EP3068717B1 - Aufzugssystem mit reduzierter ausbalancierung - Google Patents

Aufzugssystem mit reduzierter ausbalancierung Download PDF

Info

Publication number
EP3068717B1
EP3068717B1 EP14796215.3A EP14796215A EP3068717B1 EP 3068717 B1 EP3068717 B1 EP 3068717B1 EP 14796215 A EP14796215 A EP 14796215A EP 3068717 B1 EP3068717 B1 EP 3068717B1
Authority
EP
European Patent Office
Prior art keywords
value
speed
car
mass
elevator system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14796215.3A
Other languages
English (en)
French (fr)
Other versions
EP3068717A1 (de
Inventor
Serge Arnoult
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sapa
Original Assignee
Sapa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sapa filed Critical Sapa
Publication of EP3068717A1 publication Critical patent/EP3068717A1/de
Application granted granted Critical
Publication of EP3068717B1 publication Critical patent/EP3068717B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/0065Roping
    • B66B11/008Roping with hoisting rope or cable operated by frictional engagement with a winding drum or sheave
    • B66B11/009Roping with hoisting rope or cable operated by frictional engagement with a winding drum or sheave with separate traction and suspension ropes

Definitions

  • the invention relates to a reduced balance elevator system and a method for managing such a system.
  • An elevator system typically includes a car and a counterweight attached to a cable supported by a pulley.
  • the mass of the counterweight is chosen equal to the mass of the cabin plus half the maximum expected payload.
  • Payload means the load attributable to passengers and goods installed in the cabin.
  • the document FR2768421 describes an elevator system with reduced balancing, that is to say that the mass of the counterweight differs from the mass of the car by a difference which is less than half of the maximum expected payload.
  • a load value is measured inside the cabin, and if this measured value is greater than a threshold equal to twice this difference, the speed of the cabin is reduced below a predetermined speed value.
  • the document US 2008/041668 A1 describes an elevator system having a predetermined maximum load mass, comprising a car, a counterweight, a control device and transmission means for transmitting a control signal in order to impose a car movement at the calculated speed, a pulley traction installed at the upper end of the elevator shaft and a pulley installed at the lower end of the elevator shaft, wherein at least one of the car and the counterweight is mounted on at least one passing linear element by the two pulleys so as to form a closed loop with said at least one of the cabin and the counterweight.
  • the proposed system includes a second pulley making it possible to tension the linear element(s) to the desired tension, which can ensure adherent contact with the pulleys, even if the ratio between the masses of the loaded cabin and the counterweight is relatively high.
  • the grip depends relatively little, or not at all, on the value of the mass of the cabin, the grip being more a function of the balancing and the mechanics of the loop.
  • This system makes it possible to limit the dependence that exists between adhesion and balancing in a traditional installation.
  • This system can thus make it possible to reconcile security and energy savings.
  • the linear element includes a flat section belt, in order to limit the risk of slipping.
  • the belt can advantageously be grooved.
  • the invention is not limited to a particular configuration of the elevator system.
  • the cabin forms the closed loop with the drive element and the two pulleys, while the counterweight (respectively the cabin) is fixed to one end of a drive element additional wound around a third pulley, installed at the upper end of the sheath, this additional drive element also being fixed at its other end to the cabin (respectively, to the counterweight).
  • load to be lifted means the absolute value of the difference between the mass on the loaded cabin side and the mass of the counterweight. If the cabin is loaded so that the load to be lifted is relatively low, the cabin movement can be carried out requiring relatively little power. On the other hand, for a relatively high load to be lifted, we could plan to reduce the cabin movement speed in order to limit the power consumed.
  • the control device is arranged so as to receive a speed value from at least one sensor, to compare this speed value to a speed threshold value, and to transmit to the blocking device a trigger signal developed in depending on the result of the comparison.
  • the control device is further arranged to determine the speed threshold value as a function of the calculated speed value.
  • the parachute triggering threshold is adapted according to a speed value calculated according to the cabin load.
  • the control device can impose a reduced cabin speed compared to a nominal speed value corresponding to a zero measured load. If the trigger threshold value is predetermined, because it is linked for example to an overspeed detection carried out by mechanical means of the spring or weight detector type, then the passengers risk experiencing relatively strong acceleration. The proposed system can thus make it possible to avoid the sensations linked to this acceleration.
