner comprises a thermal evacuator module.
  • This thermal evacuator module helps in the thermal dissipation of the space power combiner.
  • the spatial power combiner comprises an impedance pre-matching module arranged at the input of the spatial power combiner, the impedance pre-matching module comprising first parts of the transmission lines of the set of transmission lines. .
  • these first parts of the transmission lines extend in a radial direction relative to the longitudinal axis of the cavity.
  • the value of the impedance of the transmission line varies along the transmission line.
  • the impedance increases along the transmission line.
  • the value of the impedance of a transmission line at the input of the spatial power combiner is less than the value of the impedance of the transmission line at the output of the combiner.
  • the set of layers comprises a third conductive layer serving as a potential reference.
  • the impedance pre-adaptation module comprises a support on which the first parts of the transmission lines are arranged, the support comprising a set of hollows, each first part of the transmission lines of the set of transmission lines being respectively disposed on a hollow of the set of hollows.
  • the second conductive layer of each set of layers of each transmission line is in contact with each hollow of the support.
  • the present invention relates, according to a second aspect, to a power amplification assembly formed by a spatial power combiner according to the invention and to an amplification structure arranged at the input of said spatial power combiner, the structure of amplification comprising a set of inputs and a set of outputs, the outputs being respectively connected to the inputs of the spatial power combiner.
  • the transmission lines of the spatial power combiner are connected to the outputs of the amplification structure.
  • the spatial power combiner combines the powers present respectively at the outputs of the amplification structure.
  • the transmission lines at the input of the spatial power combiner correspond respectively to transmission lines at the output of said amplification structure.
  • the amplification structure comprises a set of power amplifiers, each power amplifier being connected to each output of the amplification structure.
  • the input signals of the power combining assembly are first amplified and then their power is combined, by the spatial power combiner, into a single output.
  • the outputs of the power amplifiers have a low impedance.
  • the impedance matching between the amplification structure and the power combiner is easily implemented.
  • the outputs of the power amplifiers have a low impedance.
  • the impedance matching between the amplification structure and the power combiner is easily implemented.
  • the power amplification assembly has characteristics and advantages similar to those described above in relation to the spatial power combiner.
  • a power amplification assembly in accordance with the invention will be described with reference to figures 1a and 1b .
  • the figure 1a represents a power amplification assembly 100 comprising a spatial power combiner 10 and an amplification structure 20.
  • FIG. 1b An exploded view of the power amplifier assembly is shown at figure 1b .
  • the spatial power combiner 10 is placed at the output of the amplification structure 20.
  • the amplification structure 20 comprises a set of inputs 21a, 21b, 21c, ... and a set of outputs 22a, 22b, 22c, ..., the number of inputs and outputs of the sets being identical.
  • the amplification structure 20 further comprises a set of power amplifiers 23, each power amplifier 23 being connected to an input 21 of the amplification structure 20 and to an output 22 of the amplification structure 20.
  • Input transmission lines a 1 , b 1 , c 1 respectively connect the inputs 21 of the amplification structure 20 and the power amplifiers 23.
  • Output transmission lines a 2 , b 2 , c 2 respectively connect the power amplifiers 23 and the outputs 22 of the amplification structure 20.
  • the power amplifiers 23 respectively amplify the signals at the inputs 21 of the amplification structure 20 and generate amplified signals at the outputs 22.
  • the amplification structure 20 comprises a body 24 enclosing the power amplifiers 23 and the transmission lines at the input a 1 , b 1 , c 1 ... and at the output a 2 , b 2 , c 2 ...
  • the body 24 has an octagonal shape
  • the amplification structures comprise eight inputs 21, eight outputs 22, as well as eight power amplifiers 23.
  • the body of the amplification structure can have different geometric shapes, and the number of power amplification inputs, outputs and transmission lines can be different.
  • the power amplifiers 23 being known to those skilled in the art, will not be described in more detail in this document.
  • the amplification structure 20 comprises cooling means 25 arranged around the periphery of the body 24 in order to dissipate the heat produced by the power components, in particular by the power amplifiers 23.
  • the spatial power combiner 10 is placed at the output of the amplification structure 20.
  • the outputs 22 of the amplification structure 20 are connected to inputs 11a, 11b, 11c, ... (named 11 in the remainder of the document) of the spatial power combiner 10.
  • the powers of the signals at the output of the structure d are thus combined by the spatial power combiner 10 into a single power output from the spatial power combiner 10.
  • transmission lines a, b, c, ... are respectively connected to the inputs 11a, 11b, 11c, ... of the spatial power combiner 10.
  • the transmission lines a, b, c, ... of the spatial power combiner 10 are a continuity of the output transmission lines a 2 , b 2 , c 2 ... of the amplification structure 20.
  • the spatial power combiner 10 further comprises an output 12 on which a combined power is generated.
  • a combined output signal is thus generated having a power corresponding to the combined powers of the signals at the input 11 of the spatial power combiner 10. Consequently, on the output 12, a combined output signal is generated having a power corresponding to the combined powers of the signals at the output of the amplification structure 20.
  • Electronic equipment can be connected to the output 12 of the spatial power combiner 10 in order to use this combined power.
  • the output 12 is at high impedance, having by way of non-limiting example 50 Ohms.
  • the signal at the output 12 of the spatial power combiner 10 can thus be used, for example in an antenna or as an input in a device serving as a transition from a waveguide to a coaxial line, without the need for an impedance transformation. , or with an easy to perform impedance transformation.
  • the spatial power combiner 10 comprises a cylindrical body 13 forming a cavity 14.
  • the transmission lines a, b, c, ... comprise a first part corresponding to the line portion between the input 11 and the cavity 14 of the spatial power combiner 10.
  • the part of the spatial power combiner at the level of the cavity 14 will be called the heart of the combiner 101.
  • the first part of a transmission line a, b, c, ... is also called the power line. access aa, ba, ca, ...
  • Each input line a, b, c, ... also includes a second part ab, bb, cb, ... corresponding to the line portion between the access line aa, ba, ca ... and the output 12 of the combiner.
  • the second parts of the transmission lines ab, bb, cb, ... pass longitudinally through the cavity 14 starting from the input 11 of the space power combiner 10 and up to the output 12 of the space power combiner 10.
  • the input transmission lines a, b, c ... are microstrip transmission lines.
  • the connection between the amplification structure 20 and the spatial power combiner 10 can be made directly and without requiring the necessary conversions between different types of. lines.
  • the spatial power combiner 10 comprises an absorbing element 15 extending longitudinally in the cavity 14.
  • the absorbent element 15 is placed between the input transmission lines a, b, c, ... in particular between the second parts of the transmission lines ab, bb, cb, ... in the heart of the combiner 101.
  • the second parts of input transmission lines ab, bb, cb, ... are arranged around the absorbent element 15.
  • the absorbent element 15 extends over the entire length of the second parts of the transmission lines ab, bb, cb, ... that is to say it extends over the entire cavity 14 between the input 11 and the output 12 of the spatial power combiner 10, more particularly on the entire core of the spatial power combiner 101.
  • the length of the absorbent element 15 is equivalent to the length of the second parts of the transmission lines ab, bb, cb, ... in the space power combiner 10.
  • the length of the absorbent element 15 is less than the length of the second parts of the transmission lines ab, bb, cb, ... in the space power combiner 10.
  • the figure 2 represents a spatial power combiner 10 'according to a second embodiment of the invention. Note that the cavity is not shown in this figure.
  • the transmission lines a ', b', c ', ... and in particular the second parts of the transmission lines ab', bb ', cb', ... are arranged around the absorbent element 15 ', the absorbent element 15' extending longitudinally in a part of the cavity (not shown in the figure).
  • the absorbent element 15 extends from the outlet 12' of the space power combiner 10 'over a predetermined length.
  • the predetermined length may be 50 mm.
  • this predetermined length may be different, this value varying, for example, depending on the nature of the absorbent element 15 ′ used.
  • the absorbent member 15 comprises an absorbent material, such as an epoxy resin loaded with particles of a magnetic absorbent, for example ferrite particles.
  • the spatial power combiner 10 'further comprises a plastic element 16' extending longitudinally in the cavity, in extension of the absorbent element 15 '.
  • the plastic element 16 ' has a mechanical function, making it possible to hold the transmission lines a', b ', c', etc. in place.
  • the absorbent element 15 'and the plastic element 16' are fixed together by means of a threaded rod disposed in a recess 18 'made in the absorbent element 15' and the plastic element 16 '.
