EP2990135B1 - Workpiece conveying apparatus for a pressing machine - Google Patents
Workpiece conveying apparatus for a pressing machine Download PDFInfo
- Publication number
- EP2990135B1 EP2990135B1 EP15180620.5A EP15180620A EP2990135B1 EP 2990135 B1 EP2990135 B1 EP 2990135B1 EP 15180620 A EP15180620 A EP 15180620A EP 2990135 B1 EP2990135 B1 EP 2990135B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- workpiece
- arm
- pressing machine
- workpiece conveying
- conveying apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J13/00—Details of machines for forging, pressing, or hammering
- B21J13/08—Accessories for handling work or tools
- B21J13/10—Manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D43/00—Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
- B21D43/02—Advancing work in relation to the stroke of the die or tool
- B21D43/04—Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work
- B21D43/05—Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work specially adapted for multi-stage presses
- B21D43/052—Devices having a cross bar
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D43/00—Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
- B21D43/02—Advancing work in relation to the stroke of the die or tool
- B21D43/04—Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work
- B21D43/10—Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work by grippers
- B21D43/105—Manipulators, i.e. mechanical arms carrying a gripper element having several degrees of freedom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/0009—Constructional details, e.g. manipulator supports, bases
- B25J9/0018—Bases fixed on ceiling, i.e. upside down manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/02—Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
- B25J9/04—Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
- B25J9/046—Revolute coordinate type
Description
- The present invention relates to a workpiece conveying apparatus (workpiece conveying robot) for a pressing machine (press machine) according to the preamble of
claim 1. - Such an apparatus is for example disclosed in
WO-A-2008/074836 . - Hitherto, there have been proposed various workpiece conveying apparatus configured to carry workpieces into and out of a press machine, or carry workpieces between the press machines.
- For example, in Japanese Patent Application Laid-open
JP 2009-95940 FIG. 17 , a first arm that is horizontally rotatable, a second arm that is supported at a distal end of the first arm so as to be rotatable about an axis that is parallel to a rotation axis of the first arm, a flange that is arranged at a distal end portion of the second arm so as to be rotatable about an axis that is parallel to a rotation axis of the second arm, a workpiece holding portion provided to the flange, and a speed reduction mechanism having at least two output axes at the axis parallel to the rotation axis of the first arm. - In this context, during workpiece conveyance using the workpiece conveying robot as described above, workpiece holding means (workpiece holding portion) is moved to a predetermined position in a preceding step, specifically, a predetermined position in a lower die of a pressing machine, while avoiding interference with a slide that vertically moves (upper die). At the predetermined position, a moving-down operation (lowering operation) is performed so that the workpiece holding means comes close to and holds a workpiece. After the workpiece holding means holds the workpiece, a moving-up operation (raising operation) is performed, and the workpiece is taken out of the predetermined position in an upstream step (predetermined position in the lower die). Then, the workpiece holding means is moved to a predetermined position in a subsequent step, specifically, a predetermined position in a lower die of another pressing machine. At the predetermined position, the moving-down operation (lowering operation) is performed, and the workpiece is released. After the workpiece is released, the moving-up operation (raising operation) is performed, and the workpiece holding means is returned to the predetermined position in the preceding step. In this way, workpiece conveying operations are performed.
- Thus, in the workpiece conveying robot described in Japanese Patent Application Laid-open
JP 2009-95940 - However, weight of a workpiece conveying robot to be used for conveying workpieces between generally assumed pressing machines such as pressing machines for automobile bodies is approximately two tons or more. Thus, as described in Japanese Patent Application Laid-open
JP 2009-95940 - Further, in such a system, the workpiece conveying robot having great weight is vertically moved overall, and hence intense vibration and noise are generated. In addition, a rigidity of frames configured to support the workpiece conveying robot needs to be increased as a matter of course, and distal ends of the arms are unnecessarily intensely vibrated. In this way, in terms of practicality, such a system is not suited to high-speed workpiece conveyance.
- Still further, in the workpiece conveying robot described in Japanese Patent Application Laid-open
JP 2009-95940 - According to the present invention, there is provided a workpiece conveying apparatus according to the features of
claim 1. - According to one embodiment of the present invention, the coupler may be mounted so as also to be turnable (or rotatable) about a major axis (or longitudinal axis) of the first arm.
- According to one embodiment of the present invention, the cross bar may be mounted so as also to be tiltable in a direction intersecting with the rocking plane of the second arm.
- According to one embodiment of the present invention, a mounting position of the workpiece holding device with respect to the cross bar may be shiftable.
- Now, with reference to the accompanying drawings, description is made of a workpiece conveying apparatus for a pressing machine according to an exemplary embodiment of the present invention. Note that, the present invention is not limited to the embodiment described below.
- FIG. 1
- is a perspective view for illustrating an overall configuration of a workpiece conveying apparatus for a pressing machine according to an embodiment of the present invention.
- FIG. 2
- is a front view for illustrating the overall configuration of the workpiece conveying apparatus for a pressing machine according to the embodiment (as viewed in a front direction orthogonal to a workpiece conveying direction).
- FIG. 3
- is a perspective view for separately illustrating the workpiece conveying apparatus for a pressing machine.
- FIG. 4
- is an explanatory front view for illustrating movements of portions (joints) of the workpiece conveying apparatus for a pressing machine.
- FIG. 5A to FIG. 5G
- are plan views for sequentially illustrating behavior (postures) of an articulated arm during workpiece conveyance by the workpiece conveying apparatus for a pressing machine along with the elapse of time (as viewed from an upper side of a workpiece conveying plane).
