EP3137753A4 - Method and system for control of a forced induction system - Google Patents
Method and system for control of a forced induction system Download PDFInfo
- Publication number
- EP3137753A4 EP3137753A4 EP15785378.9A EP15785378A EP3137753A4 EP 3137753 A4 EP3137753 A4 EP 3137753A4 EP 15785378 A EP15785378 A EP 15785378A EP 3137753 A4 EP3137753 A4 EP 3137753A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- control
- forced induction
- induction system
- forced
- induction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000006698 induction Effects 0.000 title 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D23/00—Controlling engines characterised by their being supercharged
- F02D23/02—Controlling engines characterised by their being supercharged the engines being of fuel-injection type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/20—Control of the pumps by increasing exhaust energy, e.g. using combustion chamber by after-burning
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/001—Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/007—Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D41/0007—Controlling intake air for control of turbo-charged or super-charged engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
- F02D41/0085—Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/26—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/402—Multiple injections
- F02D41/405—Multiple injections with post injections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B2037/122—Control of rotational speed of the pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D37/00—Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Supercharger (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1450504A SE540370C2 (en) | 2014-04-29 | 2014-04-29 | Förfarande samt system för styrning av ett överladdningssystem vid ett motorfordon |
PCT/SE2015/050467 WO2015167392A1 (en) | 2014-04-29 | 2015-04-27 | Method and system for control of a forced induction system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3137753A1 EP3137753A1 (en) | 2017-03-08 |
EP3137753A4 true EP3137753A4 (en) | 2018-01-24 |
Family
ID=54358970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15785378.9A Withdrawn EP3137753A4 (en) | 2014-04-29 | 2015-04-27 | Method and system for control of a forced induction system |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170204794A1 (en) |
EP (1) | EP3137753A4 (en) |
KR (2) | KR20190073612A (en) |
SE (1) | SE540370C2 (en) |
WO (1) | WO2015167392A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106930850B (en) * | 2015-12-29 | 2020-07-03 | 长城汽车股份有限公司 | Dual-fuel engine system, control method thereof and vehicle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5845495A (en) * | 1996-04-17 | 1998-12-08 | Robert Bosch Gmbh | Arrangement for recognizing differences in RPM between two exhaust gas turbochargers |
EP2034158A1 (en) * | 2006-06-12 | 2009-03-11 | Yanmar Co., Ltd. | Engine with supercharger |
US20110257867A1 (en) * | 2010-04-16 | 2011-10-20 | Gm Global Technology Operations, Inc. | Method and system for reducing turbo lag in an engine |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2199259A (en) * | 1937-09-18 | 1940-04-30 | United Aircraft Corp | Manifold pressure equalizer |
US2359615A (en) * | 1941-04-09 | 1944-10-03 | Wright Aeronautical Corp | Multisupercharger control system |
US4861233A (en) * | 1983-10-07 | 1989-08-29 | The Babcock & Wilcox Company | Compressor surge control system |
DE3832965A1 (en) * | 1988-09-29 | 1990-04-05 | Bosch Gmbh Robert | METHOD AND DEVICE FOR CHARGING PRESSURE |
JPH0765523B2 (en) * | 1989-07-20 | 1995-07-19 | 日産自動車株式会社 | Fuel injection control device for diesel engine |
US5306116A (en) * | 1992-04-10 | 1994-04-26 | Ingersoll-Rand Company | Surge control and recovery for a centrifugal compressor |
SE504089C2 (en) * | 1995-03-10 | 1996-11-11 | Scania Cv Ab | Method and arrangement for controlled overcharging of a multi-cylinder internal combustion engine |
JPH09177555A (en) * | 1995-12-27 | 1997-07-08 | Toyota Motor Corp | Supercharging pressure control device for supercharger |
EP0894958B1 (en) * | 1997-07-31 | 2005-02-09 | Dr.Ing.h.c. F. Porsche Aktiengesellschaft | Failure detecting unit for an internal combustion engine and method for operating an internal combustion engine |
JPH11255199A (en) * | 1998-03-10 | 1999-09-21 | Toyota Motor Corp | Thrust control system for aircraft |
DE19823014C2 (en) * | 1998-05-22 | 2003-11-13 | Udo Mailaender Gmbh | Method of charging an internal combustion engine |
