EP3089177A1 - Circuit assembly and method for controlling a bistable magnetic valve for a fluid system - Google Patents

Circuit assembly and method for controlling a bistable magnetic valve for a fluid system Download PDF

Info

Publication number
EP3089177A1
EP3089177A1 EP16000656.5A EP16000656A EP3089177A1 EP 3089177 A1 EP3089177 A1 EP 3089177A1 EP 16000656 A EP16000656 A EP 16000656A EP 3089177 A1 EP3089177 A1 EP 3089177A1
Authority
EP
European Patent Office
Prior art keywords
armature
switching
current
electromagnetic
compensating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16000656.5A
Other languages
German (de)
French (fr)
Other versions
EP3089177B1 (en
Inventor
Andreas Teichmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF CV Systems Hannover GmbH
Original Assignee
Wabco GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wabco GmbH filed Critical Wabco GmbH
Publication of EP3089177A1 publication Critical patent/EP3089177A1/en
Application granted granted Critical
Publication of EP3089177B1 publication Critical patent/EP3089177B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F7/1615Armatures or stationary parts of magnetic circuit having permanent magnet

Definitions

  • the invention relates to a circuit arrangement and a method for controlling a bistable solenoid valve for a fluid system, in particular a compressed air system in a vehicle. Furthermore, a solenoid valve device with the circuit arrangement and the bistable solenoid valve is provided.
  • a 3/2-way valve may be provided which applies a first pressure output in a first armature position to a second pressure output to vent a pressure outlet line or to connect with atmosphere; In this case, a pressure input is blocked. In a second armature position of the pressure input is connected to the first pressure output, z. B. for the pneumatic supply of a compressed air brake. The second pressure output is blocked here.
  • both positions can be formed by the solenoid valve.
  • a bistable solenoid valve both positions are kept safe in the de-energized state by a permanent magnet device, wherein a solenoid device is provided for the switching operations.
  • the DE 37 30 381 A1 shows such a bistable solenoid valve, which allows a permanent magnet holding force in both positions.
  • an armature with two axially towards its end formed sealing means axially displaceable and abuts in its two positions to a first end core or second end core, wherein it closes in each of the positions with its respective sealant at the respective end core a fluid passage.
  • a permanent magnet is provided to close a magnetic field via an outer magnetic yoke and the end cores toward the armature. ever after the formation of the air gap, a first permanent magnetic field is stronger or weaker than the respective other permanent magnetic field via the first core or a second permanent magnetic field via the second core.
  • either a first coil or a second coil is energized, which amplifies one of the two permanent magnetic fields to such an extent that, despite the formation of the air gap, it exceeds the magnetic holding force of the other permanent magnetic field and thus enables switching to the other stable end position.
  • the US Pat. No. 7,483,254 B1 shows a control circuit for a bistable permanent magnet device, in which a control via pulsed signals, in particular with RC elements takes place.
  • the EP 0 328 194 A1 describes a bistable valve mechanism with a spring preload, which can be overcome by energization.
  • the invention has for its object to provide a circuit arrangement and a method for switching or for driving a bistable solenoid valve, which allow safe and fast switching between the positions with little effort.
  • both electromagnetic devices are energized during the switching operations.
  • the electromagnetic device is thus energized on the switching side, at which the axial air gap between the core and the armature is provided, with a switching current in order to support the lower permanent magnetic field due to the air gap.
  • the other electromagnetic device is preferably used for at least partial compensation of the holding, stronger permanent magnetic field, which holds the armature without an air gap at the other core.
  • the currents are preferably reversed by the electromagnetic means in the switching operations;
  • Each solenoid device or coil can act in a switching operation switching and in the other switching operation compensating.
  • the compensating current through this coil is set opposite to the (in the other switching operation) switching current from the current direction.
  • the switching operation can be improved by the energization of both coils.
  • the second electromagnet device for amplifying the weaker second permanent magnetic field is energized for the second switching operation from the first position to the second position, but also the first electromagnet device for at least partial compensation of the first permanent magnetic field.
  • the magnetic holding force of the holding first permanent magnetic field is thus already reduced, and the switching second electromagnetic field can be made smaller in terms of its magnetic field strength or the formation of ampere-turns in order to enable the switching process by amplifying the second permanent magnetic field.
  • the supplementary energization of the compensating electromagnetic field basically does not require any additional expenditure on hardware, since a switching device, for example, is required anyway.
  • B. switching transistors, are provided for its wiring.
  • the first electromagnetic field and the first permanent magnetic field thus form a first overall magnetic field, correspondingly forming the second electromagnetic field and the second permanent magnetic field thus form a second total magnetic field.
  • the two electromagnetic devices i. in particular a first and second coil
  • the current directions for the respective switching operations are reversed accordingly, so that each one electromagnetic field as compensating, i. to compensate for the stronger permanent magnetic field and switching the other magnetic field, i. is used for the active circuit.
  • the complementary design of a compensating electromagnetic field can also be problematic, depending on the dynamics and position of the armature, since initially the switching total magnetic field due to the air gap is still small, whereas the "compensating" electromagnetic field used for compensation due to the missing air gap can grow up fast. So z. B. if too fast or too strong energizing the compensating first electromagnetic field may be so great that it not only compensates the first permanent magnetic field, but overcompensated so much that there is a first total magnetic field that is greater in magnitude than that provided for active switching second overall magnetic field, which is weakened by the air gap.
  • the currents are changed in magnitude: the compensating electromagnetic field is provided with a weaker compensating current and the switching electromagnetic field is formed with a larger switching current.
  • the different current intensities can be adjusted in particular by pulsed control, in particular by PWM.
  • the electromagnet devices can be connected via high-side driver circuits to an upper supply voltage and via a low-side driver circuit (Loside) to a lower supply voltage, e.g. B. mass, are switched. It can be created a circuit arrangement that requires little hardware, z. B. only with a few switches, z. B. six transistors, gets along, which serve to drive the solenoid devices or coils; a more complex timing is generally not required.
  • the Hiside driver can z. B. directly on and off, and the different currents for the switching and compensating magnetic field by PWM control done.
  • the electromagnetic devices can directly, z. B. parallel, between two serving as a driver driver transistors, in particular MOSFETs are connected, wherein at each terminal of each solenoid device (coil) then two transistors are connected as Loside driver, which are selectively controlled; It is thus possible in each case a "crosswise operation" via a Hiside driver for both coils and selective control of the "opposite" Loside driver.
  • the compensating electromagnetic field is weaker in that the compensating current is set to be weaker in magnitude than the sustaining current.
  • the compensating current is opposite in direction to the holding current and smaller in magnitude.
  • a temporally variable energization or control of the coils can take place, in which the current is not immediately moved to its maximum value, but is raised with a time delay, z. B. with a steady increase and / or with a sudden increase over at least one mean value. So z. B. a time switch-on ramp up and / or a discrete increase over one or more mean values carried out, which allow a mechanical adjustment of the anchor, d. H. z. B. in a period above 10 ms, z. In a period of 100 ms.
  • the complementary electromagnetic field in the turn-on ramp initially compensates for the air gap loose holding permanent magnetic field, while on the other hand, the switching electromagnetic field amplifies the permanent magnetic field, so that in the duty cycle an electromagnet training is achieved, the anchor in the desired manner in the other switching position pulls before the first permanent magnetic field is overcompensated.
  • both electromagnetic devices cooperates in particular synergistically with a radially arranged permanent magnet device, by which a radial permanent magnetic field is formed which extends between the electromagnet devices.
  • a radial first and radial second permanent magnetic field are formed, which can each have a holding effect and selectively amplified by the switching electromagnetic field or can be compensated in whole or in part by the holding electromagnetic field.
  • a permanent magnetic field extends in the radial direction from the inner armature via the permanent magnet and an outer magnetic yoke forming two permanent magnetic fields extending from the yoke either at one axial end over the first core to the armature or at the other end across the second core to the armature, in each of the two positions, respectively an axial air gap is provided from the armature to one of the two cores.
  • the permanent magnet device may be designed to be annular, d. H. as a ring or disc, which - unlike conventional magnets - is magnetized in the radial direction. Alternatively to a disc can also be several z.
  • rod-shaped permanent magnets are used, which are each magnetized radially outwardly and preferably avoid tilting moments of the armature perpendicular to the axial direction by their symmetrical design.
  • the permanent magnet means is located radially outside the armature, in particular in the axial direction between the two coils of the two solenoid devices, a larger space is available, so that here also materials can be used, which allow a greater axial extent and thus more cost-effective are as z.
  • the solenoid valve device has the circuit arrangement and further the bistable solenoid valve.
  • a bistable solenoid valve 1 is in particular for use in a compressed air system, in particular as a 3/2-way solenoid valve with three terminals, preferably a pressure input 2a, a first pressure outlet 2b and a second pressure outlet 2c, the z. B. can serve as a vent formed.
  • the bistable solenoid valve 1 in a pneumatic system or compressed air system, z. B. the compressed air system of a commercial vehicle serve, optionally according to the first anchor position I the Fig. 1 to connect to the first pressure outlet 2b the second pressure outlet 2c and thus the vent to vent the compressed air supply line, or to connect the connected to the pressure inlet 2a compressed air supply line, as further below with reference to FIGS. 9 and 10 is explained.
  • a first valve seal 8 is formed, which at a first valve seat 9, z. B. to the closure of the pressure input 2a, comes to rest, as well as continue a second valve seal 10, which abutment against a second valve seat 11, z. B. for closing the second pressure output 2c comes.
  • valve seals 8 and 10 are advantageously spring biased by an armature spring 13 for sealing engagement with their respective valve seat 9 and 11, respectively.
  • the armature 7 is magnetically conductive, d. H. made of ferromagnetic material; in the axial direction A closes to a first side of a first core 12, in which according to this embodiment, the pressure input 2a and the first pressure outlet 2b are formed, and to the other, second side of a second core 14, in which the second pressure outlet 2c for the vent is formed.
  • a magnetic device 15 Radially outside the armature guide tube 6, a magnetic device 15 is arranged, which has a permanent magnet means 16 and an electromagnet means 17, wherein the electromagnet means 17 in turn with a first coil 18 and a second coil 19 is formed.
  • the entire magnet device 15 in a magnetic yoke 20, 21 is received, which is formed by a Jochtopf 20 with pot bottom 20a and cylindrical pot wall 20b and the Jochtopf 20 to an axial side closing yoke disc 21.
  • the two cores 12 and 14 are advantageously in the radial direction R directly to the yoke disc 21 and the Jochtopf 20, ie without a radial air gap. Furthermore, the armature 7 lies in its two armature positions or positions directly in the axial direction A or -A on one of the two cores 12, 14 and has an air gap 22 to the respective other core 14, 12. Thus lies in the in Fig.
  • the armature 7 is in the second position II, not shown here directly to the second core 14, ie also without an air gap, in which case an air gap between the armature 7 and the first core 12 is formed.
  • the permanent magnet device 16 is advantageously arranged axially between the first coil 18 and the second coil 19 and radially magnetized, ie the magnetization and thus the magnetic flux lines of the permanent magnetic field PM extend in the radial direction R, z. B. radially outward, ie perpendicular to the axis A.
  • Fig. 4 5 different configurations of the permanent magnet device 16 possible.
  • Fig. 4 are z. B. four individual permanent magnets 16a, 16b, 16c and 16d provided, each of which is elongated and extending in each case in a radial direction, ie perpendicular to the axis A, each having the same polarity, for. B. one to the armature guide tube 6 facing north pole N and to the radially outer pot wall 20b of the yoke pot 20 facing south pole S, or vice versa.
  • a permanent magnet disc 16e is provided, which is designed as a ring or disc and in this case is magnetized in the radial direction.
  • the permanent magnet device 16 is formed outside the armature guide tube 6, it can also be formed with a wider axial extent, so that conventional materials for permanent magnets, for. As an iron alloy or a ceramic material used; the use z. B. rare earth is not required in principle.
  • the common permanent magnetic field PM thus extends in the radial direction R through the permanent magnet means 16 and subsequently through the yoke 20, 21, being axially in both directions, i. -A and A run, i. along the pot wall 20b as first permanent magnet field PM1 and second permanent magnet field PM2, the permanent magnet fields PM1, PM2 then extending radially downwards along the pot bottom 20b and the yoke disc 21 to the cores 210, 21 at the axial ends, and subsequently axially, i. in the direction of A or -A, to the armature 7 and back to the permanent magnet device 16th
  • the two permanent magnetic fields PM1, PM2 can thus each z. B. have approximately the shape of a torus; the entire permanent magnetic field PM is thus z. B. a double torus or dumbbell-shaped.
  • the magnetically conductive armature 7 is located on the first core 12, so that in this case the first permanent magnetic field PM1 extends directly from the first core 12 through the armature 7, and in the armature 7 in the axial direction to the permanent magnet device 16.
  • An air gap is formed at best as a radial air gap between the armature 7 and the permanent magnet means 16, but not as an axial gap, so that the first permanent magnetic field PM1 forms a strong magnetic holding force of the armature 7 on the first core 12.
  • the extending through the second core 14 second permanent magnetic field PM2 passes through the air gap 22 to the armature 7 and is significantly weakened by the air gap 22.
  • the magnetic holding force of the first permanent magnetic field PM1 is significantly larger than the attractive force of the second permanent magnetic field PM2; the armature 7 is in the right position, ie the anchor position I of Fig. 1 , kept safe.
  • bistable magnetic valve 1 Since the bistable magnetic valve 1 is basically symmetrical in the axial direction A with respect to the formation of the two cores 12 and 14 and the coils 18 and 19, the in Fig. 1 not shown second armature position II held securely, since here an air gap is formed correspondingly between the armature 7 and the first core 12, which weakens the first permanent magnetic field PM1, however, there is a strong second permanent magnetic field PM2.
  • the first coil 18 generates a first electromagnetic field EM1; Accordingly, the second coil 19 generates a second electromagnetic field EM2, which overlap with the permanent magnetic fields PM1, PM2 and each other.
  • the first electromagnetic field EM1 of the first coil 18 is also toroidal in shape and extends substantially corresponding to the first permanent magnetic field PM1, in particular in rotationally symmetrical design of the permanent magnetic field PM1 after Fig. 5 :
  • the first electromagnetic field EM1 initially runs within the first coil 18, ie in the axial direction A - depending on the current supply - from the first core 12 in the axial direction inwards or outwards, ie, for example from the outside (in FIG Fig. 1 right) inwardly to the armature 7, and from the armature 7 radially outwardly, ie along the permanent magnet means 16 outwardly, and from there along the pot wall 20b and the cup bottom 20a radially inwardly back to the first core 12.
  • the second electromagnetic field EM2 similar to the second permanent magnetic field PM2, ie - depending on the polarity - of the second core 14 in the axial direction A to the armature 7 back, or in the opposite direction from the armature 7 to the second core 14 out , and in each case in the radial direction radially outwards along the permanent magnet device 16, the pot wall 20b in the axial direction, and along the yoke plate 21 radially inwardly.
  • For the second switching operation SV2 of the first armature position I of Fig. 1 Based on a first electromagnetic field EM1 of the first coil 18 is constructed, which is the first permanent magnetic field PM1 opposite and this particular partially compensated, so that the magnetic holding force of the armature 6 on the first core 12 is already at least reduced.
  • the second coil 19 is energized such that the second permanent magnetic field PM2 is amplified by the second electromagnetic field EM2, ie both fields PM2 and EM2 point in the same direction, so that in spite of the air gap 22 acting on the armature 7, in Fig. 1 towards the left magnetic force increases and the armature 7 in Fig. 1 adjusted to the left, causing the air gap 22 is reduced and disappears completely, and an air gap between the armature 7 and the first core 12 is formed.
  • one of the electromagnetic fields EM1 and EM2 is compensating and the other switching.
  • a first current I1 guided by the first coil 18 acts compensatingly, ie as a compensating first current I1_k, and a second current I2 conducted through the second coil 19 switches, ie as a switching second current I2_s.
  • a compensating second current I2_k is passed through the second coil 19, and a first current I1_s is conducted through the first coil 18.
  • the two coils 18 and 19 are connected via coil terminals 61a, b and 62a, b to respective circuit arrangements 30, 35.
  • the two coils 18 and 19 can according to the in Fig. 6 a) and b) shown embodiments of a control device 40 controlled by a circuit arrangement 30, which in particular represents an output stage, are energized together, as a parallel connection or series connection.
  • a solenoid valve device 5 is formed, which has the bistable solenoid valve 1, the circuit arrangement 30 and the control device 40.
  • first current I1_k can cause the compensating, z. B.
  • first electromagnetic field EM1 is too strong and the difference EM1 - PM1 can be greater in magnitude than the positively overlapping, but weakened by the air gap 22, switching second overall field EM2 + PM2.
  • At least the compensating current I1_k or I2_k is variable in time, z. B. ramped up, advantageously via a ramp and / or with discrete increase.
  • both currents can thus be ramped up with a time delay. This can be over in Fig. 6 a) or b) shown circuitry 30 done.
  • Tr1 OFF
  • Tr4 OFF
  • Tr2 ON
  • Tr3 ON to the supply voltage Uv over Tr2 and the series connection of the coils 18 and 19 and Tr3 to ground GND to lead.
  • the Amperewindungen AW are drawn, resulting in the product of the current and the number of turns, the starting-shift duration .DELTA.t1 between t2 and t1 is z. B.
  • ⁇ t2 50 to 70 ms
  • the total switching time .DELTA.t2 between t3 and t1 is z.
  • B. ⁇ t2 100 ms.
  • Fig. 8b shows an alternative control in which at time t1, the current is driven immediately to a mean current value I_mid, and subsequently with a linear ramp up to the time t2 to the maximum value I_max until it is turned off again at time t3.
  • the switching periods ⁇ t1 and ⁇ t2 can have similar values as in Fig. 8a accept.
  • first in the first position I of Fig. 1 weak first electromagnetic field EM1 is formed, which fully or partially compensates the holding permanent magnetic field, here thus the first permanent magnetic field PM1, but only at time t1 reaches the maximum current value I_max.
  • the starting shift duration .DELTA.t1 is sufficient to achieve a mechanical adjustment of the armature 7 away from the first armature position I; as soon as an air gap forms between the armature 7 and the first core 12, the risk of unintentional holding in the first armature position I has already been significantly reduced.
  • Fig. 7 shows a circuit arrangement 35, which can be realized without a time ramp, with driving of the transistors, in particular MOSFETs T1, T2, T3, T4, T5, T6, which are provided as itside transistors T1 and T2 and Loside transistors T3 to T6, over Hiside control signals Si1 and Si 2 and Loside- control signals Si3, Si4, Si5, Si6.
  • MOSFETs T1, T2, T3, T4, T5, T6 which are provided as itside transistors T1 and T2 and Loside transistors T3 to T6, over Hiside control signals Si1 and Si 2 and Loside- control signals Si3, Si4, Si5, Si6.
  • SV1 For both switching operations SV1, SV2 is in each case the compensating, weaker electromagnetic field, ie in Fig. 1 respectively.
  • Fig. 3 the first electromagnetic field EM1, according to only partially controlled. This can advantageously take place via PWM, wherein the activation by switching states ON, OFF and to form a power current between the minimum and maximum value, the control via PWM, ie temporary control occurs.
  • Fig. 7a shows the circuit
  • Fig. 7b supplementary the following table of activation phases switching operation Si1 Si2 Si3 Si4 Si5 si6 SV1 (II ⁇ I) ON OFF OFF 100% OFF 25% SV2 (I ⁇ II) OFF ON 25% OFF 100% OFF
  • the percentages refer to the PWM drive, i. the proportion of "ON” or transistor modulation; the value 25% thus stands in particular for a PWM control in which 25% of the clock period "ON" is present.
  • SV1 is the first switching operation for setting the first armature position I, SV2 corresponding to the second switching operation for setting the second armature position II.
  • Fig. 7c) and Fig. 7d Graphically illustrates the current paths in the two switching operations SV1 and SV2, with the switching currents I1_s and I2_s and compensating currents I1_k and I2_k, in addition z.
  • the diodes D1, D2, D3, D4, D5, D6, D7, D8 are used in the circuit arrangement 35 of Fig. 7 the prevention of reverse currents and the possibility of freewheeling currents of the coils 18 and 19.
  • Fig. 2 shows an evolution of the Fig. 1 in which a pole tube 28 is additionally provided radially between the permanent magnet device 16 and the armature 7, or the armature guide tube 6, for a better transition allow the field lines and the permanent magnetic field in the armature 7.
  • FIGS. 9 and 10 show a detailed design of a solenoid valve 1 accordingly Fig. 1 or 2 ,
  • the permanent magnet device 16 is here opposite for illustrative purposes Fig. 1 and 2 reversed polarity used.
  • Compressed air 25a is from a compressed air supply 25, z. B. a compressed air reservoir, fed via a compressed air supply line 23 to the pressure input 2a, and passed over the first pressure output 2b and a pressure output line 26 to a consumer 24.
  • a pressure outlet 27 is attached directly or indirectly via a conduit.
  • the compressed air applied to the pressure inlet 2a and the inner bore 42 of the first core 12 is blocked at the closed first valve, ie between the first valve seat 9 and the first valve seal 8.
  • Compressed air 25a can from the consumer 24 via the pressure-output line 26, the first pressure outlet 2b, then via an outer axial bore 43 of the core 12, an interior 29 of the armature 7, in which preferably also z.
  • the inner armature spring 13 is provided, and are guided over the axial gap 22 of the open second valve 10,11 and the bore 14a of the second core 14 to the second pressure outlet 2c and thus to the pressure outlet 27 for venting.
  • the second valve 10, 11 is thus open, since the second valve seat 11 is separated from the second valve seal 10 by the axial gap 22.
  • the first valve 8, 9 is open, ie the axial gap 22 is formed between the first valve seat 9 and the first valve seal 8. Accordingly, that is second valve 10, 11 closed by the second valve seat 11 rests on the second valve seal 10. Compressed air 25a is thus from the compressed air supply 25 via the compressed air supply line 23, the pressure inlet 2a, the inner bore 42, the open first valve 8, 9, the axial gap 22, the radially outer bore 43 to the first pressure outlet 2b and thus to the Consumer 24 led.
  • the bores 42, 43 in the first core 12 are advantageously formed by the first core 12 is formed with an inner tube 12 a and an outer tube 12 b, between which at least in some areas of the circumference, the outer axial bore 43 is formed; the inner bore 42 is formed by the central bore of the inner tube 12a.
  • the armature 7 is formed according to the embodiment shown here by a first anchor part 7a and a second anchor part 7b, the z. B. be joined together by press fitting; the armature spring 13 presses the valve seals 8 and 10 apart axially.
  • the armature 7 can thus be joined with an armature interior 29 which, as described above, serves as an air duct for the ventilation.

