EP2952806A1 - Pivoting heat sink for LED luminaire - Google Patents

Pivoting heat sink for LED luminaire Download PDF

Info

Publication number
EP2952806A1
EP2952806A1 EP14170803.2A EP14170803A EP2952806A1 EP 2952806 A1 EP2952806 A1 EP 2952806A1 EP 14170803 A EP14170803 A EP 14170803A EP 2952806 A1 EP2952806 A1 EP 2952806A1
Authority
EP
European Patent Office
Prior art keywords
heat sink
housing
side wall
attached
luminaire assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14170803.2A
Other languages
German (de)
French (fr)
Inventor
Peter Jezsoviczki
Georgina Ambruska
Janos Simonovics
Jozsef Samu
Thomas Knapp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to EP14170803.2A priority Critical patent/EP2952806A1/en
Publication of EP2952806A1 publication Critical patent/EP2952806A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/02Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/04Lighting devices intended for fixed installation intended only for mounting on a ceiling or the like overhead structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • F21V19/0035Fastening of light source holders, e.g. of circuit boards or substrates holding light sources the fastening means being capable of simultaneously attaching of an other part, e.g. a housing portion or an optical component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V21/00Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
    • F21V21/02Wall, ceiling, or floor bases; Fixing pendants or arms to the bases
    • F21V21/025Elongated bases having a U-shaped cross section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/02Arrangement of electric circuit elements in or on lighting devices the elements being transformers, impedances or power supply units, e.g. a transformer with a rectifier
    • F21V23/023Power supplies in a casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present disclosure relates generally to LED luminaires and particularly to recessed or suspended ceiling and wall mounted LED luminaires. More particularly, the present disclosure relates to a system and method for replacing the power supply unit (PSU) and other internal components of a recessed or suspended ceiling or wall mounted LED luminaire.
  • PSU power supply unit
  • LED luminaires that are recessed in a drop ceiling include a housing that can be fitted into common ceiling grid systems.
  • the housing is commonly an extruded aluminum outer shell that is able to lay on the edge of the ceiling grids.
  • the housing encloses the PSU and the LED module, which is generally attached to a heat sink.
  • the housing also encloses any reflectors that are used in the luminaire as well as a diffuser which generally forms the floor of the housing.
  • FIG 1 is an example of a prior art luminaire 10 recessed in a ceiling 12.
  • the luminaire includes an elongated housing 14 having a top wall (not shown), two side walls (only one partially shown), and two end walls (one shown).
  • the bottom of the housing is enclosed by a diffuser 16.
  • Diffuser 16 is held in place by retaining lips 17, 18 which run along length "1" of the lower edge of the housing 14.
  • a prior art LED luminaire 20 is shown in Figure 2 in cross-section.
  • the luminaire 20 includes a housing having two regions, top region 22 and bottom region 24.
  • Power supply unit 26 is mounted to the inside surface of the top housing region 22.
  • LED module 28 is mounted to the underside of heat sink 30 which in turn is mounted with two rows of screws 32, 34 so that it is between the top housing region 22 and bottom housing region 24.
  • a diffuser 36 sits in the opening of bottom housing region 24 and reflectors 38 fit within bottom housing region 24 between the LED module 28 and the diffuser 36.
  • the diffuser 36, reflectors 38, and heat sink 30 In order to access and replace the PSU 26 of the prior art luminaire 20, the diffuser 36, reflectors 38, and heat sink 30 must first be removed.
  • the diffuser 36 and reflectors 38 are lightweight and relatively simple elements to remove.
  • the heat sink 30 is heavy and it is awkward to unfasten screws 32, 34 and lower the heat sink from the luminaire.
  • heat sink 30 has mounted thereto the LED module 28 which is quite fragile and must be carefully handled to avoid damage.
  • any wiring between the LED module 28 and the PSU 26 must be disconnected in order to remove and replace the PSU 26.
  • the two rows of screws 32, 34 are removed to release the heat sink 30.
  • the heat sink 30, along with any wiring connecting the heat sink 30, LED module 28, and the PSU 26, is then carefully removed.
  • the PSU 26 is then exposed and can be removed and replaced.
  • the LED module can be damaged during the removal and temporary storage of the heat sink.
  • the heat sink is heavy and awkward and its removal from the housing can be dangerous.
  • the present disclosure provides a field serviceable solid state lighting device luminaire assembly which allows for the easy and safe removal and replacement of the power supply unit and other internal components.
  • the present disclosure provides a solid state lighting device luminaire assembly wherein the heat sink can be folded aside to allow access to and removal of the PSU.
  • the present disclosure describes a solid state lighting device luminaire assembly having a housing with a first side wall, a second side wall, a first end wall, and a second end wall and a power supply unit located within the housing.
  • the solid state lighting device module is connected to a heat sink which blocks access to the power supply unit.
  • the heat sink folds or pivots to allow access to the power supply unit.
  • the heat sink extends across the housing and is attached to the first side wall of the housing with a fixed attachment and to the second side wall of the housing with a pivot attachment so that when the fixed attachment is disconnected the heat sink stays attached to the housing at the pivot attachment and pivots towards the second side wall. When the heat sink is pivoted the power supply unit is exposed.
  • the heat sink extends across the housing and is attached to the first end wall with a fixed attachment and to the second end wall with a removable attachment and the heat sink includes at least two segments connected by a hinged connection.
  • the heat sink can be unattached from the second end wall and folded at the hinged connection to expose the power supply unit.
  • the present disclosure provides an LED luminaire assembly.
  • the LED luminaire 50 includes a single piece housing 52 which is extruded aluminum, another metal, or plastic.
  • the PSU 54 is mounted to the inside of the housing 52 such as with two rows of bolts 56, 58.
  • Diffuser 60 is held by inner pointing retaining lips 62, 64 that run the length of the lower edge of the housing 52. Similar retaining lips 17, 18 are shown for the prior art luminaire shown in Figure 1 running along length "1" of the lower edge of the housing 14.
