EP3160681A1 - Method and device for the quality assurance of at least one component during the production thereof by a generative production process - Google Patents

Method and device for the quality assurance of at least one component during the production thereof by a generative production process

Info

Publication number
EP3160681A1
EP3160681A1 EP15733608.2A EP15733608A EP3160681A1 EP 3160681 A1 EP3160681 A1 EP 3160681A1 EP 15733608 A EP15733608 A EP 15733608A EP 3160681 A1 EP3160681 A1 EP 3160681A1
Authority
EP
European Patent Office
Prior art keywords
component
layer
crack
heat treatment
energy source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15733608.2A
Other languages
German (de)
French (fr)
Inventor
Günter Zenzinger
Thomas Hess
Joachim Bamberg
Alexander Ladewig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Publication of EP3160681A1 publication Critical patent/EP3160681A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/475Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material for heating selectively by radiation or ultrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/364Process control of energy beam parameters for post-heating, e.g. remelting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/034Observing the temperature of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method for quality assurance of at least one component during its production according to the preamble of patent claim 1 and an apparatus for carrying out the method.
  • Laser thermography methods are known from the prior art which are used as non-destructive testing methods (ZFP methods) for detecting cracks in components.
  • ZFP methods non-destructive testing methods
  • the cooling of the surface of the component to be tested is recorded with a laser thermography camera.
  • this is associated with limitations, since the component to be tested must be housed for laser safety reasons. Due to the high energy of the laser, there is a considerable heating of the surface of the component to be tested. For the examination of the component, the manufacturing process must be interrupted in a generative manufacturing process. For the heating of the component, a second energy source is required.
  • the invention is therefore based on the object to provide a method that allows a non-destructive crack test of a metallic component during the manufacturing process (testing by means of an online method) in a generative manufacturing process.
  • the object is achieved in a method for quality assurance of at least one component during its production, the production taking place by means of at least one additive manufacturing method, comprising the following steps:
  • thermographing at least one image of each individual layer applied At least some of the applied layers are subjected before the thermografi recording of the associated image of a controlled heat treatment below the melting temperature of the component material, wherein the heat treatment emanating from the last layer applied thermal radiation causes the occurrence of at least one crack in the layer a characteristic heat history Having crack, wherein the heat history and thus the crack is made visible by means of the associated thermographic recording.
  • a characteristic heat profile at the crack is understood to mean a heat distribution, which arises in particular due to the interruption of the material at the crack.
  • the thermography device is in particular a laser-free or laser-independent thermography device in which no heating of the component takes place by the thermography device.
  • each individual layer is subjected to such a treatment.
  • the controlled heat treatment generates heat radiation in the layer, which lies in the infrared region at the edge of the visible spectrum and in the detection spectrum of a thermography device. It is thus carried out a reduced heat input, which raises the temperature in the layer locally to a level at which heat radiation in the near infrared is emitted, without causing re-melting occurs.
  • the heat radiation comes so close to the edge of the visible spectrum that a high-resolution thermography device can detect the heat distribution.
  • at least one energy source required for the additive manufacturing process in particular a laser, effects the heat treatment. In this case, no further energy source is required except the energy source for the generative manufacturing process.
  • At least one energy source effects the heat treatment, which is independent of the generative manufacturing process.
  • a division of the functions of the generative manufacturing process and the heat treatment takes place.
  • the additive manufacturing process may be a selective laser melting and / or a selective laser sintering. These methods are particularly well suited for the additive production of metallic components.
  • the crack is corrected by reflowing the cracked layer.
  • the quality of the layer is not only tested, but also secured or guaranteed.
  • the images recorded by the thermography device are analyzed and, upon detection of the crack, a signaling device is activated and / or a remelting of the cracked layer is triggered.
  • a signaling device is activated and / or a remelting of the cracked layer is triggered.
  • These method steps can be purely manual, fully automatic or partially automatic or partially manual.
  • the activation of the signaling device may alert an operator when a crack is detected. The operator can then interrupt the generative production of the component and set the energy source for the generative manufacturing process so that the cracked layer is remelted again. Alternatively, the remelting of the cracked layer can be triggered automatically. In addition, an alarm signal can be generated.
  • the device comprises at least one energy source, by means of which the controlled heat treatment of each individual layer is feasible.
  • the energy source must be specially designed for it to perform the controlled heat treatment. This feature enables quality assurance.
  • the energy source of the generative manufacturing device is at the same time the energy source for the controlled heat treatment. For example, can be used for the heat treatment of the already existing in the generative manufacturing device laser, so that a further energy source is not required. This achieves a thermography test without additional integration of further energy sources and recording systems in the generative manufacturing facility.
  • the energy source of the generative manufacturing device is independent of the energy source for the controlled heat treatment. This makes the easy retrofitting of existing systems possible.
  • thermography device comprises a high-resolution image recording device and / or an image recording device sensitive to infrared rays, which is based in particular on CCD, CMOS or sCMOS sensors.
  • image pickup devices are well suited for thermographic recording. This achieves a fast, extremely high-resolution thermography test with all the advantages of this test technique.
  • the component may be arranged without housing in the generative manufacturing device. This only allows the execution of the component inspection in an online process.
  • the component to be tested must be housed for laser safety reasons.
  • the high laser energy leads to an uncontrolled and undesired strong heating of the test surface.
  • the device comprises at least one display device, at least one
  • Evaluation device at least one signaling device for reporting a crack and at least at least one control of the power source of the generative manufacturing device.
  • the recordings recorded by the thermography device can be displayed optically on the display device.
  • the evaluation device is used for data processing.
  • the signaling device may alert an operator when a crack is detected. The operator can then interrupt the generative production of the component and control the energy source for the generative manufacturing process in such a way that the cracked layer is remelted again. Alternatively, the remelting of the layer by means of the control of the energy source for the generative manufacturing process can be triggered automatically by the evaluation device.
  • the signaling device can be activated.
  • FIG. 1 is a perspective view of a detail of a device according to the invention
  • Fig. 2 is a schematic side view of the device according to the invention shown in FIG. 1,
  • FIG. 3 shows a thermographic image of the respective uppermost layer of several components during the implementation of the method according to the invention
  • FIG. 4 shows a perspective enlargement of the detail IV
  • FIG. 4 shows a perspective enlargement of the detail IV
  • Fig. 5 is a schematic diagram of the device according to the invention.
  • FIG. 1 shows a perspective view of a section of a device 10 according to the invention, which comprises a generative production device 12 for producing a component 14.
  • a generative production device 12 for producing a component 14.
  • Fig. 1 will be explained below in conjunction with Fig. 2, in which a schematic side view of the device 10 according to the invention shown in FIG. 1 is shown.
  • the device 10 serves to carry out a method for quality assurance of a component 14 during its manufacture.
  • the generative production device 12 itself is designed as a selective laser melting system (SLM) known per se, ie a laser 22 is the energy source for the melting process. The laser is directed downwards, so that the component 14 can be produced from the bottom to the top in layers to be applied one above the other.
  • a thermography device 18 is arranged outside a construction space 16 (FIG.
  • thermography device 18 is directed onto the respectively uppermost layer of the component 14, wherein the detection angle of the thermography device 18 covers the installation space 16 so that the entire uppermost layer of the component 14 can be detected.
  • the thermography device is arranged in a vertical plane, which in this case corresponds to the image plane in FIG. 2, between the laser 22 and the outer boundaries of the installation space 16. As a result, an optical distortion that might arise in a too inclined thermography device avoided.
  • a laser protection glass 20 (FIG.
  • thermography device 18 is arranged in order to prevent damage to a sCMOS sensor of the camera by a laser 22 of the generative production device 12.
  • the thermography device 18 is thus located above the installation space 16 and outside the beam path II of the laser 22 of the generative production device 12. This ensures that the thermography device 18 is not located in the beam path II and that the laser 22 accordingly no energy losses through optical elements like semitransparent mirrors, grids or the like. Furthermore, the thermography device 18 does not affect the manufacturing process of the component 14 and is also easily replaceable or retrofittable.
  • the thermography device 18 here comprises an IR-sensitive sMOS camera with 5.5 megapixels and a refresh rate of 100 Hz.
  • a color sensor or a sensor with a broad spectral range provides comparatively more information, which allows a correspondingly more accurate assessment of the uppermost layer of the component 14.
  • thin powder layers of a high-temperature-resistant metal alloy are applied in a manner known per se to a platform (not shown) of the generative production device 12, locally melted by means of the laser 22 and solidified by cooling. Subsequently, the platform is lowered, applied a further powder layer and solidified again. This cycle is repeated until the component 14 is produced.
  • An exemplary component 14 consists of up to 2000 component layers and has a total layer height of 40 mm. The finished component 14 can then be further processed or used immediately.
  • the respectively uppermost layer of the component 14 is subjected to a heat treatment below the melting temperature of the component material.
  • This heat treatment causes thermal radiation emanating from the uppermost layer, which can be detected by means of a thermography device 18.
  • the heat radiation of the uppermost layer is adjusted so that it lies in the infrared region at the edge of the visible spectrum and also in the sensitivity range of the thermography device 18.
  • the energy source e.g.
  • the heat generated in the uppermost layer of the component 14 by the laser 22 or an additional energy source is determined in the form of a slice image 24 (see FIG.
  • the heat profile in the uppermost layer of the component 14 and optionally further information derived therefrom is subsequently visualized in a spatially resolved manner and coded, for example, via brightness values and / or colors by means of a display device 32 (FIG. 5).
  • thermography device 18 has no influence on the heat flow in the component 14 either during the additive production or during the examination of the component 14.
  • the optical thermography not only provides geometric information, but also information about the local temperature distribution in the relevant component layer. It can be provided in principle that the layer image 24 is composed of several individual images.
  • the layer image 24 depending on the surface of the space 16 be composed of up to 1000 individual images or more per component layer or from individual images, each of which between 0, 1 cm 2 and 1, 0 cm of the individual component layer image.
  • the exposure time per image is required between 1 ms and 5000 ms, preferably between 50 ms and 500 ms.
  • the distance covered by the laser beam per individual image is between 10 mm and 120 mm, for example 10 mm, 20 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 1 10 mm or 120 mm.
  • each layer image 24 is determined within 2 minutes in order to avoid excessive cooling of the component layers and a concomitant loss of information.
  • FIG. 3 shows, by way of example, a layer image 24 of a plurality of components 14, which are produced together in the installation space 16 of the production device 12 and are represented here as rotor blades for an aircraft engine, which are constructed in layers in a direction perpendicular to their longitudinal extent.
  • the layer image can be displayed, for example, on at least one display device 32 (FIG. 5). It can be seen that the layer image 24 images the entire space 16 without overlapping. From each component 14 as many detail sections can be increased. The maximum magnification of the detail sections depends on the resolution of the thermography device 18.
  • the reference numeral III a detail and the associated enlargement of this detail of one of the components 14 are characterized, wherein the corresponding component 14 has a schematically illustrated crack 30 in its uppermost layer.
  • the crack 30 may be a hot crack or a segmentation crack.
  • the reference numeral IV denotes a special section of the detail III, wherein the cutout IV includes the crack 30.
  • FIG. 4 shows an additional enlargement of the section IV in a schematic perspective detail view.
  • three layers 26, 28 of the component 14 are shown here.
  • the component 14 may also include more or fewer layers 26 depending on the current manufacturing state.
  • the two layers 26 shown here are crack-free layers whose cracks are detected by means of the thermography device 18 could, so that the manufacturing process was continued.
  • the uppermost layer of the component 14 is a cracked layer 28.
  • the course and the shape of the crack 30 are shown here only schematically. In the layer 28, more than one crack 30 may occur.
  • the crack can take any random form.
  • the length and width of the crack 30 may vary and be in the range of a few microns. These small dimensions can only be detected by means of the thermography device 18.
  • cracks 30 of this magnitude can only be brought into the optical detection range of the thermography device by the corresponding heat treatment described above.
  • the generative production can be continued. However, if the limits are reached or exceeded, the manufacturing process for the corresponding component 14 is prematurely terminated or the cracked layer 28 of the component 14 is corrected by reflow.
  • each layer 26, 28 is optically detected by means of the thermography device 18 and displayed on the display device 32.
  • the thermography device is in operative connection with at least one evaluation device 34 so that the recorded images can be sorted and stored there and, if necessary, an instruction for interrupting the generative production process of one or more components 14 having cracks can be triggered.
  • the evaluation device 34 is configured such that it can detect the crack 30 in the uppermost layer 28 of the component 14 with the aid of an algorithm.
  • these processes can also be carried out manually by evaluating the images or images of the thermography device 18 on the pointing device 32 by an operator.
  • the generative production process can be interrupted and the cracked layer 28 corrected by reflowing.
  • the remelting of the cracked layer 28 takes place, for example, in that the
  • Evaluation device 34 upon automatic detection of a crack 30 of the controller 38 of the Sers 22 gives a corresponding command for interrupting the generative manufacturing process and remelting.
  • the generative manufacturing process for a single or multiple cracked components 14 may be terminated prematurely. This is done by a command, which is triggered manually or by the evaluation device 34, to the controller 38 of the laser 22.
  • the premature termination of the generative manufacturing process is preferably carried out when the component 14 has only a small number of layers 26, 28. If the component 14 is already almost finished, the interruption and re-melting of the layer 28 is preferred.
  • the evaluation device 34 can also trigger an alarm in the form of acoustic or optical signals by means of a signal device 36, e.g. in the form of a warning message on the display device 32 or another computing device (not shown) connected to the generative manufacturing device 12. Then it can be decided by an operator whether and how the generative production of the components 14 is continued.
  • the evaluation device 34 and the signal device 36 including the required signal lines between the thermography device 18, the evaluation device, the signal device 36 and the controller 38 of the laser 22 generative manufacturing device 12 are components of the device 10th
  • the invention relates to a method for quality assurance of at least one component during its production, wherein the production takes place by means of at least one additive manufacturing method, comprising the following steps:
  • thermographing at least one image of each individual layer applied In order to enable a non-destructive crack test of a metallic component during the manufacturing process (testing by means of an on-line method), at least some of the applied layers are subjected to a controlled heat treatment below the melting temperature of the component material prior to the thermographic recording of the associated image, wherein the heat treatment a heat emanating from the last applied layer Radiation causes the occurrence of at least one crack in the layer has a characteristic heat history at the crack, the heat history and thus the crack is made visible by means of the associated thermographic recording.
  • each applied layer is subjected to such a treatment.

