EP3115547A2 - Procédé d'extraction de méthane à partir de veine de houille et de roche perméables comprenant une veine de houille - Google Patents

Procédé d'extraction de méthane à partir de veine de houille et de roche perméables comprenant une veine de houille Download PDF

Info

Publication number
EP3115547A2
EP3115547A2 EP15758369.1A EP15758369A EP3115547A2 EP 3115547 A2 EP3115547 A2 EP 3115547A2 EP 15758369 A EP15758369 A EP 15758369A EP 3115547 A2 EP3115547 A2 EP 3115547A2
Authority
EP
European Patent Office
Prior art keywords
coal
coal bed
methane
bed
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15758369.1A
Other languages
German (de)
English (en)
Other versions
EP3115547A4 (fr
Inventor
Petr Georgiyevich AGEEV
Nikita Petrovich AGEEV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
" Georezonans " Ltd
Original Assignee
" Georezonans " Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by " Georezonans " Ltd filed Critical " Georezonans " Ltd
Publication of EP3115547A2 publication Critical patent/EP3115547A2/fr
Publication of EP3115547A4 publication Critical patent/EP3115547A4/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/263Methods for stimulating production by forming crevices or fractures using explosives

Definitions

  • the invention pertains to methods of extracting methane from coal beds and permeable enclosing rock by the periodic action of plasma energy brought up to the producing coal bed and to the permeable enclosing rocks through a slit perforation, oriented in regard to the direction of the vectors of the principal stresses, produced by the explosion of a calibrated metallic conductor, resulting in the creation of directional short broadband pulses of high pressure of a pulsed plasma generator situated in the working interval of the vertical well shaft which is opened by the slit perforation for initiation of compressive and rarefactive stresses in the coal bed, and the occurrence of acoustic and hydrodynamic cavitation encouraging the formation of an extensive network of anomalous microfractures, which creates conditions for maximum desorption of methane from the coal, cracks, microcracks, micropores, capillaries and microcapillaries, and also from the permeable enclosing rocks ( Fig. 1 ).
  • This method has direct access to the coal bed and the permeable enclosing rocks through the slit perforation, and it allows for the physical, mechanical and geological technical peculiarities of the coal beds, as well as the permeable enclosing rocks, and as a result of the directional periodic broadband pulsed action according to a developed program and a mathematical model it creates an effect of self-modulation of the coal beds, accompanied by active desorption and diffusion of methane.
  • the gas saturated state of methane coal beds is made up of four components:
  • the main mass of the methane molecules is distributed in the coal volume and the concept of an interstitial solid solution is applicable to the system of methane and coal.
  • the methane molecules interpenetrating the volume do not occupy voids in the crystal lattice, but rather vacancies in the solid in accordance with the sorption curve for coal beds.
  • the only mechanism capable of bringing about a dispersion of the coal and the development of an anomalous network of microfracturing is the bursting of gas bubbles interspersed in the structure of the coal bed, which begin to be actively released under periodic directional broadband pulsed plasma action having direct access to the coal bed through a slit perforation, creating acoustic and hydrodynamic cavitation.
  • the water penetrating into the coal bed with dissolved gas has low strength, due to the presence in it of cavitation nuclei: poorly wettable coal surfaces, coal particles with cracks and microcracks, which are filled with gas.
  • the extraction of methane by the proposed method is done on a methane coal deposit not relieved of the load of the rock pressure by means of vertical wells drilled from the top surface, encased with production casings of different diameter and having a slit perforation in the region of the working interval, relieving the load on both the coal bed and the permeable encasing rocks.
  • Figure 1 shows a diagram of the result of the periodic action of plasma energy on the coal deposit.
  • a ready-made well is used (previously drilled), the thickness of the stratum is determined in the well profile, the grade composition of the coal is determined and the permeable enclosing rocks are characterized, after which there is brought up to the methane coal deposit through a slit perforation of the working interval of the vertical well a source of periodic directional short broadband pulses of high pressure and the action on the bed commences in the form of periodic directional short pulses of high pressure, the number of high pressure pulses and the length of action in each interval of the methane coal deposit being determined by the thickness of the bed in the well profile, the grade composition of the coals and the characterization of the enclosing rocks.
  • the source of periodic directional broadband short pulses of high pressure acts by the energy of the plasma formed by the explosion of a calibrated metallic conductor.
  • the source of the periodic directional short pulses of high pressure represents a generator of pulsed plasma action.
  • a source works as follows. High-voltage current (3000-5000 V) from a bank of storage capacitors is applied to electrodes, which make a circuit via the calibrated conductor, resulting in its explosion and the formation of a plasma in the enclosed space.
  • the pulsed plasma action is also carried out in these rocks, since the methane diffuses into the more permeable rocks and its volume may exceed the volume of methane in the coal bed.
  • the permeable enclosing rocks behave like an oil and gas producing collector, not having any coal dust, and therefore the gas output will be maximum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Earth Drilling (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
EP15758369.1A 2014-03-04 2015-03-27 Procédé d'extraction de méthane à partir de veine de houille et de roche perméables comprenant une veine de houille Withdrawn EP3115547A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2014108013/03A RU2554611C1 (ru) 2014-03-04 2014-03-04 Способ добычи метана из угольных пластов
PCT/RU2015/000188 WO2015133938A2 (fr) 2014-03-04 2015-03-27 Procédé d'extraction de méthane à partir de veine de houille et de roche perméables comprenant une veine de houille