  • the speed value compared to the speed threshold value can come from a speed sensor, or even be estimated from position values from a position sensor.
  • the speed threshold value is determined by multiplying the calculated speed value by a predetermined coefficient and of value strictly greater than 1, and advantageously greater than 1.05, for example 1.3 or even 1.1.
  • the parachute is activated when the measured speed exceeds the calculated speed by a given percentage, for example 30% or 10% in the respective cases of coefficients of 1.3 and 1.1.
  • the blocking device can be controlled directly by the control device, via the trigger signal.
  • This trigger signal can for example be sent to electromechanical conversion means, for example a coil, a motor, or the like, arranged so as to act directly on the blocking device.
  • control system can be arranged so as to, particularly when the load to be lifted is relatively low, calculate a speed value higher than a nominal speed value.
  • the movement can thus be carried out relatively quickly, without a drastic increase in consumption if the value of the load to be lifted is low.
  • the speed value may be higher than the corresponding nominal speed value. at a zero load value.
  • Adapting the value of the trigger threshold can then make it possible to avoid false positives, to the extent that the trigger threshold is then chosen relatively high.
  • the elevator system can be associated with a predetermined speed value from the basic Renard R5 series, for example 1 m/s or 1.6 m/s. This association is classic in the prior art, the types of elevator systems being conventionally described by a maximum load mass and a speed from the Renard series, for example “630 kg, 1m/s”. Typically, the systems known from the prior art operate at this predetermined speed value regardless of the cabin load.
  • the document FR2768421 describes a system in which a speed lower than this predetermined speed and associated with the elevator system is imposed when the load is greater than a threshold depending on the balancing.
  • the processing means can be arranged to calculate a speed value strictly greater than said predetermined value when the cabin is empty.
  • a speed value strictly greater than said predetermined value when the cabin is empty.
  • the processing means can be arranged to compare the current measured load value to a load threshold of strictly positive value, for example 30% or 50% of the maximum load, and for, when the value current measured load is less than or equal to this load threshold, determine a speed value strictly greater than the predetermined speed value from the Renard series.
  • the load threshold may or may not be equal to the mass of the counterweight.
  • the energy consumed for a given movement varies relatively little whether this movement is carried out at the expected predetermined speed or at a higher speed.
  • the processing means can be arranged so as to, when the current measured load value is less than or equal to the load threshold, impose a single speed value whatever the value of the measured load, for example 1.3 m/ s in the case of a speed value from the Renard series of 1 m/s.
  • the processing means can be arranged so as to, when the current measured load value is less than or equal to this load threshold, calculate a speed value as a function of at least one parameter (for example the value of the current load measured), it being understood that the value thus calculated is strictly greater than the speed value from the Renard series.
  • the processing means can be arranged so as to calculate, when the current measured load value is less than or equal to the load threshold, a speed value at least equal to 1.1 times the value of speed from the Renard series, advantageously at least equal to 1.2 times the speed value from the Renard series, advantageously at least equal to 1.3 times the speed value from the Renard series.
  • the speed value may be calculated as a function of the load value such that the power varies relatively little from one load value to the next.
  • the speed value could be relatively low when the load to be raised has a relatively high value, and/or conversely the calculated speed value could be relatively high when the load value to be raised is relatively low.
  • the speed value can also be calculated as a function of the direction of movement.
  • Certain movements for example raising to higher floors a current load of a value lower than the mass value of the counterweight, are in fact not very energy intensive since it is primarily a matter of braking. The imposed speed could therefore be relatively high for movements carried out solely due to gravity.
  • control device can be arranged to compare the current measured load value to a strictly positive threshold, of value equal to or different from the value of the load threshold, and to impose a higher speed value. weak when going up or down when the current measured load value is greater, or greater than or equal to, this threshold.