Abstract

Die Erfindung betrifft eine Schaltungsanordnung (35) zur Ansteuerung eines bistabilen Magnetventils (1) für ein Fluidsystem, wobei die Schaltungsanordnung (35) Schalteinrichtungen (T1, T2, T3, T4, T5, T6) und eine Steuereinrichtung (40) zur Ansteuerung der Schalteinrichtungen für einen ersten Schaltvorgang und einen zweiten Schaltvorgang aufweist, wobei die Steuereinrichtung (40) die Schalteinrichtungen (T1, T2, T3, T4, T5, T6) derartig ansteuert, dass in einem ersten Schaltvorgangeine erste Elektromagneteinrichtung (18) mit einem schaltenden ersten Strom bestromt ist zur Ausbildung eines den Anker von einer zweiten Ankerstellung in eine erste Ankerstellung verstellenden ersten Elektromagnetfeldes), in einem zweiten Schaltvorgang eine zweite Elektromagneteinrichtung (19) mit einem schaltenden zweiten Strom bestromt ist zur Ausbildung eines den Anker von der ersten Ankerstellung in die zweite Ankerstellung verstellenden zweiten Elektromagnetfeldes. Hierbei ist vorgesehen, dass die Steuereinrichtung (40) die Schalteinrichtungen derartig ansteuert, dass die beiden Elektromagneteinrichtungen (18, 19) jeweils sowohl in dem ersten Schaltvorgang als auch in dem zweiten Schaltvorgang bestromt sind, insbesondere in unterschiedlichen Richtungen und unterschiedlicher Stromstärke oder zeitlich verzögert.The invention relates to a circuit arrangement (35) for controlling a bistable solenoid valve (1) for a fluid system, the circuit arrangement (35) having switching devices (T1, T2, T3, T4, T5, T6) and a control device (40) for actuating the switching devices for a first switching operation and a second switching operation, wherein the control device (40) controls the switching devices (T1, T2, T3, T4, T5, T6) in such a way that in a first switching process, a first electromagnetic device (18) is energized with a switching first current for forming a first electromagnetic field which adjusts the armature from a second armature position to a first armature position), in a second switching operation, a second electromagnetic device (19) is energized with a switching second current to form a second electromagnetic field adjusting the armature from the first armature position to the second armature position. It is provided that the control device (40) controls the switching devices such that the two electromagnet devices (18, 19) are energized respectively in the first switching operation and in the second switching operation, in particular in different directions and different current intensity or delayed in time.

Description

Die Erfindung betrifft eine Schaltungsanordnung und ein Verfahren zur Ansteuerung eines bistabilen Magnetventils für ein Fluidsystem, insbesondere ein Druckluftsystem in einem Fahrzeug. Weiterhin ist eine Magnetventil-Einrichtung mit der Schaltungsanordnung und dem bistabilen Magnetventil vorgesehen.The invention relates to a circuit arrangement and a method for controlling a bistable solenoid valve for a fluid system, in particular a compressed air system in a vehicle. Furthermore, a solenoid valve device with the circuit arrangement and the bistable solenoid valve is provided.

Als bistabiles Magnetventil kann insbesondere ein 3/2-Wegeventil vorgesehen sein, das einen ersten Druckausgang in einer ersten Ankerstellung an einen zweiten Druckausgang legt, um eine Druckausgangsleitung zu entlüften bzw. mit Atmosphäre zu verbinden; hierbei ist ein Druckeingang gesperrt. In einer zweiten Ankerstellung wird der Druckeingang mit dem ersten Druckausgang verbunden, z. B. zur pneumatischen Versorgung einer Druckluft-Bremse. Der zweite Druckausgang ist hierbei gesperrt.As a bistable solenoid valve, in particular, a 3/2-way valve may be provided which applies a first pressure output in a first armature position to a second pressure output to vent a pressure outlet line or to connect with atmosphere; In this case, a pressure input is blocked. In a second armature position of the pressure input is connected to the first pressure output, z. B. for the pneumatic supply of a compressed air brake. The second pressure output is blocked here.

Somit sind durch das Magnetventil zwei Stellungen ausbildbar. Bei einem bistabilen Magnetventil werden beide Stellungen im stromlosen Zustand durch eine Permanentmagnet-Einrichtung sicher gehalten, wobei eine Elektromagneteinrichtung für die Schaltvorgänge vorgesehen ist.Thus, two positions can be formed by the solenoid valve. In a bistable solenoid valve both positions are kept safe in the de-energized state by a permanent magnet device, wherein a solenoid device is provided for the switching operations.

Die DE 37 30 381 A1 zeigt ein derartiges bistabiles Magnetventil, das in beiden Stellungen eine Dauermagnet-Haltekraft ermöglicht. Hierbei ist ein Anker mit zwei zu seinen axialen Enden hin ausgebildeten Dichtmitteln axial verschiebbar und stößt in seinen beiden Stellungen an einen ersten Endkern oder zweiten Endkern, wobei er in jeder der Stellungen mit seinem jeweiligen Dichtmittel an dem jeweiligen Endkern einen Fluiddurchlass verschließt. Ein Dauermagnet ist vorgesehen, um ein magnetisches Feld über ein äußeres magnetisches Joch und die Endkerne zu dem Anker hin zu schließen. Je nach Ausbildung des Luftspaltes ist ein erstes Permanentmagnetfeld über den ersten Kern oder ein zweites Permanentmagnetfeld über den zweiten Kern stärker oder schwächer als das jeweils andere Permanentmagnetfeld. Zum Umschalten der stabilen Stellungen wird entweder eine erste Spule oder eine zweite Spule bestromt, die jeweils eines der beiden Permanentmagnetfelder soweit verstärkt, dass es trotz der Ausbildung des Luftspaltes die Magnethaltekraft des anderen Permanentmagnetfeldes übersteigt und somit ein Umschalten in die andere stabile Endstellung ermöglicht.The DE 37 30 381 A1 shows such a bistable solenoid valve, which allows a permanent magnet holding force in both positions. In this case, an armature with two axially towards its end formed sealing means axially displaceable and abuts in its two positions to a first end core or second end core, wherein it closes in each of the positions with its respective sealant at the respective end core a fluid passage. A permanent magnet is provided to close a magnetic field via an outer magnetic yoke and the end cores toward the armature. ever after the formation of the air gap, a first permanent magnetic field is stronger or weaker than the respective other permanent magnetic field via the first core or a second permanent magnetic field via the second core. For switching the stable positions, either a first coil or a second coil is energized, which amplifies one of the two permanent magnetic fields to such an extent that, despite the formation of the air gap, it exceeds the magnetic holding force of the other permanent magnetic field and thus enables switching to the other stable end position.

Zur Ausbildung der Elektromagnetfelder ist jedoch eine hohe Anzahl Amperewindungen erforderlich, so dass großdimensionierte Spulen mit erheblichen Herstellungskosten erforderlich sind und die Schaltgeschwindigkeit begrenzt ist.To form the electromagnetic fields, however, a high number of ampere-turns is required, so that large-sized coils are required with considerable production costs and the switching speed is limited.

Die US 7,483,254 B1 zeigt eine Steuerschaltung für eine bistabile Permanentmagneteinrichtung, bei der eine Ansteuerung über gepulste Signale, insbesondere mit RC-Gliedern erfolgt.The US Pat. No. 7,483,254 B1 shows a control circuit for a bistable permanent magnet device, in which a control via pulsed signals, in particular with RC elements takes place.

Die EP 0 328 194 A1 beschreibt einen bistabilen Ventil-Mechanismus mit einer Federvorspannung, die durch Bestromung überwunden werden kann.The EP 0 328 194 A1 describes a bistable valve mechanism with a spring preload, which can be overcome by energization.

Der Erfindung liegt die Aufgabe zugrunde, eine Schaltungsanordnung und ein Verfahren zum Schalten bzw. zur Ansteuerung eines bistabilen Magnetventils zu schaffen, die bei geringem Aufwand eine sichere und schnelle Umschaltung zwischen den Stellungen ermöglichen.The invention has for its object to provide a circuit arrangement and a method for switching or for driving a bistable solenoid valve, which allow safe and fast switching between the positions with little effort.