Publications (2)

Publication Number Publication Date
EP3115547A2 true EP3115547A2 (fr) 2017-01-11
EP3115547A4 EP3115547A4 (fr) 2017-12-06

Family

ID=53498569

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15758369.1A Withdrawn EP3115547A4 (fr) 2014-03-04 2015-03-27 Procédé d'extraction de méthane à partir de veine de houille et de roche perméables comprenant une veine de houille

Country Status (8)

Country Link
EP (1) EP3115547A4 (fr)
CN (1) CN104895543B (fr)
AU (2) AU2014203426A1 (fr)
CA (1) CA2928816C (fr)
EA (1) EA033490B1 (fr)
HK (1) HK1210246A1 (fr)
RU (1) RU2554611C1 (fr)
WO (1) WO2015133938A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2626104C1 (ru) * 2016-07-15 2017-07-21 Общество с ограниченной ответственностью "Георезонанс" Способ заблаговременной дегазации угольных пластов
CN112780243B (zh) * 2020-12-31 2022-03-29 中国矿业大学 一体化强化煤层瓦斯抽采系统以及抽采方法
CN114934765B (zh) * 2022-05-19 2022-12-06 贵州一和科技有限公司 一种煤巷水力切缝-松动爆破联合增强瓦斯抽采效率方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756367A (en) * 1987-04-28 1988-07-12 Amoco Corporation Method for producing natural gas from a coal seam
SU1693265A1 (ru) * 1989-09-06 1991-11-23 Московский Горный Институт Способ гидрообработки угольного пласта
SU1765465A1 (ru) * 1990-08-07 1992-09-30 Государственный Макеевский Научно-Исследовательский Институт По Безопасности Работ В Горной Промышленности Способ импульсного воздействи на газоносный угольный пласт
RU2129209C1 (ru) * 1996-12-09 1999-04-20 Акционерная нефтяная компания "Башнефть" Устройство для щелевой перфорации стенок скважины
US6427774B2 (en) * 2000-02-09 2002-08-06 Conoco Inc. Process and apparatus for coupled electromagnetic and acoustic stimulation of crude oil reservoirs using pulsed power electrohydraulic and electromagnetic discharge
RU2181446C1 (ru) * 2001-07-18 2002-04-20 Фатихов Василь Абударович Способ добычи, сбора и утилизации метана и других углеводородных газов из каменноугольных залежей
RU2188322C1 (ru) * 2001-09-07 2002-08-27 Московский государственный горный университет Способ гидравлической обработки угольного пласта
DE10320402A1 (de) * 2003-05-06 2004-11-25 Udo Adam Verfahren zur Gewinnung von Grubengas in nicht standfestem Gebirge
RU2244106C1 (ru) * 2003-07-28 2005-01-10 Санкт-Петербургский государственный горный институт им. Г.В. Плеханова (Технический университет) Способ интенсификации добычи нефти
CN201045293Y (zh) * 2006-12-13 2008-04-09 中国兵器工业第二一三研究所 油气井用高孔密多级脉冲携砂延缝射孔装置
CN101004133B (zh) * 2007-01-17 2010-07-28 中国兵器工业第二一三研究所 声波震荡及脉冲燃烧式压裂器
RU2369728C2 (ru) * 2007-08-28 2009-10-10 Валерий Степанович Вячеславов Секторный способ щелевой гидромеханической перфорации скважины
EA013445B1 (ru) * 2008-07-14 2010-04-30 Открытое Акционерное Общество "Белгорхимпром" (Оао "Белгорхимпром") Способ подземной разработки залежи каменного угля
US8613312B2 (en) * 2009-12-11 2013-12-24 Technological Research Ltd Method and apparatus for stimulating wells
RU2456042C1 (ru) * 2011-05-19 2012-07-20 Олег Савельевич Кочетов Пеногенератор эжекционного типа
CN202370487U (zh) * 2011-10-08 2012-08-08 龚大建 一种煤层气井下超声波增产抽采装置
US9181788B2 (en) * 2012-07-27 2015-11-10 Novas Energy Group Limited Plasma source for generating nonlinear, wide-band, periodic, directed, elastic oscillations and a system and method for stimulating wells, deposits and boreholes using the plasma source
CN102865058B (zh) * 2012-09-14 2015-09-16 中北大学 多脉冲增效射孔装置