  • This threshold may or may not be equal to the mass of the counterweight.
  • the direction of movement may be possible to take into account the direction of movement to calculate the speed to be imposed only when the current measured load exceeds a certain threshold, strictly positive, for example a percentage of the maximum load.
  • a certain threshold strictly positive, for example a percentage of the maximum load.
  • the direction of movement is not taken into account in the calculation of the speed; on the other hand, for relatively loaded cabins, a speed higher than the expected speed on the way down and a speed lower than the expected speed on the way up can be provided.
  • the processing means can be arranged to calculate the speed value as a function in addition of an energy consumption mode value.
  • the power value when this mode value has a value corresponding to normal operation, the power value may be capable of varying in a relatively small range and centered around a predetermined power value, for example 3 kW or 4 kW.
  • the speed value can be calculated so that, whatever the load, the power value remains in a second range centered around a lower power value , for example less than or equal to 1 kW.
  • This degraded mode could for example be implemented in the case of a power cut, that is to say that the mode value is changed (in particular) following the detection of a power cut.
  • the elevator system can advantageously be arranged so as, particularly in the event of a power outage, to use energy from a renewable energy source, for example solar panels installed for example on the roof of the building, a wind turbine, or something else.
  • a renewable energy source for example solar panels installed for example on the roof of the building, a wind turbine, or something else.
  • the elevator system can thus be connected to this storage means, particularly when the renewable energy source is installed on the building or nearby.
  • the elevator system can thus advantageously be used in a positive energy building.
  • the control device may for example comprise a microcontroller, a microprocessor, or the like. This processor can in particular be remote from the rest of the elevator system.
  • the reception means may for example include pins, input buses or the like.
  • the processing means can for example include a processor core or the like.
  • the transmission means may for example include pins, output buses or the like.
  • the speed threshold value is determined based on the calculated speed value.
  • an elevator system 1 is designed for a predetermined maximum load mass Q MAX , for example 230 kg, and for a predetermined speed from the Renard R5 series, for example 1 m/s.
  • the maximum load mass value is generally indicated inside the cabin so that the number of people inside the cabin remains below a threshold, for example 3 people.
  • This elevator system comprises a cabin 2 having a predetermined cabin mass M cab and a counterweight 3 having a predetermined counterweight mass M CP .
  • This counterweight mass M CP is chosen equal to the mass of the cabin M cab plus a balancing load value Q eq chosen strictly less than half of the maximum load mass Q MAX .
  • this balancing load value Q eq is chosen equal to 32% of the predetermined maximum load value Q MAX .
  • the system 1 further comprises a linear drive element 4 forming a closed loop with two pulleys 5, 6 installed at the respectively high and low ends of a shaft not shown of the elevator system.
  • the linear drive element is a flat belt with grooves parallel to its length
  • the system 1 further comprises a position sensor 7 making it possible to measure a position value of the cabin 2.
  • This position sensor can for example comprise means of reading of a magnetic strip not shown installed on at least part and advantageously, over the entire travel of the elevator car 2.
  • a Hall effect sensor is for example described in the document US 2006/07181 .
  • a mass sensor 8 is also installed on cabin 2 making it possible to measure a value of load Q mes supported inside cabin 2.
  • the system 1 further comprises a control device 9 in communication with the sensors 7, 8, for example by radio frequency communication means not shown.
  • This control device 9 can for example integrate a processor not shown.
  • the control device 9 is also in communication with a motor 10 secured to the traction pulley 5 installed at the upper end of the elevator shaft.
  • the control device 9 produces a control signal to be transmitted to the motor 10, as a function of a load value to be lifted from the position sensor 7.
  • the speed of the cabin movements is adapted as a function of the load to be lifted. .
  • control device 9 calculates a parachute triggering threshold value (not shown), based on this imposed speed value.
  • FIG. 3 illustrates an example of a method carried out by a processor integrated in the control device 9.
  • the processor receives a measured load value Q mes from the mass sensor 8.
