EP2841718A2 - Gas turbine engine with high speed low pressure turbine section and bearing support features - Google Patents
Gas turbine engine with high speed low pressure turbine section and bearing support featuresInfo
- Publication number
- EP2841718A2 EP2841718A2 EP13822569.3A EP13822569A EP2841718A2 EP 2841718 A2 EP2841718 A2 EP 2841718A2 EP 13822569 A EP13822569 A EP 13822569A EP 2841718 A2 EP2841718 A2 EP 2841718A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- section
- turbine section
- turbine
- fan
- fan drive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000002485 combustion reaction Methods 0.000 claims description 12
- 239000012530 fluid Substances 0.000 claims description 12
- 230000009467 reduction Effects 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 239000000446 fuel Substances 0.000 description 6
- 230000003068 static effect Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- RLQJEEJISHYWON-UHFFFAOYSA-N flonicamid Chemical compound FC(F)(F)C1=CC=NC=C1C(=O)NCC#N RLQJEEJISHYWON-UHFFFAOYSA-N 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/16—Arrangement of bearings; Supporting or mounting bearings in casings
- F01D25/162—Bearing supports
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/04—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
- F02C3/107—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with two or more rotors connected by power transmission
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/06—Arrangements of bearings; Lubricating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K3/00—Plants including a gas turbine driving a compressor or a ducted fan
- F02K3/02—Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
- F02K3/04—Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
- F02K3/06—Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
Definitions
- This application relates to a gas turbine engine wherein the low pressure turbine section is rotating at a higher speed and centrifugal pull stress relative to the high pressure turbine section speed and centrifugal pull stress than prior art engines.
- Gas turbine engines typically include a fan delivering air into a low pressure compressor section.
- the air is compressed in the low pressure compressor section, and passed into a high pressure compressor section.
- From the high pressure compressor section the air is introduced into a combustion section where it is mixed with fuel and ignited. Products of this combustion pass downstream over a high pressure turbine section, and then a low pressure turbine section.
- a turbine section of a gas turbine engine has a fan drive turbine section and a second turbine section.
- the fan drive turbine section has a first exit area at a first exit point and is configured to rotate at a first speed.
- the second turbine section has a second exit area at a second exit point and is configured to rotate at a second speed, which is faster than the first speed.
- a first performance quantity is defined as the product of the fan drive turbine's speed squared and the fan drive turbine's exit area.
- a second performance quantity is defined as the product of the second speed squared and the second area.
- a ratio of the first performance quantity to the second performance quantity is between about 0.5 and about 1.5.
- the second turbine section drives a shaft which is mounted on a bearing on an outer periphery of the first shaft at a location upstream of a point where the first shaft connects to a hub carrying turbine rotors associated with said second turbine section.
- the ratio is above or equal to about 0.8.
- the fan drive turbine section has at least 3 stages.
- the fan drive turbine section has up to 6 stages.
- the second turbine section has 2 or fewer stages.
- a pressure ratio across the first fan drive turbine section is greater than about 5: 1.
- a second shaft associated with the fan drive turbine is supported by a second bearing at an end of the second shaft, and downstream of the fan drive turbine.
- the fan drive turbine and second turbine sections are configured to rotate in opposed directions.
- a gas turbine engine has a fan, a compressor section in fluid communication with the fan, a combustion section in fluid communication with the compressor section, and a turbine section in fluid communication with the combustion section.
- the turbine section includes a fan drive turbine section and a second turbine section.
- the fan drive turbine section has a first exit area at a first exit point and is configured to rotate at a first speed.
- the second turbine section has a second exit area at a second exit point and is configured to rotate at a second speed, which is higher than the first speed.
- a first performance quantity is defined as the product of the fan drive turbine's speed squared and the fan drive turbine's area.
- a second performance quantity is defined as the product of the second turbine's speed squared and the second turbine's area.
- a ratio of the first performance quantity to the second performance quantity is between about 0.5 and about 1.5.
- the second turbine section drives a shaft which is mounted on a bearing on an outer periphery of the first shaft at a location upstream of a point where the first shaft connects to a hub carrying turbine rotors associated with said second turbine section.
- the ratio is above or equal to about 0.8.
- the compressor section includes a first and second compressor sections.
- the fan drive turbine section and the first compressor section are configured to rotate in a first direction.
- the second turbine section and the second compressor section and are configured to rotate in a second opposed direction.
- a gear reduction is included between the fan and a low spool driven by the fan drive turbine section such that the fan is configured to rotate at a lower speed than the fan drive turbine section.
- the fan rotates in the second opposed direction.