Also Published As

Publication number Publication date
EA201650012A1 (ru) 2017-05-31
AU2015224617B2 (en) 2017-08-10
EA033490B1 (ru) 2019-10-31
HK1210246A1 (en) 2016-04-15
CA2928816C (fr) 2018-03-13
AU2015224617A1 (en) 2016-04-21
WO2015133938A2 (fr) 2015-09-11
RU2554611C1 (ru) 2015-06-27
AU2014203426A1 (en) 2015-09-24
CN104895543B (zh) 2018-04-24
CA2928816A1 (fr) 2015-09-11
EP3115547A4 (fr) 2017-12-06
WO2015133938A3 (fr) 2015-11-05
CN104895543A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
Li et al. The effect of pulse frequency on the fracture extension during hydraulic fracturing
US9816356B2 (en) Method for extracting methane from coal beds and from penetrating rock enclosing a coal bed
Sun et al. Seismic vibration for improved oil recovery: A comprehensive review of literature
AU2015224617B2 (en) Method for extracting methane from coal beds and from penetrating rock enclosing a coal bed
Wu et al. Experimental investigation of crack dynamic evolution induced by pulsating hydraulic fracturing in coalbed methane reservoir1
Liu et al. A laboratory study on fracture initiation and propagation of granite under cyclic-injection hydraulic fracturing
Zhang et al. Comparison of fracturing unconventional gas reservoirs using CO2 and water: An experimental study
Gong et al. Propagation of hydraulic fracture under the joint impact of bedding planes and natural fractures in shale reservoirs
Shuaifeng et al. Permeability enhancement mechanism of sand‐carrying hydraulic fracturing in deep mining: A case study of uncovering coal in cross‐cut
Liu et al. Impact of key parameters on far-field temporary plugging and diverting fracturing in fractured reservoirs: A 2D finite element study.
Hu et al. A Study on the Factors Influencing Coal Fracturing Range Caused by Liquid Carbon Dioxide Phase Transition
Xu et al. The pressure relief and permeability increase mechanism of crossing-layers directional hydraulic fracturing and its application
Pu et al. Simulation of the Extraction Efficiency of Coalbed Methane under Water Injection: A Gas‐Liquid‐Solid Coupling Model
Plaksin et al. Improvement of degasification efficiency by pulsed injection of water in coal seam
Rathnaweera et al. Deformation mechanics and acoustic propagation in reservoir rock under brine and oil saturation: an experimental study
Zhao Mechanism of permeability enhancement in coal under repetitive strong shock waves
Bao et al. Study on the damage model of coal rock caused by hydraulic pressure and electrical impulse in borehole
Cheng et al. Numerical investigation on the mechanism of rock directional fracturing method controlled by hydraulic fracturing in dense linear multiholes
Bazhaluk et al. APPLICATION OF PULSE-WAVE TECHNOLOGY FOR OIL WELL COMPLETION.
SU1827007A3 (ru) Способ импульсного гидроразрыва породного массива
Chen et al. Experimental Investigation on Hydraulic Fracture Propagation from Perforated Horizontal Well in the Deep Tight Reservoir
RU2065035C1 (ru) Способ снижения прочности песчаников нефтешахтных пластов
Xie et al. Repeated Low‐Intensity Shock Wave Simulation Experiment for Fracture Development and Propagation of Coal
Song et al. Study on the natural fracture’s effect on hydraulic crack’s propagation in coal seam
Norouzi The effect of loading condition and the nmber of shaped charges on the perforation performane.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160902

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20171107

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 43/12 20060101AFI20171031BHEP

Ipc: E21B 28/00 20060101ALI20171031BHEP

Ipc: E21B 43/25 20060101ALI20171031BHEP

Ipc: E21B 43/263 20060101ALI20171031BHEP

Ipc: E21B 43/00 20060101ALI20171031BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20201001