EP2872818B1 - Method and apparatus for vaporising carbon dioxide-rich liquid - Google Patents

Method and apparatus for vaporising carbon dioxide-rich liquid Download PDF

Info

Publication number
EP2872818B1
EP2872818B1 EP13744701.7A EP13744701A EP2872818B1 EP 2872818 B1 EP2872818 B1 EP 2872818B1 EP 13744701 A EP13744701 A EP 13744701A EP 2872818 B1 EP2872818 B1 EP 2872818B1
Authority
EP
European Patent Office
Prior art keywords
liquid
flow
heat exchanger
vaporised
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13744701.7A
Other languages
German (de)
French (fr)
Other versions
EP2872818A2 (en
Inventor
Alain Briglia
Arthur Darde
Ludovic Granados
Christophe Szamlewski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to PL13744701T priority Critical patent/PL2872818T3/en
Publication of EP2872818A2 publication Critical patent/EP2872818A2/en
Application granted granted Critical
Publication of EP2872818B1 publication Critical patent/EP2872818B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/021Special adaptations of indicating, measuring, or monitoring equipment having the height as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0338Pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0121Propulsion of the fluid by gravity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0408Level of content in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/061Level of content in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • F17C2260/056Improving fluid characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/01Purifying the fluid
    • F17C2265/015Purifying the fluid by separating
    • F17C2265/017Purifying the fluid by separating different phases of a same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids
    • F17C2265/022Mixing fluids identical fluid

Definitions

  • the present invention relates to a method and apparatus for vaporizing a liquid rich in carbon dioxide.
  • US-2008/110181 discloses a method according to the preamble of claim 1.
  • This process is efficient because it allows a high efficiency CO 2 recovery at relatively low energy cost (compared to alternatives). It also offers the possibility of not introducing other refrigerant gases to the site, particularly in the context of a CO 2 liquefier.
  • the main drawback is that in the event of depressurization of the zones containing liquid CO 2 , and mainly of the zone corresponding to the vaporization of the CO 2 at low pressure which is closest to the triple point, there is a risk of relaxing quickly the liquid with production of two phases: solid and gaseous. Indeed, the phase diagram of CO 2 prohibits the liquid phase at a pressure of less than about 5.1 bars.
  • This solid CO 2 could clog the pipes and especially the channels of a plate heat exchanger.
  • the sublimation or melting of this solid CO 2 will be difficult because in the event that a liquid or solid fraction is trapped between two ice caps, the change of state could lead to breaking equipment overpressure. This risk during warming is accentuated by the fact that the ice of CO 2 is denser than the liquid, thus, when taking ice, there is little chance of breaking equipment (contrary to what happens with the water).
  • the invention aims to protect the most sensitive equipment to the presence of solid CO 2 , namely the pipes and especially the brazed aluminum heat exchanger where the hydraulic diameters are very small (of the order of a few millimeters).
  • the principle is to increase the vaporization pressure of the liquid in the exchanger and to ensure mechanically that if the pressure of the system drops, the setting in ice will begin elsewhere than in areas with small hydraulic diameters.
  • a method for vaporizing a liquid flow rich in carbon dioxide in which a first liquid flow rich in carbon dioxide is withdrawn from a chamber containing liquid rich in carbon dioxide and a gas rich in carbon dioxide, the gas being at a pressure P1, the first liquid flow is sent to a heat exchanger where it vaporizes, all the liquid of the first flow vaporizing in the heat exchanger at a pressure or more pressures greater than P1, the first vaporized flow is removed from the heat exchanger, expanded in a first expansion valve and returned to the heat exchanger where it heats up characterized in that the liquid level in the enclosure is located at a higher level above the ground than the level at which the last drop of carbon dioxide-rich liquid vaporizes in the exchanger, the difference between the two levels As H.
  • a device for vaporization of a liquid flow rich in carbon dioxide comprising an enclosure containing liquid rich in carbon dioxide and carbon dioxide-rich gas, the gas being a pressure P1, a heat exchanger, a pipe for withdrawing a first carbon dioxide-rich liquid flow from the enclosure and connected to the heat exchanger, pressurizing means for increasing the pressure of all the liquid of the first flow at least one vaporization pressure greater than P1, a pipe for outputting the first vaporized flow of the heat exchanger connected to a first expansion valve for expanding the first vaporized flow to form a relaxed flow and a pipe for returning the expanded flow rate to the heat exchanger characterized in that the liquid level in the enclosure is located at a higher level above the ground than the level at which the a last drop of liquid rich in carbon dioxide vaporizes in the exchanger, the difference between the two levels being H.
  • a liquid flow rich in carbon dioxide 1 is expanded in a valve V1 and sent to a phase separator S1.
  • a gas 3 rich in carbon dioxide separates from a liquid rich in carbon dioxide 5, the liquid remaining partly in the chamber of the phase separator S1 with a liquid level.
  • the gas 3 is at a pressure P1.
  • a carbon dioxide-rich liquid is withdrawn from the S1 phase separator at a pressure above P1, through the liquid bath in the phase separator and down to the lowest level of a plate heat exchanger. brazed aluminum 7. The height traveled further increases its pressure.
  • the liquid 5 vaporizes in a passage of the heat exchanger forming a column of liquid.
  • the liquid column vaporizes gradually, the last drop of liquid vaporizing at a point A, at a level h1 above the bottom of the heat exchanger.
  • the liquid column has a height h1.
  • the difference in height between the level A and the level of liquid in the enclosure S1 is equal to H, H being greater than 1m, or even greater than 5m.
  • the vaporized liquid 9 leaves the exchanger shortly after the level A and is expanded in a valve V2, for example up to the pressure P1.
  • a valve V2 for example up to the pressure P1.
  • the addition of the valve V2 after vaporization of CO 2 at low pressure makes it possible to raise the pressure of liquid CO 2 in the exchanger.
  • This pressure drop can be used to raise the phase separator S1 containing the current reserve of liquid supplying vaporization of CO 2 at low pressure and thus reduce its pressure with respect to the pressure experienced in the exchanger 7.
  • a hydrostatic head H of 6 meters leads to about 600mbars of pressure difference or about 10% of the 5.1 bars of the triple point.
  • the gas expanded in the valve V2 is returned to the exchanger 7 at a level B above A, reheated and exits the exchanger 7 as flow 13.
  • the flow 13 can be expanded in a valve V5 or can be short. circuit it.
  • the flow 13 becoming 15 is sent to a first stage C1 of a compressor, compressed to form a flow 19, compressed in a second stage C2 of the compressor and produced as product 21 which is a gas rich in carbon dioxide.
  • the gas 3 from the phase separator S1 is mixed with the vaporized flow rate 9 downstream of the expansion valve V2.
  • the pressure of the phase separator S1 will remain at the pressure of the triple point, until all the liquid has been transformed into solid and gas.
  • the best known analog is a boiling liquid: as long as the whole liquid phase is not evaporated, the temperature does not rise regardless of the heating.
  • the zone at the pressure of the triple point goes down.
  • the pressure of the triple point must be at the liquid-gas interface, therefore in a steady state (non-turbulent), at the surface, since the weight of the liquid increases the pressure as one sinks beneath the surface.
  • this interface goes down in the supply pipe of the liquid 5 of the exchanger 7, the pressure in the latter also drops, since the hydrostatic height decreases (height H in the figure below), it then approaches the appearance of the solid phase in the exchanger 7.
  • the CO 2 5 is pure or at best free from heavy elements, it is possible to reduce the vaporized CO 2 9 in the phase separator S 1 from which the gaseous fraction 3 escapes at the head. The interest is then that it reduces the risk of sending liquid CO 2 to the hot end of the exchanger E1 when the calories are not available in sufficient quantity for the vaporization of all the liquid.
  • the liquid outlet 5 of the phase separator S1 should be positioned in such a way as to avoid entrainment of CO 2 ice cubes if they have formed in the separator S1.
  • a protective grid or a baffle plate could do the trick, combined with the fact that the intake of liquid does not take place at a low point. It should be remembered that CO 2 ice will flow into the liquid (unlike water ice).
  • a new invention is to improve the energy of the system thus obtained.
  • the Figure 2 shows in more detail the phase separator S1 and its connections.
  • the liquid flow rich in carbon dioxide 1 is expanded in the valve V1 and sent to the phase separator S1.
  • a gas 3 rich in carbon dioxide separates from a liquid rich in carbon dioxide 5, the liquid remaining partly in the chamber of the phase separator S1 with a liquid level.
  • the gas 3 is at a pressure P1.
  • a carbon dioxide-rich liquid is withdrawn from the S1 phase separator at a temperature of pressure above P1, thanks to the liquid bath in the phase separator.
  • the opening of the valve V1 is controlled by the liquid level in the phase separator S1.
  • phase separator S1 It is planned to operate continuously with the phase separator S1 at the pressure of the triple point. There will thus be constant concomitance of the three phases.
  • the pressure of the phase separator S1 will thus be stabilized because as long as it contains liquid and solid, the pressure can not move away from that of the triple point.
  • the suction pressure of the compressor will thus be stabilized. If it sucks too much, solid will be created in the separator S1 by rapid formation of liquid in solid and gas. If it does not suck enough, the level of the separator S1 will tend to rise and the supply valve V1 will close.
  • a deflector plate 41 and grid system 43, combined with a lateral liquid outlet 35, 37 will help to avoid driving most of the solid.
  • the liquid outlets 35, 37 are connected to the vertical wall of the phase separator and not to the tank.
  • the liquid withdrawn by the pipe 35 and the open valve V8 and the liquid drawn off by the pipe 37 and the open valve V7 are mixed to form the liquid flow 5.
  • the grids 43 are installed around the liquid outlets to prevent the solid from coming out.
  • a baffle plate is installed above each outlet 35, 37 to prevent the solid from descending to the outlet.
  • a liquid rich in carbon dioxide contains at least 75 mol%. of carbon dioxide, or at least 85 mol%. of carbon dioxide, or even at least 95 mol%. of carbon dioxide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