Abstract

The invention relates to a method for the quality assurance of at least one component (14) during the production thereof, wherein the production takes place by means of at least one additive manufacturing process, which comprises the following steps: building up the component (14) layer by layer, and thermographically recording at least one image of each individual layer applied. In order to facilitate nondestructive crack detection of a metallic component (14) during the production process (inspection by means of an online process), at least some of the layers applied are subjected to a controlled heat treatment below the melting temperature of the material of the component before the thermographic recording of the associated image, wherein the heat treatment causes the last layer applied to radiate heat which, if at least one crack in the layer develops, exhibits a characteristic heat profile at the crack, wherein the heat profile, and consequently the crack, is made visible by means of the associated thermographic recording. Preferably, each layer applied is subjected to such a treatment.

Description

VERFAHREN UND VORRICHTUNG ZUR QUALITÄTSSICHERUNG MINDESTENS EINES BAUTEILS WÄHREND DESSEN HERSTELLUNG DURCH GENERATIVES FERTIGUNGSVERFAHREN  METHOD AND DEVICE FOR QUALITY ASSURANCE OF AT LEAST ONE COMPONENT DURING THEIR MANUFACTURE THROUGH GENERATIVE MANUFACTURING PROCESS
Beschreibung description
Die Erfindung betrifft ein Verfahren zur Qualitätssicherung mindestens eines Bauteils während dessen Herstellung nach dem Oberbegriff des Patentanspruchs 1 und eine Vorrichtung zur Durchführung des Verfahrens. The invention relates to a method for quality assurance of at least one component during its production according to the preamble of patent claim 1 and an apparatus for carrying out the method.
Aus dem Stand der Technik sind Laserthermografieverfahren bekannt, die als zerstörungsfreie Prüfverfahren (ZFP- Verfahren) zur Erkennung von Rissen in Bauteilen verwendet werden. Hier- bei wird die Abkühlung der Oberfläche des zu prüfenden Bauteils mit einer Laserthermografie- kamera erfasst. Dies ist jedoch mit Einschränkungen verbunden, da das zu prüfende Bauteil aus lasertechnischen Sicherheitsgründen eingehaust sein muss. Durch die hohe Energie des Lasers kommt es zu einer erheblichen Erwärmung der Oberfläche des zu prüfenden Bauteils. Für die Prüfung des Bauteils muss bei einem generativen Fertigungsverfahren der Herstellungsprozess unterbrochen werden. Für die Erwärmung des Bauteils ist eine zweite Energiequelle erforderlich. Laser thermography methods are known from the prior art which are used as non-destructive testing methods (ZFP methods) for detecting cracks in components. Here, the cooling of the surface of the component to be tested is recorded with a laser thermography camera. However, this is associated with limitations, since the component to be tested must be housed for laser safety reasons. Due to the high energy of the laser, there is a considerable heating of the surface of the component to be tested. For the examination of the component, the manufacturing process must be interrupted in a generative manufacturing process. For the heating of the component, a second energy source is required.
Der Erfindung liegt daher die Aufgabe zu Grunde, ein Verfahren zur Verfügung zu stellen, das bei einem generativen Fertigungsverfahren eine zerstörungsfreie Rissprüfung eines metallischen Bauteils während des Herstellungsprozesses (Prüfung mittels eines Online-Verfahrens) ermög- licht. The invention is therefore based on the object to provide a method that allows a non-destructive crack test of a metallic component during the manufacturing process (testing by means of an online method) in a generative manufacturing process.
Diese Aufgabe wird erfindungsgemäß mit einem Verfahren nach Anspruch 1 gelöst. Weiterhin wird die Aufgabe mit einer Vorrichtung nach Anspruch 8 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen enthalten. This object is achieved by a method according to claim 1. Furthermore, the object is achieved with a device according to claim 8. Advantageous embodiments of the invention are contained in the subclaims.
Erfindungsgemäß besteht die Lösung der Aufgabe in einem Verfahren zur Qualitätssicherung mindestens eines Bauteils während dessen Herstellung, wobei die Herstellung mittels mindestens eines generativen Fertigungsverfahrens erfolgt, das folgende Schritte umfasst: According to the invention, the object is achieved in a method for quality assurance of at least one component during its production, the production taking place by means of at least one additive manufacturing method, comprising the following steps:
- schichtweiser Aufbau des Bauteils, - layered structure of the component,
- thermografische Aufnahme mindestens eines Bildes von jeder einzelnen aufgetragenen Schicht. Zumindest einige der aufgetragenen Schichten werden vor der thermografi sehen Aufnahme des zugehörigen Bildes einer gesteuerten Wärmebehandlung unterhalb der Schmelztemperatur des Bauteilmaterials unterzogen, wobei die Wärmebehandlung eine von der zuletzt aufgetragenen Schicht ausgehende Wärmestrahlung bewirkt, die beim Auftreten mindestens eines Risses in der Schicht einen charakteristischen Wärmeverlauf am Riss aufweist, wobei der Wärmeverlauf und damit der Riss mittels der zugehörigen thermografischen Aufnahme sichtbar gemacht wird. Unter einem charakteristischen Wärmeverlauf am Riss wird eine Wärmeverteilung verstanden, die speziell aufgrund der Materialunterbrechung am Riss entsteht. Die Thermografieeinrichtung ist insbesondere eine laserfreie bzw. laserunabhängige Thermografieeinrichtung, bei der keine Erwärmung des Bauteils durch die Thermografieeinrichtung erfolgt. thermographing at least one image of each individual layer applied. At least some of the applied layers are subjected before the thermografi recording of the associated image of a controlled heat treatment below the melting temperature of the component material, wherein the heat treatment emanating from the last layer applied thermal radiation causes the occurrence of at least one crack in the layer a characteristic heat history Having crack, wherein the heat history and thus the crack is made visible by means of the associated thermographic recording. A characteristic heat profile at the crack is understood to mean a heat distribution, which arises in particular due to the interruption of the material at the crack. The thermography device is in particular a laser-free or laser-independent thermography device in which no heating of the component takes place by the thermography device.
Dadurch ist es möglich, während der generativen Fertigung die jeweils zuletzt erzeugte Schicht eines Bauteils während der Fertigung zu prüfen. Auf diese Weise ergibt sich eine Prüfung in Form eines Online- Verfahrens, mittels dessen das gesamte Bauteil während der Entstehung bzw. Herstellung auf Risse untersucht und lückenlos dokumentiert werden kann. Bevorzugterweise wird jede einzelne Schicht einer derartigen Behandlung unterzogen. As a result, it is possible to test the respectively last-produced layer of a component during production during additive production. This results in a test in the form of an on-line method by means of which the entire component can be examined for cracks during production or production and completely documented. Preferably, each individual layer is subjected to such a treatment.
Mit dem erfindungsgemäßen Verfahren ist es somit möglich, eine Rissprüfung mit Hilfe eines Online- Verfahrens ohne signifikanten Mehraufwand durchzuführen. Innere Risse können zerstörungsfrei nachgewiesen werden, so dass eine Luftfahrtzulassung des Bauteiles ohne nachgelager- te Prüfungen möglich ist. With the method according to the invention, it is thus possible to carry out a crack test using an online method without significant additional effort. Internal cracks can be detected non-destructively so that aerospace approval of the component is possible without downstream tests.