  • LED module 66 is mounted on the underside of heat sink 68 by screws, adhesives, or other means (not shown).
  • Heat sink 68 is held in place on one side by fixed attachment to an inwardly directed lip 70 with screws or bolts 72 or temporary or quick release mechanisms such as magnets, tethers, chains, levers, pins, or clevis fasteners.
  • the other edge of heat sink 68 is held in place by a pivoting or hinged attachment 74.
  • Heat sink 68 is typically aluminum but can be another thermally conductive metal, thermally conductive plastic, or other plastic. Its thickness generally ranges between about 0.5 to 20 mm.
  • the diffuser 60 and reflector 61 are removed from the luminaire assembly and placed aside.
  • the screws 72 or other fastening devices are removed, allowing the heat sink 68 to hinge or pivot within the housing 52.
  • FIG 4 illustrates the luminaire assembly with the heat sink 68 pivoted to provide access to the PSU 54. Screws 56, 58 can be removed, allowing removal of the PSU 54.
  • the LED module 66 is protected from damage because it is between the heat sink 68 and housing wall 52. Furthermore, heat sink 68 is prevented from pivoting all the way against the housing wall 52 by the lip 62 which also provides protection to the LED module 66.
  • Pivot attachment 74 is shown in more detail in Figure 5 .
  • the pivot attachment is a longitudinal extruded center of rotation.
  • a retaining finger 80 is extruded as part of housing wall 52.
  • Heat sink 68 includes a divot 82 in the surface thereof which matches with retaining ball 84, also extruded as a segment of housing wall 52.
  • Heat sink 68 rotates around retaining ball 84 on the divot 82 as indicated by the directional arrow and the end 86 of heat sink 68 is retained by retaining finger 80.
  • Pivot attachment 74 can be segmental along the inside of housing 52 (one or more mechanisms 74) or can be a continuous element.
  • Pivoting attachments can be used other than the embodiment shown by Figures 3-5 .
  • other solutions can be a classic door hinge, or a hold open hinge.
  • FIG. 6 illustrates another embodiment of a pivoting attachment that can be used to provide a pivoting heat sink.
  • the heat sink 90 is fastened on one side to the housing wall inwardly directed lip 92 that is an integral part of the luminaire housing 94.
  • This fixed attachment can be the same as described for the above embodiment.
  • the other side of the heat sink 90 is fastened to the luminaire housing 97 via one or more hooks 96 extending through one or more holes of the heat sink 90.
  • the heat sink 90 is loosened from the one side it swings or pivots providing access to the PSU.
  • Figure 7 illustrates a pivot attachment similar to that shown in Figures 3-5 except that the mechanism is not an integral part of the housing 98. Instead the retaining finger 100 and retaining ball 102 are a pivot unit 104 attached to the housing 98 with screws or such 106, 108 or welded to the housing 98.
  • Heat sink 68 can be attached to housing 52 on its non-pivoting side in a number of ways. One embodiment is shown in Figures 3-6 .
  • Figure 8 illustrates another embodiment of a fixed attachment, wherein a snap-fit fastener 110 is used to fasten the heat sink 112 to the housing retaining lip 114.
  • Figure 9 illustrates yet another embodiment of a fastening means 120 having a pin 122 that extends through the retaining lip 124 and the heat sink 126 and is kept in position by a snap ring 128.
  • a number of other fastening devices can be used including screws, bolts, slide bolt latches, magnets, rivets, cotter pins, leaf springs, or wedges.
  • FIG. 10 A second embodiment of a field serviceable luminaire assembly 148 is illustrated in Figure 10 .
  • This embodiment includes a heat sink 164 that folds crosswise to provide access to the power supply unit 162, rather than pivoting lengthwise to provide access as in the previously described embodiment.
  • this embodiment includes a housing 150 with a top panel 152, first side panel 154, second side panel (not shown in this view), and end walls 158, 160.
  • Power supply unit (PSU) 162 is mounted to the top panel 152.
  • Heat sink 164 has a plurality of LED modules 166 mounted thereto. Heat sink 164 has two connected, hinged segments, a permanent segment 168 and a removable segment 170. Segments 168, 170 appear to be shown as being of equal length but they can be of unequal length or the heat sink 164 can be divided into more than two segments. Segment 170 is shown folded in Figure 10 , so that the power supply unit 162 is exposed.
  • the luminaire 148 could have multiple power supplies or there may be other components, such as controllers, sensors, terminal blocks, etc. that the service-operator may need to access.
  • the pivoting segment need not be attached at an end of the housing 150. There may be three (or more) segments with the pivoting segment in the middle, for example.
  • Heat sink 164 is shown with segment 170 folded downwards.
  • heat sink 164 is mounted within housing 150 generally from one end wall 158 to the other end wall 160 and from side wall 154 to the opposite side wall (not shown).
  • the permanent segment is mounted with screws, adhesive, or other attachment means to the housing.
  • the removable segment 170 is attached to the permanent segment 168 with a hinged connection 172 and is attached to the inside of the end wall 160 with a tab 174 which mates in a slot (not shown) on the end wall 160.
  • Other methods of removably attaching the removable segment 170 can be employed.
  • hinged connection 172 should accommodate any electrical connections between segments 168 and 170.
  • One embodiment of an appropriate hinged connection 172 is shown in Figures 11 and 12 .
  • the permanent segment 168 and removable segment 170 are connected with two slotted hinges 180, 182.
  • Electrical connection between permanent segment 168 and removable segment 170 is made with a connector 184.
  • To disconnect and fold the removable segment 170 it is first pulled to disengage the connector 184 (this step is shown in Figure 12 ) and the slotted hinges allow movement of the removable segment 170 away from the permanent segment 168. The removable segment 170 can then be folded as shown in Figure 10 .
  • the electrical connection between heat sink sections could be a pin connector, ribbon cable, flexible wire, or flexible printed-circuit board.
  • the entire heat sink could be a flexible circuit board that has enough slack at the hinged joint that it can pivot without damaging the board.
  • a slotted hinge would not be necessary and a standard hinge or other pivoting mechanism would suffice.
  • This embodiment will desirably include reflectors and these must be removed to access the removable segment 170 of the heat sink 164.
  • the removable segment 170 is then folded down and the power supply unit 162 can be serviced or removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