La présente invention est relative à un procédé et à un appareil de vaporisation de liquide riche en dioxyde de carbone.The present invention relates to a method and apparatus for vaporizing a liquid rich in carbon dioxide.

L'un des défis du traitement cryogénique de flux chargés en CO2 pour séparer ce dernier par condensation partielle est d'éviter de geler brutalement le CO2 liquide qui se trouve en général proche du point triple.One of the challenges of the cryogenic treatment of CO 2 loaded streams to separate the latter by partial condensation is to avoid sudden freezing of the liquid CO 2 which is generally close to the triple point.

En effet, afin d'optimiser l'énergie de séparation et surtout le rendement de récupération de CO2, il convient de refroidir le mélange dont on veut extraire du CO2 le plus froid possible. La limite physique qui apparaît est celle de la température de solidification du liquide obtenu par condensation partielle.Indeed, in order to optimize the separation energy and especially the recovery efficiency of CO 2 , it is necessary to cool the mixture from which it is desired to extract CO 2 as cold as possible. The physical limit that appears is that of the solidification temperature of the liquid obtained by partial condensation.

US-A-2008/110181 décrit un procédé selon le préambule de la revendication 1. US-2008/110181 discloses a method according to the preamble of claim 1.

Dans l'art antérieur, il était connu de vaporiser du CO2 liquide à la plus basse pression possible pour fournir le froid nécessaire à la condensation partielle. Ainsi, du CO2 liquide presque pur est vaporisé à une pression la plus proche possible du point triple car c'est ainsi que l'on génère la température la plus froide. Le CO2 vaporisé est réchauffé et comprimé pour servir de molécules de cycle (dans le cas d'un liquéfacteur de CO2) ou pour être exportées en tant que produit ou pour les deux applications.In the prior art, it was known to vaporize liquid CO 2 at the lowest possible pressure to provide the cold necessary for partial condensation. Thus, almost pure liquid CO 2 is vaporized at a pressure as close as possible to the triple point because this is how the coldest temperature is generated. The vaporized CO 2 is heated and compressed to serve as cycle molecules (in the case of a CO 2 liquefier) or for export as a product or for both applications.

Ce procédé est efficace car il permet un haut rendement de récupération de CO2 à relativement faible coût énergétique (par rapport aux alternatives). Il offre aussi la possibilité de ne pas introduire d'autres gaz réfrigérants sur le site, notamment dans le cadre d'un liquéfacteur de CO2.This process is efficient because it allows a high efficiency CO 2 recovery at relatively low energy cost (compared to alternatives). It also offers the possibility of not introducing other refrigerant gases to the site, particularly in the context of a CO 2 liquefier.

L'inconvénient principal est qu'en cas de dépressurisation des zones contenant du CO2 liquide, et principalement de la zone correspondant à la vaporisation du CO2 à basse pression qui est la plus proche du point triple, il y a un risque de détendre rapidement le liquide avec production de deux phases : solide et gazeuse. En effet, le diagramme de phase du CO2 interdit la phase liquide à une pression inférieure à 5,1 bars environ.The main drawback is that in the event of depressurization of the zones containing liquid CO 2 , and mainly of the zone corresponding to the vaporization of the CO 2 at low pressure which is closest to the triple point, there is a risk of relaxing quickly the liquid with production of two phases: solid and gaseous. Indeed, the phase diagram of CO 2 prohibits the liquid phase at a pressure of less than about 5.1 bars.