In einer vorteilhaften Ausgestaltung der Erfindung erzeugt die gesteuerte Wärmebehandlung eine Wärmestrahlung in der Schicht, die im Infrarotbereich am Rand des sichtbaren Spektrums und im Erfassungsspektrum einer Thermografieeinrichtung liegt. Es wird also eine reduzierte Wärmeeinbringung durchgeführt, die die Temperatur in der Schicht örtlich auf ein Niveau anhebt, auf dem Wärmestrahlung im nahen Infrarot ausgesendet wird, ohne dass es dabei zum erneuten Aufschmelzen kommt. Die Wärmestrahlung kommt dabei jedoch so nahe an den Rand des sichtbaren Spektrums, dass eine hochauflösende Thermografieeinrichtung die Wärmeverteilung erfassen kann. In einer speziellen Ausführungsform bewirkt mindestens eine für das generative Fertigungsverfahren benötigte Energiequelle, insbesondere ein Laser, die Wärmebehandlung. Hierbei ist außer der Energiequelle für das generative Fertigungsverfahren keine weitere Energiequelle erforderlich. In einer alternativen Ausführungsform bewirkt mindestens eine Energiequelle die Wärmebehandlung, die vom generativen Fertigungsverfahren unabhängig ist. Bei dieser Alternative erfolgt eine Aufteilung der Funktionen des generativen Fertigungsverfahrens und der Wärmebehandlung. Dadurch kann eine bestehende Vorrichtung ohne Online-Rissprüfung leicht nachgerüstet werden. In an advantageous embodiment of the invention, the controlled heat treatment generates heat radiation in the layer, which lies in the infrared region at the edge of the visible spectrum and in the detection spectrum of a thermography device. It is thus carried out a reduced heat input, which raises the temperature in the layer locally to a level at which heat radiation in the near infrared is emitted, without causing re-melting occurs. However, the heat radiation comes so close to the edge of the visible spectrum that a high-resolution thermography device can detect the heat distribution. In a specific embodiment, at least one energy source required for the additive manufacturing process, in particular a laser, effects the heat treatment. In this case, no further energy source is required except the energy source for the generative manufacturing process. In an alternative embodiment, at least one energy source effects the heat treatment, which is independent of the generative manufacturing process. In this alternative, a division of the functions of the generative manufacturing process and the heat treatment takes place. As a result, an existing device can be easily retrofitted without online crack detection.
Außerdem kann das generative Fertigungsverfahren ein selektives Laserschmelzen und/oder ein selektives Lasersintern sein. Diese Verfahren sind besonders gut für die generative Fertigung von metallischen Bauteilen geeignet. Gemäß einer vorteilhaften Weiterbildung der Erfindung wird der Riss durch erneutes Aufschmelzen der rissbehafteten Schicht korrigiert. Dadurch wird die Qualität der Schicht nicht nur geprüft, sondern auch gesichert bzw. gewährleistet. In addition, the additive manufacturing process may be a selective laser melting and / or a selective laser sintering. These methods are particularly well suited for the additive production of metallic components. According to an advantageous development of the invention, the crack is corrected by reflowing the cracked layer. Thus, the quality of the layer is not only tested, but also secured or guaranteed.
In einer weiter verbesserten Ausgestaltung der Erfindung werden die von der Thermografieein- richtung aufgenommenen Bilder analysiert und bei Erkennen des Risses eine Signaleinrichtung aktiviert und/oder ein erneutes Aufschmelzen der rissbehafteten Schicht ausgelöst. Diese Verfahrensschritte können rein manuell, vollautomatisch oder teilweise automatisch bzw. teilweise manuell erfolgen. Das Aktivieren der Signaleinrichtung kann eine Bedienperson alarmieren, wenn ein Riss erkannt wird. Die Bedienperson kann dann die generative Fertigung des Bauteils unter- brechen und die Energiequelle für das generative Fertigungsverfahren so einstellen, dass die rissbehaftete Schicht erneut aufgeschmolzen wird. Alternativ kann das erneute Aufschmelzen der rissbehafteten Schicht automatisch ausgelöst werden. Dabei kann zusätzlich ein Alarmsignal erzeugt werden. In a further improved embodiment of the invention, the images recorded by the thermography device are analyzed and, upon detection of the crack, a signaling device is activated and / or a remelting of the cracked layer is triggered. These method steps can be purely manual, fully automatic or partially automatic or partially manual. The activation of the signaling device may alert an operator when a crack is detected. The operator can then interrupt the generative production of the component and set the energy source for the generative manufacturing process so that the cracked layer is remelted again. Alternatively, the remelting of the cracked layer can be triggered automatically. In addition, an alarm signal can be generated.
Weiterhin besteht die Lösung der Aufgabe in einer Vorrichtung zur Durchführung des Verfahrens mit mindestens einer generativen Fertigungseinrichtung und mindestens einer Thermogra- fieeinrichtung, dadurch gekennzeichnet, dass die Vorrichtung mindestens eine Energiequelle umfasst, mittels derer die gesteuerte Wärmebehandlung jeder einzelnen Schicht durchführbar ist. Die Energiequelle muss speziell ausgebildet sein, damit diese die gesteuerte Wärmebehandlung ausführen kann. Diese Funktion ermöglicht die Qualitätssicherung. In einer vorteilhaften Ausfuhrungsform der Erfindung ist die Energiequelle der generativen Fertigungseinrichtung gleichzeitig die Energiequelle für die gesteuerte Wärmebehandlung. Zum Beispiel kann für die Wärmebehandlung der in der generativen Fertigungseinrichtung bereits vorhandene Laser genutzt werden, so dass eine weitere Energiequelle nicht erforderlich ist. Man erreicht dadurch eine Thermografieprüfung ohne zusätzliche Integration weiterer Energiequellen und Aufnahmesysteme in die generative Fertigungseinrichtung. Furthermore, the solution of the object in an apparatus for carrying out the method with at least one additive manufacturing device and at least one thermogravure fieeinrichtung, characterized in that the device comprises at least one energy source, by means of which the controlled heat treatment of each individual layer is feasible. The energy source must be specially designed for it to perform the controlled heat treatment. This feature enables quality assurance. In an advantageous embodiment of the invention, the energy source of the generative manufacturing device is at the same time the energy source for the controlled heat treatment. For example, can be used for the heat treatment of the already existing in the generative manufacturing device laser, so that a further energy source is not required. This achieves a thermography test without additional integration of further energy sources and recording systems in the generative manufacturing facility.
In einer alternativen Ausführungsform der Erfindung ist die Energiequelle der generativen Fertigungseinrichtung unabhängig von der Energiequelle für die gesteuerte Wärmebehandlung. Hierdurch ist das leichte Nachrüsten von bestehenden Anlagen möglich. In an alternative embodiment of the invention, the energy source of the generative manufacturing device is independent of the energy source for the controlled heat treatment. This makes the easy retrofitting of existing systems possible.
In einer weiteren bevorzugten Weiterbildung der Erfindung umfasst die Thermografieeinrichtung eine hoch auflösenden Bildaufnahmevorrichtung und/oder eine für Infrarotstrahlen sensitive Bildaufnahmevorrichtung, die insbesondere auf CCD-, CMOS- oder sCMOS-Sensoren basiert. Derartige Bildaufnahmevorrichtungen sind gut für thermographische Aufnahmen geeignet. Man erreicht dadurch eine schnelle, extrem hoch auflösende Thermografieprüfung mit allen Vorteilen dieser Prüftechnik. In a further preferred development of the invention, the thermography device comprises a high-resolution image recording device and / or an image recording device sensitive to infrared rays, which is based in particular on CCD, CMOS or sCMOS sensors. Such image pickup devices are well suited for thermographic recording. This achieves a fast, extremely high-resolution thermography test with all the advantages of this test technique.
Zusätzlich kann dass das Bauteil während der Prüfung einhausungsfrei in der generativen Fertigungsvorrichtung angeordnet sein. Dies ermöglicht erst die Durchführung der Bauteilprüfung in einem Online- Verfahren. Bei der aus dem Stand der Technik bekannten Laserthermographie muss das zu prüfende Bauteil aus lasertechnischen Sicherheitsgründen eingehaust werden. Außerdem kommt es durch die hohe Laserenergie zu einer ungesteuerten und unerwünschten starken Erwärmung der Prüfoberfläche. Insbesondere umfasst die Vorrichtung mindestens eine Anzeigeeinrichtung, mindestens eineIn addition, during the test, the component may be arranged without housing in the generative manufacturing device. This only allows the execution of the component inspection in an online process. In the laser thermography known from the prior art, the component to be tested must be housed for laser safety reasons. In addition, the high laser energy leads to an uncontrolled and undesired strong heating of the test surface. In particular, the device comprises at least one display device, at least one