- FIG. 6A
- is a front view for illustrating the behavior of the articulated arm during the workpiece conveyance by the workpiece conveying apparatus for a pressing machine, specifically, a posture (state) in which a workpiece is horizontally supported and lifted up relatively upward.
- FIG. 6B
- is a side view of
FIG. 6A . - FIG. 7A
- is another front view for illustrating the behavior of the articulated arm during the workpiece conveyance by the workpiece conveying apparatus for a pressing machine, specifically, a posture (state) in which the workpiece is horizontally supported and lowered relatively downward.
- FIG. 7B
- is a side view of
FIG. 7A . - FIG. 8A
- is still another front view for illustrating the behavior of the articulated arm during the workpiece conveyance by the workpiece conveying apparatus for a pressing machine, specifically, a posture (state) in which the workpiece is supported while being inclined at a predetermined angle as viewed in the workpiece conveying direction.
- FIG. 8B
- is a side view of
FIG. 8A . - FIG. 9A
- is yet another front view for illustrating the behavior of the articulated arm during the workpiece conveyance by the workpiece conveying apparatus for a pressing machine, specifically, a posture (state) in which the workpiece is supported while being inclined at a predetermined angle as viewed in the front direction orthogonal to the workpiece conveying direction.
- FIG. 9B
- is a side view of
FIG. 9A . - FIG. 10
- is a top view for illustrating the behavior of the articulated arm during the workpiece conveyance by the workpiece conveying apparatus for a pressing machine, specifically, a posture (state) in which the workpiece is supported while being inclined (rocked) at a predetermined angle about an axis orthogonal to the workpiece conveying plane.
- FIG. 11A
- is a front view for illustrating a posture (state) of the articulated arm when the workpiece conveying apparatus for a pressing machine moves cross bars within the horizontal plane substantially orthogonal to the workpiece conveying direction by using a linear moving mechanism, specifically, a front view for illustrating how the workpiece is conveyed while a conveying center of the workpiece is fixed.
- FIG. 11B
- is a side view of
FIG. 11A . - FIG. 12A
- is another front view for illustrating the posture (state) of the articulated arm when the workpiece conveying apparatus for a pressing machine does not use the linear moving mechanism, specifically, a front view for illustrating how the workpiece is conveyed while the conveying center of the workpiece is moved.
- FIG. 12B
- is a side view of
FIG. 12A . - FIG. 13A
- is a front view for illustrating an example of a structure of the articulated arm of the workpiece conveying apparatus for a pressing machine.
- FIG. 13B
- is a side view of
FIG. 13A . - FIG. 14
- is a sectional view for illustrating an example of a structure of a part corresponding to a drive arm and a coupler of the workpiece conveying apparatus for a pressing machine.
- FIG. 15
- is a front view for illustrating an example of a structure of a part corresponding to a horizontal arm and the cross bars of the workpiece conveying apparatus for a pressing machine.
- FIG. 16
- is a sectional view for illustrating an example of a structure of a shifting device for the cross bar of the workpiece conveying apparatus for a pressing machine.
- FIG. 17
- is a view for illustrating an example of a related-art workpiece conveying apparatus for a pressing machine.
- The present invention has been made in view of the circumstances as described above, and it is therefore an object of the present invention to provide a workpiece conveying apparatus for a pressing machine, which is capable of, by realizing a relatively simple, low-cost, lightweight, and compact structure, reducing vibration and noise, increasing a degree of freedom of posture of a workpiece during workpiece conveyance, and contributing to an increase in workpiece conveying speed, resulting in cycle time reduction and an increase in production efficiency.
- As illustrated in
FIG. 1 andFIG. 2 , aworkpiece conveying apparatus 1 for a pressing machine (such as a pressing machine for an automobile body) according to this embodiment is arranged between a pressing machine for a preceding step and a pressing machine for a subsequent step, and is used, for example, to receive a workpiece (such as a metal thin plate-like member) pressed by the pressing machine for the preceding step, and deliver the workpiece to the pressing machine for the subsequent step. Note that, theworkpiece conveying apparatus 1 can be used also, for example, for conveying the workpiece from a workpiece storage place to the pressing machine for a first step, or conveying the workpiece from a pressing machine for a last step to a finished product storage place. - As illustrated in
FIG. 3 , theworkpiece conveying apparatus 1 according to this embodiment includes abase frame 1A (refer toFIG. 1 andFIG. 2 ), a linear movingmechanism 20, an articulatedarm 30, ahorizontal arm 40, and cross bars 50. - As illustrated in
FIG. 1 , thebase frame 1A has such a gate shape (C-shape opened downward) that an upperhorizontal beam 1B extending in a horizontal direction is installed in a direction substantially orthogonal to a workpiece conveying direction. - The
base frame 1A may be selectively configured to stand alone as illustrated inFIG. 1 , or mounted to a frame of an adjacent pressing machine. Note that, when thebase frame 1A is of such a type as to be mounted to the frame of the adjacent pressing machine, thebase frame 1A is not limited to the gate shape, and may be configured such that the upperhorizontal beam 1B extending in the horizontal direction is directly mounted to the frame of the adjacent pressing machine. - Note that, when the
base frame 1A is configured to stand alone, not only thebase frame 1A but also the entireworkpiece conveying apparatus 1 supported by thebase frame 1A is unlikely to be influenced by vibration at the time of a pressing operation by the pressing machine. Thus, there is an advantage in that vibration, noise, and the like can be reduced. - As illustrated in