Ce CO2 solide pourrait boucher les tuyaux et surtout les canaux d'un échangeur à plaques. D'autre part, la sublimation ou fusion de ce CO2 solide sera malaisée car dans l'hypothèse où une fraction liquide ou solide est piégée entre deux bouchons de glace, le changement d'état pourrait conduire à casser l'équipement par surpression. Ce risque lors du réchauffement est accentué par le fait que la glace de CO2 est plus dense que le liquide, ainsi, lors de la prise en glace, il y a peu de chance de casser des équipements (contrairement à ce qui se passe avec l'eau).This solid CO 2 could clog the pipes and especially the channels of a plate heat exchanger. On the other hand, the sublimation or melting of this solid CO 2 will be difficult because in the event that a liquid or solid fraction is trapped between two ice caps, the change of state could lead to breaking equipment overpressure. This risk during warming is accentuated by the fact that the ice of CO 2 is denser than the liquid, thus, when taking ice, there is little chance of breaking equipment (contrary to what happens with the water).

L'invention vise à protéger les équipements les plus sensibles à la présence de CO2 solide, à savoir les tuyaux et surtout l'échangeur en aluminium brasé où les diamètres hydrauliques sont très faibles (de l'ordre de quelques millimètres).The invention aims to protect the most sensitive equipment to the presence of solid CO 2 , namely the pipes and especially the brazed aluminum heat exchanger where the hydraulic diameters are very small (of the order of a few millimeters).

Le principe est d'élever la pression de vaporisation du liquide dans l'échangeur et d'assurer mécaniquement que si la pression du système chute, la prise en glace commencera ailleurs que dans les zones à faibles diamètres hydrauliques.The principle is to increase the vaporization pressure of the liquid in the exchanger and to ensure mechanically that if the pressure of the system drops, the setting in ice will begin elsewhere than in areas with small hydraulic diameters.

Selon un objet de l'invention, il est prévu un procédé de vaporisation d'un débit liquide riche en dioxyde de carbone dans lequel un premier débit liquide riche en dioxyde de carbone est soutiré d'une enceinte contenant du liquide riche en dioxyde de carbone et du gaz riche en dioxyde de carbone, le gaz étant à une pression P1, le premier débit liquide est envoyé à un échangeur de chaleur où il se vaporise, tout le liquide du premier débit se vaporisant dans l'échangeur de chaleur à une pression ou plusieurs pressions supérieure(s) à P1, le premier débit vaporisé est sorti de l'échangeur de chaleur, détendu dans une première vanne de détente et renvoyé à l'échangeur de chaleur où il se réchauffe caractérisé en ce que le niveau de liquide dans l'enceinte est situé à un niveau plus élevée au dessus du sol que le niveau auquel la dernière goutte de liquide riche en dioxyde de carbone se vaporise dans l'échangeur, la différence entre les deux niveaux étant H.According to one object of the invention, there is provided a method for vaporizing a liquid flow rich in carbon dioxide in which a first liquid flow rich in carbon dioxide is withdrawn from a chamber containing liquid rich in carbon dioxide and a gas rich in carbon dioxide, the gas being at a pressure P1, the first liquid flow is sent to a heat exchanger where it vaporizes, all the liquid of the first flow vaporizing in the heat exchanger at a pressure or more pressures greater than P1, the first vaporized flow is removed from the heat exchanger, expanded in a first expansion valve and returned to the heat exchanger where it heats up characterized in that the liquid level in the enclosure is located at a higher level above the ground than the level at which the last drop of carbon dioxide-rich liquid vaporizes in the exchanger, the difference between the two levels As H.

Selon d'autres objets facultatifs de l'invention :

  • H est au moins égale à 2m, de préférence au moins égale à 5m.
  • du gaz de l'enceinte se réchauffe dans l'échangeur de chaleur.
  • le débit vaporisé détendu dans la vanne est mélangé avec le gaz de l'enceinte et réchauffé dans l'échangeur de chaleur.
  • le débit vaporisé détendu dans la vanne est envoyé à l'enceinte.
  • le débit vaporisé détendu dans la première vanne et réchauffé dans l'échangeur de chaleur sort de l'échangeur de chaleur, est détendu dans une deuxième vanne de détente et envoyé à un compresseur pour être comprimé.
  • un deuxième débit liquide riche en dioxyde de carbone à une pression supérieure à celui auquel le premier débit sort de l'enceinte se vaporise dans l'échangeur de chaleur et est envoyé à un niveau intermédiaire du compresseur, le premier débit vaporisé étant envoyé à l'entrée du compresseur.
  • on détend une partie du deuxième débit liquide vaporisé et on l'envoie à l'entrée du compresseur.
According to other optional objects of the invention:
  • H is at least 2m, preferably at least 5m.
  • enclosure gas is heated in the heat exchanger.
  • the vaporized flow rate expanded in the valve is mixed with the enclosure gas and heated in the heat exchanger.
  • the vaporized flow expanded in the valve is sent to the enclosure.
  • the vaporized flow rate expanded in the first valve and heated in the heat exchanger exits the heat exchanger, is expanded in a second expansion valve and sent to a compressor to be compressed.
  • a second liquid flow rich in carbon dioxide at a pressure greater than that at which the first flow exits the chamber vaporizes in the heat exchanger and is sent to an intermediate level of the compressor, the first vaporized flow being sent to the compressor inlet.
  • a portion of the second vaporized liquid flow is expanded and sent to the compressor inlet.

Selon un autre objet de l'invention, il est prévu un appareil de vaporisation d'un débit liquide riche en dioxyde de carbone comprenant une enceinte contenant du liquide riche en dioxyde de carbone et du gaz riche en dioxyde de carbone, le gaz étant à une pression P1, un échangeur de chaleur, une conduite pour soutirer un premier débit liquide riche en dioxyde de carbone de l'enceinte et reliée à l'échangeur de chaleur, des moyens de pressurisation pour augmenter la pression de tout le liquide du premier débit à au moins une pression de vaporisation supérieure(s) à P1, une conduite pour sortir le premier débit vaporisé de l'échangeur de chaleur reliée à une première vanne de détente pour détendre le premier débit vaporisé pour former un débit détendu et une conduite pour renvoyer à l'échangeur de chaleur le débit détendu caractérisé en ce que le niveau de liquide dans l'enceinte est situé à un niveau plus élevée au dessus du sol que le niveau auquel la dernière goutte de liquide riche en dioxyde de carbone se vaporise dans l'échangeur, la différence entre les deux niveaux étant H.According to another object of the invention, there is provided a device for vaporization of a liquid flow rich in carbon dioxide comprising an enclosure containing liquid rich in carbon dioxide and carbon dioxide-rich gas, the gas being a pressure P1, a heat exchanger, a pipe for withdrawing a first carbon dioxide-rich liquid flow from the enclosure and connected to the heat exchanger, pressurizing means for increasing the pressure of all the liquid of the first flow at least one vaporization pressure greater than P1, a pipe for outputting the first vaporized flow of the heat exchanger connected to a first expansion valve for expanding the first vaporized flow to form a relaxed flow and a pipe for returning the expanded flow rate to the heat exchanger characterized in that the liquid level in the enclosure is located at a higher level above the ground than the level at which the a last drop of liquid rich in carbon dioxide vaporizes in the exchanger, the difference between the two levels being H.