- a second shaft associated with the fan drive turbine is supported by a second bearing at an end of the second shaft, and downstream of the fan drive turbine.
- a third bearing supports the second compressor section on an outer periphery of the first shaft driven by the second turbine section.
- a fourth bearing is positioned adjacent the first compressor section, and supports an outer periphery of the second shaft which is configured to rotate with the fan drive turbine section.
- a gas turbine engine has a fan, a compressor section in fluid communication with the fan, a combustion section in fluid communication with the compressor section, and a turbine section in fluid communication with the combustion section.
- the turbine section includes a fan drive turbine section and a second turbine section.
- the fan drive turbine section has a first exit area at a first exit point and is configured to rotate at a first speed.
- a second turbine section has a second exit area at a second exit point and is configured to rotate at a second speed, which is higher than the first speed.
- a first performance quantity is defined as the product of the first speed squared and the first area.
- a second performance quantity is defined as the product of the second speed squared and the second area.
- a ratio of the first performance quantity to the second performance quantity is between about 0.8 and about 1.5.
- the compressor section includes first and second compressor sections. The fan drive turbine section and the first compressor section will rotate in a first direction and the second turbine section and the second compressor section will rotate in a second opposed direction. A gear reduction is included between the fan and first compressor section, such that the fan will rotate at a lower speed than the fan drive turbine section, and rotate in the second opposed direction.
- a gear ratio of the gear reduction is greater than about 2.3.
- Figure 1 shows a gas turbine engine.
- Figure 2 schematically shows the arrangement of the low and high spool, along with the fan drive.
- Figure 3 shows a schematic view of a mount arrangement for an engine such as shown in Figures 1 and 2.
- FIG. 1 schematically illustrates a gas turbine engine 20.
- the gas turbine engine 20 is disclosed herein as a two-turbine turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28.
- Alternative engines might include an augmentor section (not shown) among other systems or features.
- the fan section 22 drives air along a bypass flow path B while the compressor section 24 drives air along a core flow path C for compression and communication into the combustor section 26 then expansion through the turbine section 28.
- FIG. 1 schematically illustrates a gas turbine engine 20.
- the gas turbine engine 20 is disclosed herein as a two-turbine turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28.
- Alternative engines might include an augmentor section (not shown) among other systems or features.
- the fan section 22 drives air along a bypass flow path B while the compressor section 24 drives air along a core flow path C for compression and communication into the comb
- the engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.
- the low speed spool 30 generally includes an innermost shaft 40 that interconnects a fan 42, a low pressure (or first) compressor section 44 and a low pressure (or first) turbine section 46. Note turbine section 46 will also be known as a fan drive turbine section.
- the inner shaft 40 is connected to the fan 42 through a geared architecture 48 to drive the fan 42 at a lower speed than the low speed fan drive turbine 46.
- the high speed spool 32 includes a more outer shaft 50 that interconnects a high pressure (or second) compressor section 52 and high pressure (or second) turbine section 54.
- a combustor 56 is arranged between the high pressure compressor section 52 and the high pressure turbine section 54.
- the high pressure turbine section experiences higher pressures than the low pressure turbine section.
- a low pressure turbine section is a section that powers a fan 42.
- the inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axis.
- the core airflow C is compressed by the low pressure compressor section 44 then the high pressure compressor section 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine section 54 and low pressure turbine section 46.
- the engine 20 in one example is a high-bypass geared aircraft engine.
- the bypass ratio is the amount of air delivered into bypass path B divided by the amount of air into core path C.
- the engine 20 bypass ratio is greater than about six
- the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine section 46 has a pressure ratio that is greater than about 5.
- the engine 20 bypass ratio is greater than about ten (10:1)
- the fan diameter is significantly larger than that of the low pressure compressor section 44
- the low pressure turbine section 46 has a pressure ratio that is greater than about 5:1.
- the high pressure turbine section may have two or fewer stages.
- the low pressure turbine section 46 in some embodiments, has between 3 and 6 stages.
- the low pressure turbine section 46 pressure ratio is total pressure measured prior to inlet of low pressure turbine section 46 as related to the total pressure at the outlet of the low pressure turbine section 46 prior to an exhaust nozzle.
- the geared architecture 48 may be an epicycle gear train, such as a star gear system or other gear system, with a gear reduction ratio of greater than about 2.5: 1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine
- the fan section 22 of the engine 20 is designed for a particular flight condition - typically cruise at about 0.8 Mach and about 35,000 feet.
- TSFC Thrust Specific Fuel Consumption
- TSFC is the industry standard parameter of the rate of lbm of fuel being burned per hour divided by lbf of thrust the engine produces at that flight condition.