Auswerteeinrichtung, mindestens eine Signaleinrichtung zum Melden eines Risses und mindes- tens eine Steuerung der Energiequelle der generativen Fertigungsvorrichtung. Auf der Anzeigeeinrichtung können die von der Thermografieeinrichtung erfassten Aufnahmen optisch dargestellt werden. Die Auswerteeinrichtung dient zur Datenverarbeitung. Die Signaleinrichtung kann eine Bedienperson alarmieren, wenn ein Riss erkannt wird. Die Bedienperson kann dann die generative Fertigung des Bauteils unterbrechen und die Energiequelle für das generative Ferti- gungsverfahren so steuern, dass die rissbehaftete Schicht erneut aufgeschmolzen wird. Alternativ kann das erneute Aufschmelzen der Schicht mittels der Steuerung der Energiequelle für das generative Fertigungsverfahren automatisch von der Auswerteeinrichtung ausgelöst werden. Dabei kann zusätzlich die Signaleinrichtung aktiviert werden. Im Folgenden wird ein Ausführungsbeispiel der Erfindung anhand von fünf stark vereinfachten Figuren näher erläutert. Es zeigen: Evaluation device, at least one signaling device for reporting a crack and at least at least one control of the power source of the generative manufacturing device. The recordings recorded by the thermography device can be displayed optically on the display device. The evaluation device is used for data processing. The signaling device may alert an operator when a crack is detected. The operator can then interrupt the generative production of the component and control the energy source for the generative manufacturing process in such a way that the cracked layer is remelted again. Alternatively, the remelting of the layer by means of the control of the energy source for the generative manufacturing process can be triggered automatically by the evaluation device. In addition, the signaling device can be activated. In the following an embodiment of the invention will be explained in more detail with reference to five greatly simplified figures. Show it:
Fig. 1 eine perspektivische Ansicht eines Ausschnitts einer erfindungsgemäßen Vorrichtung, Fig. 2 eine schematische Seitenansicht der erfindungsgemäßen Vorrichtung gemäß Fig. 1 , 1 is a perspective view of a detail of a device according to the invention, Fig. 2 is a schematic side view of the device according to the invention shown in FIG. 1,
Fig. 3 eine thermographische Aufnahme der jeweils obersten Schicht mehrerer Bauteile während der Durchführung des erfindungsgemäßen Verfahrens, Fig. 4 eine perspektivische Vergrößerung des in Fig. 3 dargestellten Ausschnitts IV und 3 shows a thermographic image of the respective uppermost layer of several components during the implementation of the method according to the invention, FIG. 4 shows a perspective enlargement of the detail IV and FIG
Fig. 5 eine Prinzipskizze der erfindungsgemäßen Vorrichtung. Fig. 5 is a schematic diagram of the device according to the invention.
Fig. 1 zeigt eine perspektivische Ansicht eines Ausschnitts einer erfindungsgemäßen Vorrich- tung 10, welche eine generative Fertigungseinrichtung 12 zum Herstellen eines Bauteils 14 um- fasst. Fig. 1 wird im Folgenden in Zusammenschau mit Fig. 2 erläutert werden, in welcher eine schematische Seitenansicht der erfindungsgemäßen Vorrichtung 10 gemäß Fig. 1 abgebildet ist. Die Vorrichtung 10 dient zur Durchführung eines Verfahrens zur Qualitätssicherung eines Bauteils 14 während dessen Herstellung. Die generative Fertigungseinrichtung 12 selbst ist vorliegend als an sich bekannte, selektive Laserschmelzanlage (SLM) ausgebildet, d.h. ein Laser 22 ist die Energiequelle für den Schmelzvorgang. Der Laser ist nach unten gerichtet, so dass das Bauteil 14 von unten nach oben in übereinander aufzubringenden Schichten hergestellt werden kann. Eine Thermografieeinrichtung 18 ist außerhalb eines Bauraums 16 (Fig. 2) der generativen Fertigungseinrichtung 12 angeordnet und dient dazu, einen Wärmeverlauf in der obersten Schicht des Bauteils 14 während dessen Herstellung zu erfassen. Die Thermografieeinrichtung 18 ist auf die jeweils oberste Schicht des Bauteils 14 gerichtet, wobei der Erfassungswinkel der Thermogra- fieinrichtung 18 den Bauraum 16 überdeckt, so dass die gesamte oberste Schicht des Bauteils 14 erfasst werden kann. Zu diesem Zweck ist die Thermografieeinrichtung in einer vertikalen Ebene, die hier der Bildebene in Fig. 2 entspricht, zwischen dem Laser 22 und den äußeren Begrenzungen des Bauraums 16 angeordnet. Dadurch wird eine optische Verzerrung, die bei einer zu stark geneigten Thermografieeinrichtung entstehen könnte, vermieden. Zwischen dem Bauraum 16 (Fig. 2) und der Thermografieeinrichtung 18 ist ein Laser-Schutzglas 20 (Fig. 1 ) angeordnet, um eine Beschädigung eines sCMOS-Sensors der Kamera durch einen Laser 22 der generativen Fertigungseinrichtung 12 zu verhindern. Die Thermografieeinrichtung 18 befindet sich somit oberhalb des Bauraums 16 und außerhalb des Strahlengangs II des Lasers 22 der generativen Fertigungseinrichtung 12. Hierdurch wird sichergestellt, dass sich die Ther- mografieeinrichtung 18 nicht im Strahlengang II befindet und dass der Laser 22 dementsprechend keine Energieverluste durch optische Elemente wie halbtransparente Spiegel, Gitter oder dergleichen erleidet. Weiterhin beeinflusst die Thermografieeinrichtung 18 nicht das Herstellungsverfahren des Bauteils 14 und ist zudem einfach austauschbar bzw. nachrüstbar. Die Thermografieeinrichtung 18 umfasst vorliegend eine IR-sensitive sCMOS-Kamera mit 5,5 Megapixeln und einer Bildwiederholrate von 100 Hz. Obwohl grundsätzlich auch andere Sensortypen, Schwarzweiß-Kameras oder dergleichen verwendet werden können, liefert ein Farbsensor bzw. ein Sensor mit einem breiten Spektralbereich vergleichsweise mehr Informationen, welche eine dementsprechend genauere Beurteilung der obersten Schicht des Bauteils 14 erlauben. Zum Herstellen des Bauteils 14 werden in an sich bekannter Weise dünne Pulverschichten einer hochtemperaturfesten Metalllegierung auf eine Plattform (nicht gezeigt) der generativen Fertigungseinrichtung 12 aufgebracht, mit Hilfe des Lasers 22 lokal aufgeschmolzen und durch Abkühlen verfestigt. Anschließend wird die Plattform abgesenkt, eine weitere Pulverschicht aufgebracht und erneut verfestigt. Dieser Zyklus wird solange wiederholt, bis das Bauteil 14 herge- stellt ist. Ein beispielhaftes Bauteil 14 besteht aus bis zu 2000 Bauteilschichten und hat eine Gesamtschichthöhe von 40 mm. Das fertige Bauteil 14 kann anschließend weiterbearbeitet oder sofort verwendet werden. 1 shows a perspective view of a section of a device 10 according to the invention, which comprises a generative production device 12 for producing a component 14. Fig. 1 will be explained below in conjunction with Fig. 2, in which a schematic side view of the device 10 according to the invention shown in FIG. 1 is shown. The device 10 serves to carry out a method for quality assurance of a component 14 during its manufacture. In the present case, the generative production device 12 itself is designed as a selective laser melting system (SLM) known per se, ie a laser 22 is the energy source for the melting process. The laser is directed downwards, so that the component 14 can be produced from the bottom to the top in layers to be applied one above the other. A thermography device 18 is arranged outside a construction space 16 (FIG. 2) of the generative production device 12 and serves to detect a heat development in the uppermost layer of the component 14 during its production. The thermography device 18 is directed onto the respectively uppermost layer of the component 14, wherein the detection angle of the thermography device 18 covers the installation space 16 so that the entire uppermost layer of the component 14 can be detected. For this purpose, the thermography device is arranged in a vertical plane, which in this case corresponds to the image plane in FIG. 2, between the laser 22 and the outer boundaries of the installation space 16. As a result, an optical distortion that might arise in a too inclined thermography device avoided. Between the installation space 16 (FIG. 2) and the thermography device 18, a laser protection glass 20 (FIG. 1) is arranged in order to prevent damage to a sCMOS sensor of the camera by a laser 22 of the generative production device 12. The thermography device 18 is thus located above the installation space 16 and outside the beam path II of the laser 22 of the generative production device 12. This ensures that the thermography device 18 is not located in the beam path II and that the laser 22 accordingly no energy losses through optical elements like semitransparent mirrors, grids or the like. Furthermore, the thermography device 18 does not affect the manufacturing process of the component 14 and is also easily replaceable or retrofittable. The thermography device 18 here comprises an IR-sensitive sMOS camera with 5.5 megapixels and a refresh rate of 100 Hz. Although other sensor types, black-and-white cameras or the like can be used in principle, a color sensor or a sensor with a broad spectral range provides comparatively more information, which allows a correspondingly more accurate assessment of the uppermost layer of the component 14. To produce the component 14, thin powder layers of a high-temperature-resistant metal alloy are applied in a manner known per se to a platform (not shown) of the generative production device 12, locally melted by means of the laser 22 and solidified by cooling. Subsequently, the platform is lowered, applied a further powder layer and solidified again. This cycle is repeated until the component 14 is produced. An exemplary component 14 consists of up to 2000 component layers and has a total layer height of 40 mm. The finished component 14 can then be further processed or used immediately.