Diese Aufgabe wird durch eine Schaltungsanordnung nach Anspruch 1 und ein Verfahren zum Schalten des Magnetventils nach Anspruch 13 gelöst. Weiterhin ist eine Magnetventil-Einrichtung mit der Schaltungsanordnung, einer Steuereinrichtung und dem Magnetventil vorgesehen. Die Unteransprüche beschreiben bevorzugte Weiterbildungen.This object is achieved by a circuit arrangement according to claim 1 and a method for switching the solenoid valve according to claim 13. Furthermore, a solenoid valve device with the circuit arrangement, a control device and the solenoid valve is provided. The dependent claims describe preferred developments.

Somit werden bei den Schaltvorgängen jeweils beide Elektromagneteinrichtungen bestromt.Thus, both electromagnetic devices are energized during the switching operations.

Für einen Schaltvorgang wird somit die Elektromagneteinrichtung an der schaltenden Seite, an der der axiale Luftspalt zwischen dem Kern und dem Anker vorgesehen ist, mit einem schaltenden Strom bestromt, um das aufgrund des Luftspalts geringere Permanentmagnetfeld zu unterstützen. Die andere Elektromagneteinrichtung dient vorzugsweise zur zumindest teilweisen Kompensierung des haltenden, stärkeren Permanentmagnetfeldes, das den Anker ohne Luftspalt an dem anderen Kern hält.For a switching operation, the electromagnetic device is thus energized on the switching side, at which the axial air gap between the core and the armature is provided, with a switching current in order to support the lower permanent magnetic field due to the air gap. The other electromagnetic device is preferably used for at least partial compensation of the holding, stronger permanent magnetic field, which holds the armature without an air gap at the other core.

Die Ströme werden durch die Elektromagneteinrichtungen bei den Schaltvorgängen vorzugsweise umgekehrt; jede Elektromagneteinrichtung bzw. Spule kann in einem Schaltvorgang schaltend und in dem anderen Schaltvorgang kompensierend wirken. Somit ist vorzugsweise in jeder Spule der kompensierende Strom durch diese Spule dem (im anderen Schaltvorgang) schaltenden Strom von der Stromrichtung her entgegen gesetzt.The currents are preferably reversed by the electromagnetic means in the switching operations; Each solenoid device or coil can act in a switching operation switching and in the other switching operation compensating. Thus, preferably in each coil, the compensating current through this coil is set opposite to the (in the other switching operation) switching current from the current direction.

Erfindungsgemäß wird erkannt, dass durch die Bestromung beider Spulen der Schaltvorgang verbessert werden kann. Somit wird für den zweiten Schaltvorgang von der ersten Stellung in die zweite Stellung nicht nur die zweite Elektromagnet-Einrichtung zur Verstärkung des schwächeren zweiten Permanentmagnetfeldes bestromt, sondern auch die erste Elektromagneteinrichtung zur zumindest teilweisen Kompensation des ersten Permanentmagnetfeldes. Durch diese zumindest teilweise Kompensation wird somit die magnetische Haltekraft des haltenden ersten Permanentmagnetfeldes bereits verringert, und das schaltende zweite Elektromagnetfeld kann bezüglich seiner magnetischen Feldstärke bzw. der Ausbildung an Amperewindungen kleiner dimensioniert werden, um den Schaltvorgang durch Verstärkung des zweiten Permanentmagnetfeldes zu ermöglichen.According to the invention it is recognized that the switching operation can be improved by the energization of both coils. Thus, not only the second electromagnet device for amplifying the weaker second permanent magnetic field is energized for the second switching operation from the first position to the second position, but also the first electromagnet device for at least partial compensation of the first permanent magnetic field. As a result of this at least partial compensation, the magnetic holding force of the holding first permanent magnetic field is thus already reduced, and the switching second electromagnetic field can be made smaller in terms of its magnetic field strength or the formation of ampere-turns in order to enable the switching process by amplifying the second permanent magnetic field.

Hierbei wird insbesondere auch erkannt, dass die ergänzende Bestromung des kompensierenden Elektromagnetfeldes grundsätzlich keinen zusätzlichen Hardwareaufwand erfordert, da ohnehin eine Schalteinrichtung, z. B. Schalt-Transistoren, zu seiner Beschaltung vorgesehen sind.In this case, in particular, it is also recognized that the supplementary energization of the compensating electromagnetic field basically does not require any additional expenditure on hardware, since a switching device, for example, is required anyway. B. switching transistors, are provided for its wiring.

Das erste Elektromagnetfeld und erste Permanentmagnetfeld bilden somit ein erstes Gesamt-Magnetfeld, entsprechend bilden das zweite Elektromagnetfeld und zweite Permanentmagnetfeld bilden somit ein zweites Gesamt-Magnetfeld.The first electromagnetic field and the first permanent magnetic field thus form a first overall magnetic field, correspondingly forming the second electromagnetic field and the second permanent magnetic field thus form a second total magnetic field.

Die beiden Elektromagneteinrichtungen, d.h. insbesondere eine erste und zweite Spule, können parallel oder in Reihe geschaltet sein und zusammen geschaltet werden. Die Stromrichtungen für die jeweiligen Schaltvorgänge werden entsprechend zusammen umgepolt, so dass jeweils ein Elektromagnetfeld als kompensierend, d.h. zur Kompensation des stärkeren Permanentmagnetfeldes und das andere Magnetfeld schaltend, d.h. für die aktive Schaltung dient.The two electromagnetic devices, i. in particular a first and second coil, may be connected in parallel or in series and connected together. The current directions for the respective switching operations are reversed accordingly, so that each one electromagnetic field as compensating, i. to compensate for the stronger permanent magnetic field and switching the other magnetic field, i. is used for the active circuit.

Erfindungsgemäß wird insbesondere auch erkannt, dass die ergänzende Ausbildung eines kompensierenden Elektromagnetfeldes je nach Dynamik und Stellung des Ankers auch problematisch sein kann, da anfänglich das schaltende Gesamtmagnetfeld aufgrund des Luftspaltes noch klein ist, hingegen das zur Kompensation dienende "kompensierende" Elektromagnetfeld aufgrund des fehlenden Luftspaltes schnell groß werden kann. So kann z. B. bei zu schneller oder zu starker Bestromung das kompensierende erste Elektromagnetfeld ggf. so groß werden, das es das erste PermanentMagnetfeld nicht nur kompensiert, sondern so stark überkompensiert, dass sich ein erstes Gesamt-Magnetfeld ergibt, dass vom Betrag her größer ist als das zum aktiven Schalten vorgesehene zweite Gesamt-Magnetfeld, das durch den Luftspalt geschwächt ist.According to the invention, it is also recognized in particular that the complementary design of a compensating electromagnetic field can also be problematic, depending on the dynamics and position of the armature, since initially the switching total magnetic field due to the air gap is still small, whereas the "compensating" electromagnetic field used for compensation due to the missing air gap can grow up fast. So z. B. if too fast or too strong energizing the compensating first electromagnetic field may be so great that it not only compensates the first permanent magnetic field, but overcompensated so much that there is a first total magnetic field that is greater in magnitude than that provided for active switching second overall magnetic field, which is weakened by the air gap.

Um eine derartige Überkompensation und somit einen fehlenden Schaltvorgang zu vermeiden, sind unterschiedliche Ausbildungen alternativ oder auch ergänzend vorgesehen.In order to avoid such overcompensation and thus a lack of switching operation, different configurations are provided alternatively or in addition.

Gemäß einer bevorzugten Ausbildung werden die Ströme vom Betrag her geändert: das kompensierende Elektromagnetfeld wird mit einem schwächeren kompensierenden Strom und das schaltende Elektromagnetfeld wird mit einem größeren schaltenden Strom ausgebildet. Die unterschiedlichen Stromstärken können insbesondere durch gepulste Ansteuerung, insbesondere durch PWM, eingestellt werden.According to a preferred embodiment, the currents are changed in magnitude: the compensating electromagnetic field is provided with a weaker compensating current and the switching electromagnetic field is formed with a larger switching current. The different current intensities can be adjusted in particular by pulsed control, in particular by PWM.

Hierbei können die Elektromagneteinrichtungen über Hiside- Treiberschaltungen (Highside) an eine obere Versorgungsspannung und über Lowside-Treiberschaltung (Loside) gegenüber eine untere Versorgungsspannung, z. B. Masse, geschaltet werden. Es kann eine Schaltungsanordnung geschaffen werden, die mit geringem Hardware-Aufwand, z. B. nur mit einige Schaltern, z. B. sechs Transistoren, auskommt, die zur Ansteuerung der Elektromagneteinrichtungen bzw. Spulen dienen; eine komplexere zeitliche Steuerung ist grundsätzlich nicht erforderlich.In this case, the electromagnet devices can be connected via high-side driver circuits to an upper supply voltage and via a low-side driver circuit (Loside) to a lower supply voltage, e.g. B. mass, are switched. It can be created a circuit arrangement that requires little hardware, z. B. only with a few switches, z. B. six transistors, gets along, which serve to drive the solenoid devices or coils; a more complex timing is generally not required.

Die Hiside-Treiber können z. B. direkt ein- und ausgeschaltet werden, und die unterschiedlichen Stromstärken für das schaltenden und kompensierenden Magnetfeld durch PWM- Ansteuerung erfolgen. Die Elektromagneteinrichtungen können direkt, z. B. parallel, zwischen zwei als Hiside-Treiber dienende Transistoren, insbesondere MOSFETs geschaltet werden, wobei an jedem Anschluss jeder Elektromagneteinrichtung (Spule) dann zwei Transistoren als Loside-Treiber geschaltet sind, die selektiv angesteuert werden; es ist somit jeweils eine "kreuzweiser Betrieb" über einen Hiside-Treiber für beide Spulen und selektive Ansteuerung der "gegenüber liegenden" Loside-Treiber möglich.The Hiside driver can z. B. directly on and off, and the different currents for the switching and compensating magnetic field by PWM control done. The electromagnetic devices can directly, z. B. parallel, between two serving as a driver driver transistors, in particular MOSFETs are connected, wherein at each terminal of each solenoid device (coil) then two transistors are connected as Loside driver, which are selectively controlled; It is thus possible in each case a "crosswise operation" via a Hiside driver for both coils and selective control of the "opposite" Loside driver.

Somit ist vorzugsweise das kompensierende Elektromagnetfeld schwächer, indem der kompensierende Strom vom Betrag her schwächer eingestellt wird als der haltende Strom. Somit ist bei jeder Elektromagneteinrichtung vorzugsweise der kompensierende Strom von der Richtung her dem haltenden Strom entgegen gesetzt und vom Betrag her kleiner.Thus, preferably, the compensating electromagnetic field is weaker in that the compensating current is set to be weaker in magnitude than the sustaining current. Thus, in each solenoid device, preferably, the compensating current is opposite in direction to the holding current and smaller in magnitude.

Ergänzend oder alternativ kann auch eine zeitlich veränderliche Bestromung bzw. Ansteuerung der Spulen erfolgen, bei der der Strom nicht sofort auf seinen Maximalwert gefahren wird, sondern mit zeitlicher Verzögerung hochgefahren wird, z. B. mit stetigem Anstieg und/oder mit sprunghaftem Anstieg über mindestens einen mittleren Wert. So kann z. B. eine zeitliche Einschaltrampe hochgefahren werden und/oder eine diskrete Erhöhung über einen oder mehrere mittlere Werte erfolgen, die eine mechanische Verstellung des Ankers ermöglichen, d. h. z. B. in einem Zeitraum oberhalb von 10 ms, z. B. in einem Zeitraum von 100 ms. Somit kompensiert das ergänzende Elektromagnetfeld in der Einschaltrampe zunächst das Luftspalt-lose haltende Permanentmagnetfeld, während auf der anderen Seite das schaltende Elektromagnetfeld das Permanentmagnetfeld verstärkt, so dass in der Einschaltdauer eine Elektromagnet-Ausbildung erreicht wird, die den Anker in gewünschter Weise in die andere Schaltstellung zieht, bevor das erste Permanentmagnetfeld überkompensiert wird.Additionally or alternatively, a temporally variable energization or control of the coils can take place, in which the current is not immediately moved to its maximum value, but is raised with a time delay, z. B. with a steady increase and / or with a sudden increase over at least one mean value. So z. B. a time switch-on ramp up and / or a discrete increase over one or more mean values carried out, which allow a mechanical adjustment of the anchor, d. H. z. B. in a period above 10 ms, z. In a period of 100 ms. Thus, the complementary electromagnetic field in the turn-on ramp initially compensates for the air gap loose holding permanent magnetic field, while on the other hand, the switching electromagnetic field amplifies the permanent magnetic field, so that in the duty cycle an electromagnet training is achieved, the anchor in the desired manner in the other switching position pulls before the first permanent magnetic field is overcompensated.

Die Bestromung beider Elektromagneteinrichtungen wirkt insbesondere synergistisch mit einer radial angeordnete Permanentmagneteinrichtung zusammen, durch die ein radiales Permanentmagnetfeld ausgebildet wird, das zwischen den Elektromagneteinrichtungen verläuft. Somit werden vorzugsweise ein radiales erstes und radiales zweites Permanentmagnetfeld ausgebildet, die jeweils haltend wirken können und gezielt durch das schaltende Elektromagnetfeld verstärkt bzw. durch das haltende Elektromagnetfeld ganz oder teilweise kompensiert werden können. Somit verläuft ein Permanent-magnetfeld in radialer Richtung von dem inneren Anker über den Permanentmagneten und ein äußeres magnetisches Joch, wobei sich zwei Permanentmagnetfelder ausbilden, die von dem Joch entweder an einem axialen Ende über den ersten Kern zu dem Anker, oder an dem anderen Ende über den zweiten Kern zu dem Anker verlaufen, wobei in jeder der beiden Stellungen jeweils ein axialer Luftspalt von dem Anker zu einem der beiden Kerne vorgesehen ist.The energization of both electromagnetic devices cooperates in particular synergistically with a radially arranged permanent magnet device, by which a radial permanent magnetic field is formed which extends between the electromagnet devices. Thus, preferably, a radial first and radial second permanent magnetic field are formed, which can each have a holding effect and selectively amplified by the switching electromagnetic field or can be compensated in whole or in part by the holding electromagnetic field. Thus, a permanent magnetic field extends in the radial direction from the inner armature via the permanent magnet and an outer magnetic yoke forming two permanent magnetic fields extending from the yoke either at one axial end over the first core to the armature or at the other end across the second core to the armature, in each of the two positions, respectively an axial air gap is provided from the armature to one of the two cores.

Die Permanentmagnet-Einrichtung kann zum einen ringförmig ausgebildet sein, d. h. als Ring oder Scheibe, die - anders als übliche Magnete - in radialer Richtung aufmagnetisiert ist. Alternativ zu einer Scheibe können auch mehrere z. B. stabförmige Permanentmagnete eingesetzt werden, die jeweils radial nach außen magnetisiert sind und vorzugsweise durch ihre symmetrische Ausbildung Kippmomente des Ankers senkrecht zu der Axialrichtung vermeiden.The permanent magnet device may be designed to be annular, d. H. as a ring or disc, which - unlike conventional magnets - is magnetized in the radial direction. Alternatively to a disc can also be several z. B. rod-shaped permanent magnets are used, which are each magnetized radially outwardly and preferably avoid tilting moments of the armature perpendicular to the axial direction by their symmetrical design.