Selon d'autres objets facultatifs de l'invention :

  • H est au moins égale à 2m, de préférence au moins égale à 5m.
  • une conduite pour envoyer du gaz de l'enceinte se réchauffer dans l'échangeur de chaleur.
  • des moyens pour mélanger le débit vaporisé détendu dans la vanne avec le gaz de l'enceinte réchauffé dans l'échangeur de chaleur.
  • le débit vaporisé détendu dans la vanne est envoyé à l'enceinte.
  • une conduite pour sortir de l'échangeur de chaleur le débit vaporisé détendu dans la première vanne et réchauffé dans l'échangeur de chaleur reliée à une deuxième vanne de détente et à un compresseur.
  • des moyens pour envoyer un deuxième débit liquide riche en dioxyde de carbone à une pression supérieure à celui auquel le premier débit sort de l'enceinte se vaporiser dans l'échangeur de chaleur et une conduite pour envoyer le deuxième débit liquide vaporisé à un niveau intermédiaire du compresseur, le premier débit vaporisé étant envoyé à l'entrée du compresseur.
  • des moyens de détente d'une partie du deuxième débit liquide vaporisé reliés l'entrée du compresseur.
According to other optional objects of the invention:
  • H is at least 2m, preferably at least 5m.
  • a pipe to send gas from the enclosure to heat up in the heat exchanger.
  • means for mixing the expanded vaporized flow rate in the valve with the heated enclosure gas in the heat exchanger.
  • the vaporized flow expanded in the valve is sent to the enclosure.
  • a pipe to exit the heat exchanger the vaporized flow expanded in the first valve and heated in the heat exchanger connected to a second expansion valve and a compressor.
  • means for sending a second liquid flow rich in carbon dioxide at a pressure greater than that at which the first flow exits the chamber vaporize in the heat exchanger and a pipe for sending the second vaporized liquid flow to an intermediate level compressor, the first vaporized flow being sent to the compressor inlet.
  • means for expanding a portion of the second vaporized liquid flow connected to the inlet of the compressor.

L'invention sera décrite en plus de détail en se référant à la Figure 1 qui représente un procédé selon l'invention et à la Figure 2 qui représente un détail de la Figure 1.The invention will be described in more detail with reference to the Figure 1 which represents a process according to the invention and Figure 2 which represents a detail of the Figure 1 .

Un débit liquide riche en dioxyde de carbone 1 est détendu dans une vanne V1 et envoyé à un séparateur de phases S1. Ici un gaz 3 riche en dioxyde de carbone se sépare d'un liquide riche en dioxyde de carbone 5, le liquide restant en partie dans l'enceinte du séparateur de phases S1 avec un niveau de liquide. Le gaz 3 se trouve à une pression P1. Un liquide riche en dioxyde de carbone 5 est soutiré du séparateur de phases S1 à une pression au-dessus de P1, grâce au bain de liquide dans le séparateur de phases et descend vers le niveau le plus bas d'un échangeur de chaleur à plaques en aluminium brasé 7. La hauteur parcourue élève encore plus sa pression. Le liquide 5 se vaporise dans un passage de l'échangeur de chaleur formant une colonne de liquide. Dans cette colonne, le liquide se vaporise graduellement, la dernière goutte de liquide se vaporisant à un point A, à un niveau h1 au dessus du bas de l'échangeur de chaleur. Ainsi la colonne de liquide a une hauteur h1. La différence de hauteur entre le niveau A et le niveau de liquide dans l'enceinte S1 est égal à H, H étant supérieure à 1m, voire supérieure à 5m.A liquid flow rich in carbon dioxide 1 is expanded in a valve V1 and sent to a phase separator S1. Here a gas 3 rich in carbon dioxide separates from a liquid rich in carbon dioxide 5, the liquid remaining partly in the chamber of the phase separator S1 with a liquid level. The gas 3 is at a pressure P1. A carbon dioxide-rich liquid is withdrawn from the S1 phase separator at a pressure above P1, through the liquid bath in the phase separator and down to the lowest level of a plate heat exchanger. brazed aluminum 7. The height traveled further increases its pressure. The liquid 5 vaporizes in a passage of the heat exchanger forming a column of liquid. In this column, the liquid vaporizes gradually, the last drop of liquid vaporizing at a point A, at a level h1 above the bottom of the heat exchanger. Thus the liquid column has a height h1. The difference in height between the level A and the level of liquid in the enclosure S1 is equal to H, H being greater than 1m, or even greater than 5m.

Le liquide vaporisé 9 sort de l'échangeur peu après le niveau A et est détendu dans une vanne V2, par exemple jusqu'à la pression P1. Comme on peut le voir sur le schéma ci-joint, l'ajout de la vanne V2 après la vaporisation de CO2 à basse pression permet d'élever la pression de CO2 liquide dans l'échangeur. Cette perte de charge peut servir à élever le séparateur de phases S1 contenant la réserve courante de liquide alimentant la vaporisation de CO2 à basse pression et ainsi à réduire sa pression par rapport à la pression subie dans l'échangeur 7. Une hauteur hydrostatique H de 6 mètres conduit à environ 600mbars d'écart de pression soit environ 10% des 5,1 bars du point triple.The vaporized liquid 9 leaves the exchanger shortly after the level A and is expanded in a valve V2, for example up to the pressure P1. As can be seen in the attached diagram, the addition of the valve V2 after vaporization of CO 2 at low pressure makes it possible to raise the pressure of liquid CO 2 in the exchanger. This pressure drop can be used to raise the phase separator S1 containing the current reserve of liquid supplying vaporization of CO 2 at low pressure and thus reduce its pressure with respect to the pressure experienced in the exchanger 7. A hydrostatic head H of 6 meters leads to about 600mbars of pressure difference or about 10% of the 5.1 bars of the triple point.