Bei dem erfindungsgemäßen Verfahren wird die jeweils oberste Schicht des Bauteils 14 einer Wärmebehandlung unterhalb der Schmelztemperatur des Bauteilmaterials unterzogen. Diese Wärmebehandlung bewirkt, dass von der obersten Schicht eine Wärmestrahlung ausgeht, die mittels einer Thermografieeinrichtung 18 erfasst werden kann. Die Wärmestrahlung der obersten Schicht wird so eingestellt, dass sie im Infrarotbereich am Rand des sichtbaren Spektrums und auch im Empfindlichkeitsbereich der Thermografieeinrichtung 18 liegt. In the method according to the invention, the respectively uppermost layer of the component 14 is subjected to a heat treatment below the melting temperature of the component material. This heat treatment causes thermal radiation emanating from the uppermost layer, which can be detected by means of a thermography device 18. The heat radiation of the uppermost layer is adjusted so that it lies in the infrared region at the edge of the visible spectrum and also in the sensitivity range of the thermography device 18.
Der durch eine Energiequelle, z.B. dem Laser 22 oder eine zusätzliche Energiequelle, erzeugte Wärmeverlauf in der obersten Schicht des Bauteils 14 wird dabei mit Hilfe der Thermografieeinrichtung 18 in Form eines Schichtbildes 24 (vgl. Fig. 3) ermittelt. Der Wärmeverlauf in der obersten Schicht des Bauteils 14 und gegebenenfalls weitere hieraus abgeleitete Informationen werden anschließend ortsaufgelöst und beispielsweise über Helligkeitswerte und/oder Farben kodiert mittels einer Anzeigeeinrichtung 32 (Fig. 5) visualisiert. The energy source, e.g. The heat generated in the uppermost layer of the component 14 by the laser 22 or an additional energy source is determined in the form of a slice image 24 (see FIG. The heat profile in the uppermost layer of the component 14 and optionally further information derived therefrom is subsequently visualized in a spatially resolved manner and coded, for example, via brightness values and / or colors by means of a display device 32 (FIG. 5).
Während der Prüfung des Bauteils 14 ist dieses ohne eine Einhausung in der generativen Fertigungseinrichtung 12 angeordnet. Eine Einhausung ist nicht notwendig, denn die Thermografie- einrichtung 18 hat weder während der generativen Fertigung noch während der Prüfung des Bauteils 14 einen Einfluss auf den Wärmeverlauf im Bauteil 14. During the examination of the component 14, this is arranged without an enclosure in the generative production device 12. An enclosure is not necessary because the thermography device 18 has no influence on the heat flow in the component 14 either during the additive production or during the examination of the component 14.
Durch die optische Thermographie werden nicht nur geometrische Informationen, sondern auch Informationen über die lokale Temperaturverteilung in der betreffenden Bauteilschicht erhalten. Dabei kann grundsätzlich vorgesehen sein, dass das Schichtbild 24 aus mehreren Einzelbildern zusammengesetzt ist. Beispielsweise kann das Schichtbild 24 je nach Fläche des Bauraums 16 aus bis zu 1000 Einzelbildern oder mehr pro Bauteilschicht zusammengesetzt werden bzw. aus Einzelbildern, die jeweils zwischen 0, 1 cm 2 und 1 ,0 cm der einzelnen Bauteilschicht abbilden. Die Belichtungszeit pro Bild liegt bedarfsweise zwischen 1 ms und 5000 ms, bevorzugt zwischen 50 ms und 500 ms. Grundsätzlich kann vorgesehen sein, dass die vom Laserstrahl zurückgelegte Strecke pro Einzelbild zwischen 10 mm und 120 mm, also beispielsweise 10 mm, 20 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 1 10 mm oder 120 mm beträgt. Weiterhin kann grundsätzlich vorgesehen sein, dass jedes Schichtbild 24 innerhalb von 2 Minuten ermittelt wird, um eine zu starke Abkühlung der Bauteilschichten und einen damit einhergehenden Informations- verlust zu vermeiden. The optical thermography not only provides geometric information, but also information about the local temperature distribution in the relevant component layer. It can be provided in principle that the layer image 24 is composed of several individual images. For example, the layer image 24 depending on the surface of the space 16 be composed of up to 1000 individual images or more per component layer or from individual images, each of which between 0, 1 cm 2 and 1, 0 cm of the individual component layer image. The exposure time per image is required between 1 ms and 5000 ms, preferably between 50 ms and 500 ms. In principle, it can be provided that the distance covered by the laser beam per individual image is between 10 mm and 120 mm, for example 10 mm, 20 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 1 10 mm or 120 mm. Furthermore, it can in principle be provided that each layer image 24 is determined within 2 minutes in order to avoid excessive cooling of the component layers and a concomitant loss of information.
Fig. 3 zeigt exemplarisch ein Schichtbild 24 von mehreren Bauteilen 14, die gemeinsam im Bauraum 16 der Fertigungseinrichtung 12 hergestellt werden und vorliegend als Rotorschaufeln für ein Flugzeugtriebwerk dargestellt sind, die in einer Richtung senkrecht zu ihrer Längserstre- ckung schichtweise aufgebaut werden. Das Schichtbild kann beispielsweise auf mindestens einer Anzeigeeinrichtung 32 (Fig. 5) dargestellt sein. Man erkennt, dass das Schichtbild 24 den gesamten Bauraum 16 überlappungsfrei abbildet. Von jedem Bauteil 14 können beliebig viele Detailausschnitte vergrößert werden. Die maximale Vergrößerung der Detailausschnitte hängt vom Auflösungsvermögen der Thermografieeinrichtung 18 ab. 3 shows, by way of example, a layer image 24 of a plurality of components 14, which are produced together in the installation space 16 of the production device 12 and are represented here as rotor blades for an aircraft engine, which are constructed in layers in a direction perpendicular to their longitudinal extent. The layer image can be displayed, for example, on at least one display device 32 (FIG. 5). It can be seen that the layer image 24 images the entire space 16 without overlapping. From each component 14 as many detail sections can be increased. The maximum magnification of the detail sections depends on the resolution of the thermography device 18.
Mit dem Bezugszeichen III sind ein Detail und die zugehörige Vergrößerung dieses Details von einem der Bauteile 14 gekennzeichnet, wobei das entsprechende Bauteil 14 in seiner obersten Schicht einen schematisch dargestellten Riss 30 aufweist. Der Riss 30 kann ein Heißriss oder ein Segmentierungsriss sein. Das Bezugszeichen IV kennzeichnet einen speziellen Ausschnitt aus dem Detail III, wobei der Ausschnitt IV den Riss 30 umfasst. With the reference numeral III, a detail and the associated enlargement of this detail of one of the components 14 are characterized, wherein the corresponding component 14 has a schematically illustrated crack 30 in its uppermost layer. The crack 30 may be a hot crack or a segmentation crack. The reference numeral IV denotes a special section of the detail III, wherein the cutout IV includes the crack 30.
Fig. 4 zeigt eine zusätzliche Vergrößerung des Ausschnitts IV in einer schematischen perspektivischen Ausschnittsansicht. Beispielhaft sind hier drei Schichten 26, 28 des Bauteils 14 dargestellt. Das Bauteil 14 kann jedoch auch in Abhängigkeit vom momentanen Fertigungszustand mehr oder weniger Schichten 26 umfassen. Die beiden hier dargestellten Schichten 26 sind rissfreie Schichten, deren Rissfreiheit mit Hilfe der Thermografieeinrichtung 18 festgestellt werden konnte, so dass der Fertigungsprozess weitergeführt wurde. Die oberste Schicht des Bauteils 14 ist eine rissbehaftete Schicht 28. 4 shows an additional enlargement of the section IV in a schematic perspective detail view. By way of example, three layers 26, 28 of the component 14 are shown here. However, the component 14 may also include more or fewer layers 26 depending on the current manufacturing state. The two layers 26 shown here are crack-free layers whose cracks are detected by means of the thermography device 18 could, so that the manufacturing process was continued. The uppermost layer of the component 14 is a cracked layer 28.
Der Verlauf und die Form des Risses 30 sind hier lediglich schematisch dargestellt. In der Schicht 28 kann auch mehr als ein Riss 30 auftreten. Der Riss kann eine beliebige zufällige Form annehmen. Die Länge und Breite des Risses 30 kann variieren und im Bereich weniger Mikrometer liegen. Diese geringen Abmessungen können nur mit Hilfe der Thermografieeinrichtung 18 erfasst werden. Risse 30 in dieser Größenordnung können außerdem nur durch die entsprechende oben beschriebene Wärmebehandlung in den optischen Erfassungsbereich der Thermografieeinrichtung gebracht werden. The course and the shape of the crack 30 are shown here only schematically. In the layer 28, more than one crack 30 may occur. The crack can take any random form. The length and width of the crack 30 may vary and be in the range of a few microns. These small dimensions can only be detected by means of the thermography device 18. In addition, cracks 30 of this magnitude can only be brought into the optical detection range of the thermography device by the corresponding heat treatment described above.