An LED luminaire assembly 50 which allows for the easy and safe removal and replacement of the PSU 54 and other internal components wherein the heat sink 68 can be folded or pivoted aside to allow access to and removal of the PSU 54.

Description

  • The present disclosure relates generally to LED luminaires and particularly to recessed or suspended ceiling and wall mounted LED luminaires. More particularly, the present disclosure relates to a system and method for replacing the power supply unit (PSU) and other internal components of a recessed or suspended ceiling or wall mounted LED luminaire.
  • LED luminaires that are recessed in a drop ceiling include a housing that can be fitted into common ceiling grid systems. The housing is commonly an extruded aluminum outer shell that is able to lay on the edge of the ceiling grids. The housing encloses the PSU and the LED module, which is generally attached to a heat sink. The housing also encloses any reflectors that are used in the luminaire as well as a diffuser which generally forms the floor of the housing.
  • Figure 1 is an example of a prior art luminaire 10 recessed in a ceiling 12. The luminaire includes an elongated housing 14 having a top wall (not shown), two side walls (only one partially shown), and two end walls (one shown). The bottom of the housing is enclosed by a diffuser 16. Diffuser 16 is held in place by retaining lips 17, 18 which run along length "1" of the lower edge of the housing 14.
  • A prior art LED luminaire 20 is shown in Figure 2 in cross-section. The luminaire 20 includes a housing having two regions, top region 22 and bottom region 24. Power supply unit 26 is mounted to the inside surface of the top housing region 22. LED module 28 is mounted to the underside of heat sink 30 which in turn is mounted with two rows of screws 32, 34 so that it is between the top housing region 22 and bottom housing region 24. A diffuser 36 sits in the opening of bottom housing region 24 and reflectors 38 fit within bottom housing region 24 between the LED module 28 and the diffuser 36.
  • In order to access and replace the PSU 26 of the prior art luminaire 20, the diffuser 36, reflectors 38, and heat sink 30 must first be removed. The diffuser 36 and reflectors 38 are lightweight and relatively simple elements to remove. However the heat sink 30 is heavy and it is awkward to unfasten screws 32, 34 and lower the heat sink from the luminaire. Moreover, heat sink 30 has mounted thereto the LED module 28 which is quite fragile and must be carefully handled to avoid damage. Furthermore, any wiring between the LED module 28 and the PSU 26 must be disconnected in order to remove and replace the PSU 26.
  • In other words, to remove the heat sink 30 from the prior art luminaire 20, the two rows of screws 32, 34 are removed to release the heat sink 30. The heat sink 30, along with any wiring connecting the heat sink 30, LED module 28, and the PSU 26, is then carefully removed. The PSU 26 is then exposed and can be removed and replaced.
  • Issues with the prior art assembly are evident. The LED module can be damaged during the removal and temporary storage of the heat sink. The heat sink is heavy and awkward and its removal from the housing can be dangerous.
  • The above-described shortcomings significantly limit the usefulness of field-serviceable LED luminaires (i.e. luminaires having a replaceable PSU). Therefore, there remains a need for an LED luminaire assembly which allows for the easy and safe removal and replacement of the PSU and other internal components.
  • In at least one aspect, the present disclosure provides a field serviceable solid state lighting device luminaire assembly which allows for the easy and safe removal and replacement of the power supply unit and other internal components.
  • In at least another aspect, the present disclosure provides a solid state lighting device luminaire assembly wherein the heat sink can be folded aside to allow access to and removal of the PSU.
  • The present disclosure describes a solid state lighting device luminaire assembly having a housing with a first side wall, a second side wall, a first end wall, and a second end wall and a power supply unit located within the housing. The solid state lighting device module is connected to a heat sink which blocks access to the power supply unit. The heat sink folds or pivots to allow access to the power supply unit.
  • In one aspect the heat sink extends across the housing and is attached to the first side wall of the housing with a fixed attachment and to the second side wall of the housing with a pivot attachment so that when the fixed attachment is disconnected the heat sink stays attached to the housing at the pivot attachment and pivots towards the second side wall. When the heat sink is pivoted the power supply unit is exposed.
  • In another aspect, the heat sink extends across the housing and is attached to the first end wall with a fixed attachment and to the second end wall with a removable attachment and the heat sink includes at least two segments connected by a hinged connection. The heat sink can be unattached from the second end wall and folded at the hinged connection to expose the power supply unit.
    • FIG. 1 illustrates a prior art ceiling mounted luminaire.
    • FIG. 2 illustrates a schematic view of a prior art LED luminaire.
    • FIG. 3 illustrates a schematic view of an LED luminaire assembly in accordance with at least one embodiment of the present disclosure.
    • FIG. 4 is another schematic view of the LED luminaire assembly with the heat sink pivoted to allow access to the PSU.
    • FIG. 5 is an up-close view of the pivot attachment of the heat sink to the housing.