- Low fan pressure ratio is the ratio of total pressure across the fan blade alone, before the fan exit guide vanes. The low fan pressure ratio as disclosed herein according to one non- limiting embodiment is less than about 1.45.
- Low corrected fan tip speed is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Ram Air Temperature deg R) / 518.7) ⁇ 0.5].
- the "Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft / second. Further, the fan 42 may have 26 or fewer blades.
- An exit area 400 is shown, in Figure 1 and Figure 2, at the exit location for the high pressure turbine section 54 is the annular area of the last blade of turbine section 54.
- An exit area for the low pressure turbine section is defined at exit 401 for the low pressure turbine section is the annular area defined by the last blade of that turbine section 46.
- the turbine engine 20 may be counter-rotating. This means that the low pressure turbine section 46 and low pressure compressor section 44 rotate in one direction ("- '), while the high pressure spool 32, including high pressure turbine section 54 and high pressure compressor section 52 rotate in an opposed direction ("+").
- the gear reduction 48 which may be, for example, an epicyclic transmission (e.g., with a sun, ring, and star gears), is selected such that the fan 42 rotates in the same direction ("+") as the high spool 32.
- a very high speed can be provided to the low pressure spool.
- Low pressure turbine section and high pressure turbine section operation are often evaluated looking at a performance quantity which is the exit area for the turbine section multiplied by its respective speed squared.
- This performance quantity (“PQ”) is defined as:
- a lpt is the area of the low pressure turbine section at the exit thereof (e.g., at 401), where V lpt is the speed of the low pressure turbine section, where A hpt is the area of the high pressure turbine section at the exit thereof (e.g., at 400), and where V hPt is the speed of the low pressure turbine section.
- a ratio of the performance quantity for the low pressure turbine section compared to the performance quantify for the high pressure turbine section is:
- the areas of the low and high pressure turbine sections are 557.9 in 2 and 90.67 in 2 , respectively. Further, the speeds of the low and high pressure turbine sections are 10179 rpm and 24346 rpm, respectively.
- the performance quantities for the low and high pressure turbine sections are:
- the ratio was about 0.5 and in another embodiment the ratio was about 1.5.
- PQi tp/ PQ hPt ratios in the 0.5 to 1.5 range a very efficient overall gas turbine engine is achieved. More narrowly, PQi tp/ PQ hPt ratios of above or equal to about 0.8 are more efficient. Even more narrowly, PQi tp/ PQ hPt ratios above or equal to 1.0 are even more efficient.
- the turbine section can be made much smaller than in the prior art, both in diameter and axial length. In addition, the efficiency of the overall engine is greatly increased.
- the low pressure compressor section is also improved with this arrangement, and behaves more like a high pressure compressor section than a traditional low pressure compressor section. It is more efficient than the prior art, and can provide more compression in fewer stages.
- the low pressure compressor section may be made smaller in radius and shorter in length while contributing more toward achieving the overall pressure ratio design target of the engine.
- the engine as shown in Figure 2 may be mounted such that the high pressure turbine 54 is "overhung” bearing mounted.
- the high spool and shaft 32 includes a bearing 142 which supports the high pressure turbine 54 and the high spool 32 on an outer periphery of a shaft that rotates with the high pressure turbine 54.
- the "overhung" mount means that the bearing 142 is at an intermediate location on the spool including the shaft, the high pressure turbine 54, and the high pressure compressor 52. Stated another way, the bearing 142 is supported upstream of a point 501 where the shaft 32 connects to a hub 500 carrying turbine rotors associated with the high pressure turbine (second) turbine section 54.
- the bearing 142 can be positioned inside an annulus 503 formed by the shaft 32 and the hub assembly 500 so as to be between the shaft and the feature numbered 106 and it still would be an "overhung" configuration.
- the forward end of the high spool 32 is supported by a bearing 110 at an outer periphery of the shaft 32.
- the bearings 110 and 142 are supported on static structure 108 associated with the overall engine casings arranged to form the core of the engine as is shown in figure 1.
- the shaft 30 is supported on a bearing 100 at a forward end.
- the bearing 100 is supported on static structure 102.