Indem die Permanentmagnet-Einrichtung radial außerhalb des Ankers liegt, insbesondere in axialer Richtung zwischen den beiden Spulen der beiden Elektromagnet-Einrichtungen, steht ein größerer Bauraum zur Verfügung, so dass hier auch Materialien eingesetzt werden können, die eine größere axiale Erstreckung ermöglichen und somit kostengünstiger sind als z. B. Selten-Erd-Materialien.By the permanent magnet means is located radially outside the armature, in particular in the axial direction between the two coils of the two solenoid devices, a larger space is available, so that here also materials can be used, which allow a greater axial extent and thus more cost-effective are as z. B. Rare earth materials.

Die Magnetventil-Einrichtung weist die Schaltungsanordnung und weiterhin das bistabile Magnetventil auf.The solenoid valve device has the circuit arrangement and further the bistable solenoid valve.

Die Erfindung wird im Folgenden anhand der beiliegenden Zeichnungen an einigen Ausführungsformen näher erläutert. Es zeigen:

Fig. 1
ein bistabiles Magnetventil gemäß einer Ausführungsform in geschnittener Darstellung;
Fig. 2
ein Magnetventil gemäß einer weiteren Ausführungsform mit ergänzendem Polrohr;
Fig. 3
eine Darstellung des Verlaufs der Magnetfeldlinien;
Fig. 4a) und b)
eine erste Ausbildungen der Permanentmagnet-Einrichtung;
Fig. 5
eine zweite Ausbildungen der Permanentmagnet-Einrichtung
Fig. 6
eine Schaltungsanordnung zur Ansteuerung der Spulen gemäß einer ersten Ausführungsform mit a) Reihenschaltung und b) Parallelschaltung beider Spulen;
Fig. 7
eine schaltungstechnische Realisierung einer getrennten Spulenansteuerung gemäß einer Ausführungsform;
Fig. 8
Zeitdiagramme des Spulenstroms gemäß Ausführungsformen mit Rampen-Ansteuerung;
Fig. 9
ein Schnittbild des bistabilen Magnetventils gemäß einer Ausführungsform in der ersten Ankerstellung; und
Fig. 10
ein Schnittbild des bistabilen Magnetventils aus Fig. 9 in der zweiten Ankerstellung.
The invention will be explained in more detail below with reference to the accompanying drawings of some embodiments. Show it:
Fig. 1
a bistable solenoid valve according to an embodiment in a sectional view;
Fig. 2
a solenoid valve according to another embodiment with additional pole tube;
Fig. 3
a representation of the course of the magnetic field lines;
Fig. 4a) and b)
a first embodiments of the permanent magnet device;
Fig. 5
a second embodiments of the permanent magnet device
Fig. 6
a circuit arrangement for driving the coils according to a first embodiment with a) series connection and b) parallel connection of both coils;
Fig. 7
a circuit implementation of a separate coil drive according to an embodiment;
Fig. 8
Timing diagrams of the coil current according to embodiments with ramp drive;
Fig. 9
a sectional view of the bistable solenoid valve according to an embodiment in the first armature position; and
Fig. 10
a sectional view of the bistable solenoid valve Fig. 9 in the second anchor position.

Ein bistabiles Magnetventil 1 ist insbesondere zum Einsatz in einem Druckluftsystem, insbesondere als 3/2-Magnetventil mit drei Anschlüssen, vorzugsweise einem Druckeingang 2a, einem ersten Druckausgang 2b und einem zweiten Druckausgang 2c, der z. B. als Entlüftung dienen kann, ausgebildet. Somit kann das bistabile Magnetventil 1 in einem Pneumatik-System bzw. Druckluftsystem, z. B. dem Druckluftsystem eines Nutzfahrzeuges, dazu dienen, wahlweise gemäß der ersten Ankerstellung I der Fig. 1 an den ersten Druckausgang 2b den zweiten Druckausgang 2c und somit die Entlüftung anzuschließen um die Druckluft-Zuführleitung zu entlüften, oder die an den Druckeingang 2a angeschlossene Druckluft- Zuführleitung anzuschließen, wie weiter unten mit Bezug zu Fig. 9 und 10 erläutert wird.A bistable solenoid valve 1 is in particular for use in a compressed air system, in particular as a 3/2-way solenoid valve with three terminals, preferably a pressure input 2a, a first pressure outlet 2b and a second pressure outlet 2c, the z. B. can serve as a vent formed. Thus, the bistable solenoid valve 1 in a pneumatic system or compressed air system, z. B. the compressed air system of a commercial vehicle, serve, optionally according to the first anchor position I the Fig. 1 to connect to the first pressure outlet 2b the second pressure outlet 2c and thus the vent to vent the compressed air supply line, or to connect the connected to the pressure inlet 2a compressed air supply line, as further below with reference to FIGS. 9 and 10 is explained.

Hierzu weist das bistabile Magnetventil 1 ein Ankerführungsrohr 6 und einen in dem Ankerführungsrohr 6 in Axialrichtung A längsverstellbar geführten Anker 7 auf. An dem Anker 7 ist eine erste Ventildichtung 8 ausgebildet, die an einem ersten Ventilsitz 9, z. B. zum Verschluss des Druckeingangs 2a, zur Anlage kommt, sowie weiterhin eine zweite Ventildichtung 10, die zur Anlage an einem zweiten Ventilsitz 11, z. B. zum Verschluss des zweiten Druckausgangs 2c, kommt.For this purpose, the bistable solenoid valve 1 on an armature guide tube 6 and a longitudinally adjustable in the armature guide tube 6 in the axial direction A guided anchor 7. At the armature 7, a first valve seal 8 is formed, which at a first valve seat 9, z. B. to the closure of the pressure input 2a, comes to rest, as well as continue a second valve seal 10, which abutment against a second valve seat 11, z. B. for closing the second pressure output 2c comes.

Die Ventildichtungen 8 und 10 sind vorteilhafterweise durch eine Ankerfeder 13 federvorgespannt, zur dichtenden Anlage an ihrem jeweiligen Ventilsitz 9 bzw. 11.The valve seals 8 and 10 are advantageously spring biased by an armature spring 13 for sealing engagement with their respective valve seat 9 and 11, respectively.

Der Anker 7 ist magnetisch leitend, d. h. aus ferromagnetischem Material ausgebildet; in Axialrichtung A schließt sich zu einer ersten Seite ein erster Kern 12, in dem gemäß dieser Ausbildung der Druckeingang 2a und der erste Druckausgang 2b ausgebildet sind, sowie zu der anderen, zweiten Seite ein zweiter Kern 14 an, in dem der zweite Druckausgang 2c für die Entlüftung ausgebildet ist.The armature 7 is magnetically conductive, d. H. made of ferromagnetic material; in the axial direction A closes to a first side of a first core 12, in which according to this embodiment, the pressure input 2a and the first pressure outlet 2b are formed, and to the other, second side of a second core 14, in which the second pressure outlet 2c for the vent is formed.

Radial außerhalb des Ankerführungsrohrs 6 ist eine Magnet-Einrichtung 15 angeordnet, die eine Permanentmagnet-Einrichtung 16 und eine Elektromagnet-Einrichtung 17 aufweist, wobei die Elektromagnet-Einrichtung 17 wiederum mit einer ersten Spule 18 und einer zweiten Spule 19 ausgebildet ist. Die gesamte Magnet-Einrichtung 15 in einem magnetischen Joch 20, 21 aufgenommen ist, das durch einen Jochtopf 20 mit Topfboden 20a und zylinderförmiger Topfwand 20b und eine den Jochtopf 20 zu einer axialen Seite hin verschließenden Jochscheibe 21 ausgebildet ist.Radially outside the armature guide tube 6, a magnetic device 15 is arranged, which has a permanent magnet means 16 and an electromagnet means 17, wherein the electromagnet means 17 in turn with a first coil 18 and a second coil 19 is formed. The entire magnet device 15 in a magnetic yoke 20, 21 is received, which is formed by a Jochtopf 20 with pot bottom 20a and cylindrical pot wall 20b and the Jochtopf 20 to an axial side closing yoke disc 21.

Die beiden Kerne 12 und 14 liegen vorteilhafterweise in radialer Richtung R direkt an der Jochscheibe 21 und dem Jochtopf 20 an, d.h. ohne radialen Luftspalt. Weiterhin liegt der Anker 7 in seinen beiden Ankerstellungen bzw. Stellungen direkt in axialer Richtung A bzw. -A an einem der beiden Kerne 12, 14 an und weist zu dem jeweils anderen Kern 14, 12 einen Luftspalt 22 auf. Somit liegt in der in Fig. 1 und 2 gezeigten ersten Stellung I der Anker 7 in axialer Richtung A direkt, d. h. ohne Luftspalt, an dem ersten Kern 12 an, wobei ein axialer Luftspalt 22 zwischen dem Anker 7 und dem zweiten Kern 14 ausgebildet ist; entsprechend liegt der Anker 7 in der hier nicht gezeigten zweiten Stellung II direkt an dem zweiten Kern 14 an, d. h. ebenfalls ohne Luftspalt an, wobei dann ein Luftspalt zwischen dem Anker 7 und dem ersten Kern 12 ausgebildet ist.The two cores 12 and 14 are advantageously in the radial direction R directly to the yoke disc 21 and the Jochtopf 20, ie without a radial air gap. Furthermore, the armature 7 lies in its two armature positions or positions directly in the axial direction A or -A on one of the two cores 12, 14 and has an air gap 22 to the respective other core 14, 12. Thus lies in the in Fig. 1 and 2 shown in the first position I of the armature 7 in the axial direction A directly, ie without an air gap, on the first core 12, wherein an axial air gap 22 between the armature 7 and the second core 14 is formed; Accordingly, the armature 7 is in the second position II, not shown here directly to the second core 14, ie also without an air gap, in which case an air gap between the armature 7 and the first core 12 is formed.

Die Permanentmagnet-Einrichtung 16 ist vorteilhafterweise axial zwischen der ersten Spule 18 und der zweiten Spule 19 angeordnet und radial magnetisiert, d. h. die Magnetisierung und somit die magnetischen Flusslinien des Permanentmagnetfeldes PM verlaufen in radialer Richtung R, z. B. radial nach außen, d. h. senkrecht zur Achse A. Hierbei sind gemäß Fig. 4, 5 unterschiedliche Ausbildungen der Permanentmagnet-Einrichtung 16 möglich.The permanent magnet device 16 is advantageously arranged axially between the first coil 18 and the second coil 19 and radially magnetized, ie the magnetization and thus the magnetic flux lines of the permanent magnetic field PM extend in the radial direction R, z. B. radially outward, ie perpendicular to the axis A. Here are according to Fig. 4, 5 different configurations of the permanent magnet device 16 possible.

Gemäß Fig. 4 sind z. B. vier einzelne Permanentmagnete 16a, 16b, 16c und 16d vorgesehen, die jeweils länglich ausgebildet sind und sich jeweils in einer radialen Richtung, d. h. senkrecht zur Achse A, erstrecken, mit jeweils gleicher Polarität, z. B. einem zu dem Ankerführungsrohr 6 hin weisenden Nordpol N und einem zu der radial äußeren Topfwand 20b des Jochtopfes 20 hin weisenden Südpol S, oder umgekehrt.According to Fig. 4 are z. B. four individual permanent magnets 16a, 16b, 16c and 16d provided, each of which is elongated and extending in each case in a radial direction, ie perpendicular to the axis A, each having the same polarity, for. B. one to the armature guide tube 6 facing north pole N and to the radially outer pot wall 20b of the yoke pot 20 facing south pole S, or vice versa.

Gemäß der Ausführungsform der Fig. 5 ist eine Permanentmagnet-Scheibe 16e vorgesehen, die als Ring bzw. Scheibe ausgeführt und hierbei in radialer Richtung magnetisiert ausgebildet ist.According to the embodiment of the Fig. 5 a permanent magnet disc 16e is provided, which is designed as a ring or disc and in this case is magnetized in the radial direction.

Grundsätzlich kann die Permanentmagnet-Einrichtung 16 z. B. auch weniger, z. B. lediglich zwei Permanentmagnete 16a, 16c entsprechend Fig. 4, oder auch eine andere Anzahl einzelner Permanentmagnete aufweisen, die vorteilhafterweise derartig symmetrisch angeordnet sind, dass Querkräfte und Kippmomente senkrecht zur Achse A vermieden werden.In principle, the permanent magnet device 16 z. As well as less, z. B. only two permanent magnets 16a, 16c accordingly Fig. 4 , Or also have a different number of individual permanent magnets, which are advantageously arranged so symmetrical that lateral forces and tilting moments are avoided perpendicular to the axis A.

Da die Permanentmagnet-Einrichtung 16 außerhalb des Ankerführungsrohrs 6 ausgebildet ist, kann sie auch mit breiterer axialer Erstreckung ausgebildet werden, so dass herkömmliche Materialien für Permanentmagnete, z. B. eine Eisenlegierung oder ein keramisches Material, eingesetzt werden; der Einsatz z. B. seltener Erden ist grundsätzlich nicht erforderlich.Since the permanent magnet device 16 is formed outside the armature guide tube 6, it can also be formed with a wider axial extent, so that conventional materials for permanent magnets, for. As an iron alloy or a ceramic material used; the use z. B. rare earth is not required in principle.

Das gemeinsame Permanentmagnetfeld PM verläuft somit in radialer Richtung R durch die Permanentmagnet-Einrichtung 16 und nachfolgend durch das Joch 20, 21, wobei es axial in beide Richtungen, d.h. -A und A verläuft, d.h. entlang der Topfwand 20b als erstes Permanentmagnetfeld PM1 und zweites Permanentmagnetfeld PM2, wobei die Permanentmagnetfelder PM1, PM2 dann an den axialen Enden radial nach unten entlang des Topfbodens 20b sowie der Jochscheibe 21zu den Kernen 210, 21 verlaufen, und nachfolgend axial, d.h. in Richtung A oder -A, zu dem Anker 7 und wieder zu der Permanentmagnet-Einrichtung 16.The common permanent magnetic field PM thus extends in the radial direction R through the permanent magnet means 16 and subsequently through the yoke 20, 21, being axially in both directions, i. -A and A run, i. along the pot wall 20b as first permanent magnet field PM1 and second permanent magnet field PM2, the permanent magnet fields PM1, PM2 then extending radially downwards along the pot bottom 20b and the yoke disc 21 to the cores 210, 21 at the axial ends, and subsequently axially, i. in the direction of A or -A, to the armature 7 and back to the permanent magnet device 16th

Die beiden Permanentmagnetfelder PM1, PM2 können somit jeweils z. B. etwa die Form eines Torus aufweisen; das gesamte Permanentmagnetfeld PM ist somit z. B. ein Doppel-Torus bzw. hantelförmig.The two permanent magnetic fields PM1, PM2 can thus each z. B. have approximately the shape of a torus; the entire permanent magnetic field PM is thus z. B. a double torus or dumbbell-shaped.