  • a first recess part 18a ' corresponding to the recess made in the plastic element 16', is a threaded longitudinal recess, the walls of the recess 18 'thus forming a screw thread.
  • a second recess part 18b ' corresponding to the recess made in the absorbent element 15', is a recess whose walls are smooth.
  • the fixing of the absorbent element 15 'and of the plastic element 16' can be carried out by different means.
  • the figure 3 represents a third embodiment of the spatial power combiner 10 ".
  • the absorbent element 15 "extends longitudinally into the cavity (not shown in this figure) starting from of the input 11 "of the spatial power combiner 10", over a predetermined length.
  • the spatial power combiner may have a length of 300 mm, and the absorbent element of 50 mm.
  • the length of the absorbent element may be 20 mm.
  • the values of the lengths of the spatial power combiner and of the absorbent element can be different.
  • the spatial power combiner 10 "comprises heat dissipation means 17" extending longitudinally in the cavity.
  • the heat dissipation means 17 “comprise in one embodiment a metal rod.
  • This embodiment is particularly advantageous since the metal rod allows efficient dissipation of the thermal energy in the form of heat produced in the space power combiner 10 ".
  • the absorbent element 15 is arranged so that it surrounds the dissipation means 17" over the predetermined length.
  • the heat dissipation means 17 extendend longitudinally throughout the entire cavity.
  • the absorbent element 15 extends over a predetermined length starting from the inlet 11 "of the space power combiner 10".
  • the heat dissipation means 17 are thus surrounded by the absorbent element 15" over the predetermined length.
  • the spatial power combiner 10 (see figure 1 ) further comprises a thermal evacuation module 18.
  • This thermal evacuation module 18 can be used with different structures of space power combiners 10, 10 ', 10 ", in particular with the structures shown on the diagrams. figures 2 and 3 .
  • This thermal evacuation module 18 makes it possible to further dissipate the heat produced in the space power combiner 10.
  • the thermal evacuation module 18 is a conventional module known to those skilled in the art and does not need to be described in detail here.
  • the outputs of the power amplifiers 23 (or outputs 21 of the amplification structure 20) have a low impedance.
  • the inputs 11 of the spatial power combiner 10 also have a low impedance.
  • the inputs of the spatial power combiner have low impedance, the output of the combiner has high impedance.
  • the spatial power combiner 10 further comprises an impedance pre-matching module 102.
  • This impedance pre-matching module 102 modifies the value of the impedance present at the input 11 of the spatial power combiner 10.
  • the impedance pre-adaptation module comprises the first parts of the transmission lines aa, ba, ca ... or access lines, which first parts or access lines aa, ba, ca ... extend radially through relative to the longitudinal axis of the cavity 14 of the space power combiner.
  • Each access line aa, ba, ca ... comprises a printed circuit comprising at least two conductive layers, a conductive layer carrying a signal and a conductive layer serving as a potential reference.
  • the figure 4a is a simplified illustration of an exploded view of a printed circuit forming the first part of a transmission line or access line aa of the spatial power combiner 10 according to one embodiment.
  • Each access line aa, ba, ca, ... comprises a set of layers superimposed between them.
  • the set of layers comprises a first conductive layer 200, a second conductive layer 400, as well as a third conductive layer 700.
  • the first conductive layer 200 carries a signal
  • the second 400 and third 700 conductive layers serve as a potential reference.
  • the set of layers further comprises a first layer of insulation 300, a second layer of insulation 600 and a layer of adhesive 500.
  • one of the conductive layers here being the third conductive layer 700, comprises pads 800 arranged on the edges along the layer.
  • each of the other layers has openings 900 arranged on the edge of the length of the layer, an opening having a shape complementary to a pad 800 of the third conductive layer 700 and being located so that a pad 800 can be inserted into an opening 900 of each layer of all the layers forming the access line aa.
  • the assembly formed by the pads 800 and by the openings 900 forms means for maintaining or fixing the layers of all the layers together.
  • the number of layers may be different.
  • the first conductive layer 200 has a central part 201 and two side parts 202.
  • the central part 201 of the first conductive layer 200 transports the signal transported by a transmission line a, the power of which will be combined with that of the other signals transported by the other transmission lines b, c, ....
  • the side portions 202 of the first conductive layer 200, the second conductive layer 400 and the third conductive layer 700 serve as a reference potential.
  • the lateral parts 202 of the first conductive layer 200, the second 400 and third 700 conductive layers are interconnected by the pads 800, these pads being for example metallic.
  • a first insulating layer 300 is placed between the first 200 and the second 400 conductive layer in order to insulate the latter two between them.
  • the second layer of insulation 600 is disposed between the second layer 400 and the third 700 conductive layers.
  • a layer of adhesive 500 is disposed between the second conductive layer 400 and the second layer of insulation 600.
  • first conductive layer 200, the second conductive layer 400 and the first insulating layer 300 form a first assembly
  • third conductive layer 700 and the second insulating layer 600 form a second together, the first and the second set being held together by means of the adhesive layer 500.
  • the variation in impedance is implemented by the first conductive layer 200 and the second conductive layer 400.
  • the width of the first conductive layer 200 decreases along the first part of the transmission line aa.
  • the width of the first conductive layer 200 thus has a lower value at the level of the output of the impedance pre-matching module 102, 102 '(or at the input of the core of the combiner 101, 101') than at the level of the 'input of this module 102, 102' (or at the input of the spatial power combiner 10).
  • the second conductive layer 400 has an opening 401.
  • This opening 401 or the width of the opening 401, increases along the first part of the transmission line aa.
  • the opening 401 of the second conductive layer 400 is thus larger at the output of the impedance pre-matching module 102, 102 '(or at the input of the core of the combiner 101, 101') than at the level of the input of this module 102, 102 '(or at the input of the spatial power combiner 10).
  • the figure 4b is a simplified illustration of an exploded view of a printed circuit forming the first part of a transmission line or access line aa 'of the spatial power combiner 10 according to a second embodiment.
  • the set of layers forming the access line aa ' comprises a first conductive layer 200', a second conductive layer 400 'and an insulating layer 300'.
  • This access line aa is arranged on a support or sole 1000', the second conductive layer 200 'being in contact with the hollow 1001'.
  • the support 1000 ′ comprises a set of hollows 1001 ′, each hollow 1001 ′ having a shape suitable for receiving the printed circuit forming the access line aa ′.
  • the number of hollows is equal to the number of access lines aa ', ba', ca ', ...
  • the support 1000 ' can be in one piece or be formed by a set of supports, each support being associated with an access line aa', ba ', ca', ...
  • the support 1000 'further comprises a second hollow 1002' made in the first hollow 1001 ', the second hollow 1002' receiving a second layer of insulation 600 '.
  • the second insulating layer 600 ′ and the second hollow 1002 ′ thus have complementary shapes.
  • the second insulating layer 600 ′ disposed in the second hollow 1002 ′ of the support 1000 ′ helps to hold the printed circuit forming the access line aa ′ arranged in the first hollow 1001 ′ of the support 1000 ′.
  • the support 1000 ′ is made of metal.
  • the first conductive layer 200 ' carries the signal transported by a transmission line a', the power of which will be combined with that of the other signals transported by the other transmission lines b ', c' ...
  • the second conductive layer 400 ', as well as the metal support 1000' serve as reference potential.
  • the second conductive layer 400 ′ is in contact with the support 1000 ′.
  • the insulating layer 300 ' is disposed between the first conductive layer 200' and the second conductive layer 400 'in order to insulate them from each other.
  • the width of the first conductive layer 200 thus has a lower value at the level of the output of the impedance pre-matching module 102, 102 '(or at the input of the core of the combiner 101, 101') than at the level of the 'input of this module 102, 102' (or at the input of the spatial power combiner 10 ').
  • the second conductive layer 400 ' has an opening 401'.
  • This opening 401 ', or the width of the opening 400', increases along the first part of the transmission line aa '.
  • the opening 401 ′ of the second conductive layer 400 ′ is thus larger at the output of the impedance pre-matching module 102, 102 ′ (or at the input of the core of the combiner 101, 101 ′) than at the level of the level of the input of this module 102, 102 ′ (or at the input of the spatial power combiner 10 ′).
  • the spatial power combiner does not include an impedance pre-matching module 101, 101 '
  • the variation in impedance between the input and the output of the spatial power combiner is implemented only by the coaxial structure of the heart of the combiner 101, 101 '.
  • the common mode impedance of the transmission lines of the coaxial structure of the power combiner increases along the coaxial structure of the core of the combiner 101, 101 '. This increase is implemented by a decrease in the ratio between the diameter formed by all the transmission lines located inside the cylindrical body 13 and the inside diameter of the cylindrical body 13 of the heart of the space power combiner 10.