- a rear end of the shaft 30 is supported on a bearing 106 which is attached to static structure 104.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20162850.0A EP3708792A1 (en) | 2012-04-25 | 2013-04-23 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/455,235 US20130192191A1 (en) | 2012-01-31 | 2012-04-25 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US13/558,605 US9540948B2 (en) | 2012-01-31 | 2012-07-26 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
PCT/US2013/037675 WO2014018142A2 (en) | 2012-04-25 | 2013-04-23 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20162850.0A Division EP3708792A1 (en) | 2012-04-25 | 2013-04-23 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2841718A2 true EP2841718A2 (en) | 2015-03-04 |
EP2841718A4 EP2841718A4 (en) | 2016-03-02 |
Family
ID=49997943
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20162850.0A Withdrawn EP3708792A1 (en) | 2012-04-25 | 2013-04-23 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
EP13822569.3A Withdrawn EP2841718A4 (en) | 2012-04-25 | 2013-04-23 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20162850.0A Withdrawn EP3708792A1 (en) | 2012-04-25 | 2013-04-23 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
Country Status (2)
Country | Link |
---|---|
EP (2) | EP3708792A1 (en) |
WO (1) | WO2014018142A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11598223B2 (en) | 2012-01-31 | 2023-03-07 | Raytheon Technologies Corporation | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US11608786B2 (en) | 2012-04-02 | 2023-03-21 | Raytheon Technologies Corporation | Gas turbine engine with power density range |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9816442B2 (en) | 2012-01-31 | 2017-11-14 | United Technologies Corporation | Gas turbine engine with high speed low pressure turbine section |
US9845726B2 (en) | 2012-01-31 | 2017-12-19 | United Technologies Corporation | Gas turbine engine with high speed low pressure turbine section |
US10240526B2 (en) | 2012-01-31 | 2019-03-26 | United Technologies Corporation | Gas turbine engine with high speed low pressure turbine section |
EP3032084A1 (en) * | 2014-12-12 | 2016-06-15 | United Technologies Corporation | Gas turbine engine with high speed low pressure turbine section |
EP3034849A1 (en) * | 2014-12-17 | 2016-06-22 | United Technologies Corporation | Gas turbine engine with high speed low pressure turbine section |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2207191B (en) * | 1987-07-06 | 1992-03-04 | Gen Electric | Gas turbine engine |
US4916894A (en) * | 1989-01-03 | 1990-04-17 | General Electric Company | High bypass turbofan engine having a partially geared fan drive turbine |
US6619030B1 (en) * | 2002-03-01 | 2003-09-16 | General Electric Company | Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors |
DE102005018139A1 (en) * | 2005-04-20 | 2006-10-26 | Mtu Aero Engines Gmbh | Jet engine |
US7762086B2 (en) * | 2008-03-12 | 2010-07-27 | United Technologies Corporation | Nozzle extension assembly for ground and flight testing |
-
2013
- 2013-04-23 WO PCT/US2013/037675 patent/WO2014018142A2/en active Application Filing
- 2013-04-23 EP EP20162850.0A patent/EP3708792A1/en not_active Withdrawn
- 2013-04-23 EP EP13822569.3A patent/EP2841718A4/en not_active Withdrawn
Non-Patent Citations (7)
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11598223B2 (en) | 2012-01-31 | 2023-03-07 | Raytheon Technologies Corporation | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US11913349B2 (en) | 2012-01-31 | 2024-02-27 | Rtx Corporation | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US11608786B2 (en) | 2012-04-02 | 2023-03-21 | Raytheon Technologies Corporation | Gas turbine engine with power density range |
US11970984B2 (en) | 2012-04-02 | 2024-04-30 | Rtx Corporation | Gas turbine engine with power density range |
Also Published As
Publication number | Publication date |
---|---|
EP2841718A4 (en) | 2016-03-02 |
WO2014018142A2 (en) | 2014-01-30 |
WO2014018142A3 (en) | 2014-05-01 |
EP3708792A1 (en) | 2020-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11585276B2 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
US9816442B2 (en) | Gas turbine engine with high speed low pressure turbine section | |
CA2856723C (en) | Gas turbine engine with high speed low pressure turbine section | |
CA2854077C (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
US9845726B2 (en) | Gas turbine engine with high speed low pressure turbine section | |
CA2889618C (en) | Gas turbine engine with mount for low pressure turbine section | |
CA2853839C (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
EP2809575A1 (en) | Gas turbine engine with high speed low pressure turbine section | |
US11598223B2 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
EP3708792A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
US9835052B2 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
US20160115865A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
US20160053679A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
US20160053634A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
EP3163062A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
EP3163033A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
US20160047306A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
EP3165754A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
EP3165755A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
CA2945264A1 (en) | Gas turbine engine with mount for low pressure turbine section |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141029 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20160128 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F02C 7/06 20060101ALI20160122BHEP Ipc: F01D 25/16 20060101AFI20160122BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UNITED TECHNOLOGIES CORPORATION |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180927 |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20200312 |