    • FIG. 6 is a view of another embodiment of a pivot attachment of the heat sink to the housing using a hook mechanism.
    • FIG. 7 is a view of another embodiment of a pivot attachment of the heat sink to the housing wherein the pivot mechanism is not an integral part of the housing.
    • FIG. 8 is a view of another embodiment of the fixed attachment of the heat sink to the housing using a snap-fit fastener.
    • FIG. 9 is a view of another embodiment of the fixed attachment of the heat sink to the housing using a pin and snap ring.
    • FIG. 10 illustrates an LED luminaire where the LED module is attached to a heat sink which is hinged on an alternative axis.
    • Figure 11 illustrates one embodiment of a hinged connection between permanent and removable segments of a heat sink.
    • Figure 12 illustrates the hinged connection of Figure 11 in disengaged status.
  • The present disclosure may take form in various components and arrangements of components, and in various process operations and arrangements of process operations. The present disclosure is illustrated in the accompanying drawings, throughout which like reference numerals may indicate corresponding or similar parts in the various figures. The drawings are only for purposes of illustrating preferred embodiments and are not to be construed as limiting the disclosure. Given the following enabling description of the drawings, the novel aspects of the present disclosure should become evident to a person of ordinary skill in the art.
  • The following detailed description is merely exemplary in nature and is not intended to limit the applications and uses disclosed herein. Further, there is no intention to be bound by any theory presented in the preceding background or summary or the following detailed description. While embodiments of the present technology are described herein primarily in connection with LED luminaires for use in recessed drop ceilings, the concepts are also applicable to other types of LED luminaires and luminaires having other light sources. In addition, while the invention is described herein as applicable to LED luminaires it should be understood that it is applicable to other solid-state lighting devices as well. For example light-emitting transistors or organic light-emitting diodes/devices (OLEDs) are applicable alternative SSL devices.
  • In at least one aspect, the present disclosure provides an LED luminaire assembly. As shown in Figure 3, the LED luminaire 50 includes a single piece housing 52 which is extruded aluminum, another metal, or plastic. The PSU 54 is mounted to the inside of the housing 52 such as with two rows of bolts 56, 58.
  • Diffuser 60 is held by inner pointing retaining lips 62, 64 that run the length of the lower edge of the housing 52. Similar retaining lips 17, 18 are shown for the prior art luminaire shown in Figure 1 running along length "1" of the lower edge of the housing 14.
  • LED module 66 is mounted on the underside of heat sink 68 by screws, adhesives, or other means (not shown). Heat sink 68 is held in place on one side by fixed attachment to an inwardly directed lip 70 with screws or bolts 72 or temporary or quick release mechanisms such as magnets, tethers, chains, levers, pins, or clevis fasteners. The other edge of heat sink 68 is held in place by a pivoting or hinged attachment 74.
  • Heat sink 68 is typically aluminum but can be another thermally conductive metal, thermally conductive plastic, or other plastic. Its thickness generally ranges between about 0.5 to 20 mm.
  • To remove the PSU 54, the diffuser 60 and reflector 61 are removed from the luminaire assembly and placed aside. The screws 72 or other fastening devices are removed, allowing the heat sink 68 to hinge or pivot within the housing 52.
  • Figure 4 illustrates the luminaire assembly with the heat sink 68 pivoted to provide access to the PSU 54. Screws 56, 58 can be removed, allowing removal of the PSU 54. The LED module 66 is protected from damage because it is between the heat sink 68 and housing wall 52. Furthermore, heat sink 68 is prevented from pivoting all the way against the housing wall 52 by the lip 62 which also provides protection to the LED module 66.
  • Pivot attachment 74 is shown in more detail in Figure 5. In this embodiment, the pivot attachment is a longitudinal extruded center of rotation. A retaining finger 80 is extruded as part of housing wall 52. Heat sink 68 includes a divot 82 in the surface thereof which matches with retaining ball 84, also extruded as a segment of housing wall 52. Heat sink 68 rotates around retaining ball 84 on the divot 82 as indicated by the directional arrow and the end 86 of heat sink 68 is retained by retaining finger 80. Pivot attachment 74 can be segmental along the inside of housing 52 (one or more mechanisms 74) or can be a continuous element.
  • Pivoting attachments can be used other than the embodiment shown by Figures 3-5. For example, other solutions can be a classic door hinge, or a hold open hinge.
  • Figure 6 illustrates another embodiment of a pivoting attachment that can be used to provide a pivoting heat sink. The heat sink 90 is fastened on one side to the housing wall inwardly directed lip 92 that is an integral part of the luminaire housing 94. This fixed attachment can be the same as described for the above embodiment. The other side of the heat sink 90 is fastened to the luminaire housing 97 via one or more hooks 96 extending through one or more holes of the heat sink 90. When the heat sink 90 is loosened from the one side it swings or pivots providing access to the PSU.
  • Figure 7 illustrates a pivot attachment similar to that shown in Figures 3-5 except that the mechanism is not an integral part of the housing 98. Instead the retaining finger 100 and retaining ball 102 are a pivot unit 104 attached to the housing 98 with screws or such 106, 108 or welded to the housing 98.