FIG. 1 to FIG. 3 , the linear movingmechanism 20 is installed in suspension from a lower side of thehorizontal beam 1B of thebase frame 1A, and is configured to be capable of horizontal movement along a longitudinal direction of thehorizontal beam 1B. In other words, the linear movingmechanism 20 supports the articulatedarm 30 so that the articulatedarm 30 is freely turnable (or rotatable) about a perpendicular axis. With this, the articulatedarm 30 can be (horizontally) moved in the direction substantially orthogonal to the workpiece conveying direction (refer to slide joint A1 ofFIG. 4 ). - As an actuating mechanism for the linear moving
mechanism 20, there may be used, for example, a linear guide configured to guide a linear shift, and a rotational-linear movement conversion mechanism configured to convert a rotational movement of a servo motor to a linear movement (such as a rack-and-pinion mechanism and a ball-screw mechanism). Alternatively, there may also be used a linear motor. - As illustrated in
FIG. 3 , the articulatedarm 30 includes arotary base 60, adrive arm 70, and acoupler 80 configured to couple thedrive arm 70 and thehorizontal arm 40 to each other. - The articulated
arm 30 is moved without entering slide regions corresponding to projections of slides (vertically movable portions) of the pressing machines in a direction along a vertical moving direction of the slides (without overlapping with the slide regions). The sliding regions are indicated by reference symbol X inFIG. 5A . - Thus, the articulated
arm 30 need not be reduced in thickness in a vertical direction so that, even when a workpiece conveying speed is increased, the articulatedarm 30 does not interfere with the slides that vertically move. Thus, the articulatedarm 30 can be increased in rigidity. As a result, for example, occurrence of vibration during the conveyance can be suppressed. - As illustrated in
FIG. 3 , on a lower side of the linear movingmechanism 20, a proximal end side of therotary base 60 is supported so as to be freely rotatable about a substantially perpendicular axis with respect not only to the linear movingmechanism 20 but also to thehorizontal beam 1B of thebase frame 1A (refer to rotary joint A2 ofFIG. 4 ). - On a distal end side of the
rotary base 60, thedrive arm 70 is supported so as to be freely rockable in the vertical direction. In other words, a proximal end side of thedrive arm 70 is pivotally supported (pivoted) about the distal end side of therotary base 60 so as to be freely rockable within a predetermined perpendicular plane (refer to rotary joint A3 ofFIG. 4 ). Note that, thedrive arm 70 corresponds to a first arm of the present invention. - As illustrated in
FIG. 3 , the servo motor or the like is arranged on the proximal end side of thedrive arm 70, which is pivotally supported about (coupled to) therotary base 60, and adistal end arm 71 configured to be turned about a major axis of a body of the drive arm 70 (refer to rotary joint A4 ofFIG. 4 ) is arranged on a distal end side of thedrive arm 70. In addition, thecoupler 80 to be coupled to thehorizontal arm 40 is arranged at a distal end of thedistal end arm 71. - Note that, the
coupler 80 to be coupled to thehorizontal arm 40 is pivotally supported (pivoted) not only about thedistal end arm 71 but also about thedrive arm 70 so as to be freely turnable (rockable) within a predetermined plane (refer to rotary joint A5 ofFIG. 4 ). - In other words, as illustrated in
FIG. 3 , thecoupler 80 is mounted to thedrive arm 70 so as to be turnable about the major axis of the drive arm 70 (refer to rotary joint A4 ofFIG. 4 ), and pivotally supported (pivoted) so as to be freely turnable (rockable) within a plane substantially parallel to the rocking plane of the drive arm 70 (refer to rotary joint A5 ofFIG. 4 ). Note that, thecoupler 80 needs to be pivotally supported so as to be rockable within the plane substantially parallel to the rocking plane of the drive arm 70 (refer to rotary joint A5 ofFIG. 4 ), but thecoupler 80 need not necessarily be mounted so as to be turnable about the major axis of the drive arm 70 (refer to rotary joint A4 ofFIG. 4 ). - As illustrated in
FIG. 3 , thehorizontal arm 40 is mounted through intermediation of thecoupler 80 arranged on a distal end side of the articulatedarm 30. Note that, thehorizontal arm 40 corresponds to a second arm of the present invention. - The
coupler 80 is pivotally supported (pivoted) so as to be freely rockable within the predetermined plane, and thehorizontal arm 40 coupled to thecoupler 80 is supported (pivotally supported) at a distal end of thecoupler 80 so as to be rockable within a plane intersecting with (substantially orthogonal to) the rocking plane of the coupler 80 (refer to rotary joint A6 ofFIG. 4 ). - Further, as illustrated in
FIG. 3 , the cross bars 50 are supported on a distal end side of thehorizontal arm 40, and the workpiece is held byworkpiece holding devices 100 supported by the cross bars 50. - The
horizontal arm 40 enters the slide regions corresponding to the projections of the slides (vertically movable portions) of the pressing machines in the direction along the vertical moving direction of the slides (overlaps with the slide regions). Thus, as illustrated, for example, inFIG. 4 , thehorizontal arm 40 is formed into such a flattened shape as to be reduced in width in the vertical direction in the slide regions. - With this, the
horizontal arm 40 is unlikely to interfere with the slides that vertically move, which can contribute to an increase in workpiece conveying speed, resulting in cycle time reduction. - As illustrated in
FIG. 3 andFIG. 4 , the cross bars 50 are supported by thehorizontal arm 40 through intermediation of arotary tilt mechanism 90 arranged at the distal end portion of thehorizontal arm 40. - The
rotary tilt mechanism 90 supports the cross bars 50 so that the cross bars 50 are rotatable about a rotation axis substantially orthogonal to the rocking plane of the horizontal arm 40 (refer to rotary joint A7 ofFIG. 4 ), and that the cross bars 50 are tiltable (inclinable) in such a direction as to intersect with the rocking plane of the horizontal arm 40 (refer to rotary joint A8 ofFIG. 4 ). - The cross bars 50 may each include the
workpiece holding device 100 configured to hold the workpiece, and a shifting device 52 (refer toFIG. 16 ) configured to shift theworkpiece holding device 100 along a longitudinal direction of the cross bars 50 (refer to slide joints A9 and A10 ofFIG. 4 ). Note that, the shiftingdevice 52 may be omitted, and theworkpiece holding device 100 may be, for example, fixedly or manually moved (shifted) with respect to thecross bar 50. - The
