EP2828589B1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
EP2828589B1
EP2828589B1 EP13711051.6A EP13711051A EP2828589B1 EP 2828589 B1 EP2828589 B1 EP 2828589B1 EP 13711051 A EP13711051 A EP 13711051A EP 2828589 B1 EP2828589 B1 EP 2828589B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
control
refrigerant compressor
refrigeration system
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13711051.6A
Other languages
German (de)
French (fr)
Other versions
EP2828589A1 (en
Inventor
Birte MARGOTTI
Stephan Rölke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bitzer Kuehlmaschinenbau GmbH and Co KG
Original Assignee
Bitzer Kuehlmaschinenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bitzer Kuehlmaschinenbau GmbH and Co KG filed Critical Bitzer Kuehlmaschinenbau GmbH and Co KG
Publication of EP2828589A1 publication Critical patent/EP2828589A1/en
Application granted granted Critical
Publication of EP2828589B1 publication Critical patent/EP2828589B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/047Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor

Definitions

  • the invention relates to a refrigeration system comprising a refrigeration cycle in which a refrigerant compressor, a condenser following the refrigerant compressor, an expansion device following the condenser and an evaporator following the expansion device are arranged, which in turn is connected to the refrigerant compressor, wherein the refrigerant compressor by a an electronic engine control speed-controlled drive motor, and a refrigerant flow-through control cooling branch, which branches off from the refrigeration circuit between the condenser and the expansion device and is guided to a connection of the refrigerant compressor and in which a thermally conductive with electronic power components of the engine control heat sink is arranged, wherein a minimum evaporation temperature of the Heatsink is below a liquefaction temperature of the refrigerant in the condenser.
  • the invention is therefore based on the object to improve a refrigeration system of the generic type such that malfunctions of the engine control are avoided as possible.
  • the solution according to the invention provides that the temperature of the heat sink is at least at a settable by an evaporation pressure of the refrigerant in the heat sink minimum evaporation temperature or higher.
  • the minimum flow of refrigerant through the heat sink ensures that a cooling capacity control for the heat sink is functional even in the start-up phase and starts as soon as possible after switching on the refrigerant compressor.
  • control in the start-up phase allows a minimal flow of refrigerant through the control cooling branch, so that the entire control cooling branch is traversed by the minimum flow of refrigerant and thus, the temperature control provided for this in the cooling body receives the control activity.
  • the solution according to the invention provides that the setting of the evaporation pressure in the heat sink is effected by an evaporation pressure regulator.
  • control has an evaporation pressure regulator, which regulates an evaporation pressure in the cooling element so that it lies above a pressure at the connection of the refrigerant compressor to which the control cooling branch is connected.
  • Such an evaporation pressure regulator may be a mechanical evaporation pressure regulator.
  • the evaporation pressure regulator is an electrically or electronically operating evaporation pressure regulator which, for example, controls a control valve with pulse-width modulation in order to regulate the evaporation pressure.
  • the evaporation pressure regulator allows for the minimum refrigerant flow when switching on the refrigerant compressor in the start-up phase, that is, that the evaporation pressure regulator operates so that this allows in any case, the minimum refrigerant flow regardless of the intended control.
  • the evaporation pressure regulator is ineffective or limited in effect during the startup of the refrigerant compressor in the start-up phase.
  • Evaporative pressure control is of minor importance when starting up the refrigerant compressor in the start-up phase, as opposed to the minimum refrigerant flow required to assure power control of the heat sink.
  • Such a control inefficiency of the evaporation pressure regulator can be achieved, for example, in a mechanical evaporation pressure regulator or an electrically or electronically controlled evaporation pressure regulator, that the evaporation pressure regulator is assigned a bypass line with a throttle, wherein the throttle defines the minimum refrigerant flow, so that regardless of whether the evaporation pressure regulator works or not, the minimum refrigerant flow is ensured by the control cooling branch.
  • the evaporation pressure regulator comprises a control valve and a pressure control and that the pressure control in the start-up phase of the refrigerant compressor, the control valve so controls that it allows the minimum refrigerant flow primarily before the evaporation pressure control.
  • connection of the refrigerant compressor for the control cooling branch is not the connection of the refrigerant compressor, which is connected to the evaporator, but a connection of the refrigerant compressor, on a relative to the associated with the evaporator port higher pressure, for example an intermediate pressure of the refrigerant compressor is located.
  • the connection of the refrigerant compressor which is connected to the control cooling branch, leads into a closed compressor chamber of the screw compressor.
  • this solution has the advantage that a pressure level is thus already predetermined by the connection of the refrigerant compressor, which ensures a pressure level and thus a temperature in the heat sink, which is above the lowest possible temperature of the evaporator even with no existing control function of the evaporation pressure regulator.
  • control cooling branch comprises a thermostatic expansion valve upstream of the heat sink, which is controlled by a temperature sensor on the heat sink.
  • the temperature sensor could be provided centrally or in the course of a cooling channel in the heat sink.
  • the temperature sensor is arranged at an output terminal of the heat sink.
  • the expansion valve is associated with a bypass line with a throttle.
  • Such a bypass line for the expansion valve makes it possible to flow a minimal refrigerant flow through the heat sink even with the expansion valve closed in the start-up phase and thus, for example, build up an evaporation pressure, which causes the evaporation pressure regulator comes into action and thus also the minimum flow of refrigerant in the start-up phase, regardless of whether the expansion valve already regulates or not.
  • This minimum refrigerant flow through the heat sink ensures that when the heat sink heats up, the expansion valve can react quickly to prevent overheating of the heat sink and thus overheating of the electronic power components.
  • An exemplary embodiment of a refrigerant compressor 10 used according to the invention is designed as a screw compressor, as described, for example, in the German patent applications DE 198 45 991 A1 or DE 103 59 032 A1 is described.
  • Such a screw compressor comprises, for example, a first screw rotor 12 and a second screw rotor 14, which are each rotatably arranged in screw rotor bores 16 and 18 of a screw compressor housing 20 and engage with their peripheral screw contours 22 and 24, wherein the screw contours 22 and 24 in the region of a suction side arranged inlet window 26 form at least partially open compression chambers and subsequent to the inlet window 26 closed and increasingly reduced volume compressor chambers form, which in turn in the region of an outlet window 28, the pressure side of the screw rotors 16 and 18 is arranged to open in this.
  • inlet connection AE to which refrigerant with the suction pressure is supplied
  • intermediate pressure connection AZ1 to which refrigerant with the intermediate pressure PZ1 can be supplied
  • intermediate pressure connection AZ2 to which refrigerant with the intermediate pressure PZ2 can be supplied
  • outlet port AA at which refrigerant at the outlet pressure PA exits.
  • one of the screw rotors can be driven by a drive motor 30, which can be controlled by a motor controller 32 in a speed-controlled manner, the motor controller 32 being driven as in FIG Fig. 2 an electronic speed control 34 includes, for example, an inverter, which has highly temperature-loaded electronic power components 36 which have a high heat development in the operation of the drive motor 30 with the motor controller 32, and show a shortened life in excess of heating during operation of the drive motor 30 ,
  • the heat sink 40 is provided with an input port 42 and an outlet port 44 for a refrigerant, and between the input port 42 and the output port 44 extends in the heat sink 40, a refrigerant flow-through cooling channel 46, such extends in the heat sink 40 that the cooling body 40 can be cooled substantially uniformly with the refrigerant, in particular, the cooling channel 46 is such that optimal heat dissipation of thermally coupled to the heat sink 40 electronic power components 36 via the flowing through the cooling channel 46 refrigerant possible is.
  • FIG Fig. 3 shown in FIG Fig. 3 is the refrigerant compressor according to Fig. 1 arranged in a designated as a whole with 50 refrigeration cycle, wherein an output terminal AA of the refrigerant compressor 10 is connected via a first connecting line 52 with a condenser 54, in which a liquefaction of the exiting from the output port AA of the refrigerant compressor 10 refrigerant takes place.
  • the condenser 54 is connected via a connecting line 56 with an expansion device 58, which is followed by an evaporator 62, which in turn is connected via a connecting line 64 to the input terminal AE of the refrigerant compressor 10.
  • the refrigeration cycle 50 is thus a conventional refrigeration cycle, as it is usually present in refrigeration systems.
  • a control cooling branch 70 for cooling the heat sink 40 From the refrigeration circuit 50 branches a control cooling branch 70 for cooling the heat sink 40 from, for example, the connecting line 56 between the condenser 54 and the expansion device 58, wherein a first connecting line 72 of the control cooling branch 70 leads to a switch-on valve 74 of the control cooling branch 70, to which a thermostatic Expansion valve 76 follows, which is connected to the input terminal 42 of the heat sink 40, which is arranged in the control cooling branch 70.
  • connection line 78 which leads to an evaporation pressure regulator 80, which in turn is in turn connected via a connection line 82 to an intermediate pressure connection, for example the intermediate pressure connection AZ1 of the refrigerant compressor 10.
  • the fact that the connecting line 82 is led to the intermediate pressure port AZ1 has the consequence that the evaporating pressure VD in the heat sink 40 is higher than the suction pressure PS of the refrigerant compressor 10 without regulation of the evaporating pressure regulator 80.
  • the evaporation pressure VD is in the heat sink 40 at least on the pressure PZ1 of the refrigerant compressor 10, without the evaporation pressure regulator 80 is effective.
  • the evaporation pressure VD can be further raised above the intermediate pressure PZ1 of the refrigerant compressor 10.
  • Such an increase in the evaporation pressure VD in the heat sink 40 has the purpose of ensuring that the evaporator temperature of the control cooling arm 70 flowing through the heat sink 40 is above the freezing point temperature of water in order to prevent icing of the heat sink 40.
  • the evaporation pressure VD is set so high that the evaporation temperature is above a dew point temperature of the environment to prevent condensation of water on the heat sink 40.
  • the evaporation pressure regulator 80 opens up the possibility of establishing a minimum evaporation temperature in the heat sink 40 via the evaporation pressure VD in the heat sink 40, which temperature does not fall below this even at full cooling capacity of the control cooling branch 70.
  • the control of the cooling capacity in the heat sink 40 is carried out by the expansion valve 76, which has a temperature at the output terminal 44 of the heat sink 40 detected temperature sensor 86 which transmits the temperature at the output terminal 44 of the heat sink 40 in the expansion valve 76.
  • the expansion valve 76 is a thermostatic expansion valve that controls according to a differential pressure resulting from the difference of a first pressure generated by a heated in the temperature sensor 86 and a capillary tube 88 the expansion valve 76 supplied Medium, and a second pressure D2 of the refrigerant which is present at the input terminal 42 of the heat sink 40 or at the output terminal 44 of the heat sink 40 results.
  • Such a thermostatic, working with a pressure difference expansion valve 76 is both a cost, on the other hand maintenance-free and has a long life.
  • thermostatic or mechanical expansion valve 76 is not controllable by a controller 90 of the control cooling branch 70, so that the following problem occurs when switching on the refrigerant compressor 10.
  • the switch-on valve 74 When switching off the refrigerant compressor 10, the switch-on valve 74 is closed by the controller 90, so that the pressure in the heat sink corresponds to the maximum set by the evaporation pressure regulator 80 evaporation pressure VD.
  • the evaporation pressure regulator 80 is also a mechanical pressure regulator, which regulates to a fixed set reference pressure.
  • the pressure in the heat sink 40 may also fall below the vaporization pressure VD predetermined by the evaporation pressure regulator 80.
  • the switch-on valve 74 is also opened by the controller 90 at the same time.
  • the evaporation pressure regulator 80 Since the pressure in the heat sink 40 is equal to or below the evaporation pressure VD, the evaporation pressure regulator 80 remains closed, that is, no refrigerant can flow through the expansion valve 76 and the heat sink 40.
  • the expansion valve 76 also remains closed because the temperature measured by the temperature sensor 86 of the expansion valve 76 does not indicate any increase.
  • This heating leads to undesired heating of the electronic power components 16, so that in many cases the drive motor 30 has to be switched off in order to protect the electronic power components 36, but in any case such heating of the electronic power components 36 reduces their life.
  • a bypass line 92 with a built-in throttle 94 is connected in parallel to the expansion valve 76, the throttle 94 may be formed as a nozzle, capillary or as a diaphragm.
  • the bypass line 92 may be provided with the throttle 94 external or internal.
  • the bypass line 92 with the built-in throttle 94 now leads to the fact that when starting the refrigerant compressor 10 and opening the on-off valve 74 by the controller 90 despite closed expansion valve 76 due to this bridging parallel bypass line 92, the pressure of the refrigerant in the heat sink 40 through the evaporating pressure 80 set evaporation pressure VD increases, so that due to this pressure increase, the evaporation pressure regulator 80 will open and thus allows a refrigerant flow through the heat sink 40, the leads to the fact that the temperature sensor 86 can detect a heating of the heat sink flowing through the heat sink 40 of the electronic power components very quickly and leads to an opening of the expansion valve 76, so that this assumes the intended control function for the cooling capacity of the heat sink 40.
  • FIG Fig. 4 A second embodiment of a refrigeration system according to the invention, shown in FIG Fig. 4 is insofar as it has the same elements as the first embodiment, provided with the same reference numerals, so that reference may be made in full to the description of the first embodiment with regard to the description of these elements.
  • bypass line 92 with a throttle 94 is provided in parallel to the expansion valve 76 in this embodiment, but a bypass line 102 with a throttle 104 in parallel to the evaporation pressure regulator 80, which may be provided externally or internally.
  • the throttle 94 may be formed as a nozzle, capillary or aperture.
  • opening of the on-off valve 74 by the controller 90 and the bypass line 102 and the throttle 104 will also result in a limited minimum refrigerant flow even if the evaporative pressure regulator 80 did not open due to too low a pressure in the heat sink 40 through the heat sink 40, which in turn has the consequence that the temperature sensor 86 through the Contact with the exiting at the output terminal 44 of the heat sink refrigerant can react very quickly to a heating of this refrigerant and thus the thermostatic expansion valve 76 receives the control of the cooling capacity in the heat sink 40.
  • the pressure in the heat sink 40 then increases at least to the evaporation pressure VD predetermined by the evaporation pressure regulator 80, and when this evaporation pressure VD is exceeded, the evaporation pressure regulator 80 begins to regulate again.
  • the second embodiment works in the same way as the above-described embodiment, so that this can be fully incorporated by reference.
  • FIG Fig. 5 In a third embodiment of a refrigeration system according to the invention, shown in FIG Fig. 5 , those parts that are identical to those of the preceding embodiments are provided with the same reference numerals, so that with regard to the description of the same can be made in full to the comments on the above embodiments.
  • neither the thermostatic expansion valve nor the mechanical evaporation pressure regulator 80 is associated with a bypass line with a throttle line.
  • the mechanical evaporation pressure regulator 80 is replaced by an electrically controlled evaporation pressure regulator 80 ', a through a pressure control 110 having a pulse width modulated control signal controlled control valve 112 which is arranged between the connecting line 78 and the connecting line 82 in order to regulate the evaporation pressure VD in the heat sink 40 to the intended value.
  • This electrically controlled evaporation pressure regulator 80 ' is controllable via the controller 90, which cooperates with the pressure controller 110, that the pressure controller 110 controls the control valve 112 by a corresponding pulse width modulated control signal at starting refrigerant compressor 10 so that this a minimum refrigerant flow through the control cooling branch 70th allows, which ensures that the mechanical expansion valve 76 detects very quickly with its temperature sensor 86, a temperature increase of the heat sink 40 flowing through the refrigerant and thus receives the control of the cooling capacity of the heat sink.
  • the third embodiment works in the same way as the above-described embodiments, so that this can be fully incorporated by reference.
  • FIG Fig. 6 In a fourth embodiment, shown in FIG Fig. 6 , those elements which are identical to those of the preceding embodiment are provided with the same reference numerals, so that with regard to the description of the same reference may be made in full to the comments on the preceding embodiments.
  • an electrically controlled evaporation pressure regulator 80 "with the control valve 112 is also provided, however, the pressure control 110 'is designed such that on the one hand the evaporation pressure VD in the heat sink 40, for example in the connecting line 78, and on the other hand, the pressure in the Connected line 82 and controls the evaporation pressure VD to a minimum pressure according to this pressure difference.
  • This pressure control 110 ' can also be controlled by the controller 90, so that a minimal refrigerant flow through the heat sink 40 can be allowed even with a starting refrigerant compressor independently of the pressure in the heat sink 40 by a suitable pulse width modulated control signal for the control valve 112, which ensures that the thermostatic expansion valve 76 with the temperature sensor 86 receives the control for the heat sink 40 and only after a certain start-up time of the evaporation pressure regulator 80 "adjusts the evaporation pressure VD in the heat sink 40 to the intended evaporation pressure VD.
  • the fourth embodiment operates in the same manner as described in connection with the above embodiments, so that the statements in connection with these embodiments can be fully incorporated by reference.
  • FIG Fig. 7 a fifth embodiment, shown in FIG Fig. 7 , Those parts which are identical to the above embodiments are also provided with the same reference numerals, so that with regard to the description thereof reference may be made in full to the comments on these embodiments.
  • an evaporation pressure regulator 80 which has a three-way control valve 122 controlled by a pressure controller 120, which connects either the connection line 78 directly to the connection line 82 or via a throttle 124 to the connection line 82 combines.
  • This evaporation pressure regulator 80 "'controls, with the pressure controller 120, the three-way control valve 122 corresponding to the pressure in the connection line 82 leading to the connection AZ1 of the refrigerant compressor 10.
  • the activation of the control valve 122 takes place in such a way that already during the Switching off the refrigerant compressor 10, the pressure control 120, the control valve 122 is set so that it connects via the throttle 124, the connecting line 78 to the connecting line 82.
  • the pressure PZ1 is established at the port AZ1, which, however, is lower than the desired vapor pressure VD in the heat sink 40, and the pressure in the heat sink 40 is first reduced to the pressure PZ1 by the throttle 124 lowered.
  • the three-way control valve 122 is then switched to a pulse-width-modulated operation with regulation of the evaporation pressure in the heat sink 40 to the specified value VD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