Description

  • La présente invention concerne un combineur spatial de puissance comportant plusieurs entrées et une sortie.
  • Un combineur de puissance est un dispositif permettant de combiner en une seule sortie la puissance de plusieurs entrées.
  • La génération de fortes puissances est nécessaire dans certaines applications, par exemple dans des systèmes de radar afin d'émettre un signal de forte puissance ou des systèmes de communication afin de délivrer un signal de forte puissance à un canal de communication.
  • Le niveau de puissance en sortie d'un seul amplificateur de puissance n'étant pas souvent suffisant, un combineur de puissance est nécessaire pour additionner ou combiner des puissances sortant de plusieurs amplificateurs de puissance.
  • Ainsi, les combineurs de puissance sont fréquemment utilisés avec un ensemble d'amplificateurs de puissance, chaque amplificateur de puissance amplifiant un signal d'entrée et fournissant un signal de sortie. Le combineur de puissance combine la puissance des signaux de sortie des amplificateurs de puissance et génère une puissance totale de sortie.
  • De nombreuses architectures de combineurs de puissance existent. Un combineur spatial de puissance est un type de combineur de puissance constitué d'une cavité alimentée par des signaux provenant respectivement d'un ensemble de lignes de transmission en entrée. La puissance provenant de chaque ligne est combinée et récupérée dans une ligne de transmission centrale en sortie.
  • Dans les combineurs spatiaux de puissance actuels, les entrées du combineur de puissance ne sont pas isolées entre elles. Ainsi, chaque entrée du combineur a une influence sur les autres entrées, une panne au niveau d'une entrée ou des composants reliés à cette entrée pouvant être propagée au niveau des autres entrées.
  • En outre, la défaillance d'un seul amplificateur de puissance peut entrainer une dégradation importante dans les performances du combineur de puissance, pouvant entrainer une défaillance dans le fonctionnement d'un dispositif dans lequel est utilisé le combineur de puissance.
  • Les documents US 5 142 253 et US 4 424 496 divulguent un combineur spatial de puissance comportant de l'absorbant dans la cavité. Le document US 4 371 845 divulgue des lignes de transmission à l'entrée d'un combineur spatial de puissance qui s'étendent en direction radiale par rapport à l'axe longitudinal du combineur.
  • La présente invention a pour but de résoudre au moins un des inconvénients précités et de proposer un combineur spatial de puissance amélioré.
  • A cet effet, la présente invention propose, selon un premier aspect, un combineur spatial de puissance selon la revendication 1.
  • L'élément absorbant permet d'isoler les lignes de transmission entre elles, les signaux portés par les lignes de transmission n'ayant pas ainsi d'influence entre eux.
  • En outre, en cas de défaillance au niveau d'une ligne de transmission, cette ligne de transmission ne produit aucun effet sur les autres lignes de transmission de l'ensemble et le combineur de puissance délivre toujours un signal de sortie adéquat, dans le pire des cas, la puissance à la sortie pouvant être réduite.
  • Dans un mode de réalisation, la longueur de l'élément absorbant est équivalente à la longueur des lignes de transmission dans le combineur spatial de puissance.
  • Ainsi, l'élément absorbant s'étend longitudinalement sur la totalité de la longueur des lignes de transmission, ce qui améliore l'isolation des entrées entre elles et peut faciliter l'assemblage du combineur de puissance lors de sa fabrication.
  • Dans un autre mode de réalisation, la longueur de l'élément absorbant est inférieure à la longueur des lignes de transmission dans le combineur spatial de puissance.
  • Dans un cas particulier, l'élément absorbant s'étend en partant de l'entrée dudit combineur spatial de puissance.
  • Grâce à cette disposition de l'élément absorbant, l'évacuation de l'énergie dissipée sous forme de chaleur dans le combineur de puissance est améliorée du fait que la chaleur parcourt une distance réduite.
  • Dans un autre cas particulier, l'élément absorbant s'étend en partant de la sortie dudit combineur spatial de puissance.
  • Dans un mode de réalisation, le combineur spatial de puissance comporte en outre des moyens de dissipation thermique s'étendant longitudinalement dans la cavité, l'élément absorbant entourant les moyens de dissipation.
  • Selon une caractéristique, les moyens de dissipation thermique comportent une tige en métal.
  • En particulier, dans le cas où l'élément absorbant s'étend en partant de l'entrée et que la longueur de l'élément absorbant est inférieure à la longueur des lignes de transmission, la distance parcourue par la chaleur le long de la tige en métal est réduite.
  • Selon une caractéristique, les lignes de transmission sont des lignes de transmission microruban.
  • Ainsi, la connexion des lignes de transmission d'entrée à des circuits électroniques est facilitée.
  • En outre, aucune transition vers un autre type de ligne de transmission n'est nécessaire, évitant des pertes liées aux transitions entre différents types de lignes de transmission.
  • Selon une autre caractéristique, les entrées du combineur spatial de puissance présentent une basse impédance.
  • La connexion des entrées du combineur à des circuits ou composants électroniques ayant des sorties à basse impédance se trouve ainsi facilité. En effet, lorsque les valeurs d'impédance sont proches, la mise en œuvre de l'adaptation d'impédances est simplifiée.
  • Selon une autre caractéristique, le combineur spatial de puissance comporte un module évacuateur thermique.
  • Ce module évacuateur thermique aide à la dissipation thermique du combineur spatial de puissance.
  • Selon l'invention, le combineur spatial de puissance comporte un module de préadaptation d'impédance disposé en entrée du combineur spatial de puissance, le module de préadaptation d'impédance comportant des premières parties des lignes de transmission de l'ensemble de lignes de transmission. En outre, ces premières parties des lignes de transmission s'étendent en direction radiale par rapport à l'axe longitudinal de la cavité.
  • Dans un mode de réalisation, chaque première partie des lignes de transmission comporte un ensemble de couches, l'ensemble de couches comportant :
    • au moins une première couche conductrice transportant un signal et ayant une largeur diminuant le long de ladite première partie de la ligne de transmission, et
    • au moins une deuxième couche conductrice servant de référence de potentiel et comportant une ouverture ayant une largeur augmentant le long de la première partie de ladite ligne de transmission.
  • Ainsi, du fait des variations de la largeur de la première couche conductrice et de l'ouverture de la deuxième couche conductrice, la valeur de l'impédance de la ligne de transmission varie le long de la ligne de transmission.
  • En particulier, l'impédance augmente le long de la ligne de transmission.
  • Par conséquent, la valeur de l'impédance d'une ligne de transmission à l'entrée du combineur spatial de puissance est inférieure à la valeur de l'impédance de la ligne de transmission à la sortie du combineur.
  • Dans une variante de ce mode de réalisation, l'ensemble de couches comporte une troisième couche conductrice servant de référence de potentiel.
  • Selon l'invention, le module de préadaptation d'impédance comporte un support sur lequel sont disposés les premières parties des lignes de transmission, le support comportant un ensemble de creux, chaque première partie des lignes de transmission de l'ensemble de lignes de transmission étant respectivement disposée sur un creux de l'ensemble de creux.
  • Ainsi, dans le mode de réalisation susmentionné, la deuxième couche conductrice de chaque ensemble de couches de chaque ligne de transmission est en contact avec chaque creux du support.
  • La présente invention concerne, selon un deuxième aspect, un ensemble d'amplification de puissance formé par un combineur spatial de puissance conforme à l'invention et une structure d'amplification disposée à l'entrée dudit combineur spatial de puissance, la structure d'amplification comportant un ensemble d'entrées et un ensemble de sorties, les sorties étant reliées respectivement aux entrées du combineur spatial de puissance.
  • Par conséquent, les lignes de transmission du combineur spatial de puissance sont connectées aux sorties de la structure d'amplification.