  • the processor calculates a load value to be lifted Q AL based on this measured load value Q mes and according to the balancing load value Q eq associated with the counterweight referenced 3 on the figure 1 .
  • a mode bit value is read. If this value is equal to zero, that is to say the processor operates in a normal mode, the processor calculates according to the load value to be lifted Q AL a speed value, by referring to a first mapping , stored in a memory of processor 9.
  • this mode bit value is 1, that is to say if the processor operates in a degraded mode, for example following reception of an interrupt signal itself generated due to a power outage mains current, or other, the processor calculates around a step 34' a speed value, always depending on the load to be lifted Q AL by referring to a second map.
  • this second mapping contains speed values such that, whatever the load to be lifted, the corresponding power is relatively constant but lower, for example 1 kW.
  • step 34' we simply assign to the speed value to be calculated a predetermined and relatively low value, for example 0.15 meters per second.
  • step 34 it is possible, during step 34, to compare the current load to a load threshold representing a percentage of the maximum load, here 50%. If the current load represents less than 50% of the maximum load, then, whatever the direction of movement of the cabin, the speed is chosen higher than the predetermined speed from the Renard R5 series, for example 1.3 m /s while the speed from the Renard series is 1 m/s for this type of elevator.
  • a load threshold representing a percentage of the maximum load
  • the imposed speed is higher than the predetermined speed associated with this type elevator, which can limit waiting time and increase traffic, especially since empty trips represent a significant part of the use cases for elevator systems, of the order by 50%.
  • the speed to be imposed is calculated according to the direction of the shift.
  • the speed When going uphill, the speed is chosen lower than the predetermined speed from the Renard series. Reducing the speed thus makes it possible to limit the power of the motor for this type of movement, which is uncommon in real conditions of use, and ultimately to limit the overall operating cost.
  • the speed can be chosen equal to 0 .7 m/s, or be calculated as a function of the load, so as to decrease linearly with it. In the latter case, we can for example reach the predetermined speed from the Renard series of 1 m/s when the cabin is loaded to 75% of the maximum load.
  • the speed is chosen higher than the speed from the Renard series, for example 1.3 m/s.
  • This embodiment can increase traffic by almost 30%.
  • the times indicated correspond to waiting times during transport in 5 minutes of 7.5% of the population of the building according to the calculation rules prescribed in FD P 82-751, and the percentages correspond to the average cabin filling in relation to the maximum load during this transport.
  • the invention can thus make it possible to improve traffic, which can make it possible to choose less powerful and less expensive elevator installations, for a given type of building, than in the prior art.
  • the characteristics of the elevator(s) are chosen, so that, when transporting 7.5% of the building's population in 5 minutes, the time of wait (maximum probable interval) is less than 80 seconds. It appears from table 1 that for a building of 8 levels and 210 people, a system with a maximum load of 630 kg (equivalent to 8 people) can be sufficient since the waiting time indicated is 76.5 s, while the FD documentation P 82-751 provides for an elevator with a maximum load corresponding to 13 people. The inventor can therefore make it possible to simplify and limit the cost of elevator installations.
  • the processor calculates a speed threshold value V THR by multiplying this speed value by a predetermined coefficient k.
  • This predetermined coefficient can for example be worth 1.1 or other.
  • the processor referenced 9 on the figure 1 receives position values from the position sensor referenced 7, and calculates effective speed values in real time, based on these measured position values.
  • Each speed value is compared to the current V THR speed threshold value. If a speed value, or alternatively a number of consecutive measured speed values, exceed(s) this speed threshold value V THR , then the processor of the control device 9 generates a parachute trigger signal and transmits this signal to a solenoid, which then activates a parachute not shown on the figure 1 , which blocks the cabin referenced 2.
  • FIG. 2 illustrates a variant embodiment in which the cabin 2 is not part of the closed loop formed by the belt 4 and the counterweight 3, the cable 4 being wound around the pulleys 5, 6.
  • an additional belt 4 ' is provided, this additional belt being wound around a third belt 5' also fixed at the top of the sheath, and the strands of the additional belt 4' on either side of the pulley 5' are fixed respectively to the cabin 2 and counterweight 3.
  • This configuration can be interesting in the sense that the suspension and the engine are separated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Elevator Control (AREA)