Wenn die Länge und/oder die maximale Breite des Risses 30 bestimmte Grenzwerte unterschreiten, kann die generative Fertigung fortgesetzt werden. Wenn die Grenzwerte jedoch erreicht oder überschritten werden, wird der Herstellungsprozess für das entsprechende Bauteil 14 vorzeitig beendet oder die rissbehaftete Schicht 28 des Bauteils 14 wird durch ein erneutes Aufschmelzen korrigiert. If the length and / or the maximum width of the crack 30 fall below certain limit values, the generative production can be continued. However, if the limits are reached or exceeded, the manufacturing process for the corresponding component 14 is prematurely terminated or the cracked layer 28 of the component 14 is corrected by reflow.
Gemäß Fig. 5 wird jede Schicht 26, 28 mit Hilfe der Thermografieeinrichtung 18 optisch erfasst und auf der Anzeigeeinrichtung 32 dargestellt. Zudem steht die Thermografieeinrichtung mit mindestens einer Auswerteeinrichtung 34 in Wirkverbindung, so dass die aufgenommenen Bil- der dort sortiert und gespeichert und ggf. ein Befehl zum Unterbrechen des generativen Fertigungsprozesses eines oder mehrerer rissbehafteter Bauteile 14 ausgelöst werden können. Die Auswerteeinrichtung 34 ist so konfiguriert, dass diese den Riss 30 in der obersten Schicht 28 des Bauteils 14 mit Hilfe eines Algorithmus erkennen kann. Diese Abläufe können jedoch auch manuell nach Auswertung der Bilder bzw. Aufnahmen der Thermografieeinrichtung 18 auf der An- Zeigeeinrichtung 32 durch eine Bedienperson durchgeführt werden. According to FIG. 5, each layer 26, 28 is optically detected by means of the thermography device 18 and displayed on the display device 32. In addition, the thermography device is in operative connection with at least one evaluation device 34 so that the recorded images can be sorted and stored there and, if necessary, an instruction for interrupting the generative production process of one or more components 14 having cracks can be triggered. The evaluation device 34 is configured such that it can detect the crack 30 in the uppermost layer 28 of the component 14 with the aid of an algorithm. However, these processes can also be carried out manually by evaluating the images or images of the thermography device 18 on the pointing device 32 by an operator.
Wenn mit Hilfe der Thermografieeinrichtung 18 und der Auswerteeinrichtung 34 erkannt wird, dass die Schicht 28 des Bauteils 14 rissbehaftet ist, kann der generative Fertigungsprozess unterbrochen und die rissbehaftete Schicht 28 durch erneutes Aufschmelzen korrigiert werden. Das erneute Aufschmelzen der rissbehafteten Schicht 28 erfolgt beispielsweise dadurch, dass dieIf it is detected with the aid of the thermography device 18 and the evaluation device 34 that the layer 28 of the component 14 is subject to cracking, the generative production process can be interrupted and the cracked layer 28 corrected by reflowing. The remelting of the cracked layer 28 takes place, for example, in that the
Auswerteeinrichtung 34 bei automatischem Erkennen eines Risses 30 der Steuerung 38 des La- sers 22 einen entsprechenden Befehl zum Unterbrechen des generativen Fertigungsprozesses und zum erneuten Aufschmelzen gibt. Evaluation device 34 upon automatic detection of a crack 30 of the controller 38 of the Sers 22 gives a corresponding command for interrupting the generative manufacturing process and remelting.
Alternativ kann der generative Fertigungsprozess für ein einzelnes oder mehrere rissbehaftete Bauteile 14 vorzeitig beendet werden. Dies erfolgt durch einen manuell oder von der Auswer- teeinrichtung 34 automatisch ausgelösten Befehl an die Steuerung 38 des Lasers 22. Alternatively, the generative manufacturing process for a single or multiple cracked components 14 may be terminated prematurely. This is done by a command, which is triggered manually or by the evaluation device 34, to the controller 38 of the laser 22.
Das vorzeitige Beenden des generativen Fertigungsprozesses wird bevorzugt durchgeführt, wenn das Bauteil 14 erst eine geringe Anzahl von Schichten 26, 28 aufweist. Wenn das Bauteil 14 bereits fast fertig ist, wird das Unterbrechen und erneute Aufschmelzen der Schicht 28 bevorzugt. The premature termination of the generative manufacturing process is preferably carried out when the component 14 has only a small number of layers 26, 28. If the component 14 is already almost finished, the interruption and re-melting of the layer 28 is preferred.
Ganz allgemein kann die Auswerteeinrichtung 34 auch mit Hilfe einer Signaleinrichtung 36 einen Alarm in Form akustischer oder optischer Signale auslösen, z.B. in Form einer Warnmeldung auf der Anzeigeeinrichtung 32 oder einer anderen an die generative Fertigungseinrichtung 12 angeschlossenen Recheneinrichtung (nicht dargestellt). Dann kann von einer Bedienperson entschieden werden, ob und wie die generative Fertigung der Bauteile 14 fortgeführt wird. Quite generally, the evaluation device 34 can also trigger an alarm in the form of acoustic or optical signals by means of a signal device 36, e.g. in the form of a warning message on the display device 32 or another computing device (not shown) connected to the generative manufacturing device 12. Then it can be decided by an operator whether and how the generative production of the components 14 is continued.
Die Auswerteeinrichtung 34 und die Signaleinrichtung 36 einschließlich der erforderlichen Signalleitungen zwischen der Thermografieeinrichtung 18, der Auswerteeinrichtung, der Signaleinrichtung 36 und der Steuerung 38 des Lasers 22 generativen Fertigungseinrichtung 12 sind Be- standteile der Vorrichtung 10. The evaluation device 34 and the signal device 36 including the required signal lines between the thermography device 18, the evaluation device, the signal device 36 and the controller 38 of the laser 22 generative manufacturing device 12 are components of the device 10th
Die Erfindung bezieht sich auf ein Verfahren zur Qualitätssicherung mindestens eines Bauteils während dessen Herstellung, wobei die Herstellung mittels mindestens eines generativen Fertigungsverfahrens erfolgt, das folgende Schritte umfasst: The invention relates to a method for quality assurance of at least one component during its production, wherein the production takes place by means of at least one additive manufacturing method, comprising the following steps:
- schichtweiser Aufbau des Bauteils, - layered structure of the component,
- thermografische Aufnahme mindestens eines Bildes von jeder einzelnen aufgetragenen Schicht. Um eine zerstörungsfreie Rissprüfung eines metallischen Bauteils während des Herstellungsprozesses (Prüfung mittels eines Online-Verfahrens) zu ermöglichen, werden zumindest einige der aufgetragenen Schichten, vor der thermografischen Aufnahme des zugehörigen Bildes einer ge- steuerten Wärmebehandlung unterhalb der Schmelztemperatur des Bauteilmaterials unterzogen, wobei die Wärmebehandlung eine von der zuletzt aufgetragenen Schicht ausgehende Wärme- Strahlung bewirkt, die beim Auftreten mindestens eines Risses in der Schicht einen charakteristischen Wärmeverlauf am Riss aufweist, wobei der Wärmeverlauf und damit der Riss mittels der zugehörigen thermografischen Aufnahme sichtbar gemacht wird. Bevorzugterweise wird jede aufgetragene Schicht einer derartigen Behandlung unterzogen. thermographing at least one image of each individual layer applied. In order to enable a non-destructive crack test of a metallic component during the manufacturing process (testing by means of an on-line method), at least some of the applied layers are subjected to a controlled heat treatment below the melting temperature of the component material prior to the thermographic recording of the associated image, wherein the heat treatment a heat emanating from the last applied layer Radiation causes the occurrence of at least one crack in the layer has a characteristic heat history at the crack, the heat history and thus the crack is made visible by means of the associated thermographic recording. Preferably, each applied layer is subjected to such a treatment.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
10 Vorrichtung 10 device
12 Generative Fertigungseinrichtung 12 Generative production facility
14 Bauteil 14 component
16 Bauraum 16 space
18 Thermografieeinrichtung 18 thermography device
20 Laserschutzglas 20 laser safety glass
22 Laser 22 lasers
24 Schichtbild 24 layer picture
26 Rissfreie Schicht 26 Crack-free layer
28 Rissbehaftete Schicht 28 Cracked layer
30 Riss 30 crack
32 Anzeigeeinrichtung 32 display device
34 Auswerteeinrichtung 34 evaluation device
36 Signaleinrichtung 36 signaling device
38 Steuerung 38 control
II Strahlengang des Lasers II beam path of the laser
III Detail III detail
IV Ausschnitt IV section