US6155050A (en) * | 1999-06-01 | 2000-12-05 | Cummins Engine Co Inc | System and method for protecting a turbocharger in the event of a wastegate failure |
DE10054843B4 (en) * | 2000-11-04 | 2006-09-14 | Daimlerchrysler Ag | Method for limiting the boost pressure |
DE10310221B4 (en) * | 2003-03-08 | 2006-11-23 | Daimlerchrysler Ag | Method for limiting a boost pressure |
DE10320977A1 (en) * | 2003-05-09 | 2004-12-09 | Siemens Ag | Procedure for monitoring the speed of a bi-turbocharger |
US6837225B1 (en) * | 2003-07-29 | 2005-01-04 | Toyota Jidosha Kabushiki Kaisha | Fuel supply control device for a turbo-charged diesel aircraft engine |
JP4394947B2 (en) * | 2003-12-24 | 2010-01-06 | 株式会社豊田自動織機 | Supercharging control device in an internal combustion engine with a supercharger |
US7421854B2 (en) * | 2004-01-23 | 2008-09-09 | York International Corporation | Automatic start/stop sequencing controls for a steam turbine powered chiller unit |
US7007472B2 (en) * | 2004-02-10 | 2006-03-07 | Cummins, Inc. | System for limiting turbocharger rotational speed |
US7165403B2 (en) * | 2004-07-28 | 2007-01-23 | Ford Global Technologies, Llc | Series/parallel turbochargers and switchable high/low pressure EGR for internal combustion engines |
SE0402409L (en) * | 2004-10-06 | 2005-08-09 | Saab Automobile | Internal combustion engine with parallel turbocharger and method of control |
KR20060072734A (en) * | 2004-12-23 | 2006-06-28 | 두산인프라코어 주식회사 | Appareatus for supplying compressed air of construction heavy equipments |
JP4335840B2 (en) * | 2005-04-26 | 2009-09-30 | 三菱重工業株式会社 | Fuel control device and control method for diesel engine for power generation |
ES2340501T3 (en) * | 2005-07-05 | 2010-06-04 | MAGNETI MARELLI S.p.A. | METHOD AND A DEVICE FOR CONTROLLING THE ROTATION SPEED OF A TURBO-SUPERLOADER IN AN INTERNAL COMBUSTION ENGINE. |
US8307645B2 (en) * | 2005-11-02 | 2012-11-13 | General Electric Company | Apparatus and method for avoidance of turbocharger surge on locomotive diesel engines |
US7877996B2 (en) * | 2005-11-28 | 2011-02-01 | Ford Global Technologies, Llc | Turbo-lag compensation system having an ejector |
DE102006005504B4 (en) * | 2006-02-07 | 2021-09-02 | Robert Bosch Gmbh | Method for regulating an actual size of an internal combustion engine |
CN101082318B (en) * | 2006-05-31 | 2011-09-21 | 卡特彼勒公司 | Turbo-charger control system |
EP2044314B1 (en) * | 2006-07-13 | 2020-11-11 | Volvo Lastvagnar AB | Method and system for operating a combustion engine brake |
EP2050943B1 (en) * | 2006-08-10 | 2011-11-23 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine with supercharger |
US7712299B2 (en) * | 2006-09-05 | 2010-05-11 | Conocophillips Company | Anti-bogdown control system for turbine/compressor systems |
JP2008095542A (en) * | 2006-10-06 | 2008-04-24 | Toyota Motor Corp | Control system of internal combustion engine |
DE102006048227B4 (en) * | 2006-10-11 | 2008-08-28 | Siemens Ag | Method and device for determining an operating characteristic of an injection system and a correspondingly equipped internal combustion engine |
JP4476317B2 (en) * | 2007-08-30 | 2010-06-09 | 三菱重工業株式会社 | Integrated control method and apparatus for gas engine |
US7640794B2 (en) * | 2007-09-06 | 2010-01-05 | Ford Global Technologies, Llc | Airflow balance for a twin turbocharged engine system |
US8001782B2 (en) * | 2007-09-26 | 2011-08-23 | Ford Global Technologies, Llc | Approach for identifying and responding to an unresponsive wastegate in a twin turbocharged engine |
US8126632B2 (en) * | 2007-10-26 | 2012-02-28 | Ford Global Technologies, Llc | Engine idle speed and turbocharger speed control |
US8131446B2 (en) * | 2007-10-29 | 2012-03-06 | Ford Global Technologies, Llc | Engine idle speed and turbocharger speed control |
JP5301857B2 (en) * | 2008-03-03 | 2013-09-25 | ヤンマー株式会社 | Common rail type electronic injection control engine |
US7890241B2 (en) * | 2008-05-21 | 2011-02-15 | Ford Global Technologies, Llc | Boosted engine control responsive to driver selected performance |
US8061137B2 (en) * | 2008-05-30 | 2011-11-22 | Caterpillar Inc. | Fuel control system for limiting turbocharger speed |
EP2347110B1 (en) * | 2008-11-20 | 2015-09-16 | Wärtsilä Finland Oy | Method of controlling turbocharger speed of a piston engine and a control system for a turbocharged piston engine |
US8312718B2 (en) * | 2009-07-29 | 2012-11-20 | Ford Global Technologies, Llc | Control strategy for decreasing resonance in a turbocharger |
US8516799B2 (en) * | 2009-12-23 | 2013-08-27 | Ford Global Technologies, Llc | Methods and systems for emission system control |