  • Heat sink 68 can be attached to housing 52 on its non-pivoting side in a number of ways. One embodiment is shown in Figures 3-6. Figure 8 illustrates another embodiment of a fixed attachment, wherein a snap-fit fastener 110 is used to fasten the heat sink 112 to the housing retaining lip 114.
  • Figure 9 illustrates yet another embodiment of a fastening means 120 having a pin 122 that extends through the retaining lip 124 and the heat sink 126 and is kept in position by a snap ring 128.
  • A number of other fastening devices can be used including screws, bolts, slide bolt latches, magnets, rivets, cotter pins, leaf springs, or wedges.
  • A second embodiment of a field serviceable luminaire assembly 148 is illustrated in Figure 10. This embodiment includes a heat sink 164 that folds crosswise to provide access to the power supply unit 162, rather than pivoting lengthwise to provide access as in the previously described embodiment.
  • As shown in Figure 10, this embodiment includes a housing 150 with a top panel 152, first side panel 154, second side panel (not shown in this view), and end walls 158, 160. Power supply unit (PSU) 162 is mounted to the top panel 152. Heat sink 164 has a plurality of LED modules 166 mounted thereto. Heat sink 164 has two connected, hinged segments, a permanent segment 168 and a removable segment 170. Segments 168, 170 appear to be shown as being of equal length but they can be of unequal length or the heat sink 164 can be divided into more than two segments. Segment 170 is shown folded in Figure 10, so that the power supply unit 162 is exposed.
  • It should also be noted that the luminaire 148 could have multiple power supplies or there may be other components, such as controllers, sensors, terminal blocks, etc. that the service-operator may need to access. Also, the pivoting segment need not be attached at an end of the housing 150. There may be three (or more) segments with the pivoting segment in the middle, for example.
  • Heat sink 164 is shown with segment 170 folded downwards. In use, heat sink 164 is mounted within housing 150 generally from one end wall 158 to the other end wall 160 and from side wall 154 to the opposite side wall (not shown). The permanent segment is mounted with screws, adhesive, or other attachment means to the housing. The removable segment 170 is attached to the permanent segment 168 with a hinged connection 172 and is attached to the inside of the end wall 160 with a tab 174 which mates in a slot (not shown) on the end wall 160. Other methods of removably attaching the removable segment 170 can be employed.
  • It should be noted that the hinged connection 172 should accommodate any electrical connections between segments 168 and 170. One embodiment of an appropriate hinged connection 172 is shown in Figures 11 and 12. As shown in Figure 11, the permanent segment 168 and removable segment 170 are connected with two slotted hinges 180, 182. Electrical connection between permanent segment 168 and removable segment 170 is made with a connector 184. To disconnect and fold the removable segment 170 it is first pulled to disengage the connector 184 (this step is shown in Figure 12) and the slotted hinges allow movement of the removable segment 170 away from the permanent segment 168. The removable segment 170 can then be folded as shown in Figure 10.
  • The electrical connection between heat sink sections could be a pin connector, ribbon cable, flexible wire, or flexible printed-circuit board. Alternatively, the entire heat sink could be a flexible circuit board that has enough slack at the hinged joint that it can pivot without damaging the board. In that embodiment, a slotted hinge would not be necessary and a standard hinge or other pivoting mechanism would suffice.
  • This embodiment will desirably include reflectors and these must be removed to access the removable segment 170 of the heat sink 164. The removable segment 170 is then folded down and the power supply unit 162 can be serviced or removed.
  • Alternative embodiments, examples, and modifications which would still be encompassed by the disclosure may be made by those skilled in the art, particularly in light of the foregoing teachings. Further, it should be understood that the terminology used to describe the disclosure is intended to be in the nature of words of description rather than of limitation.
  • Those skilled in the art will also appreciate that various adaptations and modifications of the preferred and alternative embodiments described above can be configured without departing from the scope and spirit of the disclosure. Therefore, it is to be understood that, within the scope of the appended claims, the disclosure may be practiced other than as specifically described herein.
  • Various aspects and embodiments of the present invention are defined by the following numbered clauses:
    1. 1. A solid state lighting device luminaire assembly comprising:
      • a housing comprising a first side wall, a second side wall, a first end wall, and a second end wall;
      • a power supply unit located within the housing;
      • a solid state lighting device module connected to a heat sink;
      • wherein the heat sink blocks access to the power supply unit when in use; and
      • wherein the heat sink folds or pivots to allow access to the power supply unit.
    2. 2. The luminaire assembly of clause 1, wherein the heat sink extends across the housing and is attached to the first side wall of the housing with a fixed attachment and to the second side wall of the housing with a pivot attachment so that when the fixed attachment is disconnected the heat sink stays attached to the housing at the pivot attachment and pivots towards the second side wall.