Die Erfindung betrifft eine Kälteanlage umfassend einen Kältekreislauf, in welchem ein Kältemittelverdichter, ein auf den Kältemittelverdichter folgender Verflüssiger, eine auf den Verflüssiger folgende Expansionseinrichtung und ein auf die Expansionseinrichtung folgender Verdampfer angeordnet sind, welcher wiederum mit dem Kältemittelverdichter verbunden ist, wobei der Kältemittelverdichter einen durch eine elektronische Motorsteuerung drehzahlgeregelten Antriebsmotor aufweist, und einen kältemitteldurchströmten Steuerungskühlungszweig, welcher von dem Kältekreislauf zwischen dem Verflüssiger und der Expansionseinrichtung abzweigt und zu einem Anschluss des Kältemittelverdichters geführt ist und in welchem ein mit elektronischen Leistungsbauteilen der Motorsteuerung wärmeleitend verbundener Kühlkörper angeordnet ist, wobei eine Mindestverdampfungstemperatur des Kühlkörpers unterhalb einer Verflüssigungstemperatur des Kältemittels im Verflüssiger liegt.The invention relates to a refrigeration system comprising a refrigeration cycle in which a refrigerant compressor, a condenser following the refrigerant compressor, an expansion device following the condenser and an evaporator following the expansion device are arranged, which in turn is connected to the refrigerant compressor, wherein the refrigerant compressor by a an electronic engine control speed-controlled drive motor, and a refrigerant flow-through control cooling branch, which branches off from the refrigeration circuit between the condenser and the expansion device and is guided to a connection of the refrigerant compressor and in which a thermally conductive with electronic power components of the engine control heat sink is arranged, wherein a minimum evaporation temperature of the Heatsink is below a liquefaction temperature of the refrigerant in the condenser.

Derartige Kälteanlagen sind aus der EP 0 933 603 A1 bekannt.Such refrigeration systems are from the EP 0 933 603 A1 known.

Bei diesen besteht allerdings das Problem, dass die Kühlung des Kühlkörpers in dem Steuerungskühlungszweig zu Problemen in der elektrischen Motorsteuerung führt, da entweder die elektronischen Leistungsbauteile der Motorsteuerung zu heiß werden oder eine zu starke Kühlung des Kühlkörpers erfolgt, die zu einem Vereisen oder einer Kondenswasserbildung im Bereich des Kühlkörpers führen kann, die wiederum Betriebsstörungen bei der Motorsteuerung verursacht.In these, however, there is the problem that the cooling of the heat sink in the control cooling branch leads to problems in the electric motor control, either because the electronic power components of the engine control are too hot or too much cooling of the heat sink occurs, leading to icing or condensation in the Area of the heat sink can cause, which in turn causes malfunction in the engine control.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Kälteanlage der gattungsgemäßen Art derart zu verbessern, dass Betriebsstörungen der Motorsteuerung möglichst vermieden werden.The invention is therefore based on the object to improve a refrigeration system of the generic type such that malfunctions of the engine control are avoided as possible.

Diese Aufgabe wird bei einer Kälteanlage der eingangs beschriebenen Art erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.This object is achieved according to the invention in a refrigeration system of the type described above by the features of claim 1.

Der Vorteil dieser Lösung ist damit darin zu sehen, dass durch das Festlegen der Mindestverdampfungstemperatur, die oberhalb einer Gefrierpunktstemperatur von Wasser liegt, sichergestellt werden kann, dass der Kühlkörper nicht vereist.The advantage of this solution is the fact that it can be ensured by setting the minimum evaporation temperature, which is above a freezing point temperature of water, that the heat sink does not freeze.