  • Ainsi, le combineur spatial de puissance combine les puissances présentes respectivement aux sorties de la structure d'amplification.
  • En outre, les lignes de transmission en entrée du combineur spatial de puissance correspondent respectivement à des lignes de transmission en sortie de ladite structure d'amplification.
  • Selon une caractéristique, la structure d'amplification comporte un ensemble d'amplificateurs de puissance, chaque amplificateur de puissance étant relié à chaque sortie de la structure d'amplification.
  • Ainsi, les signaux en entrée de l'ensemble de combinaison de puissance sont d'abord amplifiés et ensuite leur puissance est combinée, par le combineur spatial de puissance, en une seule sortie.
  • Selon une caractéristique, les sorties des amplificateurs de puissance présentent une basse impédance.
  • Ainsi, l'adaptation d'impédance entre la structure d'amplification et le combineur de puissance est facilement mise en œuvre.
  • Selon une caractéristique, les sorties des amplificateurs de puissance présentent une basse impédance.
  • Ainsi, l'adaptation d'impédance entre la structure d'amplification et le combineur de puissance est facilement mise en œuvre.
  • L'ensemble d'amplification de puissance présente des caractéristiques et avantages analogues à ceux décrits précédemment en relation avec le combineur spatial de puissance.
  • D'autres particularités et avantages de l'invention apparaîtront encore dans la description ci-après.
  • Aux dessins annexés, donnés à titre d'exemples non limitatifs :
    • la figure 1a représente une vue en perspective avec arrachement partiel d'un ensemble d'amplification de puissance selon un mode de réalisation de l'invention comportant un combineur spatial de puissance selon un premier mode de réalisation de l'invention ;
    • la figure 1b représente une vue en perspective éclatée de l'ensemble d'amplification de puissance de la figure 1a.
    • la figure 2 représente une vue en perspective avec arrachement partiel du combineur de puissance selon un second mode de réalisation de l'invention ;
    • la figure 3 représente une vue en perspective avec arrachement partiel du combineur de puissance selon un troisième mode de réalisation de l'invention ; et
    • les figures 4a et 4b représentent une vue éclatée d'une première partie d'une ligne de transmission du combineur de puissance représentée aux figures 2 et 3 selon deux modes de réalisation.
  • Un ensemble d'amplification de puissance conforme à l'invention va être décrit en référence aux figures 1a et 1b.
  • La figure 1a représente un ensemble d'amplification de puissance 100 comportant un combineur spatial de puissance 10 et une structure d'amplification 20.
  • Une vue éclatée de l'ensemble d'amplification de puissance est représentée à la figure 1b.
  • Le combineur spatial de puissance 10 est disposé à la sortie de la structure d'amplification 20.
  • La structure d'amplification 20 comporte un ensemble d'entrées 21a, 21b, 21c, ... et un ensemble de sorties 22a, 22b, 22c, ..., le nombre d'entrées et de sorties des ensembles étant identique.
  • On notera que dans la suite de ce document, les entrées de la structure d'amplification 20 sont référencées 21 et les sorties 22.
  • La structure d'amplification 20 comporte en outre un ensemble d'amplificateurs de puissance 23, chaque amplificateur de puissance 23 étant relié à une entrée 21 de la structure d'amplification 20 et à une sortie 22 de la structure d'amplification 20.
  • Des lignes de transmission en entrée a1, b1, c1 ... relient respectivement les entrées 21 de la structure d'amplification 20 et les amplificateurs de puissance 23. Des lignes de transmission de sortie a2, b2, c2 ... relient respectivement les amplificateurs de puissance 23 et les sorties 22 de la structure d'amplification 20.
  • Ainsi, les amplificateurs de puissance 23 amplifient respectivement les signaux aux entrées 21 de la structure d'amplification 20 et génèrent des signaux amplifiés aux sorties 22.
  • La structure d'amplification 20 comporte un corps 24 enfermant les amplificateurs de puissance 23 et les lignes de transmission en entrée a1, b1, c1 ... et en sortie a2, b2, c2...
  • Dans le mode de réalisation représenté sur les figures 1a et 1b, le corps 24 présente une forme octogonale, les structures d'amplification comportent huit entrées 21, huit sorties 22, ainsi que huit amplificateurs de puissance 23. Chaque ensemble formé par un amplificateur de puissance 23, une ligne de transmission d'entrée a1, b1, c1 ... et une ligne de transmission de sortie a2, b2, c2 ... est disposé sur une face du corps 24 en forme octogonale.
  • Bien entendu, le corps de la structure d'amplification peut présenter des formes géométriques différentes, et le nombre d'entrées, sorties d'amplification de puissance et des lignes de transmission peuvent être différentes.
  • On notera que dans cette vue partielle avec un arrachement partiel représenté sur la figure 1a, seulement trois des ensembles précités sont visibles.
  • Les amplificateurs de puissance 23 étant connus de l'homme du métier, ne seront pas décrits plus en détail dans ce document.
  • Dans le mode de réalisation représenté, la structure d'amplification 20 comporte des moyens de refroidissement 25 disposés sur le pourtour du corps 24 afin de dissiper la chaleur produite par les composants de puissance, en particulier par les amplificateurs de puissance 23.
  • Le combineur spatial de puissance 10 est disposé en sortie de la structure d'amplification 20.
  • Les sorties 22 de la structure d'amplification 20 sont reliées à des entrées 11a, 11b, 11c, ... (nommés 11 dans la suite du document) du combineur spatial de puissance 10. Les puissances des signaux en sortie de la structure d'amplification 20 sont ainsi combinées par le combineur spatial de puissance 10 en une seule puissance en sortie du combineur spatial de puissance 10.
  • Ainsi, dans le combineur spatial de puissance 10 des lignes de transmission a, b, c, ... sont respectivement reliées aux entrées 11a, 11b, 11c, ... du combineur spatial de puissance 10.
  • On notera que les lignes de transmission a, b, c, ... du combineur spatial de puissance 10 sont une continuité des lignes de transmission en sortie a2, b2, c2 ... de la structure d'amplification 20.
  • Le combineur spatial de puissance 10 comporte en outre une sortie 12 sur laquelle une puissance combinée est générée.
  • Sur cette sortie 12, il est ainsi généré un signal de sortie combinée présentant une puissance correspondant aux puissances combinées des signaux en entrée 11 du combineur spatial de puissance 10. Par conséquent, sur la sortie 12, il est généré un signal de sortie combiné présentant une puissance correspondant aux puissances combinées des signaux en sortie de la structure d'amplification 20.
  • Des équipements électroniques peuvent être reliés à la sortie 12 du combineur spatial de puissance 10 afin d'utiliser cette puissance combinée.
  • On notera que dans l'exemple de réalisation décrit, la sortie 12 est à haute impédance, présentant à titre d'exemple nullement limitatif 50 Ohms.
  • Le signal à la sortie 12 du combineur spatial de puissance 10 peut ainsi être utilisé, par exemple dans une antenne ou comme entrée dans un dispositif servant de transition d'un guide d'ondes vers une ligne coaxiale, sans nécessité de transformation d'impédance, ou avec une transformation d'impédance facile à effectuer.
  • Le combineur spatial de puissance 10 comporte un corps cylindrique 13 formant une cavité 14.
  • Les lignes de transmission a, b, c, ... comportent une première partie correspondant à la portion de ligne entre l'entrée 11 et la cavité 14 du combineur spatial de puissance 10.
  • Dans la suite du document, la partie du combineur spatial de puissance au niveau de la cavité 14 sera nommée cœur du combineur 101. La première partie d'une ligne de transmission a, b, c, ... est aussi nommée ligne d'accès aa, ba, ca, ...
  • Chaque ligne d'entrée a, b, c, ... comporte en outre une seconde partie ab, bb, cb, ... correspondant à la portion de ligne entre la ligne d'accès aa, ba, ca ... et la sortie 12 du combineur. Les secondes parties des lignes de transmission ab, bb, cb, ... traversent longitudinalement la cavité 14 en partant de l'entrée 11 du combineur spatial de puissance 10 et jusqu'à la sortie 12 du combineur spatial de puissance 10.