In der ersten Ankerstellung I bzw. Entlüftungsstellung der Fig. 1 liegt der magnetisch leitende Anker 7 an dem ersten Kern 12, so dass hier das erste Permanentmagnetfeld PM1 direkt vom ersten Kern 12 durch den Anker 7, und in dem Anker 7 axialer Richtung wiederum zu der Permanentmagnet-Einrichtung 16 verläuft. Ein Luftspalt ist allenfalls als radialer Luftspalt zwischen dem Anker 7 und der Permanentmagnet-Einrichtung 16 ausgebildet, jedoch nicht als Axialspalt, so dass das erste Permanentmagnetfeld PM1eine starke magnetische Haltekraft des Ankers 7 am ersten Kern 12 ausbildet. Das durch den zweiten Kern 14 verlaufende zweite Permanentmagnetfeld PM2 verläuft hingegen durch den Luftspalt 22 zu dem Anker 7 und wird durch den Luftspalt 22 deutlich geschwächt. Somit ist die magnetische Haltekraft des ersten Permanentmagnetfeldes PM1 deutlich größer als die anziehende Kraft des zweiten Permanentmagnetfeldes PM2; der Anker 7 wird in der rechten Position, d. h. der Ankerstellung I der Fig. 1, sicher gehalten.In the first anchor position I or ventilation position of the Fig. 1 the magnetically conductive armature 7 is located on the first core 12, so that in this case the first permanent magnetic field PM1 extends directly from the first core 12 through the armature 7, and in the armature 7 in the axial direction to the permanent magnet device 16. An air gap is formed at best as a radial air gap between the armature 7 and the permanent magnet means 16, but not as an axial gap, so that the first permanent magnetic field PM1 forms a strong magnetic holding force of the armature 7 on the first core 12. The extending through the second core 14 second permanent magnetic field PM2, however, passes through the air gap 22 to the armature 7 and is significantly weakened by the air gap 22. Thus, the magnetic holding force of the first permanent magnetic field PM1 is significantly larger than the attractive force of the second permanent magnetic field PM2; the armature 7 is in the right position, ie the anchor position I of Fig. 1 , kept safe.

Da das bistabile Magnetventil 1 grundsätzlich in Axialrichtung A symmetrisch bezüglich der Ausbildung der beiden Kerne 12 und 14 und der Spulen 18 und 19 ist, wird auch die in Fig. 1 nicht gezeigte zweite Ankerstellung II sicher gehalten, da hier ein Luftspalt entsprechend zwischen dem Anker 7 und dem ersten Kern 12 ausgebildet wird, der das erste Permanentmagnetfeld PM1 schwächt, hingegen liegt ein starkes zweites Permanentmagnetfeld PM2 vor.Since the bistable magnetic valve 1 is basically symmetrical in the axial direction A with respect to the formation of the two cores 12 and 14 and the coils 18 and 19, the in Fig. 1 not shown second armature position II held securely, since here an air gap is formed correspondingly between the armature 7 and the first core 12, which weakens the first permanent magnetic field PM1, however, there is a strong second permanent magnetic field PM2.

Die erste Spule 18 erzeugt ein erstes Elektromagnetfeld EM1; entsprechend erzeugt die zweite Spule 19 ein zweites Elektromagnetfeld EM2, die mit den Permanentmagnetfeldern PM1, PM2 und miteinander überlagern.The first coil 18 generates a first electromagnetic field EM1; Accordingly, the second coil 19 generates a second electromagnetic field EM2, which overlap with the permanent magnetic fields PM1, PM2 and each other.

Das erste Elektromagnetfeld EM1 der ersten Spule 18 ist ebenfalls Torusförmig ausgebildet und verläuft im Wesentlichen entsprechen dem ersten Permanentmagnetfeld PM1, insbesondere bei rotationssymmetrischer Ausbildung des Permanentmagnetfeldes PM1 nach Fig. 5:The first electromagnetic field EM1 of the first coil 18 is also toroidal in shape and extends substantially corresponding to the first permanent magnetic field PM1, in particular in rotationally symmetrical design of the permanent magnetic field PM1 after Fig. 5 :

Das erste Elektromagnetfeld EM1verläuft zunächst innerhalb der ersten Spule 18, d. h. in Axialrichtung A - je nach Bestromung - von dem ersten Kern 12 in axialer Richtung nach innen oder außen, d. h. z. B. von außen (in Fig. 1 rechts) nach innen zu dem Anker 7, und von dem Anker 7 radial nach außen, d. h. entlang der Permanentmagnet-Einrichtung 16 nach außen, und von dort entlang der Topfwand 20b und dem Topfboden 20a radial nach innen zurück zum ersten Kern 12. Entsprechend verläuft bei Bestromung der zweiten Spule 19 das zweite Elektromagnetfeld EM2 ähnlich dem zweiten Permanentmagnetfeldes PM2, d.h. - je nach Polung - von dem zweiten Kern 14 in axialer Richtung A zu dem Anker 7 hin, oder in Gegenrichtung von dem Anker 7 zu dem zweiten Kern 14 hin, und jeweils in radialer Richtung radial nach außen entlang der Permanentmagnet-Einrichtung 16, der Topfwand 20b in axialer Richtung, und entlang der Jochscheibe 21 radial nach innen.The first electromagnetic field EM1 initially runs within the first coil 18, ie in the axial direction A - depending on the current supply - from the first core 12 in the axial direction inwards or outwards, ie, for example from the outside (in FIG Fig. 1 right) inwardly to the armature 7, and from the armature 7 radially outwardly, ie along the permanent magnet means 16 outwardly, and from there along the pot wall 20b and the cup bottom 20a radially inwardly back to the first core 12. Accordingly when energizing the second coil 19, the second electromagnetic field EM2 similar to the second permanent magnetic field PM2, ie - depending on the polarity - of the second core 14 in the axial direction A to the armature 7 back, or in the opposite direction from the armature 7 to the second core 14 out , and in each case in the radial direction radially outwards along the permanent magnet device 16, the pot wall 20b in the axial direction, and along the yoke plate 21 radially inwardly.

In Fig. 1 wird somit das zweite Elektromagnetfeld EM2 wiederum durch den Luftspalt 22 geschwächt, das erste Elektromagnetfeld EM1 hingegen nicht.In Fig. 1 Thus, the second electromagnetic field EM2 is again weakened by the air gap 22, the first electromagnetic field EM1, however, not.

Die Schaltvorgänge SV1 und SV2 des bistabilen Magnetventils 1 zwischen der ersten Ankerstellung I und der zweiten Ankerstellung II erfolgen durch Bestromung jeweils beider Spulen 18 und 19. Für den zweiten Schaltvorgang SV2 von der ersten Ankerstellung I der Fig. 1 ausgehend wird ein erstes Elektromagnetfeld EM1 der ersten Spule 18 aufgebaut, das dem ersten Permanentmagnetfeld PM1 entgegengesetzt ist und dieses insbesondere teilweise kompensiert, so dass die magnetische Haltekraft des Ankers 6 am ersten Kern 12 bereits zumindest verringert wird. Weiterhin wird die zweite Spule 19 derartig bestromt, dass das zweite Permanentmagnetfeld PM2 durch das zweite Elektromagnetfeld EM2 verstärkt wird, d. h. beide Felder PM2 und EM2 weisen in dieselbe Richtung, so dass trotz des Luftspaltes 22 die auf den Anker 7 wirkende, in Fig. 1 nach links zeigende magnetische Kraft größer wird und den Anker 7 in Fig. 1 nach links verstellt, wodurch der Luftspalt 22 verringert wird und ganz verschwindet, und ein Luftspalt zwischen dem Anker 7 und dem ersten Kern 12 entsteht.The switching operations SV1 and SV2 of the bistable solenoid valve 1 between the first armature position I and the second armature position II effected by energization of both coils 18 and 19. For the second switching operation SV2 of the first armature position I of Fig. 1 Based on a first electromagnetic field EM1 of the first coil 18 is constructed, which is the first permanent magnetic field PM1 opposite and this particular partially compensated, so that the magnetic holding force of the armature 6 on the first core 12 is already at least reduced. Furthermore, the second coil 19 is energized such that the second permanent magnetic field PM2 is amplified by the second electromagnetic field EM2, ie both fields PM2 and EM2 point in the same direction, so that in spite of the air gap 22 acting on the armature 7, in Fig. 1 towards the left magnetic force increases and the armature 7 in Fig. 1 adjusted to the left, causing the air gap 22 is reduced and disappears completely, and an air gap between the armature 7 and the first core 12 is formed.

Somit wirkt jeweils eines der elektromagnetischen Felder EM1 und EM2 kompensierend und das andere schaltend. Für den zweiten Schaltvorgang SV2 von der ersten Ankerstellung I bzw. Entlüftungsstellung der Fig.. 1 ausgehend wirkt somit ein durch die erste Spule 18 geleiteter erster Strom I1 kompensierend, d.h. als kompensierender erster Strom I1_k, und ein durch die zweite Spule 19 geleiteter zweiter Strom I2 schaltend, d.h. als schaltender zweiter Strom I2_s. Für den ersten Schaltvorgang SV1 zurück in die erste Ankerstellung I wird entsprechend durch die zweite Spule 19 ein kompensierender zweiter Strom I2_k und durch die erste Spule 18 ein schaltender erster Strom I1_s geleitet.Thus, one of the electromagnetic fields EM1 and EM2 is compensating and the other switching. For the second switching operation SV2 of the first anchor position I or vent position of the Fig. 1 Thus, a first current I1 guided by the first coil 18 acts compensatingly, ie as a compensating first current I1_k, and a second current I2 conducted through the second coil 19 switches, ie as a switching second current I2_s. For the first switching operation SV1 back into the first armature position I, a compensating second current I2_k is passed through the second coil 19, and a first current I1_s is conducted through the first coil 18.

Die beiden Spulen 18 und 19 sind über Spulenanschlüsse 61a,b und 62a, b an jeweilige Schaltungsanordnungen 30, 35 angeschlossen.The two coils 18 and 19 are connected via coil terminals 61a, b and 62a, b to respective circuit arrangements 30, 35.

Die beiden Spulen 18 und 19 können gemäß den in Fig. 6 a) und b) gezeigten Ausbildungen von einer Steuereinrichtung 40 gesteuert über eine Schaltungsanordnung 30, die insbesondere eine Endstufe darstellt, zusammen bestromt werden, als Parallelschaltung oder Reihenschaltung. Somit wird eine Magnetventil-Einrichtung 5 gebildet, die das bistabile Magnetventil 1, die Schaltungsanordnung 30 und die Steuereinrichtung 40 aufweist.The two coils 18 and 19 can according to the in Fig. 6 a) and b) shown embodiments of a control device 40 controlled by a circuit arrangement 30, which in particular represents an output stage, are energized together, as a parallel connection or series connection. Thus, a solenoid valve device 5 is formed, which has the bistable solenoid valve 1, the circuit arrangement 30 and the control device 40.

Vorteilhafterweise wird hierbei erkannt, dass ein sofortiges und vollständiges Hochfahren des jeweils kompensierenden Stroms, in Fig. 1 somit des ersten Stroms I1_k, dazu führen kann, dass das kompensierende, z. B. erste Elektromagnetfeld EM1 zu stark wird und die Differenz EM1 - PM1 vom Betrag her größer werden kann als das sich positiv überlagernde, jedoch durch den Luftspalt 22 geschwächte, schaltende zweite Gesamtfeld EM2 + PM2.In this case, it is advantageously recognized that an immediate and complete startup of the respective compensating current, in Fig. 1 thus the first current I1_k, can cause the compensating, z. B. first electromagnetic field EM1 is too strong and the difference EM1 - PM1 can be greater in magnitude than the positively overlapping, but weakened by the air gap 22, switching second overall field EM2 + PM2.

Daher wird gemäß einer ersten Ausführungsform zumindest der kompensierend wirkende Strom I1_k oder I2_k zeitlich variabel, z. B. verzögert hochgefahren, vorteilhafterweise über eine Rampe und/oder mit diskreter Steigerung. Bei einer Reihenschaltung der beiden Ströme I1, I2 können somit beide Ströme zeitlich verzögert hochgefahren werden. Dies kann über die in Fig. 6 a) oder b) gezeigten Schaltungsanordnungen 30 erfolgen.Therefore, according to a first embodiment, at least the compensating current I1_k or I2_k is variable in time, z. B. ramped up, advantageously via a ramp and / or with discrete increase. In the case of a series connection of the two currents I1, I2, both currents can thus be ramped up with a time delay. This can be over in Fig. 6 a) or b) shown circuitry 30 done.

Die Spulen 18 und 19 sind gemäß der Schaltungsanordnung 30 der Fig. 6 a) in Reihe oder b) parallel geschaltet, wobei vier Transistoren, vorzugsweise Schaltungs-MOSFETS Tr1, Tr2, Tr3 und Tr4, als Endstufen-H-Brücke geschaltet sind. Hierbei erfolgt über Steuersignale S1, S2, S3, S4 eine Bestromung entweder mit Tr1 = ON, Tr4 = ON und Tr2 = OFF, Tr3 = OFF, um die Versorgungsspannung Uv von z. B. 24 V oder 12 V über Tr1, die Reihenschaltung der Spulen 19 und 18, sowie Tr4 auf Masse GND zu führen, oder entsprechend symmetrisch umgekehrt mit Tr1 = OFF, Tr4 = OFF, Tr2 = ON und Tr3 = ON, um die Versorgungsspannung Uv über Tr2 und die Reihenschaltung der Spulen 18 und 19 sowie Tr3 zur Masse GND zu führen.The coils 18 and 19 are according to the circuit arrangement 30 of Fig. 6 a) in series or b) connected in parallel, wherein four transistors, preferably circuit MOSFETs Tr1, Tr2, Tr3 and Tr4, are connected as output stage H bridge. This is done via control signals S1, S2, S3, S4 energization either with Tr1 = ON, Tr4 = ON and Tr2 = OFF, Tr3 = OFF to the supply voltage Uv of z. B. 24 V or 12 V via Tr1, the series connection of the coils 19 and 18, and Tr4 to ground GND to lead, or corresponding symmetrically reversed with Tr1 = OFF, Tr4 = OFF, Tr2 = ON and Tr3 = ON to the supply voltage Uv over Tr2 and the series connection of the coils 18 and 19 and Tr3 to ground GND to lead.

Die H-Brücke der Fig. 5 ist hierbei insbesondere auch zur Ausbildung einer zeitlichen Rampe gemäß Fig. 8 geeignet, bei der der gemeinsame Spulenstrom I, d.h. I1= I2=I und somit auch I = I_k (kompensierender Strom) = I_s (schaltender Strom) gemäß Fig. 8a) zum Zeitpunkt t1 eingeschaltet und auf einen maximalen Stromwert I_max hochgefahren wird, den er zu einem Zeitpunkt t2 erreicht. Zu einem nachfolgenden Zeitpunkt t3 kann der gemeinsame Strom I nachfolgend sofort abgeschaltet werden. Ergänzend sind die Amperewindungen AW eingezeichnet, die sich als Produkt des Stroms und der Wicklungszahl ergeben, Die Anfahr-Schaltdauer Δt1 zwischen t2 und t1 beträgt z. B. Δt2=50 bis 70 ms, die Gesamt-Schaltdauer Δt2 zwischen t3 und t1 beträgt z. B. Δt2 =100 ms. Das rein mechanische Schalten des Ventils erfolgt je nach Toleranzlage der einzelnen Bauteile im Ventil zwischen den Zeitpunkten t1 und t2.The H bridge of the Fig. 5 is here in particular also for the formation of a temporal ramp according to Fig. 8 suitable, in which the common coil current I, ie I1 = I2 = I and thus also I = I_k (compensating current) = I_s (switching current) according to Fig. 8a ) is switched on at time t1 and ramped up to a maximum current value I_max, which it reaches at a time t2. At a subsequent time t3, the common current I can be switched off immediately below. In addition, the Amperewindungen AW are drawn, resulting in the product of the current and the number of turns, the starting-shift duration .DELTA.t1 between t2 and t1 is z. B. Δt2 = 50 to 70 ms, the total switching time .DELTA.t2 between t3 and t1 is z. B. Δt2 = 100 ms. The purely mechanical switching of the valve Depending on the tolerance position of the individual components in the valve between the times t1 and t2.