Noch besser ist es, wenn die Mindestverdampfungstemperatur des Kühlkörpers oberhalb einer Taupunkttemperatur der Umgebung der Motorsteuerung liegt.It is even better if the minimum evaporation temperature of the heat sink is above a dew point temperature of the surroundings of the engine control.

Mit dieser Lösung kann sichergestellt werden, dass auch eine Kondensation von Wasser an dem Kühlkörper verhindert werden kann, die ebenfalls zu Störungen der Motorsteuerung, insbesondere einer Beschädigung derselben, führen kann.With this solution it can be ensured that a condensation of water can be prevented on the heat sink, which can also lead to disturbances of the engine control, in particular a damage of the same.

Die erfindungsgemäße Lösung sieht vor, dass die Temperatur des Kühlkörpers mindestens bei einer durch einen Verdampfungsdruck des Kältemittels in den Kühlkörper einstellbaren Mindestverdampfungstemperatur oder höher liegt.The solution according to the invention provides that the temperature of the heat sink is at least at a settable by an evaporation pressure of the refrigerant in the heat sink minimum evaporation temperature or higher.

Durch die Einstellung des Verdampfungsdrucks kann sichergestellt werden, dass in keinem Fall die Temperatur des Kühlkörpers die dem Verdampfungsdruck entsprechende Mindestverdampfungstemperatur unterschreitet.By adjusting the evaporation pressure, it can be ensured that in no case does the temperature of the heat sink fall below the minimum evaporation temperature corresponding to the evaporation pressure.

Um sicherzustellen, dass eine zuverlässige Temperaturregelung des Kühlkörpers auch während einer Anlaufphase des Kältemittelverdichters erfolgt, ist vorzugsweise vorgesehen, dass in einer Anlaufphase des Kältemittelverdichters ein minimaler Kältemittelstrom durch den Kühlkörper strömt.To ensure that a reliable temperature control of the heat sink also takes place during a start-up phase of the refrigerant compressor, it is preferably provided that in a start-up phase of the refrigerant compressor, a minimal refrigerant flow flows through the heat sink.

Der minimale Kältemittelstrom durch den Kühlkörper stellt sicher, dass eine Kälteleistungsregelung für den Kühlkörper auch in der Anlaufphase funktionsfähig ist und möglichst rasch nach einem Einschalten des Kältemittelverdichters einsetzt.The minimum flow of refrigerant through the heat sink ensures that a cooling capacity control for the heat sink is functional even in the start-up phase and starts as soon as possible after switching on the refrigerant compressor.

Besonders günstig ist es dabei, wenn die Regelung in der Anlaufphase einen minimalen Kältemittelstrom durch den Steuerungskühlungszweig zulässt, so dass der gesamte Steuerungskühlungszweig von dem minimalen Kältemittelstrom durchsetzt ist und somit, die in diesem vorgesehene Temperaturregelung für den Kühlköper die Regelungstätigkeit aufnimmt.It is particularly advantageous if the control in the start-up phase allows a minimal flow of refrigerant through the control cooling branch, so that the entire control cooling branch is traversed by the minimum flow of refrigerant and thus, the temperature control provided for this in the cooling body receives the control activity.

Hinsichtlich der Einstellung des Verdampfungsdrucks im Kühlkörper sind die unterschiedlichsten Lösungen denkbar.With regard to the setting of the evaporation pressure in the heat sink, the most diverse solutions are conceivable.

So sieht die erfindungsgemäße Lösung vor, dass die Einstellung des Verdampfungsdrucks im Kühlkörper durch einen Verdampfungsdruckregler erfolgt.Thus, the solution according to the invention provides that the setting of the evaporation pressure in the heat sink is effected by an evaporation pressure regulator.

Eine besonders günstige Lösung sieht vor, dass die Regelung einen Verdampfungsdruckregler aufweist, der einen Verdampfungsdruck im Kühlelement so regelt, dass dieser über einem Druck an dem Anschluss des Kältemittelverdichters liegt, mit welchem der Steuerungskühlungszweig verbunden ist.A particularly favorable solution provides that the control has an evaporation pressure regulator, which regulates an evaporation pressure in the cooling element so that it lies above a pressure at the connection of the refrigerant compressor to which the control cooling branch is connected.

Ein derartiger Verdampfungsdruckregler kann dabei ein mechanischer Verdampfungsdruckregler sein.Such an evaporation pressure regulator may be a mechanical evaporation pressure regulator.

Es ist aber auch denkbar, dass der Verdampfungsdruckregler ein elektrisch oder elektronisch arbeitender Verdampfungsdruckregler ist, welcher beispielsweise mit einer Drucksteuerung ein Steuerventil pulsweitenmoduliert ansteuert, um den Verdampfungsdruck zu regeln.However, it is also conceivable that the evaporation pressure regulator is an electrically or electronically operating evaporation pressure regulator which, for example, controls a control valve with pulse-width modulation in order to regulate the evaporation pressure.

Besonders günstig ist es dabei, wenn der Verdampfungsdruckregler bei dem Einschalten des Kältemittelverdichters in der Anlaufphase den minimalen Kältemittelstrom zulässt, das heißt, dass der Verdampfungsdruckregler so arbeitet, dass dieser unabhängig von der vorgesehenen Regelung auf jeden Fall den minimalen Kältemittelstrom zulässt.It is particularly advantageous if the evaporation pressure regulator allows for the minimum refrigerant flow when switching on the refrigerant compressor in the start-up phase, that is, that the evaporation pressure regulator operates so that this allows in any case, the minimum refrigerant flow regardless of the intended control.

Dabei kann beispielsweise in Kauf genommen werden, dass der Verdampfungsdruckregler bei dem Einschalten des Kältemittelverdichters in der Anlaufphase regelungsunwirksam oder begrenzt wirksam ist.In this case, it can be accepted, for example, that the evaporation pressure regulator is ineffective or limited in effect during the startup of the refrigerant compressor in the start-up phase.

Eine Verdampfungsdruckregelung ist beim Einschalten des Kältemittelverdichters in der Anlaufphase von untergeordneter Bedeutung im Gegensatz zu dem erforderlichen minimalen Kältemittelstrom, um die Leistungsregelung des Kühlkörpers sicherzustellen.Evaporative pressure control is of minor importance when starting up the refrigerant compressor in the start-up phase, as opposed to the minimum refrigerant flow required to assure power control of the heat sink.

Eine derartige Regelungsunwirksamkeit des Verdampfungsdruckreglers lässt sich beispielsweise bei einem mechanischen Verdampfungsdruckregler oder auch einem elektrisch oder elektronisch gesteuerten Verdampfungsdruckregler dadurch erreichen, dass dem Verdampfungsdruckregler eine Umgehungsleitung mit einer Drossel zugeordnet ist, wobei die Drossel den minimalen Kältemittelstrom definiert, so dass unabhängig davon, ob der Verdampfungsdruckregler arbeitet oder nicht, der minimale Kältemittelstrom durch den Steuerungskühlungszweig sichergestellt ist.Such a control inefficiency of the evaporation pressure regulator can be achieved, for example, in a mechanical evaporation pressure regulator or an electrically or electronically controlled evaporation pressure regulator, that the evaporation pressure regulator is assigned a bypass line with a throttle, wherein the throttle defines the minimum refrigerant flow, so that regardless of whether the evaporation pressure regulator works or not, the minimum refrigerant flow is ensured by the control cooling branch.

Eine andere vorteilhafte Lösung sieht vor, dass der Verdampfungsdruckregler ein Steuerventil und eine Drucksteuerung umfasst und dass die Drucksteuerung in der Anlaufphase des Kältemittelverdichters das Steuerventil so ansteuert, dass sie den minimalen Kältemittelstrom vorrangig vor der Verdampfungsdruckregelung zulässt.Another advantageous solution provides that the evaporation pressure regulator comprises a control valve and a pressure control and that the pressure control in the start-up phase of the refrigerant compressor, the control valve so controls that it allows the minimum refrigerant flow primarily before the evaporation pressure control.

Im Zusammenhang mit der bisherigen Erläuterung der einzelnen Ausführungsformen wurde nicht mehr darauf eingegangen, wie eine Temperaturregelung des Kühlkörpers erfolgen kann.In connection with the previous explanation of the individual embodiments was no longer discussed how a temperature control of the heat sink can be done.

Eine besonders günstige Lösung sieht vor, dass der Anschluss des Kältemittelverdichters für den Steuerungskühlungszweig nicht der Anschluss des Kältemittelverdichters ist, der mit dem Verdampfer verbunden ist, sondern ein Anschluss des Kältemittelverdichters, der auf einem relativ zu dem mit dem Verdampfer verbundenen Anschluss höheren Druck, beispielsweise einem Zwischendruck des Kältemittelverdichters, liegt.A particularly favorable solution provides that the connection of the refrigerant compressor for the control cooling branch is not the connection of the refrigerant compressor, which is connected to the evaporator, but a connection of the refrigerant compressor, on a relative to the associated with the evaporator port higher pressure, for example an intermediate pressure of the refrigerant compressor is located.

Beispielsweise ist im Fall einer Ausbildung des Kältemittelverdichters, als Schraubenverdichter vorgesehen, dass der Anschluss des Kältemittelverdichters, welcher mit dem Steuerungskühlungszweig verbunden ist, in eine geschlossene Verdichterkammer des Schraubenverdichters führt.For example, in the case of forming the refrigerant compressor, provided as a screw compressor, the connection of the refrigerant compressor, which is connected to the control cooling branch, leads into a closed compressor chamber of the screw compressor.

Eine derartige Lösung hat den großen Vorteil, dass damit die Möglichkeit gegeben ist, durch den durch den Steuerungskühlungszweig geführten Kältemittelstrom das Ansaugvolumen des Kältemittelverdichters nicht zu beeinträchtigen.Such a solution has the great advantage that it gives the possibility of not affecting the intake volume of the refrigerant compressor due to the refrigerant flow guided through the control cooling branch.

Weiterhin hat diese Lösung den Vorteil, dass damit bereits durch den Anschluss des Kältemittelverdichters ein Druckniveau vorgegeben ist, das selbst bei nicht vorhandener Regelungsfunktion des Verdampfungsdruckreglers ein Druckniveau und somit eine Temperatur im Kühlkörper sicherstellt, die über der tiefstmöglichen Temperatur des Verdampfers liegt.Furthermore, this solution has the advantage that a pressure level is thus already predetermined by the connection of the refrigerant compressor, which ensures a pressure level and thus a temperature in the heat sink, which is above the lowest possible temperature of the evaporator even with no existing control function of the evaporation pressure regulator.

Beispielsweise wäre eine elektronische Temperaturregelung mit einem gesteuerten Regelventil denkbar.For example, an electronic temperature control with a controlled control valve would be conceivable.

Eine elektronische Temperaturregelung mit einem gesteuerten Regelventil hat jedoch hinsichtlich der Kosten und der Zuverlässigkeit Nachteile.An electronic temperature control with a controlled control valve, however, has disadvantages in terms of cost and reliability.