  • Dans le mode de réalisation décrit, les lignes de transmission d'entrée a, b, c ... sont des lignes de transmission microruban.
  • Ainsi, dès lors que les amplificateurs de puissance 23 délivrent des signaux en sortie sur des lignes microruban, la connexion entre la structure d'amplification 20 et le combineur spatial de puissance 10 peut être réalisé directement et sans nécessiter des conversions nécessaires entre différents types de lignes.
  • Des pertes dues à la transformation des signaux entre lignes de différents types sont ainsi évitées.
  • Le combineur spatial de puissance 10 comporte un élément absorbant 15 s'étendant longitudinalement dans la cavité 14.
  • L'élément absorbant 15 est placé entre les lignes de transmission d'entrée a, b, c, ... en particulier entre les secondes parties des lignes de transmission ab, bb, cb, ... dans le cœur du combineur 101.
  • Plus particulièrement, les secondes parties de lignes de transmission d'entrée ab, bb, cb, ... sont disposées autour de l'élément absorbant 15.
  • Dans le mode de réalisation représenté sur la figure 1, l'élément absorbant 15 s'étend sur toute la longueur des secondes parties des lignes de transmission ab, bb, cb, ... c'est-à-dire qu'il s'étend sur la totalité de la cavité 14 entre l'entrée 11 et la sortie 12 du combineur spatial de puissance 10, plus particulièrement sur la totalité du cœur du combineur spatial de puissance 101.
  • Par conséquent, dans ce mode de réalisation, la longueur de l'élément absorbant 15 est équivalente à la longueur des secondes parties des lignes de transmission ab, bb, cb, ... dans le combineur spatial de puissance 10.
  • Dans d'autres modes de réalisation, tel que le mode de réalisation représenté sur les figures 2 et 3, la longueur de l'élément absorbant 15 est inférieure à la longueur des secondes parties des lignes de transmission ab, bb, cb, ... dans le combineur spatial de puissance 10.
  • La figure 2 représente un combineur spatial de puissance 10' selon un deuxième mode de réalisation de l'invention. On notera que la cavité n'est pas représentée sur cette figure.
  • Dans ce mode de réalisation, les lignes de transmission a', b', c', ... et en particulier les deuxièmes parties des lignes de transmission ab', bb', cb', ... sont disposées autour de l'élément absorbant 15', l'élément absorbant 15' s'étendant longitudinalement dans une partie de la cavité (non représentée sur la figure).
  • Dans ce mode de réalisation, l'élément absorbant 15' s'étend en partant de la sortie 12' du combineur spatial de puissance 10' sur une longueur prédéterminée.
  • A titre d'exemple nullement limitatif, la longueur prédéterminée peut être de 50 mm.
  • Naturellement, la valeur de cette longueur prédéterminée peut être différente, cette valeur variant par exemple en fonction de la nature de l'élément absorbant 15' utilisé.
  • Dans un mode de réalisation, l'élément absorbant 15 comporte un matériau absorbant, tel qu'une résine époxy chargée de particules d'un absorbant magnétique, par exemple de particules ferrites.
  • Dans ce mode de réalisation, le combineur spatial de puissance 10' comporte en outre un élément plastique 16' s'étendant longitudinalement dans la cavité, en prolongation de l'élément absorbant 15'.
  • L'élément plastique 16' présente une fonction mécanique, permettant de maintenir en place les lignes de transmission a', b', c', ....
  • Dans ce mode de réalisation, l'élément absorbant 15' et l'élément plastique 16' sont fixés entre eux au moyen d'une tige filetée disposée dans un évidement 18' réalisé dans l'élément absorbant 15' et l'élément plastique 16'.
  • Ainsi, l'élément absorbant 15' et l'élément plastique 16' sont fixés entre eux par vissage.
  • En particulier, une première partie d'évidement 18a', correspondant à l'évidement réalisé dans l'élément plastique 16', est un évidement longitudinal taraudé, les parois de l'évidement 18' formant ainsi un pas de vis. Une seconde partie d'évidement 18b', correspondant à l'évidement réalisé dans l'élément absorbant 15', est un évidement dont les parois sont lisses.
  • Bien entendu, la fixation de l'élément absorbant 15' et de l'élément plastique 16' peut être réalisée par des moyens différents.
  • La figure 3 représente un troisième mode de réalisation du combineur spatial de puissance 10".
  • Dans ce mode de réalisation, l'élément absorbant 15" s'étend longitudinalement dans la cavité (non représentée sur cette figure) en partant de l'entrée 11" du combineur spatial de puissance 10", sur une longueur prédéterminée.
  • A titre d'exemple nullement limitatif, le combineur spatial de puissance peut présenter une longueur de 300 mm, et l'élément absorbant de 50 mm.
  • Selon un autre exemple, pour un combineur spatial de puissance à faibles pertes, la longueur de l'élément absorbant peut être de 20 mm.
  • Bien entendu, les valeurs des longueurs du combineur spatial de puissance et de l'élément absorbant peuvent être différentes.
  • Dans ce mode de réalisation, le combineur spatial de puissance 10" comporte des moyens de dissipation thermique 17" s'étendent longitudinalement dans la cavité.
  • Les moyens de dissipation thermique 17" comportent dans un mode de réalisation une tige en métal.
  • Ce mode de réalisation est particulièrement avantageux dès lors que la tige en métal permet une dissipation efficace de l'énergie thermique en forme de chaleur produite dans le combineur spatial de puissance 10".
  • Dans ce mode de réalisation, l'élément absorbant 15" est disposé de sorte qu'il entoure les moyens de dissipation 17" sur la longueur prédéterminée.
  • Ainsi, les moyens de dissipation thermique 17" s'étendent longitudinalement dans la totalité de la cavité. L'élément absorbant 15" s'étend sur une longueur prédéterminée en partant de l'entrée 11" du combineur spatial de puissance 10". Les moyens de dissipation thermique 17" sont ainsi entourés par l'élément absorbant 15" sur la longueur prédéterminée.
  • Dans un mode de réalisation, le combineur spatial de puissance 10 (voir figure 1) comporte en outre un module d'évacuation thermique 18.
  • Ce module d'évacuation thermique 18 peut être utilisé avec des différentes structures de combineurs spatiaux de puissance 10, 10', 10" en particulier avec les structures représentées sur les figures 2 et 3.
  • Ce module d'évacuation thermique 18 permet de dissiper d'avantage la chaleur produite dans le combineur spatial de puissance 10.
  • Le module d'évacuation thermique 18 est un module classique connu de l'homme du métier et ne nécessite pas d'être décrit en détail ici.
  • Dans les modes de réalisation décrits, les sorties des amplificateurs de puissance 23 (ou sorties 21 de la structure d'amplification 20) présentent une basse impédance.
  • En outre, les entrées 11 du combineur spatial de puissance 10 présentent aussi une basse impédance.
  • En outre, bien que les entrées du combineur spatial de puissance présentent une basse impédance, la sortie du combineur présente une haute impédance.
  • Selon l'invention, et comme on peut l'observer sur les figures 1a et 1b, le combineur spatial de puissance 10 comporte en outre un module de préadaptation d'impédance 102. Ce module de préadaptation d'impédance 102 modifie la valeur de l'impédance présente en entrée 11 du combineur spatial de puissance 10.
  • Le module de préadaptation d'impédance comporte les premières parties des lignes de transmission aa, ba, ca ... ou lignes d'accès, lesquelles premières parties ou lignes d'accès aa, ba, ca... s'étendent radialement par rapport à l'axe longitudinal de la cavité 14 du combineur spatial de puissance. Chaque ligne d'accès aa, ba, ca... comporte un circuit imprimé comportant au moins deux couches conductrices, une couche conductrice transportant un signal et une couche conductrice servant de référence de potentiel.
  • Deux modes de réalisation d'un circuit imprimé formant les lignes d'accès aa, ba, ca ... sont représentées par les figures 4a et 4b.
  • La figure 4a est une illustration simplifiée d'une vue éclatée d'un circuit imprimé formant la première partie d'une ligne de transmission ou ligne d'accès aa du combineur spatial de puissance 10 selon un mode de réalisation.
  • Chaque ligne d'accès aa, ba, ca, ... comporte un ensemble de couches superposées entre elles.
  • Dans le mode de réalisation représenté à la figure 4a, l'ensemble des couches comporte une première couche conductrice 200, une deuxième couche conductrice 400, ainsi qu'une troisième couche conductrice 700.