Claims (15)

  1. Aufzugssystem (1), das eine vorbestimmte maximale Lastmasse (QMAX) aufweist, umfassend:
    - eine Kabine (2), die einen vorbestimmten Kabinenmassenwert (Mcab) aufweist,
    - ein Gegengewicht (3), das einen Gegengewichtsmassenwert (MCP) aufweist, der streng kleiner ist als die Kabinenmasse, die mit der Hälfte der maximalen Lastmasse addiert wird,
    wobei die Gegengewichtsmasse (MCP) gleich der Kabinenmasse (Mcab) gewählt wird, die mit einem Ausgleichslastwert (Qeq) addiert wird, wobei die Ausgleichslast (Qeq) gleich 32 % des vorbestimmten maximalen Lastwerts (QMAX) ist;
    - eine Steuervorrichtung (9), Empfangsmittel umfassend, um einen gemessenen Wert der aktuellen Last (Qmes) zu empfangen, Verarbeitungsmittel, um einen Geschwindigkeitswerts in Abhängigkeit von der gemessenen aktuellen Last zu berechnen und Übertragungsmittel, um ein Steuersignal zu übertragen, damit eine Kabinenbewegung mit der berechneten Geschwindigkeit erwirkt wird,
    wobei das Aufzugssystem (1) ferner zwei Rollen (5, 6) umfasst, die dazu vorgesehen sind, an den jeweiligen Enden des Aufzugsschachtes angebracht zu werden, wobei eine Zugrolle (5) am oberen Ende des Aufzugsschachtes angebracht ist und eine Rolle (6) am unteren Ende des Aufzugsschachtes angebracht ist;
    und mindestens eine von der Kabine und dem Gegengewicht an mindestens einem linearen Element (4) befestigt ist, das über die zwei Rollen läuft, so dass mit dem mindestens einen von der Kabine und dem Gegengewicht eine geschlossene Schleife gebildet wird, um zu ermöglichen, dass das mindestens eine lineare Element mit der gewünschten Spannung gespannt wird, und um einen anhaftenden Kontakt mit den Rollen zu gewährleisten;
    wobei das lineare Element (4) einen Riemen mit einem flachen Querschnitt umfasst.
  2. Aufzugssystem (1) nach Anspruch 1, ferner umfassend:
    eine Blockiervorrichtung, die geeignet ist, die Aufzugskabine zu stoppen, wobei
    die Steuervorrichtung (9) eingerichtet ist, um einen Geschwindigkeitswert zu empfangen, der aus dem mindestens einen Sensor hervorgegangen ist, diesen Geschwindigkeitswert mit einem Geschwindigkeitsschwellenwert (VTHR) zu vergleichen und ein in Abhängigkeit vom Vergleichsergebnis ausgearbeitetes Auslösesignal an die Blockiervorrichtung zu übertragen, und
    die Steuervorrichtung ferner so eingerichtet ist, dass der Geschwindigkeitsschwellenwert in Abhängigkeit vom berechneten Geschwindigkeitswert bestimmt wird.
  3. Aufzugssystem (1) nach Anspruch 2, wobei der von der Steuervorrichtung (9) empfangene Geschwindigkeitswert ausgehend von den Positionswerten geschätzt wird, die aus einem Positionssensors (7) hervorgegangen sind.
  4. Aufzugssystem (1) nach einem der Ansprüche 2 bis 3, wobei:
    der Geschwindigkeitsschwellenwert bestimmt wird, indem der berechnete Geschwindigkeitswert mit einem vorbestimmten Koeffizienten multipliziert wird und der Wert streng größer als 1 ist.
  5. Aufzugssystem (1) nach einem der Ansprüche 1 bis 4, wobei die Verarbeitungsmittel eingerichtet sind, um den Geschwindigkeitswert in Abhängigkeit vom gemessenen Lastwert (Qmes) zu berechnen, so dass die verbrauchte Leistung relativ wenig von einem gemessenen Lastwert zum anderen variiert.
  6. Aufzugssystem (1) nach einem der Ansprüche 1 bis 5, wobei das System einem vorbestimmten Geschwindigkeitswert zugeordnet ist, der aus der Reihe R5 der Renard-Serie hervorgegangen ist,
    dadurch gekennzeichnet, dass
    die Verarbeitungsmittel eingerichtet sind, um einen Geschwindigkeitswert zu berechnen, der streng größer ist als der vorbestimmte Wert, wenn die Kabine leer ist.
  7. Aufzugssystem nach Anspruch 6, wobei die Verarbeitungsmittel eingerichtet sind, um den gemessenen aktuellen Lastwert mit einer streng positiven Lastschwelle zu vergleichen, und um, wenn der gemessene aktuelle Lastwert kleiner oder gleich dieser Lastschwelle ist, eine Geschwindigkeit mit einem Wert zu bestimmen, der streng größer ist als der vorbestimmte Geschwindigkeitswert, der aus der Renard-Serie hervorgegangen ist.