Aus diesem Grund sieht eine besonders vorteilhafte Lösung vor, dass der Steuerungskühlungszweig ein dem Kühlkörper vorgeschaltetes thermostatisches Expansionsventil umfasst, das durch einen Temperaturfühler am Kühlkörper gesteuert ist.For this reason, a particularly advantageous solution provides that the control cooling branch comprises a thermostatic expansion valve upstream of the heat sink, which is controlled by a temperature sensor on the heat sink.

Der Temperaturfühler könnte dabei mittig oder im Verlauf eines Kühlkanals im Kühlkörper vorgesehen sein.The temperature sensor could be provided centrally or in the course of a cooling channel in the heat sink.

Zweckmäßigerweise ist der Temperaturfühler jedoch an einem Ausgangsanschluss des Kühlkörpers angeordnet.Conveniently, however, the temperature sensor is arranged at an output terminal of the heat sink.

Um auch beim Vorsehen eines thermostatischen Expansionsventils sicherzustellen, dass in der Anlaufphase des Kältemittelverdichters ein minimaler Kältemittelstrom durch den Kühlkörper strömt, ist vorzugsweise vorgesehen, dass dem Expansionsventil eine Umgehungsleitung mit einer Drossel zugeordnet ist.In order to ensure even when providing a thermostatic expansion valve that flows in the start-up phase of the refrigerant compressor, a minimal flow of refrigerant through the heat sink, it is preferably provided that the expansion valve is associated with a bypass line with a throttle.

Eine derartige Umgehungsleitung für das Expansionsventil schafft die Möglichkeit, auch bei geschlossenem Expansionsventil in der Anlaufphase einen minimalen Kältemittelstrom durch den Kühlkörper strömen zu lassen und somit beispielsweise auch einen Verdampfungsdruck aufzubauen, der dazu führt, dass der Verdampfungsdruckregler in Aktion tritt und somit ebenfalls den minimalen Kältemittelstrom in der Anlaufphase zulässt, unabhängig davon, ob das Expansionsventil bereits regelt oder nicht.Such a bypass line for the expansion valve makes it possible to flow a minimal refrigerant flow through the heat sink even with the expansion valve closed in the start-up phase and thus, for example, build up an evaporation pressure, which causes the evaporation pressure regulator comes into action and thus also the minimum flow of refrigerant in the start-up phase, regardless of whether the expansion valve already regulates or not.

Dieser minimale Kältemittelstrom durch den Kühlkörper stellt sicher, dass bei einer Erwärmung des Kühlkörpers das Expansionsventil schnell reagieren kann, um eine Überhitzung des Kühlkörpers und somit auch eine Überhitzung der elektronischen Leistungsbauteile, zu verhindern.This minimum refrigerant flow through the heat sink ensures that when the heat sink heats up, the expansion valve can react quickly to prevent overheating of the heat sink and thus overheating of the electronic power components.

Weitere Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung sowie der zeichnerischen Darstellung einiger Ausführungsbeispiele.Further advantages of the invention are the subject of the following description and the drawings of some embodiments.

In der Zeichnung zeigen:

Fig. 1
eine schematische Darstellung eines Kältemittelverdichters;
Fig. 2
eine schematische Darstellung einer Motorsteuerung des Kältemittelverdichters mit in dieser gekoppeltem Kühlelement;
Fig. 3
eine schematische Darstellung eines ersten Ausführungsbeispiels einer erfindungsgemäßen Kälteanlage;
Fig. 4
eine schematische Darstellung eines zweiten Ausführungsbeispiels einer erfindungsgemäßen Kälteanlage;
Fig. 5
eine schematische Darstellung eines dritten Ausführungsbeispiels einer erfindungsgemäßen Kälteanlage;
Fig. 6
eine schematische Darstellung eines vierten Ausführungsbeispiels einer erfindungsgemäßen Kälteanlage und
Fig. 7
eine schematische Darstellung eines fünften Ausführungsbeispiels einer erfindungsgemäßen Kälteanlage.
In the drawing show:
Fig. 1
a schematic representation of a refrigerant compressor;
Fig. 2
a schematic representation of a motor control of the refrigerant compressor with in this coupled cooling element;
Fig. 3
a schematic representation of a first embodiment of a refrigeration system according to the invention;
Fig. 4
a schematic representation of a second embodiment of a refrigeration system according to the invention;
Fig. 5
a schematic representation of a third embodiment of a refrigeration system according to the invention;
Fig. 6
a schematic representation of a fourth embodiment of a refrigeration system according to the invention and
Fig. 7
a schematic representation of a fifth embodiment of a refrigeration system according to the invention.

Ein Ausführungsbeispiel eines erfindungsgemäß verwendeten Kältemittelverdichters 10 ist als Schraubenverdichter ausgebildet, wie er zum Beispiel in den deutschen Patentanmeldungen DE 198 45 991 A1 oder DE 103 59 032 A1 beschrieben ist.An exemplary embodiment of a refrigerant compressor 10 used according to the invention is designed as a screw compressor, as described, for example, in the German patent applications DE 198 45 991 A1 or DE 103 59 032 A1 is described.

Ein derartiger Schraubenverdichter umfasst beispielsweise einen ersten Schraubenläufer 12 und einen zweiten Schraubenläufer 14, die jeweils in Schraubenläuferbohrungen 16 bzw. 18 eines Schraubenverdichtergehäuses 20 drehbar angeordnet sind und mit ihren umfangsseitigen Schraubenkonturen 22 bzw. 24 ineinandergreifen, wobei die Schraubenkonturen 22 und 24 im Bereich eines saugseitig angeordneten Einlassfensters 26 zumindest teilweise geöffnete Verdichterkammern bilden und im Anschluss an das Einlassfenster 26 geschlossene und zunehmend volumenreduzierte Verdichterkammern bilden, die sich wiederum im Bereich eines Auslassfensters 28, das druckseitig der Schraubenläufer 16 und 18 angeordnet ist, in dieses öffnen.Such a screw compressor comprises, for example, a first screw rotor 12 and a second screw rotor 14, which are each rotatably arranged in screw rotor bores 16 and 18 of a screw compressor housing 20 and engage with their peripheral screw contours 22 and 24, wherein the screw contours 22 and 24 in the region of a suction side arranged inlet window 26 form at least partially open compression chambers and subsequent to the inlet window 26 closed and increasingly reduced volume compressor chambers form, which in turn in the region of an outlet window 28, the pressure side of the screw rotors 16 and 18 is arranged to open in this.

Somit liegt am Einlassfenster 26 ein Saugdruck PS und am Auslassfenster 28 ein Auslassdruck PA vor, der über dem Saugdruck PS liegt.Thus, there is a suction pressure PS at the inlet window 26 and an outlet pressure PA at the outlet window 28 which is above the suction pressure PS.

Bei einem Schraubenverdichter besteht aber auch noch die Möglichkeit, auf einem Zwischendruck PZ in die durch die Schraubenkonturen 22 und 24 nach dem Einlassfenster 26 geschlossenen Verdichterkammern Kältemittel zuzuführen, beispielsweise auf einem Zwischendruckniveau PZ1, das sich in den nach dem Einlassfenster 26 bildenden geschlossenen Verdichterkammern bildet oder auf einem Zwischendruckniveau PZ2, das in den Verdichterkammern nahe dem Auslassfenster 28 vorliegt.In a screw compressor, however, it is also possible to supply refrigerant at an intermediate pressure PZ into the compression chambers closed by the screw contours 22 and 24 after the inlet window 26, for example at an intermediate pressure level PZ1 which forms in the closed compression chambers forming after the inlet window 26 or at an intermediate pressure level PZ2 present in the compression chambers near the outlet window 28.

Um dem Schraubenverdichter auf den verschiedenen Druckniveaus Kältemittel zuführen zu können, ist dieser mit einem Einlassanschluss AE versehen, an welchem Kältemittel mit dem Saugdruck zugeführt wird, mit einem Zwischendruckanschluss AZ1, an welchem Kältemittel mit dem Zwischendruck PZ1 zugeführt werden kann, mit einem Zwischendruckanschluss AZ2, an welchem Kältemittel mit dem Zwischendruck PZ2 zugeführt werden kann, sowie mit einem Ausgangsanschluss AA, an welchem Kältemittel bei dem Ausgangsdruck PA austritt.In order to be able to supply refrigerant to the screw compressor at the different pressure levels, it is provided with an inlet connection AE, to which refrigerant with the suction pressure is supplied, with an intermediate pressure connection AZ1, to which refrigerant with the intermediate pressure PZ1 can be supplied, with an intermediate pressure connection AZ2, to which refrigerant with the intermediate pressure PZ2 can be supplied, and with an outlet port AA, at which refrigerant at the outlet pressure PA exits.

Zum Antreiben der Schraubenläufer 12 und 14 ist einer der Schraubenläufer durch einen Antriebsmotor 30 antreibbar, welcher durch eine Motorsteuerung 32 drehzahlgeregelt ansteuerbar ist, wobei die Motorsteuerung 32 wie in Fig. 2 dargestellt, eine elektronische Drehzahlsteuerung 34 umfasst, beispielsweise einen Inverter, welcher stark temperaturbelastete elektronische Leistungsbauteile 36 aufweist, die beim Betrieb des Antriebsmotors 30 mit der Motorsteuerung 32 eine hohe Wärmeentwicklung haben, und bei zu großer Erhitzung während des Betriebs des Antriebsmotors 30 eine verkürzte Lebensdauer zeigen.For driving the screw rotors 12 and 14, one of the screw rotors can be driven by a drive motor 30, which can be controlled by a motor controller 32 in a speed-controlled manner, the motor controller 32 being driven as in FIG Fig. 2 an electronic speed control 34 includes, for example, an inverter, which has highly temperature-loaded electronic power components 36 which have a high heat development in the operation of the drive motor 30 with the motor controller 32, and show a shortened life in excess of heating during operation of the drive motor 30 ,

Aus diesem Grund ist es erforderlich, die elektronischen Leistungsbauteile 36 an einen Kühlkörper 40 thermisch anzukoppeln, an welchen diese ihre Wärme abgeben können.For this reason, it is necessary to thermally couple the electronic power components 36 to a heat sink 40, where they can give off their heat.

Um eine Überhitzung dieser elektronischen Leistungsbauteile 36 zu verhindern, ist der Kühlkörper 40 mit einem Eingangsanschluss 42 und einem Ausgangsanschluss 44 für ein Kältemittel versehen und zwischen dem Eingangsanschluss 42 und dem Ausgangsanschluss 44 erstreckt sich in dem Kühlkörper 40 ein von Kältemittel durchströmbarer Kühlkanal 46, der derart in dem Kühlkörper 40 verläuft, dass mit dem Kältemittel der Kühlkörper 40 im Wesentlichen gleichmäßig gekühlt werden kann, insbesondere verläuft der Kühlkanal 46 so, dass eine optimale Wärmeabfuhr der thermisch mit dem Kühlkörper 40 gekoppelten elektronischen Leistungsbauteile 36 über das durch den Kühlkanal 46 durchströmende Kältemittel möglich ist.In order to prevent overheating of these electronic power components 36, the heat sink 40 is provided with an input port 42 and an outlet port 44 for a refrigerant, and between the input port 42 and the output port 44 extends in the heat sink 40, a refrigerant flow-through cooling channel 46, such extends in the heat sink 40 that the cooling body 40 can be cooled substantially uniformly with the refrigerant, in particular, the cooling channel 46 is such that optimal heat dissipation of thermally coupled to the heat sink 40 electronic power components 36 via the flowing through the cooling channel 46 refrigerant possible is.