workpiece holding device 100 may be configured to freely hold and release the workpiece (such as a metal thin plate-like member) through, for example, vacuum suction or magnetic attraction. - The
workpiece conveying apparatus 1 according to this embodiment configured as described above is operated as follows. - At the time of supplying (sending, or feeding) the workpiece from the pressing machine for the preceding step to the pressing machine for the subsequent step, the
drive arm 70 is rocked (turned) downward about a pivot axis of therotary base 60 within the predetermined perpendicular plane (refer to rotary joint A3 ofFIG. 4 ), and/or thehorizontal arm 40 is rocked (turned) downward about a pivot axis of thecoupler 80 within the predetermined perpendicular plane (refer to rotary joint A5 ofFIG. 4 ). With this, theworkpiece holding devices 100 are lowered so as to hold the workpiece. Then, the above-mentioned rocking operations are performed upward so as to raise theworkpiece holding devices 100 to a predetermined position. After that, therotary base 60, thehorizontal arm 40, and therotary tilt mechanism 90 are rocked (turned) in conveying directions respectively within the horizontal planes (refer to rotary joints A2, A6, and A7 ofFIG. 4 ) so that the workpiece is conveyed to a die of the pressing machine for the subsequent step (FIG. 5A to FIG. 5G ). - After the workpiece is conveyed to a predetermined position of a lower die as described above, the
drive arm 70 is rocked (turned) downward about the pivot axis of therotary base 60 within the predetermined perpendicular plane (refer to rotary joint A3 ofFIG. 4 ), and/or thehorizontal arm 40 is rocked (turned) downward about the pivot axis of thecoupler 80 within the predetermined perpendicular plane (refer to rotary joint A5 ofFIG. 4 ). With this, theworkpiece holding devices 100 are lowered so as to release and put the workpiece into the lower die. Then, the above-mentioned rocking operations are performed upward so as to raise theworkpiece holding devices 100 to a predetermined position. After that, the rotary joints A2, A6, and A7 ofFIG. 4 are operated in another predetermined order, that is, in the reverse order of fromFIG. 5G to FIG. 5A so as to be moved to receive another workpiece in the pressing machine for the preceding step. By repeating such operations, workpieces are conveyed from the pressing machine for the preceding step to the pressing machine for the subsequent step. - Note that, the cross bars 50 (workpiece holding devices 100) are moved in the vertical direction (refer to
FIG. 6 andFIG. 7 ) through at least one of rocking (turning) of thedrive arm 70 about the pivot axis of therotary base 60 within the predetermined perpendicular plane (refer to rotary joint A3 ofFIG. 4 ), or rocking (turning) of thehorizontal arm 40 about the pivot axis of thecoupler 80 within the predetermined perpendicular plane (refer to rotary joint A5 ofFIG. 4 ). - Thus, in the
workpiece conveying apparatus 1 according to this embodiment, unlike the related art, the entire workpiece conveying robot, in other words, all the arms need not necessarily be vertically moved by using linear motion mechanisms such as a ball screw. Thus, vertical drive mechanisms having a high capacity and a high rigidity (including their drive sources) need not be arranged, which can contribute to cost reduction. - Further, in the
workpiece conveying apparatus 1 according to this embodiment, unlike the related art, the entire workpiece conveying robot, which has great weight, is not vertically moved. Thus, vibration and noise can be reduced. In addition, a rigidity of frames configured to support the workpiece conveying robot need not be set as high as those in the related art, and unnecessarily intense vibrations of distal ends of the arms are suppressed. In this way, theworkpiece conveying apparatus 1 according to this embodiment is suited to high-speed workpiece conveyance and cycle time reduction. - The cross bars 50 (workpiece holding devices 100) are capable of performing such tilting (inclining) operations that a plane along the conveying direction intersects with a horizontal plane (
FIG. 8A and FIG. 8B ), a plane substantially orthogonal to the conveying direction intersects with the horizontal plane (FIG. 9A and FIG. 9B ), and that the cross bars 50 (workpiece holding devices 100) each tilt (rock) about an axis that intersects with a conveying plane (FIG. 10 ). - In this way, the cross bars 50 (workpiece holding devices 100) can be tilted with a high degree of freedom with respect to the
horizontal arm 40, and hence a degree of freedom of posture of the workpiece during the workpiece conveyance can be significantly increased. Thus, at the time, for example, when the cross bars 50 (workpiece holding devices 100) enter the slide regions, posture control for avoiding interference with an upper die or the lower die can be facilitated, which can contribute to high-speed workpiece conveyance and cycle time reduction. - Note that, in this embodiment, as illustrated, for example, in
FIG. 5A to FIG. 5G , thehorizontal arm 40 and the cross bars 50 enter the slide regions in a manner that components on a proximal end side with respect to thehorizontal arm 40 and the cross bars 50, such as thecoupler 80, thedrive arm 70, and therotary base 60, do not enter the slide regions. - Thus, the
coupler 80, thedrive arm 70, therotary base 60, and the like can each be manufactured to have a relatively high rigidity. With this, vibration and the like can be effectively suppressed, which can contribute to high-speed workpiece conveyance and cycle time reduction. - Further, the
workpiece holding devices 100 may be shifted along the longitudinal direction of the cross bars 50 by a shift mechanism (such as a rack-and-pinion mechanism and a ball-screw mechanism) (refer to slide joints A9 and A10 ofFIG. 4 ). Note that, the slide joints A9 and A10 may be shifted to the same side, or may be shifted to sides opposite to each other. - Note that, the linear moving