US20120179356A1 (en) * | 2010-02-09 | 2012-07-12 | Kazunari Ide | Control device for turbocharged engine |
JP5370243B2 (en) * | 2010-03-31 | 2013-12-18 | マツダ株式会社 | Control device for diesel engine with turbocharger |
WO2012018644A1 (en) * | 2010-07-26 | 2012-02-09 | Vandyne Super Turbo, Inc. | Superturbocharger control systems |
JP5874161B2 (en) * | 2010-10-28 | 2016-03-02 | いすゞ自動車株式会社 | Turbocharger system |
DE102010055137A1 (en) * | 2010-12-18 | 2012-06-21 | Audi Ag | Method for operating a motor vehicle with two turbochargers |
US8783030B2 (en) * | 2011-09-25 | 2014-07-22 | Cummins Inc. | System for controlling an air handling system including an electric pump-assisted turbocharger compressor |
CN103975147B (en) * | 2011-12-09 | 2017-05-24 | 丰田自动车株式会社 | Internal combustion engine |
JP5770657B2 (en) * | 2012-03-01 | 2015-08-26 | ヤンマー株式会社 | engine |
US8997456B2 (en) * | 2012-06-12 | 2015-04-07 | Caterpillar Inc. | Compression ignition engine with low load rapid warm up strategy |
US9303553B2 (en) * | 2013-12-05 | 2016-04-05 | GM Global Technology Operations LLC | Turbo speed control for mode transitions in a dual turbo system |
-
2014
- 2014-04-29 SE SE1450504A patent/SE540370C2/en unknown
-
2015
- 2015-04-27 US US15/302,059 patent/US20170204794A1/en not_active Abandoned
- 2015-04-27 WO PCT/SE2015/050467 patent/WO2015167392A1/en active Application Filing
- 2015-04-27 KR KR1020197017660A patent/KR20190073612A/en active IP Right Grant
- 2015-04-27 EP EP15785378.9A patent/EP3137753A4/en not_active Withdrawn
- 2015-04-27 KR KR1020167032326A patent/KR20160145772A/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5845495A (en) * | 1996-04-17 | 1998-12-08 | Robert Bosch Gmbh | Arrangement for recognizing differences in RPM between two exhaust gas turbochargers |
EP2034158A1 (en) * | 2006-06-12 | 2009-03-11 | Yanmar Co., Ltd. | Engine with supercharger |
US20110257867A1 (en) * | 2010-04-16 | 2011-10-20 | Gm Global Technology Operations, Inc. | Method and system for reducing turbo lag in an engine |
Non-Patent Citations (1)
Title |
---|
See also references of WO2015167392A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2015167392A1 (en) | 2015-11-05 |
KR20190073612A (en) | 2019-06-26 |
SE540370C2 (en) | 2018-08-21 |
US20170204794A1 (en) | 2017-07-20 |
EP3137753A1 (en) | 2017-03-08 |
KR20160145772A (en) | 2016-12-20 |
SE1450504A1 (en) | 2015-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2534117B (en) | Control system and method of controlling a driveline | |
EP3143490A4 (en) | Printing system and method of controlling printing system | |
EP3096994B8 (en) | Driveline and method of controlling a driveline | |
GB201408703D0 (en) | Control system and method | |
EP3090415A4 (en) | System and method for effecting a physical experience | |
GB2546872B (en) | Control system and method of controlling a driveline | |
GB2523193B (en) | Control system and method | |
EP3192314A4 (en) | System and method for power control | |
EP3169458A4 (en) | System and method for distributed control of multiple wellheads | |
EP3101761A4 (en) | Quick-charging control method and system | |
GB201409181D0 (en) | Control system and method | |
GB2548731B (en) | Control system and method of controlling a driveline | |
GB2542067B (en) | Method and system for controlling well operations | |
GB201402937D0 (en) | Control system and method | |
EP3178636A4 (en) | Shape forming apparatus and control method for shape forming apparatus | |
GB201409141D0 (en) | Control system and method | |
GB2534347B (en) | Control system and method of controlling a driveline | |
EP3158505A4 (en) | A method and a system for object recognition | |
GB2523195B (en) | Control system and method | |
EP3091507A4 (en) | Object recognition apparatus and control method therefor | |
GB2523198B (en) | Control System and method | |
GB201402888D0 (en) | Control System and method | |
IL247918B (en) | Method and system for controlling phase of a signal | |
GB2523194B (en) | Control system and method | |
GB201415427D0 (en) | Control system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20161129 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20171221 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F02B 37/12 20060101ALI20171215BHEP Ipc: F02D 41/40 20060101ALI20171215BHEP Ipc: F02B 37/20 20060101ALI20171215BHEP Ipc: F02B 37/007 20060101AFI20171215BHEP Ipc: F02D 23/02 20060101ALI20171215BHEP |
|
17Q | First examination report despatched |
Effective date: 20191029 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20200310 |