Bei einem ersten Ausführungsbeispiel einer erfindungsgemäßen Kälteanlage, dargestellt in Fig. 3 ist der Kältemittelverdichter gemäß Fig. 1 in einem als Ganzes mit 50 bezeichneten Kältekreislauf angeordnet, wobei ein Ausgangsanschluss AA des Kältemittelverdichters 10 über eine erste Verbindungsleitung 52 mit einem Verflüssiger 54 verbunden ist, in welchem eine Verflüssigung des unter Druck aus dem Ausgangsanschluss AA des Kältemittelverdichters 10 austretenden Kältemittels erfolgt.In a first embodiment of a refrigeration system according to the invention, shown in FIG Fig. 3 is the refrigerant compressor according to Fig. 1 arranged in a designated as a whole with 50 refrigeration cycle, wherein an output terminal AA of the refrigerant compressor 10 is connected via a first connecting line 52 with a condenser 54, in which a liquefaction of the exiting from the output port AA of the refrigerant compressor 10 refrigerant takes place.

Ferner ist der Verflüssiger 54 über eine Verbindungsleitung 56 mit einer Expansionseinrichtung 58 verbunden, auf welche ein Verdampfer 62 folgt, der seinerseits über eine Verbindungsleitung 64 mit dem Eingangsanschluss AE des Kältemittelverdichters 10 verbunden ist.Furthermore, the condenser 54 is connected via a connecting line 56 with an expansion device 58, which is followed by an evaporator 62, which in turn is connected via a connecting line 64 to the input terminal AE of the refrigerant compressor 10.

Der Kältekreislauf 50 ist somit ein konventioneller Kältekreislauf, wie er üblicherweise in Kälteanlagen vorhanden ist.The refrigeration cycle 50 is thus a conventional refrigeration cycle, as it is usually present in refrigeration systems.

Von dem Kältekreislauf 50 zweigt ein Steuerungskühlungszweig 70 zur Kühlung des Kühlkörpers 40 ab, beispielsweise von der Verbindungsleitung 56 zwischen dem Verflüssiger 54 und der Expansionseinrichtung 58, wobei eine erste Verbindungsleitung 72 des Steuerungskühlungszweigs 70 zu einem Einschaltventil 74 des Steuerungskühlungszweigs 70 führt, auf welches ein thermostatisches Expansionsventil 76 folgt, das mit dem Eingangsanschluss 42 des Kühlkörpers 40, der in dem Steuerungskühlungszweig 70 angeordnet ist, verbunden ist.From the refrigeration circuit 50 branches a control cooling branch 70 for cooling the heat sink 40 from, for example, the connecting line 56 between the condenser 54 and the expansion device 58, wherein a first connecting line 72 of the control cooling branch 70 leads to a switch-on valve 74 of the control cooling branch 70, to which a thermostatic Expansion valve 76 follows, which is connected to the input terminal 42 of the heat sink 40, which is arranged in the control cooling branch 70.

Auf einen Ausgangsanschluss 44 des Kühlkörpers 40 folgt dann eine Verbindungsleitung 78, die zu einem Verdampfungsdruckregler 80 führt, der seinerseits wiederum über eine Verbindungsleitung 82 mit einem Zwischendruckanschluss, beispielsweise dem Zwischendruckanschluss AZ1 des Kältemittelverdichters 10 verbunden ist.An outlet connection 44 of the heat sink 40 is then followed by a connection line 78 which leads to an evaporation pressure regulator 80, which in turn is in turn connected via a connection line 82 to an intermediate pressure connection, for example the intermediate pressure connection AZ1 of the refrigerant compressor 10.

Die Tatsache, dass die Verbindungsleitung 82 zu dem Zwischendruckanschluss AZ1 geführt ist, hat zur Folge, dass bereits ohne Regelwirkung des Verdampfungsdruckreglers 80 der Verdampfungsdruck VD in dem Kühlkörper 40 höher liegt als der Saugdruck PS des Kältemittelverdichters 10. Beispielsweise liegt der Verdampfungsdruck VD im Kühlkörper 40 mindestens auf dem Druck PZ1 des Kältemittelverdichters 10, ohne dass der Verdampfungsdruckregler 80 wirksam ist.The fact that the connecting line 82 is led to the intermediate pressure port AZ1 has the consequence that the evaporating pressure VD in the heat sink 40 is higher than the suction pressure PS of the refrigerant compressor 10 without regulation of the evaporating pressure regulator 80. For example, the evaporation pressure VD is in the heat sink 40 at least on the pressure PZ1 of the refrigerant compressor 10, without the evaporation pressure regulator 80 is effective.

Durch den Verdampfungsdruckregler 80 lässt sich jedoch der Verdampfungsdruck VD noch weiter über den Zwischendruck PZ1 des Kältemittelverdichters 10 anheben.By the evaporation pressure regulator 80, however, the evaporation pressure VD can be further raised above the intermediate pressure PZ1 of the refrigerant compressor 10.

Eine derartige Anhebung des Verdampfungsdrucks VD im Kühlkörper 40 hat den Sinn, sicherzustellen, dass die im Kühlkörper 40 sich einstellende Verdampfungstemperatur des den Steuerungskühlungszweig 70 durchströmenden Kältemittels über der Gefrierpunktstemperatur von Wasser liegt, um ein Vereisen des Kühlkörpers 40 zu verhindern. Vorzugsweise wird der Verdampfungsdruck VD so hoch gelegt, dass die Verdampfungstemperatur über einer Taupunkttemperatur der Umgebung liegt, um eine Kondensation von Wasser an dem Kühlkörper 40 zu verhindern.Such an increase in the evaporation pressure VD in the heat sink 40 has the purpose of ensuring that the evaporator temperature of the control cooling arm 70 flowing through the heat sink 40 is above the freezing point temperature of water in order to prevent icing of the heat sink 40. Preferably, the evaporation pressure VD is set so high that the evaporation temperature is above a dew point temperature of the environment to prevent condensation of water on the heat sink 40.

Der Grund hierfür ist der, dass entweder ein Vereisen des Kühlkörpers 40 oder die Kondensation von Wasser am Kühlkörper 40 kurz- oder langfristig zu einer Beschädigung der Drehzahlsteuerung 34 oder der gesamten Motorsteuerung 32, insbesondere auch zu Kurzschlüssen in diesen, führen kann.The reason for this is that either icing of the heat sink 40 or the condensation of water on the heat sink 40 in the short or long term damage to the speed control 34 or the entire engine control 32, especially to short circuits in these, may result.

Somit eröffnet der Verdampfungsdruckregler 80 die Möglichkeit, über den Verdampfungsdruck VD im Kühlkörper 40 eine Mindestverdampfungstemperatur im Kühlkörper 40 festzulegen, die dieser selbst bei voller Kühlleistung des Steuerungskühlungszweigs 70 nicht unterschreitet.Thus, the evaporation pressure regulator 80 opens up the possibility of establishing a minimum evaporation temperature in the heat sink 40 via the evaporation pressure VD in the heat sink 40, which temperature does not fall below this even at full cooling capacity of the control cooling branch 70.

Die Regelung der Kälteleistung im Kühlkörper 40 erfolgt durch das Expansionsventil 76, das einen die Temperatur am Ausgangsanschluss 44 des Kühlkörpers 40 erfassenden Temperaturfühler 86 aufweist, der im Expansionsventil 76 die Temperatur am Ausgangsanschluss 44 des Kühlkörpers 40 übermittelt.The control of the cooling capacity in the heat sink 40 is carried out by the expansion valve 76, which has a temperature at the output terminal 44 of the heat sink 40 detected temperature sensor 86 which transmits the temperature at the output terminal 44 of the heat sink 40 in the expansion valve 76.

Vorzugsweise ist dabei das Expansionsventil 76 ein thermostatisches Expansionsventil, das entsprechend einem Differenzdruck regelt, der sich aus der Differenz eines ersten Drucks, erzeugt durch ein in dem Temperaturfühler 86 erhitztes und über ein Kapillarrohr 88 dem Expansionsventil 76 zugeführtes Medium, und eines zweiten Drucks D2 des Kältemittels der am Eingangsanschluss 42 des Kühlkörpers 40 oder am Ausgangsanschluss 44 des Kühlkörpers 40 vorliegt, ergibt.Preferably, the expansion valve 76 is a thermostatic expansion valve that controls according to a differential pressure resulting from the difference of a first pressure generated by a heated in the temperature sensor 86 and a capillary tube 88 the expansion valve 76 supplied Medium, and a second pressure D2 of the refrigerant which is present at the input terminal 42 of the heat sink 40 or at the output terminal 44 of the heat sink 40 results.

Ein derartiges thermostatisches, mit einer Druckdifferenz arbeitendes Expansionsventil 76 ist einerseits kostengünstig, andererseits wartungsfrei und hat eine hohe Lebensdauer.Such a thermostatic, working with a pressure difference expansion valve 76 is both a cost, on the other hand maintenance-free and has a long life.

Ein derartiges thermostatisches oder mechanisches Expansionsventil 76 ist allerdings durch eine Steuerung 90 des Steuerungskühlungszweigs 70 nicht steuerbar, so dass folgende Problematik beim Einschalten des Kältemittelverdichters 10 auftritt.However, such a thermostatic or mechanical expansion valve 76 is not controllable by a controller 90 of the control cooling branch 70, so that the following problem occurs when switching on the refrigerant compressor 10.

Beim Abschalten des Kältemittelverdichters 10 wird das Einschaltventil 74 durch die Steuerung 90 geschlossen, so dass der Druck im Kühlkörper maximal dem durch den Verdampfungsdruckregler 80 eingestellten Verdampfungsdruck VD entspricht.When switching off the refrigerant compressor 10, the switch-on valve 74 is closed by the controller 90, so that the pressure in the heat sink corresponds to the maximum set by the evaporation pressure regulator 80 evaporation pressure VD.

Vorzugsweise ist der Verdampfungsdruckregler 80 ebenfalls ein mechanischer Druckregler, welcher auf einen fest eingestellten Referenzdruck regelt.Preferably, the evaporation pressure regulator 80 is also a mechanical pressure regulator, which regulates to a fixed set reference pressure.