Le gaz détendu dans la vanne V2 est renvoyé à l'échangeur 7 à un niveau B au-dessus de A, réchauffé et sort de l'échangeur 7 comme débit 13. Le débit 13 peut être détendu dans une vanne V5 ou peut court-circuiter celle-ci. Le débit 13 devenu 15 est envoyé à un premier étage C1 d'un compresseur, comprimé pour former un débit 19, comprimé dans un deuxième étage C2 du compresseur et produit comme produit 21 qui est un gaz riche en dioxyde de carbone.The gas expanded in the valve V2 is returned to the exchanger 7 at a level B above A, reheated and exits the exchanger 7 as flow 13. The flow 13 can be expanded in a valve V5 or can be short. circuit it. The flow 13 becoming 15 is sent to a first stage C1 of a compressor, compressed to form a flow 19, compressed in a second stage C2 of the compressor and produced as product 21 which is a gas rich in carbon dioxide.

Le gaz 3 provenant du séparateur de phases S1 est mélangé avec le débit vaporisé 9 en aval de la vanne de détente V2.The gas 3 from the phase separator S1 is mixed with the vaporized flow rate 9 downstream of the expansion valve V2.

Si le compresseur C1, C2 traitant le CO2 vaporisé à basse pression s'emballe et aspire trop de CO2, toute la pression en amont va chuter. La pression dans l'échangeur 7 va donc baisser, mais avant qu'elle n'atteigne la pression du point triple (conduisant à la formation de neige carbonique), la pression du séparateur de phases S1 va atteindre cette pression et du liquide va détendre pour former du solide et une phase gaz. Les proportions approximatives des produits sont d'un tiers de gaz pour deux tiers de solide. Cette fraction gazeuse va alimenter l'aspiration du compresseur C1, C2 et donner ainsi un peu plus de temps pour réduire le rythme d'aspiration de celui-ci avant d'avoir transformé en solide et gaz tout le liquide du séparateur de phases S1.If the compressor C1, C2 treating CO 2 vaporised at low pressure races and sucks too much CO 2 , all the upstream pressure will drop. The pressure in the exchanger 7 will therefore decrease, but before it reaches the pressure of the triple point (leading to the formation of dry ice), the pressure of the phase separator S1 will reach this pressure and the liquid will relax to form a solid and a gas phase. The approximate proportions of the products are of a third of gas for two thirds of solid. This gaseous fraction will feed the suction of the compressor C1, C2 and thus give a little more time to reduce the suction rate of the latter before having transformed into solid and gas all the liquid of the phase separator S1.

En effet, la pression du séparateur de phases S1 restera à la pression du point triple, tant que tout le liquide n'aura pas été transformé en solide et gaz. L'analogue le plus connu concerne un liquide bouillant : tant que toute la phase liquide n'est pas évaporée, la température ne monte pas quel que soit le chauffage. En revanche, lorsque le niveau de liquide du séparateur de phases S1 chute, la zone à la pression du point triple descend. En pratique, la pression du point triple doit se trouver à l'interface liquide - gaz, donc en régime stable (non turbulent), à la surface, puisque le poids du liquide fait augmenter la pression à mesure que l'on s'enfonce sous la surface. Lorsque cette interface descend dans le tuyau d'alimentation du liquide 5 de l'échangeur 7, la pression dans ce dernier chute aussi, puisque la hauteur hydrostatique diminue (hauteur H dans la figure ci-dessous), on se rapproche alors de l'apparition de la phase solide dans l'échangeur 7.Indeed, the pressure of the phase separator S1 will remain at the pressure of the triple point, until all the liquid has been transformed into solid and gas. The best known analog is a boiling liquid: as long as the whole liquid phase is not evaporated, the temperature does not rise regardless of the heating. On the other hand, when the liquid level of the phase separator S1 drops, the zone at the pressure of the triple point goes down. In practice, the pressure of the triple point must be at the liquid-gas interface, therefore in a steady state (non-turbulent), at the surface, since the weight of the liquid increases the pressure as one sinks beneath the surface. When this interface goes down in the supply pipe of the liquid 5 of the exchanger 7, the pressure in the latter also drops, since the hydrostatic height decreases (height H in the figure below), it then approaches the appearance of the solid phase in the exchanger 7.

On notera en outre que le retour du CO2 vaporisé à basse pression 9 ne se fait pas dans le séparateur de phases S1 par défaut et comme illustré car si le CO2 5 contient des éléments lourds (NOx, hydrocarbures, etc.) qui ne seraient pas entièrement vaporisés, un retour dans le séparateur S1 de la phase vaporisée (fonctionnement en « thermosiphon ») conduirait à l'accumulation de ces éléments lourds dans le liquideNote also that the return of CO 2 vaporized at low pressure 9 is not done in the phase separator S1 by default and as illustrated because if the CO 2 5 contains heavy elements (NOx, hydrocarbons, etc.) that do not would not be fully vaporized, a return to the separator S1 of the vaporized phase ("thermosiphon" operation) would lead to the accumulation of these heavy elements in the liquid

Par contre le CO2 5 est pur ou au mieux dépourvu d'éléments lourds, on peut envisager de ramener le CO2 vaporisé 9 dans le séparateur de phases S1 d'où la fraction gazeuse 3 s'échappe en tête. L'intérêt est alors que l'on réduit le risque d'envoyer du CO2 liquide au bout chaud de l'échangeur E1 lorsque les calories ne sont pas disponibles en quantité suffisante pour la vaporisation de tout le liquide.On the other hand, the CO 2 5 is pure or at best free from heavy elements, it is possible to reduce the vaporized CO 2 9 in the phase separator S 1 from which the gaseous fraction 3 escapes at the head. The interest is then that it reduces the risk of sending liquid CO 2 to the hot end of the exchanger E1 when the calories are not available in sufficient quantity for the vaporization of all the liquid.

Il convient de positionner la sortie liquide 5 du séparateur de phases S1 de telle manière à éviter d'entraîner des glaçons de CO2 s'ils se sont formés dans le séparateur S1. Une grille de protection ou une plaque déflectrice pourrait faire l'affaire, combinée au fait que le prise de liquide ne s'effectue pas en point bas. Il faut se rappeler à cet égard que les glaçons de CO2 vont couler dans le liquide (contrairement à la glace d'eau).The liquid outlet 5 of the phase separator S1 should be positioned in such a way as to avoid entrainment of CO 2 ice cubes if they have formed in the separator S1. A protective grid or a baffle plate could do the trick, combined with the fact that the intake of liquid does not take place at a low point. It should be remembered that CO 2 ice will flow into the liquid (unlike water ice).