Fig. 8b zeigt eine alternative Ansteuerung, bei der zum Zeitpunkt t1 der Strom sofort auf einen mittleren Stromwert I_mid, und nachfolgend mit linearer Rampe bis zum Zeitpunkt t2 auf den Maximalwert I_max gefahren wird, bis er zum Zeitpunkt t3 wieder ausgeschaltet wird. Die Schaltdauern Δt1 und Δt2 können ähnliche Werte wie in Fig. 8a annehmen. Fig. 8b shows an alternative control in which at time t1, the current is driven immediately to a mean current value I_mid, and subsequently with a linear ramp up to the time t2 to the maximum value I_max until it is turned off again at time t3. The switching periods Δt1 and Δt2 can have similar values as in Fig. 8a accept.

Somit wird zwischen t1 und t2 zunächst ein in der ersten Stellung I der Fig. 1 schwaches erstes Elektromagnetfeld EM1 ausgebildet, das das haltende Permanentmagnetfeld, hier somit das erste Permanentmagnetfeld PM1 ganz oder teilweise kompensiert, jedoch erst zum Zeitpunkt t1 den maximalen Stromwert I_max erreicht. Die Anfahr-Schaltdauer Δt1 ist hinreichend, um eine mechanische Verstellung des Ankers 7 weg von der ersten Ankerstellung I zu erreichen; sobald sich ein Luftspalt zwischen dem Anker 7 und dem ersten Kern 12 bildet, ist die Gefahr eines unbeabsichtigten Haltens in der ersten Ankerstellung I bereits deutlich verringert.Thus, between t1 and t2, first in the first position I of Fig. 1 weak first electromagnetic field EM1 is formed, which fully or partially compensates the holding permanent magnetic field, here thus the first permanent magnetic field PM1, but only at time t1 reaches the maximum current value I_max. The starting shift duration .DELTA.t1 is sufficient to achieve a mechanical adjustment of the armature 7 away from the first armature position I; as soon as an air gap forms between the armature 7 and the first core 12, the risk of unintentional holding in the first armature position I has already been significantly reduced.

Fig. 7 zeigt eine Schaltungsanordnung 35, die ohne zeitliche Rampe realisierbar ist, mit Ansteuerung der Transistoren, insbesondere MOSFETs T1, T2, T3, T4, T5, T6, die als Hiside-Transistoren T1 und T2 und Loside- Transistoren T3 bis T6 vorgesehen sind, über Hiside-Steuersignale Si1 und Si 2 sowie Loside- Steuersignale Si3, Si4, Si5, Si6. Fig. 7 shows a circuit arrangement 35, which can be realized without a time ramp, with driving of the transistors, in particular MOSFETs T1, T2, T3, T4, T5, T6, which are provided as itside transistors T1 and T2 and Loside transistors T3 to T6, over Hiside control signals Si1 and Si 2 and Loside- control signals Si3, Si4, Si5, Si6.

Für beide Schaltvorgänge SV1, SV2 wird jeweils das kompensierende, schwächere Elektromagnetfeld, d. h. in Fig. 1 bzw. Fig. 3 das erste Elektromagnetfeld EM1, entsprechend nur teilweise angesteuert. Dies kann vorteilhafterweise über PWM erfolgen, wobei die Ansteuerung durch Schaltzustände ON, OFF sowie zum Ausbilden eines Leistungsstroms zwischen dem Minimal- und Maximalwert die Ansteuerung über PWM, d. h. zeitweiser Ansteuerung, erfolgt.For both switching operations SV1, SV2 is in each case the compensating, weaker electromagnetic field, ie in Fig. 1 respectively. Fig. 3 the first electromagnetic field EM1, according to only partially controlled. This can advantageously take place via PWM, wherein the activation by switching states ON, OFF and to form a power current between the minimum and maximum value, the control via PWM, ie temporary control occurs.

Fig. 7a) zeigt hierbei die Schaltung, Fig. 7b) ergänzend die nachfolgende Tabelle der Ansteuerphasen SchaltVorgang Si1 Si2 Si3 Si4 Si5 Si6 SV1 (II→I) ON OFF OFF 100% OFF 25% SV2 (I→II) OFF ON 25% OFF 100% OFF Fig. 7a ) shows the circuit, Fig. 7b ) supplementary the following table of activation phases switching operation Si1 Si2 Si3 Si4 Si5 si6 SV1 (II → I) ON OFF OFF 100% OFF 25% SV2 (I → II) OFF ON 25% OFF 100% OFF

Hierbei beziehen sich die Prozent-Angaben auf die PWM-Ansteuerung, d.h. den Anteil an "ON" bzw. Transistor-Aussteuerung; der Wert 25% steht somit insbesondere für eine PWM-Ansteuerung, bei der 25% der Taktperiode "ON" vorliegt. SV1 ist der erste Schaltvorgang zum Einstellen der ersten Ankerstellung I, SV2 entsprechend der zweite Schaltvorgang zum Einstellen der zweiten Ankerstellung II.Here, the percentages refer to the PWM drive, i. the proportion of "ON" or transistor modulation; the value 25% thus stands in particular for a PWM control in which 25% of the clock period "ON" is present. SV1 is the first switching operation for setting the first armature position I, SV2 corresponding to the second switching operation for setting the second armature position II.

Fig. 7c) und Fig. 7d) zeigen grafisch veranschaulicht die Strompfade in den beiden Schaltvorgängen SV1 und SV2, mit den schaltenden Strömen I1_s und I2_s und kompensierenden Strömen I1_k und I2_k, wobei sich ergänzend noch z. B. Freilaufströme FP ausbilden. Fig. 7c) and Fig. 7d Graphically illustrates the current paths in the two switching operations SV1 and SV2, with the switching currents I1_s and I2_s and compensating currents I1_k and I2_k, in addition z. B. freewheeling currents FP train.

Die Dioden D1, D2, D3, D4, D5, D6, D7, D8 dienen in der Schaltungsanordnung 35 der Fig. 7 der Vermeidung von Sperrströmen und der Ermöglichung von Freilaufströmen der Spulen 18 und 19.The diodes D1, D2, D3, D4, D5, D6, D7, D8 are used in the circuit arrangement 35 of Fig. 7 the prevention of reverse currents and the possibility of freewheeling currents of the coils 18 and 19.

Fig. 2 zeigt eine Weiterentwicklung der Fig. 1, bei der ergänzend ein Polrohr 28 radial zwischen der Permanentmagnet-Einrichtung 16 und dem Anker 7, bzw. dem Ankerführungsrohr 6 vorgesehen ist, um einen besseren Übergang der Feldlinien bzw. des Permanentmagnetfeldes in den Anker 7 zu ermöglichen. Fig. 2 shows an evolution of the Fig. 1 in which a pole tube 28 is additionally provided radially between the permanent magnet device 16 and the armature 7, or the armature guide tube 6, for a better transition allow the field lines and the permanent magnetic field in the armature 7.

Fig. 9 und Fig. 10 zeigen eine detaillierte Ausbildung eines Magnetventils 1 entsprechend Fig. 1 oder 2. Die Permanent-Magneteinrichtung 16 ist hier zur Veranschaulichung in gegenüber Fig. 1 und 2 umgekehrter Polung eingesetzt. Druckluft 25a wird von einer Druckluftversorgung 25, z. B. einem Druckluftspeicher, über eine Druckluft-Zuleitung 23 dem Druckeingang 2a zugeführt, und über den ersten Druckausgang 2b und eine Druck- Ausgangsleitung 26 zu einem Verbraucher 24 geführt. An den zweiten Druckausgang 2c, der als Entlüftung dient, ist ein Druckauslass 27 direkt oder über indirekt eine Leitung angebracht. FIGS. 9 and 10 show a detailed design of a solenoid valve 1 accordingly Fig. 1 or 2 , The permanent magnet device 16 is here opposite for illustrative purposes Fig. 1 and 2 reversed polarity used. Compressed air 25a is from a compressed air supply 25, z. B. a compressed air reservoir, fed via a compressed air supply line 23 to the pressure input 2a, and passed over the first pressure output 2b and a pressure output line 26 to a consumer 24. To the second pressure outlet 2c, which serves as a vent, a pressure outlet 27 is attached directly or indirectly via a conduit.

In der ersten Ankerstellung I, d.h. der Entlüftungsstellung der Fig. 9, wird die an dem Druckeingang 2a und der inneren Bohrung 42 des ersten Kerns 12 anliegende Druckluft an dem geschlossenen ersten Ventil, d.h. zwischen dem ersten Ventilsitz 9 und der ersten Ventildichtung 8, blockiert. Druckluft 25a kann von dem Verbraucher 24 über die Druck-Ausgangsleitung 26, den ersten Druckausgang 2b, dann über eine äußere axiale Bohrung 43 des Kerns 12, einen Innenraum 29 des Ankers 7, in dem vorzugsweise auch z. B. die innere Ankerfeder 13 vorgesehen ist, und über den Axialspalt 22 des offenen zweiten Ventils 10,11 sowie die Bohrung 14a des zweiten Kerns 14 zum zweiten Druckausgang 2c und somit zu dem Druckauslass 27 zur Entlüftung geführt werden. Das zweite Ventil 10, 11 ist somit offen, da der zweite Ventilsitz 11 von der zweiten Ventildichtung 10 durch den Axialspalt 22 getrennt ist.In the first anchor position I, ie the venting position of Fig. 9 , the compressed air applied to the pressure inlet 2a and the inner bore 42 of the first core 12 is blocked at the closed first valve, ie between the first valve seat 9 and the first valve seal 8. Compressed air 25a can from the consumer 24 via the pressure-output line 26, the first pressure outlet 2b, then via an outer axial bore 43 of the core 12, an interior 29 of the armature 7, in which preferably also z. B. the inner armature spring 13 is provided, and are guided over the axial gap 22 of the open second valve 10,11 and the bore 14a of the second core 14 to the second pressure outlet 2c and thus to the pressure outlet 27 for venting. The second valve 10, 11 is thus open, since the second valve seat 11 is separated from the second valve seal 10 by the axial gap 22.

In der zweiten Ankerstellung II, d.h. der Belüftungsstellung der Fig. 10, ist das erste Ventil 8, 9 offen, d.h. der Axialspalt 22 ist zwischen dem ersten Ventilsitz 9 und der ersten Ventildichtung 8 ausgebildet. Entsprechend ist das zweite Ventil 10, 11 geschlossenen, indem der zweite Ventilsitz 11 auf der zweiten Ventildichtung 10 aufliegt. Druckluft 25a wird somit von der Druckluftversorgung 25 über die Druckluft-Zuleitung 23, den Druckeingang 2a, die innere Bohrung 42, das offene erste Ventil 8, 9, den Axialspalt 22, die radial äußere Bohrung 43 zu dem ersten Druckausgang 2b und somit zu dem Verbraucher 24 geführt.In the second anchor position II, ie the ventilation position of the Fig. 10 , the first valve 8, 9 is open, ie the axial gap 22 is formed between the first valve seat 9 and the first valve seal 8. Accordingly, that is second valve 10, 11 closed by the second valve seat 11 rests on the second valve seal 10. Compressed air 25a is thus from the compressed air supply 25 via the compressed air supply line 23, the pressure inlet 2a, the inner bore 42, the open first valve 8, 9, the axial gap 22, the radially outer bore 43 to the first pressure outlet 2b and thus to the Consumer 24 led.

Die Bohrungen 42, 43 im ersten Kern 12 sind vorteilhafterweise ausgebildet, indem der erste Kern 12 mit einem inneren Rohr 12a und einem äußeren Rohr 12b ausgebildet ist, zwischen denen zumindest in einigen Bereichen des Umfangs die äußere axiale Bohrung 43 ausgebildet ist; die innere Bohrung 42 wird durch die zentrale Bohrung des inneren Rohrs 12a gebildet.The bores 42, 43 in the first core 12 are advantageously formed by the first core 12 is formed with an inner tube 12 a and an outer tube 12 b, between which at least in some areas of the circumference, the outer axial bore 43 is formed; the inner bore 42 is formed by the central bore of the inner tube 12a.

Der Anker 7 wird gemäß der hier gezeigten Ausbildung durch einen ersten Ankerteil 7a und einen zweiten Ankerteil 7b gebildet, die z. B. durch Presspassung zusammen gefügt werden; die Ankerfeder 13 drückt die Ventildichtungen 8 und 10 axial auseinander. Der Anker 7 kann somit mit einem Anker-Innenraum 29 gefügt werden, der wie oben beschrieben als Luftkanal für die Entlüftung dient.The armature 7 is formed according to the embodiment shown here by a first anchor part 7a and a second anchor part 7b, the z. B. be joined together by press fitting; the armature spring 13 presses the valve seals 8 and 10 apart axially. The armature 7 can thus be joined with an armature interior 29 which, as described above, serves as an air duct for the ventilation.

Bezugszeichenliste (Bestandteil der Beschreibung)List of Reference Numerals (part of the description)