    3. 3. The luminaire assembly of any preceding clause, wherein the power supply unit is inaccessible when the heat sink is attached with the fixed attachment and accessible when the heat sink pivots towards the second wall.
    4. 4. The luminaire assembly of any preceding clause, wherein the power supply unit can be removed from the luminaire when the heat sink is pivoted towards the second side wall.
    5. 5. The luminaire assembly of any preceding clause, wherein the pivot attachment comprises a retaining finger extending from the second housing wall, a retaining ball extending from the second housing wall, and a divot on the heat sink, wherein the divot mates with the retaining ball and the retaining finger connects with the end of the heat sink.
    6. 6. The luminaire assembly of any preceding clause, wherein the solid state lighting device module is between the second side wall and the heat sink when the heat sink is pivoted towards the second side wall.
    7. 7. The luminaire assembly of any preceding clause, wherein the second housing side wall comprises a lip that prevents the heat sink from pivoting all the way against the second side wall and prevents the solid state lighting device module from contacting the second side wall.
    8. 8. The luminaire assembly of any preceding clause, wherein there are multiple pivot attachments along the second housing side wall.
    9. 9. The luminaire assembly of any preceding clause, wherein the pivot attachment comprises one or more hooks attached to the second housing side wall that engage one or more holes in the heat sink.
    10. 10. The luminaire assembly of any preceding clause, wherein the heat sink extends across the housing and is attached at the first end wall with a permanent attachment and at the second end wall with a removable attachment;
      wherein the heat sink comprises at least two segments connected by a hinged connection and wherein the heat sink can be unattached from the second end wall and can be folded at the hinged connection.
    11. 11. The luminaire assembly of any preceding clause, wherein the heat sink comprises a first segment permanently attached to the first end wall and a second segment removably attached to the second end wall, and wherein the first and second segments are connected by the hinged connector.
    12. 12. The luminaire assembly of any preceding clause, wherein the hinged connector is one or more slotted hinges that allow movement of the segments longitudinally away from each other before the removable segment is folded.
    13. 13. The luminaire assembly of any preceding clause, wherein the heat sink comprises a first segment permanently attached to the first end wall and a second segment removably attached to the second end wall, and a third segment that is connected to at least one of the first segment or second segment with a hinged connector.
    14. 14. A solid state lighting device luminaire assembly comprising:
      • a housing comprising a first side wall, a second side wall, a first end wall, and a second end wall;
      • a power supply unit located within the housing;
      • a heat sink extending across the housing and attached to the first side wall and the second side wall and blocking access to the power supply unit; and
      • a solid state lighting device module connected to the heat sink;
      • wherein the heat sink is attached to the first side wall with a fixed attachment and to the second side wall with a pivot attachment so that when the fixed attachment is disconnected the heat sink stays attached to the housing at the pivot attachment and pivots towards the second side wall.
    15. 15. The luminaire assembly of any preceding clause, wherein the power supply unit is inaccessible when the heat sink is attached with the fixed attachment and accessible when the fixed attachment is disconnected and the heat sink pivots towards the second wall.
    16. 16. The luminaire assembly of any preceding clause, wherein the power supply unit can be removed from the luminaire when the heat sink is pivoted towards the second side wall.
    17. 17. The luminaire assembly of any preceding clause, wherein the pivot attachment comprises a retaining finger extending from the second housing wall, a retaining ball extending from the second housing wall, and a divot on the heat sink, wherein the divot mates with the retaining ball and the retaining finger connects with the end of the heat sink.
    18. 18. The luminaire assembly of any preceding clause, wherein the solid state lighting device module is between the second side wall and the heat sink when the heat sink is pivoted towards the second side wall.
    19. 19. A solid state lighting device luminaire assembly comprising:
      • a housing comprising a first side wall, a second side wall, a first end wall, and a second end wall;
      • a power supply unit located within the housing;
      • a heat sink extending across the housing and attached to the first end wall and the second end wall and blocking access to the power supply unit; and
      • a solid state lighting device module connected to the heat sink;
      • wherein the heat sink is attached to the first end wall with a fixed attachment and to the second end wall with a removable attachment and wherein the heat sink comprises at least two segments connected by a hinged connection; and
      • wherein the heat sink can be unattached from the second end wall and can be folded at the hinged connection.
    20. 20. The luminaire assembly of any preceding clause, wherein the power supply unit is exposed when the heat sink is unattached from the second end and folded at the hinged connection.