  8. Aufzugssystem nach Anspruch 7, wobei die Verarbeitungsmittel eingerichtet sind, um einen Geschwindigkeitswert zu berechnen, der größer oder gleich dem Produkt des vorbestimmten Geschwindigkeitswerts und ein Faktor 1,3 ist, wenn der gemessene aktuelle Lastwert kleiner oder gleich der Lastschwelle ist.
  9. Aufzugssystem (1) nach einem der Ansprüche 1 bis 8, wobei die Verarbeitungsmittel eingerichtet sind, um den Geschwindigkeitswert in Abhängigkeit von der Bewegungsrichtung zu berechnen.
  10. Aufzugssystem nach Anspruch 9, wobei die Verarbeitungsmittel eingerichtet sind, um den gemessenen aktuellen Lastwert mit einem streng positiven Schwellenwert zu vergleichen, und um einen Geschwindigkeitswert zu erwirken, der aufwärts niedriger ist als abwärts, wenn der gemessene aktuelle Lastwert größer ist, oder größer oder gleich dem Schwellenwert.
  11. Aufzugssystem (1) nach einem der Ansprüche 1 bis 10, wobei die Verarbeitungsmittel eingerichtet sind, um den Geschwindigkeitswert ferner in Abhängigkeit von einem Wert des Energieverbrauchsmodus zu berechnen.
  12. Aufzugssystem (1) nach Anspruch 11, wobei das System so eingerichtet ist, dass sich der Wert des Energieverbrauchsmodus nach dem Erkennen eines Stromausfalls ändert.
  13. Aufzugssystem (1) nach einem der Ansprüche 1 bis 12, wobei das System elektrisch an ein Mittel zur Speicherung elektrischer Energie angeschlossen ist, die aus einer erneuerbaren Quelle hervorgegangen ist, die in der Nähe des Gebäudes aufgestellt ist, zum Beispiel ein Solarpanel, das auf dem Dach des Gebäudes angebracht ist.
  14. Aufzugssystem (1) nach einem der Ansprüche 1 bis 13, wobei der Gegengewichtsmassenwert (MCP) kleiner oder gleich der Kabinenmasse ist, addiert mit der maximalen Lastmasse (QMAX), multipliziert mit dem Faktor 0,4.
  15. Verfahren zum Betreiben eines Aufzugssystems, das eine vorbestimmte maximale Last (QMAX) aufweist und eine Kabine umfasst, die eine vorbestimmte Kabinenmasse aufweist, wobei ein Gegengewicht eine Gegengewichtsmasse (MCP) aufweist, die streng kleiner ist als die Kabinenmasse (Mcab), addiert mit der Hälfte der maximalen Lastmasse (QMAX),
    wobei die Gegengewichtsmasse (MCP) gleich der Kabinenmasse (Mcab) gewählt wird, die mit einem Ausgleichslastwert (Qeq) addiert wird, wobei die Ausgleichslast (Qeq) gleich 32 % des vorbestimmten maximalen Lastwerts (QMAX) ist;
    und eine Blockiervorrichtung, die geeignet ist, die Aufzugskabine zu stoppen, wobei das Verfahren umfasst:
    - Empfangen eines gemessenen Werts der aktuellen Last,
    - Berechnen eines Geschwindigkeitswerts in Abhängigkeit des empfangenen aktuellen Lastwerts,
    - Übertragen eines ausgearbeitetes Steuersignals in Abhängigkeit des Werts der berechneten Geschwindigkeit, damit eine Kabinenbewegung mit der berechneten Geschwindigkeit erwirkt wird,
    - Empfangen eines Werts der Kabinengeschwindigkeit, der aus mindestens einem Sensor hervorgegangen ist,
    - Vergleichen dieses Geschwindigkeitswerts mit einer Geschwindigkeitsschwelle, wobei der Geschwindigkeitsschwellenwert in Abhängigkeit des berechneten Geschwindigkeitswerts bestimmt wird,
    - Übertragen an die Blockiervorrichtung eines Auslösesignals, das in Abhängigkeit vom Vergleichsergebnis ausgearbeitet wurde,
    und dadurch, dass die Kabine und/oder das Gegengewicht mit zwei Rollen an den Enden des Schachtes und mindestens einem linearen Element eine geschlossenen Schleife bildet (bilden), um zu ermöglichen, dass das mindestens eine lineare Element mit der gewünschten Spannung gespannt wird, und um einen anhaftenden Kontakt mit den Rollen zu gewährleisten, wobei die zwei Rollen eine Zugrolle (5) umfassen, die am oberen Ende des Aufzugsschachtes angebracht ist und eine Rolle (6), die am unteren Ende des Aufzugsschachtes angebracht ist, und das lineare Element einen Riemen mit flachem Querschnitt umfasst.
EP14796215.3A 2013-11-15 2014-09-30 Aufzugssystem mit reduzierter ausbalancierung Active EP3068717B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1361203A FR3013340B1 (fr) 2013-11-15 2013-11-15 Systeme d'ascenseur a equilibrage reduit
PCT/FR2014/052477 WO2015071555A1 (fr) 2013-11-15 2014-09-30 Système d'ascenseur à équilibrage réduit