mechanism 20 causes not only the cross bars 50 (workpiece holding devices 100) but also theworkpiece conveying apparatus 1 to move within the horizontal plane substantially orthogonal to the workpiece conveying direction. With this, the cross bars 50 (workpiece holding devices 100) can be temporarily retreated from a press line, and hence work such as replacement with another type of cross bars placed on a tool replacement carriage can be facilitated. - Further, in a case where the cross bars 50 (workpiece holding devices 100) are moved within the horizontal plane substantially orthogonal to the workpiece conveying direction by using the linear moving
mechanism 20, even when the workpiece is vertically moved as illustrated inFIG. 11A and FIG. 11B , the workpiece can be conveyed while a conveying center of the workpiece is fixed. Thus, unnecessary inertial forces in directions other than the conveying direction are suppressed from being applied to the workpiece during the workpiece conveyance. With this, high-speed conveyance can be smoothly and stably performed. - Meanwhile, when the operation by the linear moving
mechanism 20 is not used or, in a case not according to the invention, when the linear movingmechanism 20 itself is not arranged, as illustrated inFIG. 12A and FIG. 12B , it is difficult to convey the workpiece while the conveying center of the workpiece is fixed during the workpiece conveyance. Thus, the unnecessary inertial forces in the directions other than the conveying direction are applied to the workpiece during the workpiece conveyance, which is disadvantageous in smoothly and stably performing high-speed conveyance. - Next, description is made of a specific configuration example of the
workpiece conveying apparatus 1 according to this embodiment. As illustrated inFIG. 13A and FIG. 13B , the linear movingmechanism 20 includes apinion 22 configured to be driven and rotated by aservo motor 21, arack 23 configured to mesh with thepinion 22, and alinear guide 24 configured to direct (guide) a linear motion (linear movement) of abase plate 25 supporting therotary base 60. With this, the linear movingmechanism 20 can be moved in the directions A1 inFIG. 4 . Note that, thepinion 22 and therack 23 as drive sources may be replaced with the ball-screw mechanism or a linear motor. - The
rotary base 60 includes aservo motor 61 and aspeed reducer 62, and is configured to be turnable, by using theservo motor 61 and thespeed reducer 62, about a rotation axis A (in the direction A2 inFIG. 4 ) with respect to thebase plate 25. - The
drive arm 70 includes aservo motor 72 and aspeed reducer 73, and is pivotally supported (pivoted) on the distal end side (lower end side) of therotary base 60 so as to be turnable, by using theservo motor 72 and thespeed reducer 73, about a rotation axis B (in the direction A3 inFIG. 4 ). - The
distal end arm 71 that is turned about a direction of the major axis (or longitudinal axis) of the body of the drive arm 70 (about the rotation axis C inFIG. 13A , in other words, direction A4 inFIG. 4 ) is arranged on a distal end side of thedrive arm 70. Thecoupler 80 to be coupled to thehorizontal arm 40 is arranged at the distal end of thedistal end arm 71. - The
distal end arm 71 includes agear 71B configured to be driven and rotated by aservo motor 71A, and aspeed reducer 71E configured to be driven and rotated through intermediation of a speedreducer input shaft 71D configured to be driven and rotated by ashaft 71C arranged integrally with thegear 71B. With this, thedistal end arm 71 can be rotated about the rotation axis C inFIG. 14 (in the direction A4 inFIG. 4 ) relative to the body of thedrive arm 70. - The
coupler 80 to which thehorizontal arm 40 is coupled is mounted to thedistal end arm 71 so as to be freely turnable (rockable) about the rotation axis C inFIG. 14 (in the direction A5 inFIG. 4 ). - Further, the
coupler 80 thus mounted can be freely turned (rocked) about the rotary axis D inFIG. 14 (in the direction A6 inFIG. 4 ) by driving and rotating aspeed reducer 87 through intermediation of a speedreducer input shaft 86 arranged integrally with abevel gear 85 configured to be driven and rotated by abevel gear 84 mounted to a distal end of ashaft 83 configured to be driven and rotated by aservo motor 81 through intermediation of agear 82. Note that, theshaft 83 is inserted through a hollow part of thegear 71B so as to be freely rotatable. - Incidentally, in
FIG. 14 , theservo motor 81, which is illustrated below theservo motor 71A for the sake of better understanding of the structure, is actually arranged behind theservo motor 71A (depth side in a direction perpendicular to the drawing sheet ofFIG. 14 ). - Further, in this embodiment, a
shaft 803 coupled to and rotated by aservo motor 801 through intermediation of acoupling 802 is inserted through a hollow part of theshaft 83 so as to be freely rotatable. - In addition, a
bevel gear 804 is mounted to a distal end of theshaft 803 so that rotation is transmitted to anotherbevel gear 805 meshing with thebevel gear 804. - A
drive gear 806 is coaxially mounted to thebevel gear 805, and still anotherbevel gear 808 is driven and rotated through intermediation of anotherdrive gear 807 meshing with thedrive gear 806. Aspeed reducer 811 is driven and rotated by a speedreducer input shaft 810 arranged integrally with yet anotherbevel gear 809 meshing with thebevel gear 808. - The
speed reducer 811 is configured to be rotatable about the rotation axis E inFIG. 14 relative to a body of thecoupler 80. With this, thehorizontal arm 40 mounted to thespeed reducer 811 can be turned (rocked) in the direction A6 inFIG. 4 . - As illustrated in
FIG. 15 , in thehorizontal arm 40, a rotational force is transmitted from apulley 42 configured to be driven and rotated by aservo motor 41 to anotherpulley 44 through intermediation of atoothed belt 43 looped around those pulleys. Thepulley 44 is rotated about the rotation axis F inFIG. 15 (in the direction A7 inFIG. 4 ). - The
rotary tilt mechanism 90 is mounted to thepulley 44. As illustrated inFIG. 15 , the cross bars 50 are supported by therotary tilt mechanism 90. With this, not only therotary tilt mechanism 90 but also the cross bars 50 can be rotated about the rotation axis F inFIG. 15 (in the direction A7 inFIG. 4 ). - The
rotary tilt mechanism 90 includes built-inservo motors speed reducers FIG. 15 (in the direction A8 inFIG. 4 ). - Further, as illustrated in