  • Dans ce mode de réalisation, la première couche conductrice 200 transporte un signal, et les seconde 400 et troisième 700 couches conductrices servent de référence de potentiel.
  • L'ensemble des couches comporte en outre une première couche d'isolant 300, une deuxième couche d'isolant 600 et une couche d'adhésif 500.
  • Dans un mode de réalisation, une des couches conductrices, étant ici la troisième couche conductrice 700, comporte des plots 800 disposés sur les bords le long de la couche.
  • Dans ce mode de réalisation, chacune des autres couches (200-600) comporte des ouvertures 900 disposées sur le bord du long de la couche, une ouverture présentant une forme complémentaire à un plot 800 de la troisième couche conductrice 700 et étant située de sorte qu'un plot 800 puisse être inséré dans une ouverture 900 de chaque couche de l'ensemble des couches formant la ligne d'accès aa.
  • L'ensemble formé par les plots 800 et par les ouvertures 900 forme des moyens de maintien ou de fixation des couches de l'ensemble des couches entre elles.
  • Bien entendu, d'autres modes de fixation ou de maintien peuvent être employés dans d'autres modes de réalisation.
  • En outre, le nombre de couches peut être différent.
  • La première couche conductrice 200 comporte une partie centrale 201 et deux parties latérales 202.
  • La partie centrale 201 de la première couche conductrice 200 transporte le signal transporté par une ligne de transmission a, dont la puissance va être combinée avec celle des autres signaux transportés par les autres lignes de transmission b, c, ....
  • Les parties latérales 202 de la première couche conductrice 200, la deuxième couche conductrice 400 et la troisième couche conductrice 700 servent de potentiel de référence. Les parties latérales 202 de la première couche conductrice 200, les deuxième 400 et troisième 700 couches conductrice sont reliées entre elles par les plots 800, ces plots étant par exemple métalliques.
  • Une première couche d'isolant 300 est disposée entre la première 200 et la deuxième 400 couche conductrice afin d'isoler entre elles ces deux dernières.
  • De manière similaire, la deuxième couche d'isolant 600 est disposée entre la deuxième couche 400 et la troisième 700 couches conductrices.
  • Dans ce mode de réalisation, une couche d'adhésif 500 est disposée entre la deuxième couche conductrice 400 et la deuxième couche d'isolant 600.
  • On notera que dans l'exemple décrit, la première couche conductrice 200, la deuxième couche conductrice 400 et la première couche d'isolant 300 forment un premier ensemble, et la troisième couche conductrice 700 et la deuxième couche d'isolant 600 forment un second ensemble, le premier et le deuxième ensemble étant maintenus entre eux au moyen de la couche d'adhésif 500.
  • Bien entendu, d'autres couches conductrice, d'isolant et adhésives peuvent être ajoutées et l'ordre des couches peut être différent.
  • La variation d'impédance est mise en œuvre par la première couche conductrice200 et la deuxième couche conductrice 400.
  • Dans l'exemple représenté, la largeur de la première couche conductrice 200 diminue le long de la première partie de la ligne de transmission aa. La largeur de la première couche conductrice 200 présente ainsi une valeur inférieure au niveau de la sortie du module de préadaptation d'impédance 102, 102' (ou à l'entrée du cœur du combineur 101, 101') qu'au niveau de l'entrée de ce module 102, 102' (ou à l'entrée du combineur spatial de puissance 10).
  • La deuxième couche conductrice 400 comporte une ouverture 401. Cette ouverture 401, ou la largeur de l'ouverture 401, augmente le long de la première partie de la ligne de transmission aa. L'ouverture 401 de la deuxième couche conductrice 400 est ainsi plus importante au niveau de la sortie du module de préadaptation d'impédance 102, 102' (ou à l'entrée du cœur du combineur 101, 101') qu'au niveau de l'entrée de ce module 102, 102' (ou à l'entrée du combineur spatial de puissance 10).
  • La figure 4b est une illustration simplifiée d'une vue éclatée d'un circuit imprimé formant la première partie d'une ligne de transmission ou ligne d'accès aa' du combineur spatial de puissance 10 selon un deuxième mode de réalisation.
  • Dans ce mode de réalisation, l'ensemble des couches formant la ligne d'accès aa' comporte une première couche conductrice 200', une deuxième couche conductrice 400' et une couche d'isolant 300'.
  • L'ensemble formé par ces trois couches forme la ligne d'accès aa. Cette ligne d'accès aa' est disposée sur un support ou semelle 1000', la seconde couche conductrice 200' étant en contact avec le creux 1001'.
  • En particulier, le support 1000' comporte un ensemble de creux 1001', chaque creux 1001' présentant une forme adéquate à recevoir le circuit imprimé formant la ligne d'accès aa'.
  • Ainsi, dans le mode de réalisation décrit le nombre de creux est égal au nombre de lignes d'accès aa', ba', ca', ...
  • Bien entendu, le support 1000' peut être d'une pièce ou être formé par un ensemble de supports, chaque support étant associé à une ligne d'accès aa', ba', ca', ...
  • Dans ce mode de réalisation, le support 1000' comporte en outre un second creux 1002' réalisé dans le premier creux 1001', le second creux 1002' recevant une deuxième couche d'isolant 600'.
  • La deuxième couche d'isolant 600' et le second creux 1002' ont ainsi des formes complémentaires.
  • La deuxième couche d'isolant 600' disposée dans le second creux 1002' du support 1000' aide au maintien du circuit imprimé formant la ligne d'accès aa' disposée dans le premier creux 1001' du support 1000'.
  • Dans le mode de réalisation décrit, le support 1000' est réalisé en métal.
  • La première couche conductrice 200' transporte le signal transporté par une ligne de transmission a', dont la puissance va être combinée avec celle des autres signaux transportés par les autres lignes de transmission b', c' ...
  • La deuxième couche conductrice 400', ainsi que le support en métal 1000' servent de potentiel de référence.
  • On notera que lorsque le circuit imprimé est inséré dans le premier creux 1001' du support 1000', la deuxième couche conductrice 400' est en contact avec le support 1000'.
  • La couche d'isolant 300' est disposée entre la première couche conductrice 200' et la deuxième couche conductrice 400' afin de les isoler entre elles.
  • Comme pour la figure 4a, d'autres couches de métallisation et d'isolant peuvent être ajoutées dans l'ensemble des couches.
  • En outre, la largeur de la première couche conductrice 200' diminue le long de la première partie de la ligne de transmission aa'. La largeur de la première couche conductrice 200 présente ainsi une valeur inférieure au niveau de la sortie du module de préadaptation d'impédance 102, 102' (ou à l'entrée du cœur du combineur 101, 101') qu'au niveau de l'entrée de ce module 102, 102' (ou à l'entrée du combineur spatial de puissance 10').
  • La deuxième couche conductrice 400' comporte une ouverture 401'. Cette ouverture 401', ou la largeur de l'ouverture 400', augmente le long de la première partie de la ligne de transmission aa'. L'ouverture 401' de la deuxième couche conductrice 400' est ainsi plus importante au niveau de la sortie du module de préadaptation d'impédance 102, 102' (ou à l'entrée du cœur du combineur 101, 101') qu'au niveau de l'entrée de ce module 102, 102' (ou à l'entrée du combineur spatial de puissance 10').
  • Dans des exemples qui ne sont pas couverts par les revendications dans lesquels le combineur spatial de puissance ne comporte pas de module de préadaptation d'impédance 101, 101', la variation d'impédance entre l'entrée et la sortie du combineur spatial de puissance est mise en œuvre seulement par la structure coaxiale du cœur du combineur 101, 101'.
  • Dans tous les modes de réalisation, l'impédance de mode commun des lignes de transmission de la structure coaxiale du combineur de puissance augmente le long de la structure coaxiale du cœur du combineur 101, 101'. Cette augmentation est mise en œuvre par une diminution du ratio entre le diamètre formé par l'ensemble des lignes de transmission situées à l'intérieur du corps cylindrique 13 et du diamètre intérieur du corps cylindrique 13 du cœur du combineur spatial de puissance 10.
  • On notera que la disposition des lignes à l'intérieur du corps cylindrique 13 et le propre corps cylindrique 13 forment une structure coaxiale.