Claims

Patentansprüche claims
1. Verfahren zur Qualitätssicherung mindestens eines Bauteils (14) während dessen Herstellung, wobei die Herstellung mittels mindestens eines generativen Fertigungsverfahrens erfolgt, das folgende Schritte umfasst: A method for quality assurance of at least one component (14) during its production, wherein the production takes place by means of at least one additive manufacturing method, comprising the following steps:
- schichtweiser Aufbau des Bauteils (14),  layered structure of the component (14),
- thermografische Aufnahme mindestens eines Bildes von jeder einzelnen aufgetragenen Schicht (26, 28),  thermographically taking at least one image of each individual coated layer (26, 28),
dadurch gekennzeichnet, dass zumindest einige der aufgetragenen Schichten (26, 28) vor der thermografischen Aufnahme des zugehörigen Bildes einer gesteuerten Wännebehandlung unterhalb der Schmelztemperatur des Bauteilmaterials unterzogen werden, wobei die Wärmebehandlung eine von der zuletzt aufgetragenen Schicht ausgehende Wärmestrahlung bewirkt, die beim Auftreten mindestens eines Risses (30) in der Schicht (28) einen charakteristischen Wärmeverlauf am Riss (30) aufweist, wobei der Wärmeverlauf und damit der Riss (30) mittels der zugehö- rigen thermografischen Aufnahme sichtbar gemacht wird. characterized in that at least some of the applied layers (26, 28) are subjected to a controlled heat treatment below the melting temperature of the component material before the thermographic image of the associated image, the heat treatment causing a heat radiation emanating from the last applied layer, which at least one occurs Crack (30) in the layer (28) has a characteristic heat profile at the crack (30), wherein the heat history and thus the crack (30) is made visible by means of the associated thermographic recording.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die gesteuerte Wärmebehandlung eine Wärmestrahlung in der Schicht (26, 28) erzeugt, die im Infrarotbereich am Rand des sichtbaren Spektrums und im Erfassungsspektrum einer Thermografieeinrichtung (18) liegt. 2. The method according to claim 1, characterized in that the controlled heat treatment generates a heat radiation in the layer (26, 28) which lies in the infrared region at the edge of the visible spectrum and in the detection spectrum of a thermography device (18).
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mindestens eine für das generative Fertigungsverfahren benötigte Energiequelle, insbesondere ein Laser (22), die Wärmebehandlung bewirkt. 3. The method according to claim 1 or 2, characterized in that at least one energy source required for the generative manufacturing process, in particular a laser (22), causes the heat treatment.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mindestens eine Energiequelle die Wärmebehandlung bewirkt, die vom generativen Fertigungsverfahren unabhängig ist. 4. The method according to claim 1 or 2, characterized in that at least one energy source causes the heat treatment, which is independent of the generative manufacturing process.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das generative Fertigungsverfahren ein selektives Laserschmelzen und/oder ein selektives Lasersintern ist. 5. The method according to any one of claims 1 to 4, characterized in that the additive manufacturing process is a selective laser melting and / or a selective laser sintering.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Riss (30) durch erneutes Aufschmelzen der rissbehafteten Schicht (28) korrigiert wird. 6. The method according to any one of claims 1 to 5, characterized in that the crack (30) is corrected by reflowing the cracked layer (28).
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die von der Thermografieeinrichtung (18) aufgenommenen Bilder analysiert und bei Erkennen des Risses (30) eine Signaleinrich- tung aktiviert und/oder ein erneutes Aufschmelzen der rissbehafteten Schicht (28) ausgelöst werden. 7. Method according to claim 6, characterized in that the images recorded by the thermography device (18) are analyzed and upon detection of the crack (30) a signal device is activated and / or a remelting of the cracked layer (28) is triggered.
8. Vorrichtung (10) zur Qualitätssicherung mindestens eines Bauteils während dessen Herstellung, wobei die Herstellung mittels mindestens eines generativen Fertigungsverfahrens erfolgt, insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 7, mit mindestens einer generativen Fertigungseinrichtung (12) und mindestens einer Thermografieeinrichtung (18), dadurch gekennzeichnet, dass die Vorrichtung (10) mindestens eine Energiequelle (22) umfasst, mittels derer die gesteuerte Wärmebehandlung jeder einzelnen Schicht (26, 28) durchführbar ist. 8. Device (10) for quality assurance of at least one component during its manufacture, wherein the production by means of at least one generative manufacturing method, in particular for carrying out the method according to one of claims 1 to 7, with at least one generative manufacturing device (12) and at least one thermography device (18), characterized in that the device (10) comprises at least one energy source (22) by means of which the controlled heat treatment of each individual layer (26, 28) is feasible.
9. Vorrichtung (10) nach Anspruch 8, dadurch gekennzeichnet, dass die Energiequelle (22) der generativen Fertigungseinrichtung (12) gleichzeitig die Energiequelle für die gesteuerte Wärmebehandlung ist. 9. Device (10) according to claim 8, characterized in that the energy source (22) of the generative manufacturing device (12) is at the same time the energy source for the controlled heat treatment.
10. Vorrichtung (10) nach Anspruch 8, dadurch gekennzeichnet, dass die Energiequelle (22) der generativen Fertigungseinrichtung (12) unabhängig von der Energiequelle für die gesteuerte Wärmebehandlung ist. 10. Device (10) according to claim 8, characterized in that the energy source (22) of the generative manufacturing device (12) is independent of the energy source for the controlled heat treatment.
1 1. Vorrichtung (10) nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Thermografieeinrichtung (18) eine hoch auflösenden Bildaufnahmevorrichtung und/oder eine für Infrarotstrahlen sensitive Bildaufnahmevorrichtung umfasst, die insbesondere auf CCD-, CMOS- oder sCMOS-Sensoren basiert. 11. Device (10) according to one of claims 8 to 10, characterized in that the thermography device (18) comprises a high-resolution image recording device and / or an infrared ray-sensitive image recording device, in particular CCD, CMOS or sCMOS sensors based.
12. Vorrichtung (10) nach Anspruch 1 1 , dadurch gekennzeichnet, dass das Bauteil (14) während der Prüfung einhausungsfrei in der generativen Fertigungsvorrichtung (12) angeordnet ist. 12. The device (10) according to claim 1 1, characterized in that the component (14) during the examination is arranged without a housing in the generative manufacturing device (12).
13. Vorrichtung (10) nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass die Vorrichtung (10) mindestens eine Anzeigeeinrichtung (32), mindestens eine Auswerteeinrichtung (34), mindestens eine Signaleinrichtung (36) zum Melden eines Risses (30) und mindestens eine Steuerung (38) der Energiequelle der generativen Fertigungsvorrichtung (12) umfasst. 13. Device (10) according to one of claims 8 to 12, characterized in that the device (10) at least one display device (32), at least one evaluation device (34), at least one signaling device (36) for reporting a crack (30). and at least one controller (38) of the power source of the generative manufacturing device (12).
EP15733608.2A 2014-06-26 2015-04-29 Method and device for the quality assurance of at least one component during the production thereof by a generative production process Withdrawn EP3160681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014212246.5A DE102014212246B3 (en) 2014-06-26 2014-06-26 Method and device for quality assurance
PCT/DE2015/000205 WO2015197038A1 (en) 2014-06-26 2015-04-29 Method and device for the quality assurance of at least one component during the production thereof by a generative production process

Publications (1)