FIG. 16 , the cross bars 50 each include the shiftingdevice 52 configured to move (shift) theworkpiece holding device 100 along the longitudinal direction of the cross bar 50 (directions A9 and A10 inFIG. 4 ). Note that, in the configuration example illustrated inFIG. 15 , the shiftingdevices 52 are omitted, specifically, theworkpiece holding devices 100 can be, for example, fixedly or manually moved (shifted) with respect to the cross bars 50. - As illustrated in
FIG. 16 , the shiftingdevice 52 includes aservo motor 52A, aball screw 52B configured to be driven and rotated by theservo motor 52A, anut 52C threadedly engaged with theball screw 52B, and acoupling block 52D configured to couple thenut 52C and theworkpiece holding device 100 to each other. When theservo motor 52A is driven and rotated, theball screw 52B is rotated so as to cause not only thenut 52C threadedly engaged with theball screw 52B but also thecoupling block 52D and theworkpiece holding device 100 to be moved (shifted) along the longitudinal direction of the cross bar 50 (directions A9 and A10 inFIG. 4 ). - Note that, such a structure that the
workpiece holding devices 100 are shifted to the same side (in-phase with each other) in the directions A9 and A10 inFIG. 4 with respect to the cross bars 50 may be employed. With this, a position of the workpiece can be shifted with respect to a distal end position of thehorizontal arm 40. Thus, in a configuration not according to the invention, even when the linear movingmechanism 20 is omitted, the workpiece can be conveyed while the conveying center of the workpiece is fixed (refer toFIG. 11A and FIG. 11B ). Therefore, the unnecessary inertial forces in the directions other than the conveying direction are not applied to the workpiece during the workpiece conveyance. With this, high-speed conveyance can be smoothly and stably performed. - As described above, according to the
workpiece conveying apparatus 1 of this embodiment, the cross bars 50 (workpiece holding devices 100) are vertically moved through at least one of rocking (turning) one of thedrive arm 70 about the pivot axis of therotary base 60 within the substantially perpendicular plane (refer to rotary joint A3 ofFIG. 4 ), or rocking (turning) of thehorizontal arm 40 about the pivot axis of thecoupler 80 within the substantially perpendicular plane (refer to rotary joint A5 ofFIG. 4 ). Thus, unlike the related art, the entire workpiece conveying robot, in other words, all the arms need not necessarily be vertically moved by using the linear motion mechanisms such as a ball screw. Thus, the vertical drive mechanisms having a high capacity and a high rigidity (including their drive sources) need not be arranged, which can contribute to cost reduction. - Further, according to the
workpiece conveying apparatus 1 of this embodiment, unlike the related art, the entire workpiece conveying robot, which has great weight, is not vertically moved. Thus, vibration and noise can be reduced. In addition, the rigidity of the frames configured to support the workpiece conveying robot need not be set as high as those in the related art, and unnecessarily intense vibrations of the distal ends of the arms are suppressed. Those advantages can contribute to high-speed workpiece conveyance and cycle time reduction. - Still further, according to the
workpiece conveying apparatus 1 of this embodiment, thehorizontal arm 40 enters the slide regions corresponding to the projections of the slides (vertically movable portions) of the pressing machines in the direction along the vertical moving direction of the slides (overlaps with the slide regions). Thus, as illustrated, for example, inFIG. 4 , thehorizontal arm 40 is formed into such a flattened shape as to be reduced in width in the vertical direction in the slide regions. With this, thehorizontal arm 40 is unlikely to interfere with the slides that vertically move, which can contribute to an increase in workpiece conveying speed, resulting in cycle time reduction. - In other words, in the
workpiece conveying apparatus 1 according to this embodiment, the articulatedarm 30 on the proximal end side with respect to thehorizontal arm 40 is configured not to enter the slide regions (not to overlap with the slide regions). Thus, the articulatedarm 30 need not be reduced in thickness in the vertical direction so that, even when the workpiece conveying speed is increased, the articulatedarm 30 is unlikely to interfere with the slides that vertically move. Thus, the articulatedarm 30 can be increased in rigidity. As a result, for example, occurrence of the vibration during the conveyance can be effectively suppressed. - Further, in the
workpiece conveying apparatus 1 according to this embodiment, the cross bars 50 (workpiece holding devices 100) can be tilted, and hence the degree of freedom of posture of the workpiece during the workpiece conveyance can be significantly increased. Thus, at the time, for example, when the cross bars 50 (workpiece holding devices 100) enter the slide regions, the posture control for avoiding interference with the upper die or the lower die can be facilitated, which can contribute to high-speed workpiece conveyance and cycle time reduction. - Still further, in the
workpiece conveying apparatus 1 according to this embodiment, theservo motors drive arm 70. Thus, rotational moments can be reduced, and a good weight balance can be maintained, which can contribute to facilitation and stabilization of posture control of thedrive arm 70. - As described above, with the
workpiece conveying apparatus 1 according to this embodiment, it is possible to provide the workpiece conveying apparatus for a pressing machine capable of, by realizing a relatively simple, low-cost, lightweight, and compact structure, reducing vibration and noise, increasing the degree of freedom of posture of the workpiece during the workpiece conveyance, and contributing to an increase in workpiece conveying speed, resulting in cycle time reduction and an increase in production efficiency. - Namely, according to the one embodiment of the present invention, it is possible to provide the workpiece conveying apparatus for a pressing machine, which is capable of, by realizing a relatively simple, low-cost, lightweight, and compact structure, reducing the vibration and noise, increasing the degree of freedom of posture of the workpiece during the workpiece conveyance, and contributing to the increase in workpiece conveying speed, resulting in the cycle time reduction and the increase in production efficiency.