Claims (15)

  1. A solid state lighting device luminaire assembly (50) comprising:
    a housing (52) comprising a first side wall, a second side wall, a first end wall, and a second end wall;
    a power supply unit (54) located within the housing (52);
    a solid state lighting device module (66) connected to a heat sink (68);
    wherein the heat sink (68) blocks access to the power supply unit (54) when in use; and
    wherein the heat sink (68) folds or pivots to allow access within the housing (52).
  2. The luminaire assembly of claim 1, wherein the heat sink (68) extends across the housing (52) and is attached to the first side wall of the housing with a fixed attachment (72) and to the second side wall of the housing with a pivot attachment (74) so that when the fixed attachment is disconnected the heat sink (68) stays attached to the housing at the pivot attachment and pivots towards the second side wall.
  3. The luminaire assembly of claim 2, wherein the power supply unit (54) is inaccessible when the heat sink (68) is attached with the fixed attachment and accessible when the heat sink pivots towards the second wall.
  4. The luminaire assembly of claim 2 or claim 3, wherein the power supply unit (54) can be removed from the luminaire when the heat sink (68) is pivoted towards the second side wall.
  5. The luminaire assembly of claim 2, 3 or 4, wherein the pivot attachment comprises a retaining finger (80) extending from the second housing wall, a retaining ball (84) extending from the second housing wall, and a divot (82) on the heat sink (68), wherein the divot (82) mates with the retaining ball (84) and the retaining finger (80) connects with the end of the heat sink (68).
  6. The luminaire assembly of any one of claims 2 to 5, wherein the solid state lighting device module (66) is between the second side wall and the heat sink (68) when the heat sink is pivoted towards the second side wall, wherein, preferably, the second housing side wall comprises a lip that prevents the heat sink (68) from pivoting all the way against the second side wall and prevents the solid state lighting device module (66) from contacting the second side wall.
  7. The luminaire assembly of any one of claims 2 to 6, wherein:
    there are multiple pivot attachments along the second housing side wall, and/or
    the pivot attachment comprises one or more hooks attached to the second housing side wall that engage one or more holes in the heat sink (68).
  8. The luminaire assembly of any preceding claim, wherein the heat sink (164) extends across the housing (150) and is attached at the first end wall (158) with a permanent attachment and at the second end wall (160) with a removable attachment;
    wherein the heat sink (164) comprises at least two segments (168, 170) connected by a hinged connection and wherein the heat sink (164) can be unattached from the second end wall and can be folded at the hinged connection.
  9. The luminaire assembly of claim 8, wherein the heat sink (154) comprises a first segment (168) permanently attached to the first end wall and a second segment (170) removably attached to the second end wall, and wherein the first and second segments (168, 170) are connected by the hinged connector.
  10. The luminaire assembly of claim 8 or claim 9, wherein the hinged connector is one or more slotted hinges (180, 182) that allow movement of the segments longitudinally away from each other before the removable segment is folded.
  11. The luminaire assembly of claim 8, 9 or 10, wherein the heat sink (154) comprises a first segment (168) permanently attached to the first end wall and a second segment (170) removably attached to the second end wall, and a third segment that is connected to at least one of the first segment or second segment with a hinged connector.
  12. The luminaire assembly of any preceding claim, wherein:
    the heat sink (68) extends across the housing (52) and is attached to the first side wall and the second side wall and blocks access to the power supply unit (54); and
    the heat sink (68) is attached to the first side wall with a fixed attachment and to the second side wall with a pivot attachment so that when the fixed attachment is disconnected the heat sink (68) stays attached to the housing at the pivot attachment and pivots towards the second side wall.
  13. The luminaire assembly of claim 12, wherein the power supply unit (54) is inaccessible when the heat sink (68) is attached with the fixed attachment and accessible when the fixed attachment is disconnected and the heat sink (68) pivots towards the second wall.
  14. The luminaire assembly of claim 1, wherein:
    the heat sink (68) extending across the housing (52) and attached to the first end wall and the second end wall and blocking access to the power supply unit (54); and
    the heat sink (68) is attached to the first end wall with a fixed attachment and to the second end wall with a removable attachment and wherein the heat sink comprises at least two segments connected by a hinged connection; and
    heat sink (68) can be unattached from the second end wall and can be folded at the hinged connection.
  15. The luminaire assembly of claim 14, wherein the power supply unit (54) is exposed when the heat sink (68) is unattached from the second end and folded at the hinged connection.
EP14170803.2A 2014-06-02 2014-06-02 Pivoting heat sink for LED luminaire Withdrawn EP2952806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14170803.2A EP2952806A1 (en) 2014-06-02 2014-06-02 Pivoting heat sink for LED luminaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14170803.2A EP2952806A1 (en) 2014-06-02 2014-06-02 Pivoting heat sink for LED luminaire