Beim Abschalten des Kältemittelverdichters 10 kann jedoch auch der Druck in dem Kühlkörper 40 unter den durch den Verdampfungsdruckregler 80 vorgegebenen Verdampfungsdruck VD absinken.When the refrigerant compressor 10 is switched off, however, the pressure in the heat sink 40 may also fall below the vaporization pressure VD predetermined by the evaporation pressure regulator 80.

Wird nun der Kältemittelverdichter 10 eingeschaltet, so wird auch gleichzeitig das Einschaltventil 74 durch die Steuerung 90 geöffnet.If now the refrigerant compressor 10 is turned on, then the switch-on valve 74 is also opened by the controller 90 at the same time.

Da der Druck im Kühlkörper 40 dem Verdampfungsdruck VD entspricht oder unterhalb von diesem Druck liegt, bleibt der Verdampfungsdruckregler 80 geschlossen, das heißt, dass kein Kältemittel das Expansionsventil 76 und den Kühlkörper 40 durchströmen kann.Since the pressure in the heat sink 40 is equal to or below the evaporation pressure VD, the evaporation pressure regulator 80 remains closed, that is, no refrigerant can flow through the expansion valve 76 and the heat sink 40.

Darüber hinaus bleibt auch das Expansionsventil 76 geschlossen, da die durch den Temperaturfühler 86 des Expansionsventils 76 gemessene Temperatur noch keinerlei Erhöhung anzeigt.In addition, the expansion valve 76 also remains closed because the temperature measured by the temperature sensor 86 of the expansion valve 76 does not indicate any increase.

Da bei anlaufendem Kältemittelverdichter 10 die Temperatur der elektronischen Leistungsbauteile 36 relativ schnell ansteigt, erfolgt zwar eine Erwärmung des Kühlkörpers 40, die sich jedoch, da kein Kältemittel durch den Kühlkörper 40 strömt, erst mit großer Verzögerung am Temperaturfühler 86 bemerkbar machen kann, so dass nach wie vor das Expansionsventil 76 so lange geschlossen bleiben würde, bis an dem Temperaturfühler 86 der Temperaturanstieg erkannt würde.Since the temperature of the electronic power components 36 rises relatively quickly when the refrigerant compressor 10 starts up, heating of the heat sink 40 takes place, but since no refrigerant flows through the heat sink 40, it can only be felt with great delay at the temperature sensor 86, so that after as before the expansion valve 76 would remain closed until the temperature sensor 86, the temperature rise would be detected.

Diese Erwärmung führt zu einer unerwünschten Erwärmung der elektronischen Leistungsbauteile 16, so dass vielfach der Antriebsmotor 30 aus diesem Grund abgeschaltet werden muss, um die elektronischen Leistungsbauteile 36 zu schützen, auf jeden Fall reduziert jedoch eine derartige Erwärmung der elektronischen Leistungsbauteile 36 deren Lebensdauer.This heating leads to undesired heating of the electronic power components 16, so that in many cases the drive motor 30 has to be switched off in order to protect the electronic power components 36, but in any case such heating of the electronic power components 36 reduces their life.

Aus diesem Grund ist dem Expansionsventil 76 eine Umgehungsleitung 92 mit einer eingebauten Drossel 94 parallel geschaltet, die Drossel 94 kann als Düse, Kapillarleitung oder als Blende ausgebildet sein. Dabei kann die Umgehungsleitung 92 mit der Drossel 94 extern oder intern vorgesehen sein.For this reason, a bypass line 92 with a built-in throttle 94 is connected in parallel to the expansion valve 76, the throttle 94 may be formed as a nozzle, capillary or as a diaphragm. In this case, the bypass line 92 may be provided with the throttle 94 external or internal.

Die Umgehungsleitung 92 mit der eingebauten Drossel 94 führt nun dazu, dass beim Anlaufen des Kältemittelverdichters 10 und Öffnen des Einschaltventils 74 durch die Steuerung 90 trotz geschlossenem Expansionsventil 76 aufgrund der dieses überbrückenden parallelgeschalteten Umgehungsleitung 92 der Druck des Kältemittels im Kühlkörper 40 über dem durch den Verdampfungsdruckregler 80 eingestellten Verdampfungsdruck VD ansteigt, so dass aufgrund dieses Druckanstiegs der Verdampfungsdruckregler 80 öffnen wird und somit einen Kältemittelstrom durch den Kühlkörper 40 zulässt, der dazu führt, dass auch der Temperaturfühler 86 eine Erwärmung des den Kühlkörper 40 durchströmenden Kältemittels durch die Wärme der elektronischen Leistungsbauteile sehr schnell erfassen kann und zu einem Öffnen des Expansionsventils 76 führt, so dass dieses die vorgesehene Regelungsfunktion für die Kälteleistung des Kühlkörpers 40 übernimmt.The bypass line 92 with the built-in throttle 94 now leads to the fact that when starting the refrigerant compressor 10 and opening the on-off valve 74 by the controller 90 despite closed expansion valve 76 due to this bridging parallel bypass line 92, the pressure of the refrigerant in the heat sink 40 through the evaporating pressure 80 set evaporation pressure VD increases, so that due to this pressure increase, the evaporation pressure regulator 80 will open and thus allows a refrigerant flow through the heat sink 40, the leads to the fact that the temperature sensor 86 can detect a heating of the heat sink flowing through the heat sink 40 of the electronic power components very quickly and leads to an opening of the expansion valve 76, so that this assumes the intended control function for the cooling capacity of the heat sink 40.

Das erste Ausführungsbeispiel der in Fig. 3 beschriebenen Kälteanlage führt somit bereits kurz nach dem Anlaufen des Kältemittelverdichters 10 zu einem zumindest minimalen Kältemittelstrom durch den Kühlkörper 40, welcher bewirkt, dass das thermostatische Expansionsventil 76 seine Regelungsfunktion aufnimmt und rechtzeitig vor einer zu starken Erwärmung des Kühlkörpers 40 zu einer ausreichenden Kühlung desselben durch das den Kühlkörper 40 durchströmende und in diesem verdampfende Kältemittel führt.The first embodiment of in Fig. 3 Thus described shortly after the start of the refrigerant compressor 10 leads to an at least minimal refrigerant flow through the heat sink 40, which causes the thermostatic expansion valve 76 receives its control function and timely against excessive heating of the heat sink 40 to a sufficient cooling of the same by the the heat sink 40 flows through and evaporates in this refrigerant.

Ein zweites Ausführungsbeispiel einer erfindungsgemäßen Kälteanlage, dargestellt in Fig. 4, ist insoweit, als dieses dieselben Elemente wie das erste Ausführungsbeispiel aufweist, mit denselben Bezugszeichen versehen, so dass hinsichtlich der Beschreibung dieser Elemente vollinhaltlich auf die Ausführungen zum ersten Ausführungsbeispiel verwiesen werden kann.A second embodiment of a refrigeration system according to the invention, shown in FIG Fig. 4 is insofar as it has the same elements as the first embodiment, provided with the same reference numerals, so that reference may be made in full to the description of the first embodiment with regard to the description of these elements.

Im Gegensatz zum ersten Ausführungsbeispiel ist bei diesem Ausführungsbeispiel keine Umgehungsleitung 92 mit einer Drossel 94 parallel zum Expansionsventil 76 vorgesehen, sondern eine Umgehungsleitung 102 mit einer Drossel 104 parallel zum Verdampfungsdruckregler 80, die extern oder intern vorgesehen sein können. Ferner kann die Drossel 94 als Düse, Kapillarleitung oder Blende ausgebildet sein.In contrast to the first embodiment, no bypass line 92 with a throttle 94 is provided in parallel to the expansion valve 76 in this embodiment, but a bypass line 102 with a throttle 104 in parallel to the evaporation pressure regulator 80, which may be provided externally or internally. Furthermore, the throttle 94 may be formed as a nozzle, capillary or aperture.

Beim Anlaufen des Kältemittelverdichters 10 erfolgt ebenfalls ein Öffnen des Einschaltventils 74 durch die Steuerung 90 und die Umgehungsleitung 102 und die Drossel 104 werden selbst dann, wenn der Verdampfungsdruckregler 80 aufgrund eines zu niedrigen Drucks in dem Kühlkörper 40 nicht öffnen würde, zu einem begrenzten minimalen Kältemittelstrom durch den Kühlkörper 40 führen, der wiederum zur Folge hat, dass der Temperaturfühler 86 durch den Kontakt mit dem am Ausgangsanschluss 44 des Kühlkörpers austretenden Kältemittel sehr schnell auf eine Erwärmung dieses Kältemittels reagieren kann und somit das thermostatische Expansionsventil 76 die Regelung der Kälteleistung in dem Kühlkörper 40 aufnimmt.Upon start-up of the refrigerant compressor 10, opening of the on-off valve 74 by the controller 90 and the bypass line 102 and the throttle 104 will also result in a limited minimum refrigerant flow even if the evaporative pressure regulator 80 did not open due to too low a pressure in the heat sink 40 through the heat sink 40, which in turn has the consequence that the temperature sensor 86 through the Contact with the exiting at the output terminal 44 of the heat sink refrigerant can react very quickly to a heating of this refrigerant and thus the thermostatic expansion valve 76 receives the control of the cooling capacity in the heat sink 40.

Nach einer gewissen Anlaufzeit steigt dann der Druck im Kühlkörper 40 mindestens auf den durch den Verdampfungsdruckregler 80 vorgegebenen Verdampfungsdruck VD an und bei Überschreiten dieses Verdampfungsdrucks VD beginnt der Verdampfungsdruckregler 80 wiederum zu regeln.After a certain start-up time, the pressure in the heat sink 40 then increases at least to the evaporation pressure VD predetermined by the evaporation pressure regulator 80, and when this evaporation pressure VD is exceeded, the evaporation pressure regulator 80 begins to regulate again.

Damit ist ebenfalls sichergestellt, dass in dem Steuerungskühlungszweig 70 sehr schnell nach Anlaufen des Kältemittelverdichters 10 die Regelung für den Kühlkörper 40 einsetzt.This also ensures that the regulation for the heat sink 40 starts very quickly in the control cooling branch 70 after the refrigerant compressor 10 has started up.

Im Übrigen funktioniert das zweite Ausführungsbeispiel in gleicher Weise wie das voranstehend beschriebene Ausführungsbeispiel, so dass auf dieses vollinhaltlich Bezug genommen werden kann.Incidentally, the second embodiment works in the same way as the above-described embodiment, so that this can be fully incorporated by reference.

Bei einem dritten Ausführungsbeispiel einer erfindungsgemäßen Kälteanlage, dargestellt in Fig. 5, sind diejenigen Teile, die mit denen der voranstehenden Ausführungsbeispiele identisch sind, mit denselben Bezugszeichen versehen, so dass hinsichtlich der Beschreibung derselben vollinhaltlich auf die Ausführungen zu den voranstehenden Ausführungsbeispielen verwiesen werden kann.In a third embodiment of a refrigeration system according to the invention, shown in FIG Fig. 5 , those parts that are identical to those of the preceding embodiments are provided with the same reference numerals, so that with regard to the description of the same can be made in full to the comments on the above embodiments.