Il existe d'autres façons d'aider à ne pas faire chuter trop vite la pression dans le séparateur S1 :

  1. a. renvoi d'une partie 29 du CO2 25 vaporisé à plus haute pression vers l'aspiration du CO2 à basse pression (vanne V3) ;
  2. b. l'ajout d'une vanne V5 permettant d'augmenter la différence de pression entre le séparateur de phases S1 et l'aspiration du compresseur C1, C2, cela permet de se donner un peu plus de temps pour réagir en cas de chute de pression à l'aspiration du compresseur, on peut ainsi fermer progressivement cette vanne lorsque la pression chute ;
  3. c. l'utilisation de l'anti-pompage du compresseur C1, C2 pour stabiliser sa pression d'aspiration (vanne V4) ;
  4. d. l'utilisation des IGV (« Inlet Guide Vanes » ou aubages d'aspiration) pour réguler le débit aspiré.
There are other ways to help keep the pressure in the S1 separator from falling too fast:
  1. at. returning a portion 29 of CO 2 25 vaporized at higher pressure to the suction of CO 2 at low pressure (valve V3);
  2. b. the addition of a valve V5 to increase the pressure difference between the phase separator S1 and the suction of the compressor C1, C2, this gives a little more time to react in case of pressure drop at the suction of the compressor, it can thus gradually close this valve when the pressure drops;
  3. vs. the use of the anti-pumping of the compressor C1, C2 to stabilize its suction pressure (valve V4);
  4. d. the use of IGV (Inlet Guide Vanes) to regulate the intake flow.

Les mesures indiquées ci-dessus (y compris l'objet principal de l'invention) conduisent toutes à une augmentation de l'énergie spécifique de traitement du CO2, soit de façon continu (cas des vannes V2 et V5 qui augmentent la température de vaporisation dans l'échangeur et donc réduisent le rendement de récupération du CO2 car le gaz traité est moins refroidi), soit de façon exceptionnelle (cas des vannes V3 ou V4, éventuellement V5 si elle n'est utilisée que de façon exceptionnelle).The measures indicated above (including the main object of the invention) all lead to an increase in the CO 2 treatment specific energy, ie continuously (in the case of valves V2 and V5 which increase the temperature of the CO 2). vaporization in the exchanger and therefore reduce the CO 2 recovery efficiency because the treated gas is cooled less), or exceptionally (case of valves V3 or V4, possibly V5 if it is used only exceptionally).

Seule la régulation sur les IGV n'affecte que très marginalement l'énergie en éloignant le compresseur de son point de fonctionnement optimal. L'inconvénient cependant de cette régulation est qu'elle est lente (plusieurs dizaines de secondes) et peu réactive et donc surtout adaptée pour des régulations longues lorsque l'on prévoit de changer la charge de l'unité par exemple.Only the regulation on the IGVs only very slightly affects the energy by moving the compressor away from its optimum operating point. The disadvantage however of this regulation is that it is slow (several tens of seconds) and unreactive and therefore especially suitable for long regulations when it is expected to change the load of the unit for example.

Dans la lignée de l'invention consistant à réduire le risque de la prise en glace dans les zones proches du point triple, une nouvelle invention consiste à améliorer l'énergie du système ainsi obtenu.In the line of the invention to reduce the risk of ice picking in areas near the triple point, a new invention is to improve the energy of the system thus obtained.

La Figure 2 montre en plus de détail le séparateur de phases S1 et ses connexions. Le débit liquide riche en dioxyde de carbone 1 est détendu dans la vanne V1 et envoyé au séparateur de phases S1. Ici un gaz 3 riche en dioxyde de carbone se sépare d'un liquide riche en dioxyde de carbone 5, le liquide restant en partie dans l'enceinte du séparateur de phases S1 avec un niveau de liquide. Le gaz 3 se trouve à une pression P1. Un liquide riche en dioxyde de carbone 5 est soutiré du séparateur de phases S1 à une pression au-dessus de P1, grâce au bain de liquide dans le séparateur de phases.The Figure 2 shows in more detail the phase separator S1 and its connections. The liquid flow rich in carbon dioxide 1 is expanded in the valve V1 and sent to the phase separator S1. Here a gas 3 rich in carbon dioxide separates from a liquid rich in carbon dioxide 5, the liquid remaining partly in the chamber of the phase separator S1 with a liquid level. The gas 3 is at a pressure P1. A carbon dioxide-rich liquid is withdrawn from the S1 phase separator at a temperature of pressure above P1, thanks to the liquid bath in the phase separator.

L'ouverture de la vanne V1 est commandée par le niveau de liquide dans le séparateur de phases S1.The opening of the valve V1 is controlled by the liquid level in the phase separator S1.

Il est prévu d'opérer en continu avec le séparateur de phases S1 à la pression du point triple. Il y aura ainsi constamment concomitance des trois phases. La pression du séparateur de phases S1 sera ainsi stabilisée car tant qu'il contiendra du liquide et du solide, la pression ne pourra s'éloigner de celle du point triple. La pression à l'aspiration du compresseur sera ainsi stabilisée. S'il aspire trop, du solide sera créé dans le séparateur S1 par formation rapide de liquide en solide et gaz. S'il n'aspire pas assez, le niveau du séparateur S1 aura tendance à monter et la vanne d'alimentation V1 se fermera.It is planned to operate continuously with the phase separator S1 at the pressure of the triple point. There will thus be constant concomitance of the three phases. The pressure of the phase separator S1 will thus be stabilized because as long as it contains liquid and solid, the pressure can not move away from that of the triple point. The suction pressure of the compressor will thus be stabilized. If it sucks too much, solid will be created in the separator S1 by rapid formation of liquid in solid and gas. If it does not suck enough, the level of the separator S1 will tend to rise and the supply valve V1 will close.

Cela permet de réduire la pression de vaporisation dans l'échangeur 7 puisqu'elle diffère de celle du séparateur S1 d'une valeur fixe liée à la hauteur hydrostatique.This makes it possible to reduce the vaporization pressure in the exchanger 7 since it differs from that of the separator S1 by a fixed value linked to the hydrostatic height.

Il faut alors s'assurer que la neige carbonique du séparateur S1 ne soit pas entraînée vers l'échangeur 7. Rappelons-nous que la neige carbonique est plus dense que le liquide et a donc tendance à couler. D'autre part, il est vraisemblable que cette neige carbonique soit présente sous la forme de cristaux en suspension de petite taille.It must then be ensured that the dry ice of the separator S1 is not drawn towards the exchanger 7. Remember that the dry ice is denser than the liquid and therefore has a tendency to flow. On the other hand, it is likely that this dry ice is present in the form of small suspension crystals.

Un système de plaque déflectrice 41 et de grille 43, combiné à une prise latérale de liquide 35, 37 aidera à éviter d'entraîner l'essentiel du solide.A deflector plate 41 and grid system 43, combined with a lateral liquid outlet 35, 37 will help to avoid driving most of the solid.