11
bistabiles Magnetventilbistable solenoid valve
2a2a
Druckeingangpressure input
2b2 B
erster Druckausgang zu Druckanschlussleitung/-ausgangsleitungfirst pressure outlet to pressure connection line / output line
2c2c
zweiter Druckausgang zu Entlüftungsecond pressure outlet for venting
3, 43, 4
Druckluft-Zuführleitung und Druckluft-AusgangsleitungCompressed air supply line and compressed air outlet line
55
bistabile Magnetventil-Einrichtungbistable solenoid valve device
66
AnkerführungsrohrArmature guide tube
77
Ankeranchor
7a7a
erstes Ankerteilfirst anchor part
7b7b
zweites Ankerteilsecond anchor part
88th
erste Ventildichtung an Anker 7first valve seal to anchor 7
99
erster Ventilsitzfirst valve seat
1010
zweite Ventildichtung an Anker 7second valve seal to anchor 7
1111
zweiter Ventilsitzsecond valve seat
1212
erster Kernfirst core
12a12a
inneres Rohr des ersten Kerns 12Inner tube of the first core 12
12b12b
äußeres Rohr des ersten Kerns 12outer tube of the first core 12
1313
innere Ankerfeder in Anker 7 zwischen den Ventildichtungen 8 und 10inner armature spring in armature 7 between the valve seals 8 and 10th
1414
zweiter Kernsecond core
1515
Magnet-EinrichtungMagnet means
1616
Permanentmagnet-EinrichtungPermanent magnet means
16a, b, c, d16a, b, c, d
stabförmige Permanentmagneterod-shaped permanent magnets
16e16e
Permanentmagnet-RingPermanent magnet ring
1717
ElektromagneteinrichtungElectromagnet means
1818
erste Spulefirst coil
1919
zweite Spulesecond coil
2020
JochtopfJochtopf
20a20a
Topfbodenpot base
20b20b
Topfwandpot wall
2121
Jochscheibeyoke disc
2222
Luftspaltair gap
2323
Druckluft-ZuleitungCompressed air supply
2424
Verbraucherconsumer
2525
DruckluftversorgungAir Supply
25a25a
Druckluftcompressed air
2626
Druck-AusgangsleitungPressure output line
2727
Druckauslasspressure outlet
2828
Polrohr für radialen Feldlinien-ÜbergangPole tube for radial field line transition
2929
Anker-InnenraumAnchor interior
3030
Schaltungsanordnung der Fig. 6 für RampensteuerungCircuitry of the Fig. 6 for ramp control
3535
Schaltungsanordnung der Fig. 7 für separate SpulenansteuerungCircuitry of the Fig. 7 for separate coil control
4040
Steuereinrichtungcontrol device
4242
zentrale Bohrung im ersten Kern 12central bore in the first core 12
4343
äußere Bohrung im ersten Kern 12, zwischen den Rohren 12a, 12bouter bore in the first core 12, between the tubes 12a, 12b
5050
Fluidsystemfluid system
61a,b61a, b
Spulenanschlüsse der ersten Spule 18 an die SchaltungsanordnungCoil terminals of the first coil 18 to the circuit arrangement
62a, b62a, b
Spulenanschlüsse der zweiten Spule 19 an die SchaltungsanordnungCoil terminals of the second coil 19 to the circuit arrangement
Tr1, Tr2, Tr3, Tr4Tr1, Tr2, Tr3, Tr4
Transistoren der Schaltungsanordnung 30Transistors of the circuit arrangement 30
T1, T2, T3, T4, T5, T6T1, T2, T3, T4, T5, T6
Transistoren der Schaltungsanordnung 35Transistors of the circuit arrangement 35
Uvuv
Versorgungsspannungsupply voltage
GNDGND
MasseDimensions
D1 bis D6D1 to D6
Diodendiodes
AA
Achse, AxialrichtungAxis, axial direction
RR
Radialrichtungradial direction
PMPM
Gesamt-MagnetfeldTotal magnetic field
PM1PM1
erstes Permanentmagnetfeldfirst permanent magnetic field
PM2PM2
zweites Permanentmagnetfeldsecond permanent magnetic field
EM1EM1
erstes Elektromagnetfeldfirst electromagnetic field
EM2EM2
zweites Elektromagnetfeldsecond electromagnetic field
N, SN, S
Nordpol, SüdpolNorth Pole, South Pole
II
Strom bei ReihenschaltungCurrent in series connection
I1I1
erster Strom durch die erste Spule 18first current through the first coil 18th
I1_sI1_s
schaltender erster Stromswitching first current
I1_kI1_k
kompensierender erster Stromcompensating first current
I2I2
zweiter Strom durch die zweite Spule 19second current through the second coil 19th
I2_sI2_s
schaltender zweiter Stromswitching second stream
I2_kI2_k
kompensierender zweiter Stromcompensating second stream
S1S1
erstes Ansteuersignal der Rampensteuerungfirst drive signal of the ramp control
S2S2
zweites Ansteuersignal der Rampensteuerungsecond drive signal of the ramp control
S3S3
drittes Ansteuersignal der Rampensteuerungthird drive signal of the ramp control
S4S4
viertes Ansteuersignal der Rampensteuerungfourth drive signal of the ramp control
Si1Si1
erstes Hiside-Steuersignalfirst hiside control signal
Si2Si2
zweites Hiside-Steuersignalsecond Hiside control signal
Si3Si3
drittes Loside-Steuersignalthird loside control signal
Si4Si4
viertes Loside-Steuersignalfourth loside control signal
Si5Si5
fünftes Loside-Steuersignalfifth loside control signal
Si6si6
sechstes Loside-Steuersignalsixth loside control signal
SV1SV1
Rückstell- Schaltvorgang, erster SchaltvorgangReset switching operation, first switching operation
SV2SV2
Anker- Schaltvorgang, zweiter SchaltvorgangAnchor switching process, second switching operation

Claims (19)

Schaltungsanordnung (30, 35) zur Ansteuerung eines bistabilen Magnetventils (1) für ein Fluidsystem (50),
wobei die Schaltungsanordnung (30, 35) Schalteinrichtungen (T1, T2, T3, T4, T5, T6; Tr1, Tr2, Tr3, Tr4) und eine Steuereinrichtung (40) zur Ansteuerung der Schalteinrichtungen (T1, T2, T3, T4, T5, T6; Tr1, Tr2, Tr3, Tr4) für einen ersten Schaltvorgang (SV1) und einen zweiten Schaltvorgang (SV2) aufweist,
wobei die Steuereinrichtung (40) die Schalteinrichtungen (T1, T2, T3, T4, T5, T6; Tr1, Tr2, Tr3, Tr4) derartig ansteuert, dass
in einem ersten Schaltvorgang (SV1) eine erste Elektromagneteinrichtung (18) mit einem schaltenden ersten Strom (I1_s) bestromt ist zur Ausbildung eines den Anker (7) von einer zweiten Ankerstellung (II) in eine erste Ankerstellung (I) verstellenden ersten Elektromagnetfeldes (EM1),
in einem zweiten Schaltvorgang (SV2) eine zweite Elektromagneteinrichtung (19) mit einem schaltenden zweiten Strom (I2_s) bestromt ist zur Ausbildung eines den Anker (7) von der ersten Ankerstellung (I) in die zweite Ankerstellung (II) verstellenden zweiten Elektromagnetfeldes (EM2),
dadurch gekennzeichnet, dass
die Steuereinrichtung (40) derartig zur Ansteuerung der Schalteinrichtungen (T1, T2, T3, T4, T5, T6; Tr1, Tr2, Tr3, Tr4) ausgebildet ist, dass die beiden Elektromagneteinrichtungen (18, 19) jeweils sowohl in dem ersten Schaltvorgang (SV1) als auch in dem zweiten Schaltvorgang (SV2) bestromt sind.
Circuit arrangement (30, 35) for driving a bistable solenoid valve (1) for a fluid system (50),
wherein the circuit arrangement (30, 35) comprises switching devices (T1, T2, T3, T4, T5, T6, Tr1, Tr2, Tr3, Tr4) and a control device (40) for activating the switching devices (T1, T2, T3, T4, T5 , T6, Tr1, Tr2, Tr3, Tr4) for a first switching operation (SV1) and a second switching operation (SV2),
wherein the control means (40) controls the switching means (T1, T2, T3, T4, T5, T6, Tr1, Tr2, Tr3, Tr4) in such a way that
in a first switching operation (SV1), a first electromagnetic device (18) is energized with a switching first current (I1_s) for forming a first electromagnetic field (EM1) adjusting the armature (7) from a second armature position (II) to a first armature position (I) )
in a second switching operation (SV2), a second electromagnetic means (19) is energized with a switching second current (I2_s) for forming a second electromagnetic field (EM2) adjusting the armature (7) from the first armature position (I) to the second armature position (II) )
characterized in that
the control device (40) is designed in such a way for activating the switching devices (T1, T2, T3, T4, T5, T6, Tr1, Tr2, Tr3, Tr4) that the two electromagnetic devices (18, 19) are in each case in both the first switching operation ( SV1) as well as in the second switching process (SV2) are energized.
Schaltungsanordnung (30, 35) nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Elektromagneteinrichtungen (18, 19) parallel oder in Reihe geschaltet sind und durch die Steuereinrichtung (40) für den ersten Schaltvorgang (SV1) in einer ersten Richtung und für den zweiten Schaltvorgang (SV2) in einer der ersten Richtung entgegen gesetzten zweiten Richtung bestrombar sind.Circuit arrangement (30, 35) according to claim 1, characterized in that the two electromagnet devices (18, 19) are connected in parallel or in series and by the control device (40) for the first switching operation (SV1) in a first direction and for the second switching operation (SV2) can be energized in a second direction opposite to the first direction. Schaltungsanordnung (35) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Steuereinrichtung (40) derartig zur Ansteuerung der Schalteinrichtungen (T1, T2, T3, T4, T5, T6) ausgebildet ist, dass in dem zweiten Schaltvorgang (SV2) die erste Elektromagneteinrichtung (18) zur zumindest teilweisen Kompensation eines ersten Permanentmagnetfeldes (PM1) mit einem geringeren kompensierenden ersten Strom (I1_k) und die zweite Elektromagneteinrichtung (19) zur Verstärkung eines zweiten Permanentmagnetfeldes (PM2) mit einem größeren schaltenden zweiten Strom (I2_s) bestromt ist, und
in dem ersten Schaltvorgang (SV1) die zweite Elektromagneteinrichtung (19) zur zumindest teilweisen Kompensation des zweiten Permanentmagnetfeldes (PM1) mit einem geringeren kompensierenden zweiten Strom (I2_k) und die erste Elektromagneteinrichtung (18) zur Verstärkung des ersten Permanentmagnetfeldes (PM2) mit einem größeren schaltenden ersten Strom (I1_s) bestromt ist.
Circuit arrangement (35) according to claim 1 or 2, characterized in that the control device (40) is designed in such a way for driving the switching devices (T1, T2, T3, T4, T5, T6) that in the second switching operation (SV2) the first Electromagnetic device (18) for at least partially compensating a first permanent magnetic field (PM1) with a smaller compensating first current (I1_k) and the second electromagnet means (19) for amplifying a second permanent magnetic field (PM2) is energized with a larger switching second current (I2_s), and
in the first switching operation (SV1), the second electromagnetic means (19) for at least partially compensating the second permanent magnetic field (PM1) with a smaller compensating second current (I2_k) and the first electromagnet means (18) for amplifying the first permanent magnetic field (PM2) with a larger one is energized switching first current (I1_s).
Schaltungsanordnung (30, 35) nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass die Schalteinrichtungen (T1, T2, T3, T4, T5, T6; TR1, Tr2, Tr3, Tr4) als zwischen einer oberen Versorgungsspannung (Uv) und den Elektromagneteinrichtungen (18, 19) geschaltete Highside-Treiber (T1, T2; Tr1, Tr2), und zwischen den Elektromagneteinrichtungen (18, 19) und einer unteren Versorgungsspannung, z. B. Masse (GND), geschaltete Lowside-Treiber (T3, T4, T5, T6; Tr3, Tr4) vorgesehen sind.
Circuit arrangement (30, 35) according to one of Claims 1 to 3,
characterized in that the switching devices (T1, T2, T3, T4, T5, T6; TR1, Tr2, Tr3, Tr4) are connected as highside drivers (T1, T1, T2) connected between an upper supply voltage (Uv) and the electromagnetic devices (18, 19). T2, Tr1, Tr2), and between the solenoid means (18, 19) and a lower supply voltage, e.g. Ground (GND), switched lowside drivers (T3, T4, T5, T6, Tr3, Tr4) are provided.
Schaltungsanordnung (30, 35) nach Anspruch 4, dadurch gekennzeichnet, dass die Steuereinrichtung (4) gepulste Signale (Si3, Si4, Si5, Si6), insbesondere Pulsweitenmodulations-Signale, zur Einstellung der kompensierenden geringeren Ströme (I1_k, I2_k) und der schaltenden größeren Ströme (I1_s, I2_s) ausgibt, insbesondere an die Lowside-Treiber (Tr3, Tr4).Circuit arrangement (30, 35) according to claim 4, characterized in that the control device (4) pulsed signals (Si3, Si4, Si5, Si6), in particular pulse width modulation signals, for adjusting the compensating lower currents (I1_k, I2_k) and the switching larger currents (I1_s, I2_s), in particular to the low-side drivers (Tr3, Tr4). Schaltungsanordnung (35) nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet, dass die Steuereinrichtung (4) die Schalteinrichtungen (T1, T2, T3, T4, T5, T6; TR1, Tr2, Tr3, Tr4) derartig ansteuert, dass der kompensierende erste Strom (I1_k) des zweiten Schaltvorgangs (SV2) dem schaltenden ersten Strom (I1_s) des ersten Schaltvorgangs (SV1) entgegen gesetzt und vom Betrag her kleiner ist, und
der kompensierende zweite Strom (I2_k) des ersten Schaltvorgangs (SV1) dem schaltenden zweiten Strom (I2_s) des zweiten Schaltvorgangs (SV2) entgegen gesetzt und vom Betrag her kleiner ist.
Circuit arrangement (35) according to one of the preceding claims,
characterized in that the control device (4) controls the switching devices (T1, T2, T3, T4, T5, T6, TR1, Tr2, Tr3, Tr4) in such a way that the compensating first current (I1_k) of the second switching process (SV2) corresponds to the switching first current (I1_s) of the first switching operation (SV1) is opposite and smaller in magnitude, and
the compensating second current (I2_k) of the first switching operation (SV1) is opposed to the switching second current (I2_s) of the second switching process (SV2) and smaller in magnitude.
Magnetventil-Einrichtung (5), die eine Schaltungsanordnung (30, 35) nach einem der vorherigen Ansprüche und ein Magnetventil (1) aufweist,
wobei das Magnetventil (1) aufweist: einen zwischen der ersten Ankerstellung (I) und zweiten Ankerstellung (II) verstellbaren Anker (7), einen ersten Kern (12) zur Anlage des Ankers (7) in der ersten Ankerstellung (I) und einen zweiten Kern (14) zur Anlage des Ankers (7) in der zweiten Ankerstellung (II), wobei der Anker (7) zur Anlage an jeweils einem der Kerne (12, 14) unter Ausbildung eines Luftspaltes (22) zu dem anderen Kern (14, 12) vorgesehen ist, eine Permanentmagneteinrichtung (16) zur Ausbildung eines erstes Permanentmagnetfeld (PM1), das über ein magnetisches Joch (20, 21), den ersten Kern (12) und den Anker (7) verläuft, und eines zweiten Permanentmagnetfeldes (PM2), das über das magnetische Joch (20, 21), den zweiten Kern (14) und den Anker (7) verläuft, eine in der ersten Ankerstellung (I) geschlossene erste Ventileinrichtung (8, 9) und eine in der zweiten Ankerstellung (II) geschlossene zweite Ventileinrichtung (10, 11), eine erste Elektromagneteinrichtung (18) zur Ausbildung eines den Anker (7) in dem ersten Schaltvorgang (SV1) in die erste Ankerstellung (I) verstellenden ersten Elektromagnetfeldes (EM1) und eine zweite Elektromagneteinrichtung (19) zur Ausbildung eines den Anker (7) in dem zweiten Schaltvorgang (SV2) in die zweite Ankerstellung (II) verstellenden zweiten Elektromagnetfeldes (EM2), wobei die Schaltungsanordnung (30, 35) zur Ansteuerung der ersten Elektromagneteinrichtung (18) und der zweiten Elektromagneteinrichtung (19) vorgesehen ist.
Solenoid valve device (5) having a circuit arrangement (30, 35) according to one of the preceding claims and a solenoid valve (1),
wherein the solenoid valve (1) comprises: a between the first anchor position (I) and second anchor position (II) adjustable anchor (7), a first core (12) for mounting the armature (7) in the first armature position (I) and a second core (14) for mounting the armature (7) in the second armature position (II), wherein the armature (7) for conditioning is provided on each of the cores (12, 14) forming an air gap (22) to the other core (14, 12), a permanent magnet device (16) for forming a first permanent magnetic field (PM1), which passes over a magnetic yoke (20, 21), the first core (12) and the armature (7), and a second permanent magnetic field (PM2) passing over the magnetic yoke (20, 21), the second core (14) and the armature (7), a in the first armature position (I) closed first valve means (8, 9) and in the second armature position (II) closed second valve means (10, 11), a first electromagnet device (18) for forming a first electromagnetic field (EM1) displacing the armature (7) in the first switching process (SV1) into the first armature position (I) and a second electromagnet device (19) for forming an armature (7) in FIG the second switching operation (SV2) in the second armature position (II) adjusting second electromagnetic field (EM2), wherein the circuit arrangement (30, 35) is provided for driving the first electromagnetic device (18) and the second electromagnetic device (19).
Magnetventil-Einrichtung (5) nach Anspruch 7, dadurch gekennzeichnet, dass die beiden Elektromagnetfelder (EM1, EM2) jeweils zwischen dem radial äußeren Joch (20, 21) und dem radial innenliegenden Anker (7) in radialer Richtung (R) durch die Permanentmagneteinrichtung (16) verlaufen.Solenoid valve device (5) according to claim 7, characterized in that the two electromagnetic fields (EM1, EM2) respectively between the radially outer yoke (20, 21) and the radially inner armature (7) in the radial direction (R) through the permanent magnet device (16). Magnetventil-Einrichtung (5) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Permanentmagneteinrichtung (16) in radialer Richtung relativ zu einer Axialrichtung (A) magnetisiert ist.Solenoid valve device (5) according to claim 7 or 8, characterized in that the permanent magnet device (16) in the radial direction is magnetized relative to an axial direction (A). Magnetventil-Einrichtung (5) nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Permanentmagneteinrichtung (16) radial außerhalb des Ankers (7) und zwischen der ersten Spule (18) und der zweiten Spule (19) positioniert ist.Solenoid valve device (5) according to one of claims 7 to 9, characterized in that the permanent magnet device (16) is positioned radially outside the armature (7) and between the first coil (18) and the second coil (19). Magnetventil-Einrichtung (5) nach einem der Ansprüche 7 bis 10,
dadurch gekennzeichnet, dass
das Magnetventil (1) als 3/2-Wegeventil mit einem Druckeingang (2a), einem ersten Druckausgang (2b) und einem zweiten Druckausgang (2c) ausgebildet ist,
wobei der erste Druckausgang (2b) in den beiden Ankerstellungen (I, II) jeweils mit entweder dem Druckeingang (2a) oder dem zweiten Druckausgang (2c) verbunden ist und der jeweils andere Anschluss (2c, 2a) gesperrt ist.
Solenoid valve device (5) according to one of claims 7 to 10,
characterized in that
the solenoid valve (1) is designed as a 3/2-way valve with a pressure input (2a), a first pressure outlet (2b) and a second pressure outlet (2c),
wherein the first pressure outlet (2b) in the two armature positions (I, II) is respectively connected to either the pressure inlet (2a) or the second pressure outlet (2c) and the respective other port (2c, 2a) is blocked.
Magnetventil-Einrichtung (5) nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass in dem Anker (7) ein Anker-Innenraum (29) ausgebildet ist, der in genau einer der Ankerstellungen (I) im Luftpfad zwischen den offenen Anschlüssen (2b, 2c) vorgesehen und/oder luftdurchströmt ist.Solenoid valve device (5) according to one of claims 7 to 11, characterized in that in the armature (7) an armature interior (29) is formed in exactly one of the armature positions (I) in the air path between the open terminals ( 2b, 2c) is provided and / or flows through the air. Verfahren zum Schalten eines bistabilen Magnetventils (1) für ein Fluidsystem (50), bei dem
in einem ersten Schaltvorgang (SV1) ein Anker (7) von einer zweiten Ankerstellung (II) in die erste Ankerstellung (I) verstellt wird, indem eine erste Elektromagneteinrichtung (18) mit einem schaltenden ersten Strom (I1_s) bestromt wird zur Ausbildung eines den Anker (7) verstellenden ersten Elektromagnetfeldes (EM1),
in einem zweiten Schaltvorgang (SV2) der Anker (7) in die zweite Ankerstellung (II) verstellt wird, indem eine zweite Elektromagneteinrichtung (19) mit einem schaltenden zweiten Strom (I2_s) bestromt wird zur Ausbildung eines den Anker (7) verstellenden zweiten Elektromagnetfeldes (EM1),
wobei der Anker in der ersten Ankerstellung (I) durch ein erstes Permanentmagnetfeld (PM1) und in der zweiten Ankerstellung (II) durch ein zweites Permanentmagnetfeld (PM2) gehalten ist,
dadurch gekennzeichnet, dass
die beiden Elektromagneteinrichtungen (18, 19) jeweils sowohl in dem ersten Schaltvorgang (SV1) als auch in dem zweiten Schaltvorgang (SV2) bestromt werden.
Method for switching a bistable solenoid valve (1) for a fluid system (50), in which
in a first switching operation (SV1) an armature (7) from a second armature position (II) in the first armature position (I) is adjusted by a first solenoid device (18) is energized with a switching first current (I1_s) to form a den Anchor (7) adjusting the first electromagnetic field (EM1),
in a second switching operation (SV2) the armature (7) in the second armature position (II) is adjusted by a second electromagnet means (19) with a switching second current (I2_s) is energized to form a armature (7) adjusting the second electromagnetic field (EM1)
the armature being held in the first armature position (I) by a first permanent magnetic field (PM1) and in the second armature position (II) by a second permanent magnetic field (PM2),
characterized in that
the two electromagnetic devices (18, 19) are respectively energized in both the first switching process (SV1) and in the second switching process (SV2).
Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass in dem ersten Schaltvorgang (SV1) die zweite Elektromagneteinrichtung (19) mit einem kompensierenden zweiten Strom (I2_k) bestromt wird zur Ausbildung eines das haltende zweite Permanentmagnetfeld (PM2) zumindest teilweise kompensierenden zweiten Elektromagnetfeldes (EM2),
in dem zweiten Schaltvorgang (SV2) die erste Elektromagneteinrichtung (18) mit einem kompensierenden ersten Strom (I1_k) bestromt wird zur Ausbildung eines das haltende erste Permanentmagnetfeld (PM1) zumindest teilweise kompensierenden ersten Elektromagnetfeldes (EM1).
A method according to claim 13, characterized in that in the first switching operation (SV1), the second electromagnet means (19) is energized with a compensating second current (I2_k) for forming a holding the second permanent magnetic field (PM2) at least partially compensating second electromagnetic field (EM2). .
in the second switching operation (SV2), the first electromagnetic device (18) is energized with a compensating first current (I1_k) for forming a first electromagnetic field (EM1) at least partially compensating the first permanent magnetic field (PM1).
Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass der kompensierende erste Strom (I1_k) des zweiten Schaltvorgangs (SV2) dem schaltenden ersten Strom (I1_s) des ersten Schaltvorgangs (SV1) entgegen gesetzt und vom Betrag her kleiner ist, und
der kompensierende zweite Strom (I2_k) des ersten Schaltvorgangs (SV1) dem schaltenden zweiten Strom (I2_s) des zweiten Schaltvorgangs (SV2) entgegen gesetzt und vom Betrag her kleiner ist.
A method according to claim 14, characterized in that the compensating first current (I1_k) of the second shift (SV2) the switching first current (I1_s) set of the first switching operation (SV1) against and is smaller in magnitude, and
the compensating second current (I2_k) of the first switching operation (SV1) is opposed to the switching second current (I2_s) of the second switching process (SV2) and smaller in magnitude.
Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass der erste und zweite Strom (11, I2) durch Pulsmodulation, z. B. mittels PWM-Taktung, eingestellt werden.A method according to claim 15, characterized in that the first and second current (11, I2) by pulse modulation, z. B. by means of PWM clocking, can be adjusted. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass der kompensierende Strom (I_K, I_k1, I_k2) zeitlich veränderlich und/oder zeitlich ansteigend in die schaltende Elektromagneteinrichtung (18, 19) eingesteuert wird und erst nach einer Anfahr-Zeitspanne (Δ_t1) einen maximalen Stromwert (I_max) erreicht.A method according to claim 13 or 14, characterized in that the compensating current (I_K, I_K1, I_k2) is time-varying and / or increasing in time in the switching electromagnetic means (18, 19) is controlled and only after a start-up period (Δ_t1) a maximum current value (I_max) reached. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass der Anker (7) in der jeweiligen Ankerstellung (II) an dem haltenden Kern (12, 14) anliegt, durch den das haltende Permanentmagnetfeld (PM1, PM2) verläuft, und der Anker (7) in jedem Schaltvorgang (SV1, SV2) noch vor Erreichen des maximalen Stromwertes (I_max) des kompensierenden Stroms (I_k) von dem haltenden Kern (12, 14) weg bewegt ist unter Ausbildung eines Luftspaltes (22) zwischen dem Anker (7) und dem haltenden Kern (12, 14) zur Abschwächung des haltenden Permanent-Magnetfeldes (PM1, PM2) und des kompensierenden Elektromagnetfeldes.A method according to claim 17, characterized in that the armature (7) in the respective armature position (II) against the holding core (12, 14), passes through which the holding permanent magnetic field (PM1, PM2), and the armature (7) is moved away from the holding core (12, 14) in each switching operation (SV1, SV2) even before reaching the maximum current value (I_max) of the compensating current (I_k), forming an air gap (22) between the Anchor (7) and the holding core (12, 14) for attenuating the sustaining permanent magnetic field (PM1, PM2) and the compensating electromagnetic field. Verfahren nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass in den Rückstell-Schaltvorgängen (SV1, SV2) der Kompensations- Strom (I_k) jeweils mit einem zeitlich verzögerten, stetigen und/oder sprunghaften Anstieg auf den maximalen Stromwert (I_max) hochgefahren wird.A method according to claim 17 or 18, characterized in that in the reset switching operations (SV1, SV2) of the compensation current (I_k) in each case with a time-delayed, steady and / or sudden increase to the maximum current value (I_max) is raised.
EP16000656.5A 2015-04-25 2016-03-17 Circuit assembly and method for controlling a bistable magnetic valve for a fluid system Active EP3089177B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015005333.7A DE102015005333A1 (en) 2015-04-25 2015-04-25 Circuit arrangement and method for driving a bistable solenoid valve for a fluid system