Im Gegensatz zu den voranstehenden Ausführungsbeispielen ist weder dem thermostatischen Expansionsventil noch dem mechanischen Verdampfungsdruckregler 80 eine Umgehungsleitung mit einer Drosselleitung zugeordnet.In contrast to the above embodiments, neither the thermostatic expansion valve nor the mechanical evaporation pressure regulator 80 is associated with a bypass line with a throttle line.

Vielmehr ist der mechanische Verdampfungsdruckregler 80 durch einen elektrisch gesteuerten Verdampfungsdruckregler 80' ersetzt, welcher ein durch eine Drucksteuerung 110 mit einem pulsweitenmodulierten Steuersignal angesteuertes Steuerventil 112 aufweist, welches zwischen der Verbindungsleitung 78 und der Verbindungsleitung 82 angeordnet ist, um den Verdampfungsdruck VD in dem Kühlkörper 40 auf den vorgesehenen Wert zu regeln.Rather, the mechanical evaporation pressure regulator 80 is replaced by an electrically controlled evaporation pressure regulator 80 ', a through a pressure control 110 having a pulse width modulated control signal controlled control valve 112 which is arranged between the connecting line 78 and the connecting line 82 in order to regulate the evaporation pressure VD in the heat sink 40 to the intended value.

Dieser elektrisch gesteuerte Verdampfungsdruckregler 80' ist über die Steuerung 90, die mit der Drucksteuerung 110 zusammenwirkt, so steuerbar, dass die Drucksteuerung 110 das Steuerventil 112 durch ein entsprechendes pulsweitenmoduliertes Steuersignal bei anlaufendem Kältemittelverdichter 10 so steuert, dass dieses einen minimalen Kältemittelstrom durch den Steuerungskühlungszweig 70 zulässt, der sicherstellt, dass das mechanische Expansionsventil 76 mit seinem Temperaturfühler 86 eine Temperaturerhöhung des den Kühlkörper 40 durchströmenden Kältemittels sehr schnell erfasst und somit die Regelung der Kälteleistung des Kühlkörpers aufnimmt.This electrically controlled evaporation pressure regulator 80 'is controllable via the controller 90, which cooperates with the pressure controller 110, that the pressure controller 110 controls the control valve 112 by a corresponding pulse width modulated control signal at starting refrigerant compressor 10 so that this a minimum refrigerant flow through the control cooling branch 70th allows, which ensures that the mechanical expansion valve 76 detects very quickly with its temperature sensor 86, a temperature increase of the heat sink 40 flowing through the refrigerant and thus receives the control of the cooling capacity of the heat sink.

Im Übrigen funktioniert das dritte Ausführungsbeispiel in gleicher Weise wie die voranstehend beschriebenen Ausführungsbeispiele, so dass auf die diese vollinhaltlich Bezug genommen werden kann.Incidentally, the third embodiment works in the same way as the above-described embodiments, so that this can be fully incorporated by reference.

Bei einem vierten Ausführungsbeispiel, dargestellt in Fig. 6, sind diejenigen Elemente, die mit denen des voranstehenden Ausführungsbeispiels identisch sind, mit denselben Bezugszeichen versehen, so dass hinsichtlich der Beschreibung derselben vollinhaltlich auf die Ausführungen zu den voranstehenden Ausführungsbeispielen Bezug genommen werden kann.In a fourth embodiment, shown in FIG Fig. 6 , those elements which are identical to those of the preceding embodiment are provided with the same reference numerals, so that with regard to the description of the same reference may be made in full to the comments on the preceding embodiments.

Im Gegensatz zum dritten Ausführungsbeispiel ist ebenfalls ein elektrisch gesteuerter Verdampfungsdruckregler 80" mit dem Steuerventil 112 vorgesehen, allerdings ist die Drucksteuerung 110' so ausgebildet, dass sie einerseits den Verdampfungsdruck VD im Kühlkörper 40, beispielsweise in der Verbindungsleitung 78, und andererseits den Druck in der Verbindungsleitung 82 erfasst und entsprechend dieser Druckdifferenz den Verdampfungsdruck VD auf einen Mindestdruck regelt.In contrast to the third embodiment, an electrically controlled evaporation pressure regulator 80 "with the control valve 112 is also provided, however, the pressure control 110 'is designed such that on the one hand the evaporation pressure VD in the heat sink 40, for example in the connecting line 78, and on the other hand, the pressure in the Connected line 82 and controls the evaporation pressure VD to a minimum pressure according to this pressure difference.

Auch diese Drucksteuerung 110' ist durch die Steuerung 90 ansteuerbar, so dass auch bereits bei anlaufendem Kältemittelverdichter unabhängig vom Druck im Kühlkörper 40 zunächst durch ein geeignetes pulsweitenmoduliertes Steuersignal für das Steuerventil 112 ein minimaler Kältemittelstrom durch den Kühlkörper 40 zugelassen werden kann, welcher sicherstellt, dass das thermostatische Expansionsventil 76 mit dem Temperaturfühler 86 die Regelung für den Kühlkörper 40 aufnimmt und erst nach einer gewissen Anlaufzeit der Verdampfungsdruckregler 80" den Verdampfungsdruck VD im Kühlkörper 40 auf den vorgesehenen Verdampfungsdruck VD einstellt.This pressure control 110 'can also be controlled by the controller 90, so that a minimal refrigerant flow through the heat sink 40 can be allowed even with a starting refrigerant compressor independently of the pressure in the heat sink 40 by a suitable pulse width modulated control signal for the control valve 112, which ensures that the thermostatic expansion valve 76 with the temperature sensor 86 receives the control for the heat sink 40 and only after a certain start-up time of the evaporation pressure regulator 80 "adjusts the evaporation pressure VD in the heat sink 40 to the intended evaporation pressure VD.

Im Übrigen funktioniert das vierte Ausführungsbeispiel in gleicher Weise wie im Zusammenhang mit den voranstehenden Ausführungsbeispielen beschrieben, so dass auf die Ausführungen im Zusammenhang mit diesen Ausführungsbeispielen vollinhaltlich Bezug genommen werden kann.Incidentally, the fourth embodiment operates in the same manner as described in connection with the above embodiments, so that the statements in connection with these embodiments can be fully incorporated by reference.

Bei einem fünften Ausführungsbeispiel, dargestellt in Fig. 7, sind ebenfalls diejenigen Teile, die mit den voranstehenden Ausführungsbeispielen identisch sind, mit denselben Bezugszeichen versehen, so dass hinsichtlich der Beschreibung derselben vollinhaltlich auf die Ausführungen zu diesen Ausführungsbeispielen Bezug genommen werden kann.In a fifth embodiment, shown in FIG Fig. 7 , Those parts which are identical to the above embodiments are also provided with the same reference numerals, so that with regard to the description thereof reference may be made in full to the comments on these embodiments.

Bei dem fünften Ausführungsbeispiel ist anstelle des elektrischen Verdampfungsdruckreglers 80" ein Verdampfungsdruckregler 80"' vorgesehen, welcher ein durch eine Drucksteuerung 120 gesteuertes Dreiwegesteuerventil 122 aufweist, welches entweder die Verbindungsleitung 78 direkt mit der Verbindungsleitung 82 verbindet oder diese über eine Drossel 124 mit der Verbindungsleitung 82 verbindet.In the fifth embodiment, instead of the electric evaporation pressure regulator 80, "an evaporation pressure regulator 80" is provided which has a three-way control valve 122 controlled by a pressure controller 120, which connects either the connection line 78 directly to the connection line 82 or via a throttle 124 to the connection line 82 combines.

Dieser Verdampfungsdruckregler 80"' steuert mit der Drucksteuerung 120 das Dreiwegesteuerventil 122 entsprechend dem Druck in der Verbindungsleitung 82, die zum Anschluss AZ1 des Kältemittelverdichters 10 führt. Die Ansteuerung des Steuerventils 122 erfolgt dabei so, dass bereits beim Abschalten des Kältemittelverdichters 10 die Drucksteuerung 120 das Steuerventil 122 so einstellt, dass dieses über die Drossel 124 die Verbindungsleitung 78 mit der Verbindungsleitung 82 verbindet.This evaporation pressure regulator 80 "'controls, with the pressure controller 120, the three-way control valve 122 corresponding to the pressure in the connection line 82 leading to the connection AZ1 of the refrigerant compressor 10. The activation of the control valve 122 takes place in such a way that already during the Switching off the refrigerant compressor 10, the pressure control 120, the control valve 122 is set so that it connects via the throttle 124, the connecting line 78 to the connecting line 82.

Wird nun der Kältemittelverdichter 10 eingeschaltet, so stellt sich an dem Anschluss AZ1 der Druck PZ1 ein, der allerdings niedriger ist als der gewünschte Verdampfungsdruck VD in dem Kühlkörper 40 und es wird durch die Drossel 124 zunächst der Druck im Kühlkörper 40 ebenfalls auf den Druck PZ1 abgesenkt.If now the refrigerant compressor 10 is turned on, the pressure PZ1 is established at the port AZ1, which, however, is lower than the desired vapor pressure VD in the heat sink 40, and the pressure in the heat sink 40 is first reduced to the pressure PZ1 by the throttle 124 lowered.

Dies hat allerdings den Vorteil, dass dadurch ebenfalls ein minimaler Kältemittelstrom durch den Kühlkörper 40 in einer Anlaufphase des Kältemittelverdichters 10 sichergestellt werden kann, so dass bereits unmittelbar nach dem Anlaufen des Kältemittelverdichters 10 das mechanische Expansionsventil 76 mit dem Temperaturfühler 86 voll funktionsfähig ist.However, this has the advantage that a minimal refrigerant flow through the heat sink 40 in a start-up phase of the refrigerant compressor 10 can be ensured thereby, so that immediately after the start of the refrigerant compressor 10, the mechanical expansion valve 76 with the temperature sensor 86 is fully functional.

Nach der Anlaufphase erfolgt dann ein Umschalten des Dreiwegesteuerventils 122 auf einen pulsweitenmodulierten Betrieb mit einer Regelung des Verdampfungsdrucks im Kühlkörper 40 auf den festgelegten Wert VD.After the start-up phase, the three-way control valve 122 is then switched to a pulse-width-modulated operation with regulation of the evaporation pressure in the heat sink 40 to the specified value VD.