Les sorties de liquide 35, 37 sont reliées à la paroi verticale du séparateur de phases et non pas à la cuve. Le liquide soutiré par la conduite 35 et la vanne ouverte V8 et le liquide soutiré par la conduite 37 et la vanne ouverte V7 sont mélangés pour former le débit liquide 5.The liquid outlets 35, 37 are connected to the vertical wall of the phase separator and not to the tank. The liquid withdrawn by the pipe 35 and the open valve V8 and the liquid drawn off by the pipe 37 and the open valve V7 are mixed to form the liquid flow 5.

Les grilles 43 sont installées autour des sorties de liquide pour empêcher le solide de sortir. Une plaque déflectrice est installée au-dessus de chaque sortie 35, 37 pour empêcher le solide de descendre vers la sortie.The grids 43 are installed around the liquid outlets to prevent the solid from coming out. A baffle plate is installed above each outlet 35, 37 to prevent the solid from descending to the outlet.

Cependant, comme le mouvement général du liquide sera un écoulement vers la sortie liquide, la glace flottant à mi-niveau s'accumulera vraisemblablement sur la grille de protection.However, as the general movement of the liquid will be a flow to the liquid outlet, the ice floating mid-level will likely accumulate on the protective grid.

Une proposition pour éviter ce problème est d'avoir deux prises liquide éloignées 35, 37, ou plus. Lorsque la perte de charge augmente à travers l'une des prises, on ferme ce prélèvement et on ouvre l'autre (ou un autre). Le flux de liquide va donc changer et libérer la grille bouchée. Une possibilité est d'envoyer du liquide par la conduite 31, 39 et la vanne ouverte V6 pour traverser la conduite 37 en allant vers le séparateur de phases et de rentrer par la grille 43. On peut aussi si ce n'est pas suffisant envisager d'injecter du CO2 liquide à plus haute pression de l'autre côté de la grille bouchée, via une ligne dédiée 31, 33 provenant de l'alimentation du séparateur de phases S1 en ouvrant la vanne V15One proposal to avoid this problem is to have two separate liquid outlets 35, 37, or more. When the pressure drop increases through one of the holds, we close the sample and open the other (or another). The flow of liquid will therefore change and release the plugged grid. One possibility is to send liquid through the pipe 31, 39 and the open valve V6 to cross the pipe 37 by going towards the phase separator and to return by the grid 43. It is also possible if it is not enough to consider to inject liquid CO 2 at higher pressure on the other side of the closed gate, via a dedicated line 31, 33 coming from the supply of the phase separator S1 by opening the valve V15

Enfin, une gestion optimisée des différentes prises de liquide, combinée à la mesure des pertes de charge de chaque dispositif permettra de confiner la neige carbonique dans le pot.Lastly, optimized management of the various liquid outlets, combined with the measurement of the pressure drops of each device, will allow the dry ice to be contained in the pot.

Selon cette invention, un liquide riche en dioxyde de carbone contient au moins 75% mol. de dioxyde de carbone, ou au moins 85% mol. de dioxyde de carbone, voire au moins 95% mol. de dioxyde de carbone.According to this invention, a liquid rich in carbon dioxide contains at least 75 mol%. of carbon dioxide, or at least 85 mol%. of carbon dioxide, or even at least 95 mol%. of carbon dioxide.

Claims (15)

  1. Method for vaporising a liquid flow rich in carbon dioxide wherein a first liquid flow (5) rich in carbon dioxide is extracted from a chamber (S1) containing liquid rich in carbon dioxide and gas rich in carbon dioxide, the gas being at a pressure P1, the first liquid flow is sent to a heat exchanger (7) where it is vaporised, all the liquid of the first flow being vaporised in the heat exchanger at a pressure or a plurality of pressures greater than P1, the first vaporised flow exits the heat exchanger, is expanded in a first expansion valve (V2) and is sent back to the heat exchanger where it is heated, characterised in that the level of liquid in the chamber (S1) is situated at a higher level above the ground than the level (A) at which the last drop of liquid rich in carbon dioxide is vaporised in the exchanger, the difference between the two levels being H.
  2. Method according to claim 1, wherein H is at least equal to 2 m, preferably at least equal to 5 m.
  3. Method according to one of the preceding claims, wherein gas (3) from the chamber (S1) is sent into the heat exchanger (7) to be heated.
  4. Method according to claim 3, wherein the vaporised flow expanded in the first valve (V2) is mixed with the gas from the chamber (3) and heated in the heat exchanger (7).
  5. Method according to claim 3, wherein the vaporised flow expanded in the first valve (V2) is sent to the chamber (S1).
  6. Method according to one of the preceding claims, wherein the vaporised flow expanded in the first valve (V2) and heated in the heat exchanger (7) exits the heat exchanger, is expanded in a second expansion valve (V5) and is sent to a compressor (C1) to be compressed.
  7. Method according to the preceding claim, wherein a second liquid flow rich in carbon dioxide (25) at a pressure greater than that at which the first flow exits the chamber, is vaporised in the heat exchanger (7) and is sent to an intermediate level of the compressor (C1, C2), the first vaporised flow being sent to the inlet of the compressor.
  8. Method according to claim 7, wherein a part (29) of the second vaporised liquid flow is expanded and is sent to the inlet of the compressor (C1).
  9. Device for vaporising a liquid flow rich in carbon dioxide comprising a chamber (S1) containing liquid rich in carbon dioxide and gas rich in carbon dioxide, the gas being at a pressure P1, a heat exchanger (7), a duct to extract a first liquid flow rich in carbon dioxide (5) from the chamber and connected to the heat exchanger, pressurising means to increase the pressure of all the liquid of the first flow to at least one vaporisation pressure greater than P1, a duct to remove the first vaporised flow from the heat exchanger connected to a first expansion valve (V2) to expand the first vaporised flow to form an expanded flow and a duct to send the expanded flow back to the heat exchanger, characterised in that the level of liquid in the chamber is situated at a higher level above the ground than the level at which the last drop of liquid rich in carbon dioxide is vaporised in the exchanger, the difference between the two levels being H.
  10. Device according to claim 9, wherein H is at least equal to 2 m, preferably at least equal to 5 m.
  11. Device according to one of claims 9 or 10, comprising a duct to send gas from the chamber (S1) to be heated in the heat exchanger (7).
  12. Device according to claim 11, comprising means for mixing the vaporised flow expanded in the first valve (V2) with the gas from the chamber heated in the heat exchanger (7).
  13. Device according to one of claims 9 to 12, comprising a duct for releasing the vaporised flow expanded in the first valve (V2) from the heat exchanger (7), and heated in the heat exchanger (7) connected to a second expansion valve and to a compressor (C1, C2).
  14. Device according to claim 13, comprising means for sending a second liquid flow rich in carbon dioxide at a pressure greater than that at which the first flow exits the chamber (S1) being vaporised in the heat exchanger (7) and a duct to send the second vaporised liquid flow to an intermediate level of the compressor (C1, C2), the first vaporised flow being sent to the inlet of the compressor.
  15. Device according to one of claims 13 or 14, comprising means (V3) for expanding a part (29) of the second vaporised liquid flow connected to the inlet of the compressor (C1, C2).
EP13744701.7A 2012-07-13 2013-07-05 Method and apparatus for vaporising carbon dioxide-rich liquid Active EP2872818B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL13744701T PL2872818T3 (en) 2012-07-13 2013-07-05 Method and apparatus for vaporising carbon dioxide-rich liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1256777A FR2993343B1 (en) 2012-07-13 2012-07-13 METHOD AND APPARATUS FOR VAPORIZATION OF CARBON DIOXIDE-RICH LIQUID
PCT/FR2013/051608 WO2014009641A2 (en) 2012-07-13 2013-07-05 Method and apparatus for vaporising carbon dioxide-rich liquid