- Note that, although the
workpiece conveying apparatus 1 is arranged between the pressing machine for the preceding step and the pressing machine for the subsequent step in the case described in this embodiment, the present invention is not limited thereto. The present invention is applicable also to such a case that theworkpiece conveying apparatus 1 is arranged between a preform (blank) storage place and a first pressing machine in a press line, or between a pressing machine for a last step in the press line and a finished product storage place. - Further, although the
horizontal beam 1B of thebase frame 1A is extended in the direction substantially orthogonal to the workpiece conveying direction in the case described in this embodiment, the present invention is not limited thereto. The present invention is applicable also to a case where thehorizontal beam 1B is arranged along the workpiece conveying direction, and a case where thehorizontal beam 1B is arranged in a direction intersecting with the workpiece conveying direction at a predetermined angle. - Still further, although the
workpiece conveying apparatus 1 is installed on the lower side of thehorizontal beam 1B in the case described in this embodiment, the present invention is not limited thereto. The present invention is applicable also to a case where thehorizontal beam 1B is lowered and theworkpiece conveying apparatus 1 is installed on thehorizontal beam 1B. - Yet further, although the shifting
devices 52 are arranged in the case described in this embodiment so that theworkpiece holding devices 100 can be shifted along the longitudinal direction of the cross bars 50, the present invention is not limited thereto. The shiftingdevices 52 may be omitted, and theworkpiece holding devices 100 may be, for example, fixedly or manually moved (shifted) with respect to the cross bars 50. - The embodiment described above is merely an example for describing the present invention, and various modifications may be made without departing from the appended claims.
Claims (4)
- A workpiece conveying apparatus (1) for a pressing machine, comprising:a rotary base (60) configured to be mounted so as to be rotatable about a substantially perpendicular axis;a first arm (70) having a proximal end side that is pivotally supported by the rotary base (60) so as to be rockable within a substantially perpendicular plane;a coupler (80) pivotally supported on a distal end side of the first arm (70) so as to be rockable within a plane substantially parallel to a rocking plane of the first arm (70);a second arm (40) having a proximal end side that is mounted to the coupler (80) so as to be rockable within a plane intersecting with a rocking plane of the coupler (80);a cross bar (50) mounted to a distal end side of the second arm (40) so as to be rockable within a plane substantially parallel to a rocking plane of the second arm (40); anda workpiece holding device (100) mounted to the cross bar (50);characterized in thatthe rotary base (60) is installed so as to be movable in a direction substantially orthogonal to a workpiece conveying direction.
- A workpiece conveying apparatus (1) for a pressing machine according to claim 1, wherein the coupler (80) is mounted so as also to be turnable about a major axis of the first arm (70).
- A workpiece conveying apparatus (1) for a pressing machine according to claim 1 or 2, wherein the cross bar (50) is mounted so as also to be tiltable in a direction intersecting with the rocking plane of the second arm (40).