Publications (2)

Publication Number Publication Date
EP3089177A1 true EP3089177A1 (en) 2016-11-02
EP3089177B1 EP3089177B1 (en) 2018-01-03

Family

ID=55661037

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16000656.5A Active EP3089177B1 (en) 2015-04-25 2016-03-17 Circuit assembly and method for controlling a bistable magnetic valve for a fluid system

Country Status (2)

Country Link
EP (1) EP3089177B1 (en)
DE (1) DE102015005333A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021111032A1 (en) * 2021-04-29 2022-11-03 Samson Aktiengesellschaft Electromagnetic drive for example for a 3/2-way valve and 3/2-way valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3730381A1 (en) 1987-09-10 1989-03-30 Kuhnke Gmbh Kg H Bistable solenoid valve with permanent-magnetic holding force
EP0328194A1 (en) 1988-02-08 1989-08-16 Magnavox Electronic Systems Company Potential-magnetic energy driven valve mechanism
DE4415068A1 (en) * 1994-04-29 1995-11-02 Festo Kg Small powerful electrically operated bistable solenoid valve
DE102007063479A1 (en) * 2007-12-20 2008-11-20 Siemens Ag Method for producing signal, involves displaying armature of electromagnets, which attain end position and current is measured continuously which is flowing by electromagnets
US7483254B1 (en) 2007-09-24 2009-01-27 Wang Guangshun Control circuit of a bistable permanent magnet operating mechanism
DE102008022953A1 (en) * 2008-05-09 2009-11-26 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Device and method for operating and monitoring a solenoid valve of an electric parking brake

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751487A (en) * 1987-03-16 1988-06-14 Deltrol Corp. Double acting permanent magnet latching solenoid
DE102010001914A1 (en) * 2010-02-15 2011-08-18 Robert Bosch GmbH, 70469 Steering device for a motor vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3730381A1 (en) 1987-09-10 1989-03-30 Kuhnke Gmbh Kg H Bistable solenoid valve with permanent-magnetic holding force
EP0328194A1 (en) 1988-02-08 1989-08-16 Magnavox Electronic Systems Company Potential-magnetic energy driven valve mechanism
DE4415068A1 (en) * 1994-04-29 1995-11-02 Festo Kg Small powerful electrically operated bistable solenoid valve
US7483254B1 (en) 2007-09-24 2009-01-27 Wang Guangshun Control circuit of a bistable permanent magnet operating mechanism
DE102007063479A1 (en) * 2007-12-20 2008-11-20 Siemens Ag Method for producing signal, involves displaying armature of electromagnets, which attain end position and current is measured continuously which is flowing by electromagnets
DE102008022953A1 (en) * 2008-05-09 2009-11-26 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Device and method for operating and monitoring a solenoid valve of an electric parking brake

Also Published As

Publication number Publication date
EP3089177B1 (en) 2018-01-03
DE102015005333A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
EP3086334B1 (en) Bistable solenoid valve for a fluid system, solenoid valve device and method for switching the solenoid valve
EP2813737B1 (en) Piston slide valve
DE102013005442B3 (en) Valve device and method
DE19963154B4 (en) Method for specifying the current through an inductive component
EP3257060B1 (en) Solenoid valve, valve device with a solenoid valve of this type, vehicle with such a valve and method for operating a solenoid valve of this type
DE102011078104A1 (en) Electromagnetic operated seat valve of valve arrangement used in pneumatic spring system of motor car, has permanent magnet that is held in closed position by magnetic forces, even when sealing element is set without energizing coil
EP3089177B1 (en) Circuit assembly and method for controlling a bistable magnetic valve for a fluid system
DE10315282A1 (en) Circuit arrangement and method for controlling a bistable solenoid valve
DE102009000125A1 (en) Electromagnetic switching element i.e. relay, controlling device, has coils independently supplied with current, where magnetic force acting on electromagnetic switching element i.e. relay, is exerted by current feed of coils
EP1761710A1 (en) Bus module used for controlling fluidic valves
EP3086335B1 (en) Magnet valve device for a fluid system and method for switching a solenoid valve
DE102013111079B4 (en) Pulse solenoid valve
EP2813728B1 (en) Piston slide valve
DE102014107884A1 (en) relay
DE102014117818B4 (en) Circuit arrangement for actuating a solenoid valve
AT518231B1 (en) Poled electromechanical relay with controllable power consumption
EP3181968A1 (en) Electrically switchable valve for fluid media
DE10113457B4 (en) Method for controlling coils of an electromagnetic control device and device for carrying out this method
DE10202628A1 (en) Multi-stable positioning/control device e.g. for bistable relay, includes component with permanent magnetic properties arranged in series with interconnected permanent magnetic part-zones
DE102016112246B4 (en) Electromagnetic actuator, solenoid valve and pump
DE102007020944A1 (en) Magnetic drive for application in shock absorber regulating valve, has armature that is formed in two parts, where spring arrangement is base positioned in electrical currentless condition of coil between two final positions
DE10259117A1 (en) Inductive component to be magnetically compensated in ferromagnetic circuit has coil and magnetic circuit made from ferromagnetic material
DE102013016991A1 (en) Electronic circuit device for 2-pole operation of pulse magnetic valve, has two coils operated in two modes by first and second nodes in configuration and by first, second and third nodes in another configuration, respectively
DE102013000873A1 (en) Electromagnetic valve i.e. 3/2 directional valve, for use in mechatronics valve module for compressed air system, has sub coils connected in parallel by bipolar transistors in switching position, and in series in another switching position
WO2004070760A1 (en) Electromagnetic drive for switching devices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170502

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170912

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 960983

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016000418

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180503

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016000418

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

26N No opposition filed

Effective date: 20181005

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160317

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016000418

Country of ref document: DE

Owner name: ZF CV SYSTEMS EUROPE BV, BE

Free format text: FORMER OWNER: WABCO GMBH, 30453 HANNOVER, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016000418

Country of ref document: DE

Owner name: ZF CV SYSTEMS HANNOVER GMBH, DE

Free format text: FORMER OWNER: WABCO GMBH, 30453 HANNOVER, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210319

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210323

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210331

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016000418

Country of ref document: DE

Owner name: ZF CV SYSTEMS EUROPE BV, BE

Free format text: FORMER OWNER: ZF CV SYSTEMS HANNOVER GMBH, 30453 HANNOVER, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 960983

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210317

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220318

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230331

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528