Publications (2)

Publication Number Publication Date
EP2872818A2 EP2872818A2 (en) 2015-05-20
EP2872818B1 true EP2872818B1 (en) 2018-10-17

Family

ID=46963896

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13744701.7A Active EP2872818B1 (en) 2012-07-13 2013-07-05 Method and apparatus for vaporising carbon dioxide-rich liquid

Country Status (8)

Country Link
US (1) US10317111B2 (en)
EP (1) EP2872818B1 (en)
CN (1) CN104428577B (en)
AU (1) AU2013288493B2 (en)
CA (1) CA2876616C (en)
FR (1) FR2993343B1 (en)
PL (1) PL2872818T3 (en)
WO (1) WO2014009641A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101704340B1 (en) * 2016-03-03 2017-02-07 현대자동차주식회사 Hybrid intercooler system integrated with air conditioning system and control method thereof
DE102019126214A1 (en) * 2019-09-27 2021-04-01 Technische Universität Dresden Device for transferring heat in a fluid circuit and method for operating the device
FR3116324B1 (en) 2020-11-19 2023-05-05 Air Liquide Method and apparatus for vaporizing a liquid

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2781868B1 (en) * 1998-07-29 2000-09-15 Air Liquide PLANT AND METHOD FOR PROVIDING HELIUM WITH MULTIPLE PRODUCTION LINES
JP2003120897A (en) * 2001-10-17 2003-04-23 Toyo Eng Works Ltd Storage and supply device for carbon dioxide
US6786053B2 (en) * 2002-09-20 2004-09-07 Chart Inc. Pressure pod cryogenic fluid expander
GB2416390B (en) * 2004-07-16 2006-07-26 Statoil Asa LCD Offshore Transport System
US20080110181A1 (en) * 2006-11-09 2008-05-15 Chevron U.S.A. Inc. Residual boil-off gas recovery from lng storage tanks at or near atmospheric pressure
CN201297492Y (en) * 2008-12-31 2009-08-26 苏州市金宏气体有限公司 A recovery device of boil-off gas from a carbon dioxide storage tank

Also Published As

Publication number Publication date
FR2993343A1 (en) 2014-01-17
FR2993343B1 (en) 2015-06-05
US20150168025A1 (en) 2015-06-18
AU2013288493A1 (en) 2015-02-05
CA2876616C (en) 2020-06-09
PL2872818T3 (en) 2019-03-29
EP2872818A2 (en) 2015-05-20
CN104428577B (en) 2016-04-06
WO2014009641A3 (en) 2014-05-08
US10317111B2 (en) 2019-06-11
AU2013288493B2 (en) 2016-11-17
CN104428577A (en) 2015-03-18
WO2014009641A2 (en) 2014-01-16
WO2014009641A4 (en) 2014-06-26
CA2876616A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
EP1454104B1 (en) Method and installation for separating a gas mixture containing methane by distillation
EP1447634B1 (en) Process and device for the production of at least one gaseous high pressure fluid such as Oxygen, Nitrogen or Argon by cryogenic separation of air
EP2872818B1 (en) Method and apparatus for vaporising carbon dioxide-rich liquid
EP2856050B1 (en) Device and method for cryogenically separating a mixture of carbon monoxide and methane plus hydrogen and optionally nitrogen
EP2959243B1 (en) Separation at sub-ambient temperature of a gaseous mixture containing carbon dioxide and a lighter contaminant
EP2788699B1 (en) Method and apparatus for liquefying a co2-rich gas
FR2821351A1 (en) ETHANE RECOVERY PROCESS, IMPLEMENTING A REFRIGERATION CYCLE USING A MIXTURE OF AT LEAST TWO REFRIGERANT FLUIDS, GASES OBTAINED BY THIS PROCESS, AND IMPLEMENTATION INSTALLATION
CA2877452C (en) Method for separating a carbon dioxide-rich gas by partial condensation and permeation
WO2011061459A2 (en) Method and apparatus for compressing and cooling air
FR2583988A1 (en) DISTILLATION PROCESS WITH ENERGY RECOVERY BY VAPOR RECOMPRESSION USING AN EJECTOR
EP3058297B1 (en) Method and device for separating air by cryogenic distillation
EP3438587A1 (en) Method and device for air separation by cryogenic distilling
EP2901094A1 (en) Method and appliance for separating a mixture containing carbon dioxide by cryogenic distillation
FR2967485A1 (en) Installation for purifying gaseous flow containing carbon dioxide, comprises a first unit to compress the gaseous flow, a heat exchanger to cool compressed gaseous flow, a distillation column to separate carbon dioxide, and separator pots
EP0768106A1 (en) Process and apparatus for fractionating a fluid containing separable multi components, e.g. a natural gas
FR2915271A1 (en) Air separating method, involves operating extracted nitrogen gas from high pressure column at pressure higher than pressure of systems operating at low pressure, and compressing gas till pressure is higher than high pressure of systems
FR3090833A1 (en) Apparatus and method for separating a gas rich in CO2 by distillation and / or partial condensation at subambient temperature
FR2945111A1 (en) Method for performing cryogenic distillation of air to produce gaseous oxygen, involves compressing part of air in cold compressor and sending air to exchange line and to column of double column
FR2984474A1 (en) Method for separation of air by cryogenic distillation, involves heating gaseous nitrogen flow, and sending part of condensed steam under specific pressure and at specific temperature to mix with air upstream of compressor stage
FR2977303A1 (en) Method for producing nitrogen by cryogenic distillation, involves withdrawing nitrogen gas flow of top of column at room temperature, and providing nitrogen gas flow to customer at cold temperature equal to, or lower than room temperature

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150213

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180524

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1054467

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013045240

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20181017

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1054467

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190117

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190217

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190118

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190217

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013045240

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

26N No opposition filed

Effective date: 20190718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130705

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240719

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240725

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240719

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240701

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240723

Year of fee payment: 12