Publications (1)

Publication Number Publication Date
EP2952806A1 true EP2952806A1 (en) 2015-12-09

Family

ID=50972451

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14170803.2A Withdrawn EP2952806A1 (en) 2014-06-02 2014-06-02 Pivoting heat sink for LED luminaire

Country Status (1)

Country Link
EP (1) EP2952806A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099934A1 (en) * 2015-12-10 2017-06-15 GE Lighting Solutions, LLC Lighting fixture with replaceable light engine
EP3260773A1 (en) * 2016-06-22 2017-12-27 Self Electronics Co., Ltd. Flipping installation device for led strip lighting
US9863591B2 (en) 2015-12-10 2018-01-09 GE Lighting Solutions, LLC Lighting fixture with replaceable light engine
EP3369986A1 (en) * 2017-03-01 2018-09-05 H4X e.U. Luminaire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060002111A1 (en) * 2003-07-03 2006-01-05 David Munson Apparatus and method for safe illumination of fine art works
US20120162980A1 (en) * 2010-12-28 2012-06-28 GE Lighting Solutions, LLC Led retrofit module for roadway fixture
US20130223065A1 (en) * 2012-02-24 2013-08-29 Kuan-Hong Hsieh Street lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060002111A1 (en) * 2003-07-03 2006-01-05 David Munson Apparatus and method for safe illumination of fine art works
US20120162980A1 (en) * 2010-12-28 2012-06-28 GE Lighting Solutions, LLC Led retrofit module for roadway fixture
US20130223065A1 (en) * 2012-02-24 2013-08-29 Kuan-Hong Hsieh Street lamp

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099934A1 (en) * 2015-12-10 2017-06-15 GE Lighting Solutions, LLC Lighting fixture with replaceable light engine
US9863591B2 (en) 2015-12-10 2018-01-09 GE Lighting Solutions, LLC Lighting fixture with replaceable light engine
EP3260773A1 (en) * 2016-06-22 2017-12-27 Self Electronics Co., Ltd. Flipping installation device for led strip lighting
EP3369986A1 (en) * 2017-03-01 2018-09-05 H4X e.U. Luminaire
US20180252376A1 (en) * 2017-03-01 2018-09-06 H4X E.U. Luminaire
US10690306B2 (en) 2017-03-01 2020-06-23 H4X E.U. Luminaire
AT519708A3 (en) * 2017-03-01 2022-03-15 H4X Eu lamp
AT519708B1 (en) * 2017-03-01 2022-11-15 H4X Eu lamp

Similar Documents

Publication Publication Date Title
EP2952806A1 (en) Pivoting heat sink for LED luminaire
US9170014B2 (en) Heat sink for LED luminaire
US9651226B2 (en) Hinged mount for a luminaire
US9874320B2 (en) Retrofit kit for drop ceiling lighting fixtures
US10677428B2 (en) Lighting system
TWI426205B (en) Lighting apparatus and connector plate
CA2873980C (en) Beacon light having a lens
US20150246450A1 (en) Robot with fixing device for restricting relative rotating motion of two members and such fixing device
WO2010051985A3 (en) Led luminaire
ITRM20130605A1 (en) LIGHTING SYSTEM WITH EASY DISASSEMBLY
US20140268649A1 (en) Retrofit led module
US10018333B1 (en) Systems, methods, and devices for providing replaceable reflector inserts for an LED light fixture
US9869457B1 (en) Wall pack luminaire with hanging features for installation
US10731836B2 (en) Light fixture
EP3372846B1 (en) Mount with clip
JP6335655B2 (en) Lighting device
US20220042663A1 (en) Retrofit light mount
CN114484357A (en) Lamp with spare battery
US9709227B2 (en) Light blade fixture and method of servicing the same
JP2016213077A (en) Connecting structure for separate-type led lighting fixture
EP3382276A1 (en) Light
KR20160000325U (en) Power connector for LED street lamp
US9341351B2 (en) Universal mounting system for pole mounted area lights
CN205155700U (en) A LED street lamp can turn over
US20180245747A1 (en) Autonomous electronics platform for light fixtures with integral thermal management

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160609

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F21Y 115/10 20160101ALN20171108BHEP

Ipc: F21V 19/00 20060101ALI20171108BHEP

Ipc: F21S 8/04 20060101ALN20171108BHEP

Ipc: F21S 8/02 20060101ALN20171108BHEP

Ipc: F21V 29/70 20150101AFI20171108BHEP

Ipc: F21V 21/02 20060101ALI20171108BHEP

INTG Intention to grant announced

Effective date: 20171130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180411