Publication Number Publication Date
EP3160681A1 true EP3160681A1 (en) 2017-05-03

Family

ID=53502379

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15733608.2A Withdrawn EP3160681A1 (en) 2014-06-26 2015-04-29 Method and device for the quality assurance of at least one component during the production thereof by a generative production process

Country Status (4)

Country Link
US (1) US20170136574A1 (en)
EP (1) EP3160681A1 (en)
DE (1) DE102014212246B3 (en)
WO (1) WO2015197038A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110434330A (en) * 2019-06-28 2019-11-12 上海电气集团股份有限公司 A kind of technological parameter development approach of powdering formula increasing material manufacturing target metal materials

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015196149A1 (en) 2014-06-20 2015-12-23 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
DE102015204800B3 (en) * 2015-03-17 2016-12-01 MTU Aero Engines AG Method and device for quality evaluation of a component produced by means of an additive manufacturing method
DE102015215853A1 (en) * 2015-08-20 2017-02-23 MTU Aero Engines AG Device and method for producing or repairing a three-dimensional object
JP2018535121A (en) 2015-11-06 2018-11-29 ヴェロ・スリー・ディー・インコーポレイテッド Proficient 3D printing
US10183330B2 (en) 2015-12-10 2019-01-22 Vel03D, Inc. Skillful three-dimensional printing
DE102016201086A1 (en) * 2016-01-26 2017-07-27 Airbus Operations Gmbh ADDITIVE MANUFACTURING SYSTEM AND TEST METHODS FOR ADDITIVELY MANUFACTURED COMPONENTS
DE102016201289A1 (en) 2016-01-28 2017-08-03 Siemens Aktiengesellschaft Process for additive production and device
DE102016201290A1 (en) 2016-01-28 2017-08-17 Siemens Aktiengesellschaft Method of quality assurance and device
US10434573B2 (en) 2016-02-18 2019-10-08 Velo3D, Inc. Accurate three-dimensional printing
DE102016105172A1 (en) * 2016-03-21 2017-09-21 CIRP GmbH Laser sintering method and apparatus for performing a laser sintering process
US11027332B2 (en) * 2016-04-15 2021-06-08 United States Of America As Represented By The Administrator Of Nasa System and method for in-situ characterization and inspection of additive manufacturing deposits using transient infrared thermography
DE102016209065B4 (en) 2016-05-25 2023-06-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for process monitoring in the additive manufacturing of components
EP3263316B1 (en) 2016-06-29 2019-02-13 VELO3D, Inc. Three-dimensional printing and three-dimensional printers
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
DE102016117633A1 (en) 2016-09-19 2018-03-22 Cl Schutzrechtsverwaltungs Gmbh Device for producing three-dimensional objects
US20180104742A1 (en) * 2016-10-18 2018-04-19 General Electric Company Method and system for thermographic inspection of additive manufactured parts
US20180126461A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US20180186082A1 (en) 2017-01-05 2018-07-05 Velo3D, Inc. Optics in three-dimensional printing
US20180250744A1 (en) 2017-03-02 2018-09-06 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US20180281282A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
DE102017208092A1 (en) * 2017-05-15 2018-11-15 MTU Aero Engines AG Layer construction method and layer construction device for the additive production of at least one component region of a component
AU2018273352B2 (en) 2017-05-22 2023-07-27 Howmedica Osteonics Corp. Device for in-situ fabrication process monitoring and feedback control of an electron beam additive manufacturing process
CN109079143B (en) * 2017-06-13 2020-12-29 中国航发商用航空发动机有限责任公司 Method for removing cracks on inner cavity surface of selective laser melting formed part
EP3638489A4 (en) * 2017-06-16 2021-06-23 Interlog Corporation Scalable multiple-material additive manufacturing
DE102017124100A1 (en) * 2017-10-17 2019-04-18 Carl Zeiss Ag Method and apparatus for additive manufacturing
CN110799286B (en) 2017-06-20 2023-02-28 卡尔蔡司工业测量技术有限公司 Method and apparatus for additive manufacturing
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
DE102018201255A1 (en) * 2018-01-29 2019-08-01 MTU Aero Engines AG Layer construction method and layer construction device for the additive production of at least one component region of a component
DE102018203444A1 (en) 2018-03-07 2019-09-12 MTU Aero Engines AG Method and device for self-optimizing, additive production of component components
DE102018204510A1 (en) * 2018-03-23 2019-09-26 Eos Gmbh Electro Optical Systems Computer-based method for providing control command data for an additive manufacturing device
AU2019206103A1 (en) 2018-07-19 2020-02-06 Howmedica Osteonics Corp. System and process for in-process electron beam profile and location analyses
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
US11590711B2 (en) * 2020-05-27 2023-02-28 Icon Technology, Inc. System and method for constructing structures by adding layers of extrudable building material using a control feedback loop
CN111998789B (en) * 2020-07-09 2022-05-10 北京金轮坤天特种机械有限公司 Thermal barrier coating spraying quality evaluation and control method
DE102020127581A1 (en) 2020-10-20 2022-04-21 Carl Zeiss Ag Method and device for the additive manufacturing of a workpiece
DE102020134795A1 (en) 2020-12-23 2022-06-23 Carl Zeiss Ag Method and device for the additive manufacturing of a workpiece
US11752558B2 (en) 2021-04-16 2023-09-12 General Electric Company Detecting optical anomalies on optical elements used in an additive manufacturing machine
EP4173741A1 (en) 2021-10-28 2023-05-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for monitoring a laser processing process by means of speckle photometry

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122564A (en) * 1998-06-30 2000-09-19 Koch; Justin Apparatus and methods for monitoring and controlling multi-layer laser cladding
JP2000130307A (en) * 1998-10-21 2000-05-12 Toshiba Corp Hydraulic equipment having corrosion-resistive and abrasion-resistive film and coating method
US8028078B2 (en) * 2003-08-07 2011-09-27 Teamon Systems, Inc. Communications system including protocol interface device providing enhanced operating protocol selection features and related methods
US8715772B2 (en) * 2005-04-12 2014-05-06 Air Products And Chemicals, Inc. Thermal deposition coating method
DE102007056984A1 (en) * 2007-11-27 2009-05-28 Eos Gmbh Electro Optical Systems Method for producing a three-dimensional object by means of laser sintering
DE102011009624A1 (en) * 2011-01-28 2012-08-02 Mtu Aero Engines Gmbh Method and device for process monitoring
DE102011078276C5 (en) * 2011-06-29 2014-04-03 Trumpf Laser- Und Systemtechnik Gmbh Method for detecting errors during a laser machining process and laser machining apparatus
US8506836B2 (en) * 2011-09-16 2013-08-13 Honeywell International Inc. Methods for manufacturing components from articles formed by additive-manufacturing processes
EP2666612B1 (en) * 2012-05-25 2018-11-28 MTU Aero Engines AG Method and device for imaging at least one three-dimensional component

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015197038A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110434330A (en) * 2019-06-28 2019-11-12 上海电气集团股份有限公司 A kind of technological parameter development approach of powdering formula increasing material manufacturing target metal materials

Also Published As

Publication number Publication date
WO2015197038A1 (en) 2015-12-30
DE102014212246B3 (en) 2015-08-06
US20170136574A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
DE102014212246B3 (en) Method and device for quality assurance
DE102014208768B4 (en) Method and device for quality assurance
EP2964449B1 (en) Method and device for evaluating the quality of a component produced by means of an additive laser sintering and/or laser melting method
EP3095591B1 (en) Method and device for detecting at least sections of a contour of a layer of an object obtainable by additive processing
EP3062991B1 (en) Method for producing a three-dimensional component
DE102013109915B4 (en) Method and device for checking an inspection system for detecting surface defects
EP2666612B1 (en) Method and device for imaging at least one three-dimensional component
DE102018129441A1 (en) Monitoring a laser processing process using deep folding neural networks
EP2726244A1 (en) Method for detecting defects in a non-linear weld seam or a non-linear cutting gap during a laser-machining process, and corresponding laser-machining device
WO2018069308A1 (en) Method and device for determining and regulating a focal position of a machining beam
EP3082102A1 (en) Method of evaluating at least one component layer produced by means of a generative powder layer
DE102015207834A1 (en) Processing machine for a laser beam to be performed production method and method for their operation
WO2020099421A1 (en) Method and device for monitoring a welding process for welding glass workpieces
DE102018207405A1 (en) Method and device for producing a layer on a support and component with the layer
EP3488305A1 (en) Method and device for determining component quality
EP2825870B1 (en) Method and apparatus for the thermographic inspection of the surface of products from a metal casting production line
DE102016211935A1 (en) Device for process monitoring in a build-up welding process
DE102018110692B3 (en) Method and device for time-resolved analysis of transfer films
DE102018127987A1 (en) Method for component measurement of an additively manufactured object with a defined energy input
DE19623159C2 (en) Method and device for assessing a body by detecting a temperature field of the body
EP1857813A2 (en) Method for judging bodies
DE102011085677A1 (en) Monitoring a laser machining operation to be performed on a workpiece, comprises learning a process environment and classifying a current process result, where learning step comprises monitoring a laser machining process by a camera
EP2762260A1 (en) Apparatus and method for camera-based monitoring of crack closing and remelting operations
EP3173618B1 (en) Method for the analysis of parts of wind energy assemblies, in particular of rotor blades
EP3907023A1 (en) Method of producing a defective sample component using laser beam melting

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160921

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180517

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180928