Publications (2)

Publication Number Publication Date
EP3068717A1 EP3068717A1 (de) 2016-09-21
EP3068717B1 true EP3068717B1 (de) 2024-05-08

Family

ID=50289821

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14796215.3A Active EP3068717B1 (de) 2013-11-15 2014-09-30 Aufzugssystem mit reduzierter ausbalancierung

Country Status (5)

Country Link
EP (1) EP3068717B1 (de)
CN (1) CN105916790B (de)
FR (1) FR3013340B1 (de)
RU (1) RU2016118761A (de)
WO (1) WO2015071555A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1944262A1 (de) * 2005-07-04 2008-07-16 Schlosser Luezar & CVR, S.L. Geschwindigkeitsbegrenzer für hubvorrichtungen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3735221A (en) * 1971-03-08 1973-05-22 Symons Corp Electrical hoist control system
US5241141A (en) * 1990-09-17 1993-08-31 Otis Elevator Company Elevator profile selection based on absence or presence of passengers
AU640998B2 (en) * 1990-04-12 1993-09-09 Otis Elevator Company Elevator motion profile selection
US5984052A (en) * 1997-09-17 1999-11-16 Otis Elevator Company Elevator with reduced counterweight
US6619434B1 (en) * 2002-03-28 2003-09-16 Thyssen Elevator Capital Corp. Method and apparatus for increasing the traffic handling performance of an elevator system
TWI272539B (en) 2004-06-03 2007-02-01 Atlab Inc Electrical touch sensor and human interface device using the same
CN101066734B (zh) * 2006-05-03 2010-09-01 因温特奥股份公司 具有承载机构和传动机构的电梯
EP2500309A1 (de) * 2011-03-18 2012-09-19 Inventio AG Energieverwaltungssystem für solarbetriebene Liftanlage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1944262A1 (de) * 2005-07-04 2008-07-16 Schlosser Luezar & CVR, S.L. Geschwindigkeitsbegrenzer für hubvorrichtungen