Claims (15)

  1. Combineur spatial de puissance (10 ; 10' ; 10") comportant :
    - plusieurs entrées (11a, 11b, 11c, ... ; 11a', 11b', 11c', ... ; 11a", 11b", 11c", ...) auxquelles sont reliées respectivement un ensemble de lignes de transmission (a, b, c, ... ; a', b', c', ... a", b", c", ...),
    - une sortie (12 ; 12' ; 12"),
    - un corps (13 ; 13' ; 13") formant une cavité (14) ayant un axe longitudinal, l'ensemble de lignes de transmission (a, b, c, ... ; a', b', c', ... a", b", c", ...) traversant longitudinalement ladite cavité (14) et étant disposées autour d'un élément absorbant (15; 15'; 15") s'étendant longitudinalement dans ladite cavité (14), et
    - un module de préadaptation d'impédance (102 ; 102') disposé en entrée du combineur spatial de puissance (10 ; 10' ; 10"), ledit module de préadaptation d'impédance (102 ; 102') comportant des premières parties desdites lignes de transmission (aa, ba, ca ...; aa', ba', ca' ...) de l'ensemble de lignes de transmission,
    le combineur spatial de puissance (10, 10', 10") étant caractérisé en ce que :
    - les premières parties des lignes de transmission (aa, ba, ca ...; aa', ba', ca' ...) s'étendent en direction radiale par rapport à l'axe longitudinal de la cavité (14),
    - le module de préadaptation d'impédance comporte un support (1000') sur lequel sont disposés les premières parties des lignes de transmission (aa, ba, ca...; aa', ba', ca', ...), ledit support (1000') comportant un ensemble de creux (1001'), chaque première partie des lignes de transmission de l'ensemble de lignes de transmission étant respectivement disposée sur un creux (1001') de l'ensemble de creux
  2. Combineur spatial de puissance conforme à la revendication 1, caractérisé en ce que la longueur de l'élément absorbant (15) est équivalente à la longueur des lignes de transmission (a, b, c, ...) dans le combineur spatial de puissance (10).
  3. Combineur spatial de puissance conforme à la revendication 1, caractérisé en ce que la longueur de l'élément absorbant (15', 15") est inférieure à la longueur des lignes de transmission (a', b', c', ... ; a", b", c", ...) dans le combineur spatial de puissance (10' ; 10").
  4. Combineur spatial de puissance conforme à la revendication 3, caractérisé en ce que l'élément absorbant (15") s'étend en partant de l'entrée dudit combineur spatial de puissance (10").
  5. Combineur spatial de puissance conforme à la revendication 3, caractérisé en ce que l'élément absorbant (15') s'étend en partant de la sortie dudit combineur spatial de puissance (10').
  6. Combineur spatial de puissance conforme à l'une des revendications 1 à 5, caractérisé en ce qu'il comporte en outre des moyens de dissipation thermique (17") s'étendant longitudinalement dans ladite cavité, ledit élément absorbant (15") entourant les moyens de dissipation (17").
  7. Combineur spatial de puissance conforme à la revendication 6, caractérisé en ce que les moyens de dissipation thermique (17") comportent une tige en métal.
  8. Combineur spatial de puissance conforme à l'une des revendications 1 à 7, caractérisé en ce que les lignes de transmission (a, b, c, ... ; a', b', c', ... ; a", b", c", ...) sont des lignes de transmission microruban.
  9. Combineur spatial de puissance conforme à l'une des revendications 1 à 8, caractérisé en ce que les entrées (11a, 11b, 11c, ... ; 11a', 11b', 11c', ... ; 11a", 11b", 11c", ...) du combineur spatial de puissance (10 ; 10' ; 10") présentent une basse impédance.
  10. Combineur spatial de puissance conforme à l'une des revendications 1 à 9, caractérisé en ce qu'il comporte en outre un module d'évacuateur thermique (18).
  11. Combineur spatial de puissance conforme à l'une des revendications 1 à 10, caractérisé en ce que chaque première partie desdites lignes de transmission (aa, ba, ca, ... ; aa', ba', ca', ...) comporte un ensemble de couches, ledit ensemble de couches comportant
    - au moins une première couche conductrice (200 ; 200') transportant un signal et ayant une largeur diminuant le long de ladite première partie de la ligne de transmission (aa, ba, ca, ... ; aa', ba', ca', ...), et
    - au moins une deuxième couche conductrice (400 ; 400') servant de référence de potentiel et comportant une ouverture (401 ; 401') ayant une largeur augmentant le long de la première partie de ladite ligne de transmission (aa, ba, ca, ... ; aa', ba', ca', ...).
  12. Combineur spatial de puissance conforme à la revendication 11, caractérisé en ce que l'ensemble de couches comporte une troisième couche conductrice (700) servant de potentiel de référence.
  13. Ensemble d'amplification de puissance caractérisé en ce qu'il est formé par un combineur spatial de puissance (10 ; 10' ; 10") conforme à l'une des revendications précédentes et une structure d'amplification (20) disposée à l'entrée (11 ; 11' ; 11") dudit combineur spatial de puissance (10 ; 10'; 10"), ladite structure d'amplification comportant un ensemble d'entrées (21a, 21b, 21c, ...) et un ensemble de sorties (22a, 22b, 22c, ...), les sorties (22a, 22b, 22c, ...) étant reliées respectivement aux entrées (11a, 11b, 11c, ... ; 11a', 11b', 11c', ...; 11a", 11b", 11c", ...) dudit combineur spatial de puissance (10 ; 10' ; 10").
  14. Ensemble d'amplification de puissance conforme à la revendication 13, caractérisé en ce que la structure d'amplification (20) comporte un ensemble d'amplificateurs de puissance (23), chaque amplificateur de puissance (23) étant relié à chaque sortie (22a, 22b, 22c, ...) de la structure d'amplification (20).
  15. Ensemble d'amplification de puissance conforme à la revendication 14, caractérisé en ce que les sorties (22a, 22b, 22c, ...) des amplificateurs de puissance (23) présentent une basse impédance.
EP16200051.7A 2015-11-23 2016-11-22 Combineur spatial de puissance Active EP3171451B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1561267A FR3044171B1 (fr) 2015-11-23 2015-11-23 Combineur spatial de puissance