- A workpiece conveying apparatus (1) for a pressing machine according to any one of claims 1 to 3, wherein a mounting position of the workpiece holding device (100) with respect to the cross bar (50) is shiftable.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014174859A JP6001024B2 (en) | 2014-08-29 | 2014-08-29 | Work transfer device for press machine |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2990135A2 EP2990135A2 (en) | 2016-03-02 |
EP2990135A3 EP2990135A3 (en) | 2016-04-06 |
EP2990135B1 true EP2990135B1 (en) | 2019-11-20 |
Family
ID=53879368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15180620.5A Active EP2990135B1 (en) | 2014-08-29 | 2015-08-11 | Workpiece conveying apparatus for a pressing machine |
Country Status (4)
Country | Link |
---|---|
US (1) | US10052678B2 (en) |
EP (1) | EP2990135B1 (en) |
JP (1) | JP6001024B2 (en) |
CN (1) | CN105382118B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6156854B1 (en) * | 2016-02-23 | 2017-07-05 | アイダエンジニアリング株式会社 | Work transfer device for press machine |
JP6219447B1 (en) * | 2016-05-09 | 2017-10-25 | アイダエンジニアリング株式会社 | Attachment / detachment support device for work holding tool |
JP6768454B2 (en) * | 2016-11-08 | 2020-10-14 | コマツ産機株式会社 | Work transfer device |
JP6571703B2 (en) * | 2017-02-13 | 2019-09-04 | ファナック株式会社 | Transport tool |
JP6960761B2 (en) | 2017-04-26 | 2021-11-05 | 株式会社Ihi物流産業システム | Transport device |
JP6618957B2 (en) * | 2017-06-14 | 2019-12-11 | アイダエンジニアリング株式会社 | Work transfer device for press machine |
DE102017129603B4 (en) * | 2017-09-27 | 2021-07-01 | VON ARDENNE Asset GmbH & Co. KG | Vacuum chamber arrangement and method for processing a substrate |
CN108638722A (en) * | 2018-07-24 | 2018-10-12 | 山东招金金银精炼有限公司 | A kind of metal memorial tablet surface imprint system and method |
KR102144725B1 (en) * | 2019-01-17 | 2020-08-14 | 김종현 | Manufacturing method of bedding having sub-containing space for receiving different pillow stuffer |
US11148221B2 (en) * | 2019-08-29 | 2021-10-19 | Raytheon Technologies Corporation | Method of forming gas turbine engine components |
CN111958578A (en) * | 2020-08-17 | 2020-11-20 | 广东万合新材料科技有限公司 | Suspension type manipulator |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0447829U (en) * | 1990-08-23 | 1992-04-23 | ||
JP2663849B2 (en) * | 1993-10-25 | 1997-10-15 | 三協アルミニウム工業株式会社 | Processing equipment |
JP2001030190A (en) * | 1999-07-21 | 2001-02-06 | Nachi Fujikoshi Corp | Conveying device |
US20010030190A1 (en) * | 2000-01-11 | 2001-10-18 | Vogel Richard E. | Confection cup assembly |
JP3510853B2 (en) * | 2000-12-27 | 2004-03-29 | 川崎重工業株式会社 | Transfer device with robot |
DE102005045153A1 (en) * | 2004-09-22 | 2006-03-23 | Müller Weingarten AG | Transporting device to take workpieces through press paths consists of three pivoted arm parts, with part moved by main drive turning round fixed carrier |
JP2006123009A (en) * | 2004-10-26 | 2006-05-18 | Hitachi Zosen Fukui Corp | Carrying robot between workpiece presses |
JP2006281269A (en) * | 2005-03-31 | 2006-10-19 | Hitachi Zosen Fukui Corp | Workpiece-conveying device |
EP2101962B1 (en) * | 2006-12-19 | 2010-04-28 | ABB Research Ltd. | Method and system for handling parts |
JP5098562B2 (en) | 2007-10-17 | 2012-12-12 | 株式会社安川電機 | Workpiece transfer robot and transfer method |
-
2014
- 2014-08-29 JP JP2014174859A patent/JP6001024B2/en active Active
-
2015
- 2015-08-11 EP EP15180620.5A patent/EP2990135B1/en active Active
- 2015-08-13 CN CN201510498446.6A patent/CN105382118B/en active Active
- 2015-08-25 US US14/835,546 patent/US10052678B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US10052678B2 (en) | 2018-08-21 |
CN105382118B (en) | 2019-08-06 |
JP6001024B2 (en) | 2016-10-05 |
CN105382118A (en) | 2016-03-09 |
EP2990135A3 (en) | 2016-04-06 |
US20160059300A1 (en) | 2016-03-03 |
EP2990135A2 (en) | 2016-03-02 |
JP2016049539A (en) | 2016-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2990135B1 (en) | Workpiece conveying apparatus for a pressing machine | |
US10300520B2 (en) | Workpiece conveying apparatus for a pressing machine with two robots | |
EP3178582B1 (en) | Workpiece conveying apparatus for a pressing machine | |
JP6174261B2 (en) | Conveyor for work | |
JP6618957B2 (en) | Work transfer device for press machine | |
JP2007520356A (en) | Conveying device for conveying a workpiece through a press device | |
JP5631805B2 (en) | Work transfer device | |
CN108453715B (en) | Conveying tool | |
JP2009119580A (en) | Carrying device and large-sized carrying device | |
JP5631372B2 (en) | Work transfer device | |
JP4198033B2 (en) | Work transfer device in tandem press line | |
JP2005118887A (en) | Work carrying device in tandem press line | |
JP4715266B2 (en) | Panel conveyor | |
JP6693978B2 (en) | Transport tools and robots | |
KR200463645Y1 (en) | Transfer device for gantry robot | |
JP2004216452A (en) | Workpiece conveyor in press line | |
JP6321087B2 (en) | Tandem press line work transfer device | |
JP6321088B2 (en) | Tandem press line transport method | |
US10906084B2 (en) | Workpiece conveyance device | |
JP6480160B2 (en) | Transport loader and processing line | |
JP4526993B2 (en) | Work transfer device | |
JP5679566B2 (en) | Work support device | |
JP2004268074A (en) | Work carrying device of transfer press | |
KR20110065886A (en) | Transferring apparatus for workpiece of press |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B21D 43/10 20060101ALI20160226BHEP Ipc: B25J 9/04 20060101ALI20160226BHEP Ipc: B21D 43/05 20060101AFI20160226BHEP Ipc: B23Q 7/04 20060101ALI20160226BHEP |
|
17P | Request for examination filed |
Effective date: 20160927 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190612 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015041940 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1203624 Country of ref document: AT Kind code of ref document: T Effective date: 20191215 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191120 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200220 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200220 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200412 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1203624 Country of ref document: AT Kind code of ref document: T Effective date: 20191120 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015041940 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20200821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200811 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200811 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220629 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220709 Year of fee payment: 8 |