Also Published As

Publication number Publication date
FR3013340A1 (fr) 2015-05-22
EP3068717A1 (de) 2016-09-21
WO2015071555A1 (fr) 2015-05-21
FR3013340B1 (fr) 2016-01-01
CN105916790B (zh) 2019-06-21
RU2016118761A (ru) 2017-12-18
CN105916790A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
FR2491045A1 (fr) Ascenseur automoteur utilisant comme contrepoids un moteur electrique lineaire
FR2768421A1 (fr) Ascenseur a contrepoids reduit
EP1862423B1 (de) Hebevorrichtung mit Sicherheitsmutter
FR2686743A1 (fr) Dispositif d'enroulement et de deroulement d'un cable de transport d'energie, ou analogue.
FR2713193A1 (fr) Procédé et dispositif pour détecter un dépassement des charges de dimensionnement d'un aéronef.
EP2201674B1 (de) Verfahren zur analyse des betriebs eines elektromechanischen aktors für die angetriebene steuerung eines bildschirms und aktor zur ausführung
FR2648796A1 (fr) Dispositif de commande pour treuil de levage, en particulier pour installation de forage
EP3068717B1 (de) Aufzugssystem mit reduzierter ausbalancierung
FR2810655A1 (fr) Mecanisme a traction variable pour un dispositif de securite de survitesse a organe de commande rotatif
FR3099212A1 (fr) Dispositif de stockage et de restitution mécanique sélectif d’énergie potentielle
EP0267064B1 (de) Verfahren und Einrichtung zur Steuerung eines elektronischen Motors, insbesondere für Fensterheber von Automobilen
EP3303203B1 (de) Überwachung einer aufzugseinrichtung mit geschlossenem regelkreis
FR2663473A1 (fr) Dispositif et procede de limitation de charge pour appareil mecanique ou similaire, utilisant au moins un organe moteur de type electrique.
EP1172322B1 (de) Antriebssystem für Kabeltrommeln
FR3097215A1 (fr) Installation d’ascenseur
FR2984864A1 (fr) Controle du mouvement d'une cabine d'ascenseur
FR2890929A1 (fr) Procede et dispositif de controle d'un organe de freinage ou de mise en mouvement auxiliaire pour installation de transport a cable
FR3134573A1 (fr) Ascenseur à boucle fermée
EP4134290B1 (de) System zur kontrolle der schliessung von türen
WO2021234085A1 (fr) Dispositif de stationnement d'un véhicule léger
EP4400855A1 (de) Verfahren und vorrichtung zur bestimmung eines ladezustandes einer batterie zur energieversorgung einer verdunkelungsvorrichtung für fenster oder eines sonnenschutzteils
FR3041019B1 (fr) Mecanisme d'actionnement pour porte sectionnelle et porte sectionnelle le comportant
FR2920020A1 (fr) Procede et dispositif de levage d'une masse par une pluralite de colonnes de levage.
FR3022230A1 (fr) Systeme declencheur d'un dispositif de blocage de cabine d'ascenseur, notamment limiteur de vitesse.
FR2856045A1 (fr) Ascenseur avec contrepoids a course reduite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160613

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170324

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014090135

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B66B0001340000

Ipc: B66B0011000000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: B66B0001340000

Ipc: B66B0011000000

RIC1 Information provided on ipc code assigned before grant

Ipc: B66B 11/00 20060101AFI20230928BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231211

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014090135

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D