Publications (2)

Publication Number Publication Date
EP3171451A1 EP3171451A1 (fr) 2017-05-24
EP3171451B1 true EP3171451B1 (fr) 2021-11-10

Family

ID=55862858

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16200051.7A Active EP3171451B1 (fr) 2015-11-23 2016-11-22 Combineur spatial de puissance

Country Status (3)

Country Link
US (1) US10326191B2 (fr)
EP (1) EP3171451B1 (fr)
FR (1) FR3044171B1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10003118B2 (en) 2015-12-22 2018-06-19 Qorvo Us, Inc. Spatial coupler and antenna for splitting and combining electromagnetic signals
US10454433B2 (en) 2017-06-29 2019-10-22 Qorvo Us, Inc. Amplifier assembly and spatial power combining device
US10812021B2 (en) 2017-08-22 2020-10-20 Qorvo Us, Inc. Antenna waveguide transitions for solid state power amplifiers
US10587027B2 (en) 2017-08-22 2020-03-10 Qorvo Us, Inc. Spatial combining devices for high-frequency operation
US10749276B2 (en) 2017-08-22 2020-08-18 Qorvo Us, Inc. Spatial power-combining devices and antenna assemblies
US10720711B2 (en) 2017-08-22 2020-07-21 Qorvo Us, Inc. Antenna structures for spatial power-combining devices
US10707819B2 (en) 2017-08-22 2020-07-07 Qorvo Us, Inc. Phase tuning for monolithic microwave integrated circuits
US10651527B2 (en) 2017-08-22 2020-05-12 Qorvo Us, Inc. Spatial power-combining devices with segmented waveguides and antennas
US10340574B2 (en) 2017-08-22 2019-07-02 Qorvo Us, Inc. Spatial combining device and antenna
US10164667B1 (en) 2018-03-21 2018-12-25 Qorvo Us, Inc. Spatial power-combining devices with amplifier connectors
US10833386B2 (en) 2018-04-09 2020-11-10 Qorvo Us, Inc. Waveguide transitions for power-combining devices
US11255608B2 (en) 2018-08-06 2022-02-22 Qorvo Us, Inc. Heat exchanger assemblies for electronic devices
US11162734B2 (en) 2018-08-06 2021-11-02 Qorvo Us, Inc. Heat exchanger assemblies for electronic devices and related methods
US10855240B2 (en) 2018-11-15 2020-12-01 Qorvo Us, Inc. Structures for spatial power-combining devices
US10804588B2 (en) 2018-12-10 2020-10-13 Qorvo Us, Inc. Antenna structures for spatial power-combining devices
US11005437B2 (en) 2019-02-25 2021-05-11 Qorvo Us, Inc. Spatial power-combining devices with thin film resistors
US11387791B2 (en) 2020-03-17 2022-07-12 Qorvo Us, Inc. Spatial power-combining devices with reduced size
US11564337B2 (en) * 2020-03-17 2023-01-24 Qorvo Us, Inc. Thermal structures for heat transfer devices and spatial power-combining devices
US11621469B2 (en) 2021-02-01 2023-04-04 Qorvo Us, Inc. Power-combining devices with increased output power
EP4287396A1 (fr) * 2022-06-02 2023-12-06 Ion Beam Applications S.A. Combineur/diviseur de puissance rf

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129839A (en) * 1977-03-09 1978-12-12 Raytheon Company Radio frequency energy combiner or divider
US4371845A (en) * 1980-05-23 1983-02-01 Hughes Aircraft Company Modular microwave power divider-amplifier-combiner
US4424496A (en) * 1981-10-13 1984-01-03 Raytheon Company Divider/combiner amplifier
US5262739A (en) * 1989-05-16 1993-11-16 Cornell Research Foundation, Inc. Waveguide adaptors
US5142253A (en) * 1990-05-02 1992-08-25 Raytheon Company Spatial field power combiner having offset coaxial to planar transmission line transitions
US7215220B1 (en) * 2004-08-23 2007-05-08 Cap Wireless, Inc. Broadband power combining device using antipodal finline structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3044171A1 (fr) 2017-05-26
FR3044171B1 (fr) 2018-07-06
EP3171451A1 (fr) 2017-05-24
US20170149113A1 (en) 2017-05-25
US10326191B2 (en) 2019-06-18

Similar Documents

Publication Publication Date Title
EP3171451B1 (fr) Combineur spatial de puissance
EP2869400B1 (fr) Répartiteur de puissance compact bipolarisation, réseau de plusieurs répartiteurs, élément rayonnant compact et antenne plane comportant un tel répartiteur
WO2009077501A1 (fr) Dispositif d'amplification de puissance radiale a compensation de dispersion de phase des voies amplificatrices
EP3179551A1 (fr) Ensemble d'excitation compact bipolarisation pour un element rayonnant d'antenne et reseau compact comportant au moins quatre ensembles d'excitation compacts
EP3136499B1 (fr) Système diviseur/combineur pour onde hyperféquence
EP4012834B1 (fr) Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant et antenne comprenant plusieurs sources d'antenne
EP3154128B1 (fr) Cornet rayonnant compact multifréquences, source rayonnante et antenne comportant un tel cornet rayonnant
EP2953203B1 (fr) Dispositif de transmission d'energie d'un milieu a un autre
EP3235058B1 (fr) Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d'alimentation et le fil de court-circuit
EP3602689A1 (fr) Antenne electromagnetique
FR2977381A1 (fr) Dephaseur et repartiteur de puissance
EP0015610B1 (fr) Filtre de réflexion de fréquence image en hyperfréquence et récepteur hyperfréquence comprenant un tel filtre
EP3721501B1 (fr) Composant micro-ondes et procédé de fabrication associé
EP2325939A1 (fr) Dispositif de multiplexage de canaux hyperfréquence thermiquement optimisé
EP3241411B1 (fr) Boitier hyperfrequence a encombrement reduit en surface et montage d'un tel boitier sur un circuit
FR3060867A1 (fr) Architecture de bloc sources deployable, antenne compacte et satellite comportant une telle architecture
EP3624255B1 (fr) Ensemble de guidage d'ondes radioélectriques et antenne comprenant un tel ensemble
EP2779304A1 (fr) Antenne filaire pour émission HF par un engin sous marin
WO2019081710A1 (fr) Ensemble guide d'onde et procédé d'assemblage associé
EP1680799B1 (fr) Tube hyperfrequence a faible rayonnement parasite
EP0430136A1 (fr) Filtre éliminateur de bande pour guide d'ondes hyperfréquences
EP0013204A1 (fr) Filtre de bande de fréquence
WO2010119207A1 (fr) Antenne radioélectrique, procédé de dimensionnement d'un corps plat de l'antenne, et procédé de fabrication d'une telle antenne
FR2887078A1 (fr) Antenne plane de television
FR2796467A1 (fr) Dispositif de limitation de puissance dans un recepteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171025

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200305

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01P 5/02 20060101AFI20210512BHEP

Ipc: H01P 5/12 20060101ALI20210512BHEP

Ipc: H01P 1/23 20060101ALN20210512BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: H01P 5/02 20060101AFI20210514BHEP

Ipc: H01P 5/12 20060101ALI20210514BHEP

Ipc: H01P 1/23 20060101ALN20210514BHEP

INTG Intention to grant announced

Effective date: 20210609

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1446922

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016065949

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1446922

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220210

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220310

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220310

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220210

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220211

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016065949

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231122

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231123

Year of fee payment: 8

Ref country code: FR

Payment date: 20231120

Year of fee payment: 8

Ref country code: DE

Payment date: 20231120

Year of fee payment: 8