Claims (12)

  1. Refrigeration system comprising a refrigeration circuit (50), a refrigerant compressor (10), a condenser (54) following on from the refrigerant compressor (10), an expansion device (58) following on from the condenser (54) and an evaporator following on from the expansion device (58) being arranged in said refrigeration circuit, said evaporator being connected to the refrigerant compressor (10), wherein the refrigerant compressor (10) has a drive motor (30) speed-controlled by an electronic motor control (32) and a control cooling branch (70) having refrigerant flowing through it, branching off from the refrigeration circuit (50) between the condenser (54) and the expansion device (58) and being guided to a connection (AZ) of the refrigerant compressor (10), a cooling element (40) connected in a heat conducting manner to electronic power components (36) of the motor control (32) being arranged in said branch, wherein a minimum evaporation temperature of the cooling element is below a liquefying temperature of the refrigerant in the condenser (54),
    characterized in that a regulating device is present for the control cooling branch (70) and is designed such that it regulates a temperature of the cooling element (40) during operation of the refrigerant compressor (10) such that a minimum evaporation temperature of the cooling element (40) is above a freezing temperature of water and above a dew point temperature of surroundings of the motor control (32), that the temperature of the cooling element (40) is at least at a minimum evaporation temperature adjustable in the cooling element (40) as a result of an evaporation pressure (VD) of the refrigerant or higher, and that the adjustment of the evaporation pressure (VD) in the cooling element (40) is brought about by an evaporation pressure regulator (80).
  2. Refrigeration system as defined in claim 1, characterized in that a minimum flow of refrigerant flows through the cooling element (40) in a start-up phase of the refrigerant compressor (10).
  3. Refrigeration system as defined in any one of the preceding claims, characterized in that the regulating device allows a minimum flow of refrigerant through the control cooling branch (70) in the start-up phase of the refrigerant compressor (10).
  4. Refrigeration system as defined in any one of the preceding claims, characterized in that the evaporation pressure regulator (80) regulates the evaporation pressure (VD) in the cooling element (40) such that it is above a pressure (PZ) at the connection (AZ) of the refrigerant compressor (10), the control cooling branch (70) being connected thereto.
  5. Refrigeration system as defined in any one of the preceding claims, characterized in that the evaporation pressure regulator (80) allows the minimum flow of refrigerant to pass through the control cooling branch (70) in the start-up phase when the refrigerant compressor (10) is switched on.
  6. Refrigeration system as defined in any one of the preceding claims, characterized in that the evaporation pressure regulator (80) is regulatorily inoperative in the start-up phase when the refrigerant compressor (10) is switched on.
  7. Refrigeration system as defined in either one of claims 5 or 6, characterized in that a bypass line (102) with a flow control valve (104) is associated with the evaporation pressure regulator (80).
  8. Refrigeration system as defined in claim 5 or 6, characterized in that the evaporation pressure regulator (80) comprises a control valve (112, 122) and a pressure control (110, 120) for the control valve (112, 122) and that the pressure control (110, 120) operates in the start-up phase of the refrigerant compressor (10) such that it allows the minimum flow of refrigerant.
  9. Refrigeration system as defined in any one of the preceding claims, characterized in that the connection (AZ) of the refrigerant compressor (10) connecting it to the flow cooling branch (70) is at a level of pressure above the level of pressure (PS) of the connection (AE) of the refrigerant compressor (10) connected to the evaporator (62).
  10. Refrigeration system as defined in any one of the preceding claims, characterized in that the control cooling branch (70) comprises a thermostatic expansion valve (76) upstream of the cooling element (40), said expansion valve being controlled by a temperature sensor (86) on the cooling element (40).
  11. Refrigeration system as defined in claim 10, characterized in that the temperature sensor (86) is arranged at an exit connection (44) of the cooling element (40).
  12. Refrigeration system as defined in claim 10 or 11, characterized in that a bypass line (92) with a flow control valve (94) is associated with the thermostatic expansion valve (76).
EP13711051.6A 2012-03-21 2013-03-21 Refrigerator Active EP2828589B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201210102404 DE102012102404A1 (en) 2012-03-21 2012-03-21 refrigeration plant
PCT/EP2013/055931 WO2013139909A1 (en) 2012-03-21 2013-03-21 Refrigeration system

Publications (2)

Publication Number Publication Date
EP2828589A1 EP2828589A1 (en) 2015-01-28
EP2828589B1 true EP2828589B1 (en) 2019-11-06

Family

ID=47913442

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13711051.6A Active EP2828589B1 (en) 2012-03-21 2013-03-21 Refrigerator

Country Status (6)

Country Link
US (1) US9194619B2 (en)
EP (1) EP2828589B1 (en)
CN (1) CN103322739B (en)
DE (1) DE102012102404A1 (en)
RU (1) RU2615864C2 (en)
WO (1) WO2013139909A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
JP6320731B2 (en) * 2013-11-26 2018-05-09 三菱重工サーマルシステムズ株式会社 Air conditioner
CN107816823B (en) 2016-09-14 2021-11-23 开利公司 Refrigeration system and lubrication method thereof
EP3361192B1 (en) * 2017-02-10 2019-09-04 Daikin Europe N.V. Heat source unit and air conditioner having the heat source unit
EP3361191B1 (en) * 2017-02-10 2022-04-06 Daikin Europe N.V. Heat source unit and air conditioner having the heat source unit
JP6436196B1 (en) * 2017-07-20 2018-12-12 ダイキン工業株式会社 Refrigeration equipment
CN111164352B (en) * 2017-10-04 2022-07-12 比泽尔制冷设备有限公司 Refrigerant compressor arrangement
US11156231B2 (en) 2018-03-23 2021-10-26 Honeywell International Inc. Multistage compressor having interstage refrigerant path split between first portion flowing to end of shaft and second portion following around thrust bearing disc
DE102019001632A1 (en) * 2019-03-08 2020-09-10 Stiebel Eltron Gmbh & Co. Kg Heat pump equipment, heating and / or water heating system and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933603A1 (en) * 1998-01-30 1999-08-04 RC Group S.p.A. Cooling system having an inverter for controlling a compressor cooled by a fluid of the system and related process

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913346A (en) 1974-05-30 1975-10-21 Dunham Bush Inc Liquid refrigerant injection system for hermetic electric motor driven helical screw compressor
CA1022425A (en) 1974-11-01 1977-12-13 Singer Company (The) Evaporator pressure regulator
SU964379A1 (en) * 1980-07-04 1982-10-07 за вители Sealed refrigeration compressor
SU1357660A1 (en) * 1985-05-27 1987-12-07 Предприятие П/Я А-3304 Refrigerating unit for cooling liquid coolants
IL109967A (en) * 1993-06-15 1997-07-13 Multistack Int Ltd Compressor
DE69602978T2 (en) 1995-02-06 2000-01-27 Carrier Corp., Syracuse Fuzzy logic control of the supply of a liquid for cooling an engine
CA2248525A1 (en) 1998-09-30 2000-03-30 Chih-Shiu Hung Method for making pads having honeycomb structure
DE19845993A1 (en) 1998-10-06 2000-04-20 Bitzer Kuehlmaschinenbau Gmbh Screw compressor
DE19925744A1 (en) * 1999-06-05 2000-12-07 Mannesmann Vdo Ag Electrically driven compression refrigeration system with supercritical process
US6357242B1 (en) 2000-07-20 2002-03-19 Delphi Technologies, Inc. Control system and method for suppressing head pressure spikes in a vehicle air conditioning system
US6651451B2 (en) * 2002-04-23 2003-11-25 Vai Holdings, Llc Variable capacity refrigeration system with a single-frequency compressor
AU2003276015A1 (en) 2002-10-02 2004-05-04 Behr Gmbh And Co. Method for regulating an air conditioner
DE10359032A1 (en) 2003-12-15 2005-07-14 Bitzer Kühlmaschinenbau Gmbh screw compressors
JP4479275B2 (en) * 2004-02-25 2010-06-09 株式会社デンソー Air conditioner
DE102006048821A1 (en) * 2006-10-09 2008-04-10 Bitzer Kühlmaschinenbau Gmbh cooling system
EP2518422A4 (en) * 2009-12-22 2016-11-02 Daikin Ind Ltd Refrigeration device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933603A1 (en) * 1998-01-30 1999-08-04 RC Group S.p.A. Cooling system having an inverter for controlling a compressor cooled by a fluid of the system and related process

Also Published As

Publication number Publication date
CN103322739A (en) 2013-09-25
WO2013139909A1 (en) 2013-09-26
RU2014142091A (en) 2016-05-20
EP2828589A1 (en) 2015-01-28
US20130247603A1 (en) 2013-09-26
CN103322739B (en) 2016-04-20
RU2615864C2 (en) 2017-04-11
DE102012102404A1 (en) 2013-09-26
US9194619B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
EP2828589B1 (en) Refrigerator
DE102012208992B4 (en) Heating/cooling circuit for vehicles, especially for hybrid vehicles or purely electric vehicles
DE3109843C1 (en) Heating system with a boiler and a heat pump
DE3215141A1 (en) AIR CONDITIONER
DE102009052484B4 (en) Heat pump cycle device
WO2014023694A2 (en) Method for controlling a compressor of a refrigeration system, and refrigeration system
DE102015222267A1 (en) air conditioning
DE112017006541T5 (en) control module
EP2211128B1 (en) Method for operating a refrigerator and a refrigerator
EP3652490A1 (en) Heat pump arrangement with a controllable heat exchanger, and method for operating a heat pump arrangement
DE102018111056A1 (en) Heating and / or water heating system
EP1813897A2 (en) Method for regulating a cooling appliance
DE102012109198A1 (en) Method for controlling defrosting of evaporator of refrigerant circuit for heating systems, involves starting/terminating defrosting of evaporator when difference between evaporation temperatures/pressures exceeds threshold value
EP3480534B1 (en) Heating system and control method for a heating system
DE2507706A1 (en) REFRIGERATED FURNITURE, IN PARTICULAR SECOND TEMPERATURE REFRIGERATOR
EP2827000B1 (en) Method for controlling a fan device of an evaporator in a heat pump circuit
DE102007039296A1 (en) heat pump system
DE102006040370A1 (en) Refrigeration unit with forced-ventilated evaporator
EP2652409B1 (en) Method for operating a heat pump device
DE102019001642A1 (en) Heating and / or water heating system
EP2810003B1 (en) Refrigeration device having two storage chambers
EP3244143A1 (en) Cooling device
EP3309478B1 (en) Method for operating a cooling circuit
DE102012107183B4 (en) Method for controlling a compressor of a refrigeration system and a refrigeration system
DE10227660B3 (en) Vehicle air conditioning system and method for operating such a system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROELKE, STEPHAN

Inventor name: MARGOTTI, BIRTE

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013013854

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F25B0031000000

Ipc: F25B0005020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 5/02 20060101AFI20190430BHEP

Ipc: F25B 47/00 20060101ALI20190430BHEP

Ipc: F25B 31/00 20060101ALI20190430BHEP

Ipc: F25B 41/04 20060101ALI20190430BHEP

Ipc: F25B 1/047 20060101ALI20190430BHEP

INTG Intention to grant announced

Effective date: 20190529

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BITZER KUEHLMASCHINENBAU GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BITZER KUEHLMASCHINENBAU GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1199275

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013013854

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191106

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200207

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013013854

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200321

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1199275

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 12

Ref country code: GB

Payment date: 20240319

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240321

Year of fee payment: 12

Ref country code: FR

Payment date: 20240326

Year of fee payment: 12