EP2815705A1 - Adapter direct drive with manual retraction, lockout and connection mechanisms - Google Patents

Adapter direct drive with manual retraction, lockout and connection mechanisms Download PDF

Info

Publication number
EP2815705A1
EP2815705A1 EP14173314.7A EP14173314A EP2815705A1 EP 2815705 A1 EP2815705 A1 EP 2815705A1 EP 14173314 A EP14173314 A EP 14173314A EP 2815705 A1 EP2815705 A1 EP 2815705A1
Authority
EP
European Patent Office
Prior art keywords
assembly
drive
lock
drive coupling
coupling assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14173314.7A
Other languages
German (de)
French (fr)
Other versions
EP2815705B1 (en
Inventor
Earl Zergiebel
Ramiro Cabrera
Paul Richard
David Chowaniec
Ryan Williams
Anand Subramanian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201361837225P priority Critical
Priority to US14/286,053 priority patent/US9797486B2/en
Application filed by Covidien LP filed Critical Covidien LP
Publication of EP2815705A1 publication Critical patent/EP2815705A1/en
Application granted granted Critical
Publication of EP2815705B1 publication Critical patent/EP2815705B1/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • A61B2017/00486Adaptors for coupling parts with incompatible geometries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2931Details of heads or jaws with releasable head
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18568Reciprocating or oscillating to or from alternating rotary
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18568Reciprocating or oscillating to or from alternating rotary
    • Y10T74/18576Reciprocating or oscillating to or from alternating rotary including screw and nut

Abstract

A surgical device adapter (200) for coupling an end effector (300) to a handle assembly (100) is disclosed. The surgical device adapter (200) includes: a housing (252, 260); a drive mechanism (330, 332) disposed within the housing and couplable to the handle assembly (100) and the end effector; and a drive coupling assembly (210) coupled to the surgical device adapter and selectively couplable to the handle assembly (100), the drive coupling assembly (210) including a retraction assembly (280, 282) selectively couplable to the drive mechanism (330, 332) such that rotation of the drive coupling assembly (210) about a longitudinal axis defined by the surgical device adapter and relative to the housing actuates the drive mechanism (330, 332).

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/837,225, filed June 20, 2013 , the entire disclosure of which is incorporated by reference herein.
  • BACKGROUND 1. Technical Field
  • The present disclosure relates to surgical apparatuses, devices and/or systems for performing endoscopic surgical procedures and methods of use thereof. More specifically, the present disclosure relates to electromechanical, hand-held surgical apparatuses, adapters, devices and/or systems configured for use with removable disposable loading units and/or single use loading units for clamping, cutting and/or stapling tissue.
  • 2. Background of Related Art
  • Currently there are various drive systems for operating and/or manipulating electromechanical surgical devices. In many instances the electromechanical surgical devices include a reusable handle assembly, and disposable or single-use loading units. The loading units are selectively connected to the handle assembly prior to use and then disconnected from the handle assembly following use in order to be disposed of or in some instances sterilized for re-use.
  • Many of the existing end effectors for use with many of the existing surgical devices and/or handle assemblies are driven by a linear force. For examples, end effectors for performing endo-gastrointestinal anastomosis procedures, end-to-end anastomosis procedures and transverse anastomosis procedures, each typically require a linear driving force in order to be operated. As such, these end effectors are not compatible with surgical devices and/or handle assemblies that use rotary motion to deliver power or the like.
  • In order to make the linear driven end effectors compatible with surgical devices and/or handle assemblies that use a rotary motion to deliver power, a need exists for adapters and/or adapter assemblies to interface between and interconnect the linear driven end effectors with the rotary driven surgical devices and/or handle assemblies. There is also a need for adapters that include manual retraction, connection, and locking and release mechanisms for coupling to the surgical devices.
  • SUMMARY
  • Further details and aspects of exemplary embodiments of the present invention are described in more detail below with reference to the appended Figures.
  • According to one embodiment of the present disclosure, a surgical device adapter for coupling an end effector to a handle assembly is disclosed. The surgical device adapter includes: a housing; a drive mechanism disposed within the housing and couplable to the handle assembly and the end effector; and a drive coupling assembly coupled to the surgical device adapter and selectively couplable to the handle assembly, the drive coupling assembly including a retraction assembly selectively couplable to the drive mechanism such that rotation of the drive coupling assembly about a longitudinal axis defined by the surgical device adapter and relative to the housing actuates the drive mechanism.
  • According to one aspect of the above embodiment, the drive mechanism includes a first drive screw coupled to the end effector and configured to actuate the end effector, the first drive screw mechanically engaged to a first gear disposed within the drive coupling assembly.
  • According to one aspect of the above embodiment, the retraction assembly includes: a lock rocker pivotally coupled within the drive coupling assembly; and a lock ring rotatable about the longitudinal axis and relative to the drive coupling assembly, wherein upon rotation thereof the lock ring is configured to actuate the lock rocker to meshingly-engage the lock rocker with the first gear.
  • According to one aspect of the above embodiment, the retraction assembly further includes: a spring-loaded lock bolt slidably coupled to the drive coupling and engaged with the lock ring, the lock bolt configured to prevent rotation of the lock ring.
  • According to one aspect of the above embodiment, the lock ring further includes a flexible, resilient tab configured to engage the drive coupling assembly and prevent rotation of the lock ring.
  • According to one aspect of the above embodiment, the drive coupling assembly includes at least one latch pivotally coupled therein and configured to engage the handle assembly.
  • According to one aspect of the above embodiment, the at latch includes a tab coupled to a distal end thereof, the tab configured to engage the first gear.
  • According to one aspect of the above embodiment, the drive coupling assembly includes a lock ring rotatable relative to the drive coupling assembly, wherein upon rotation the lock ring is configured to engage the tab to meshingly-engage the tab with the first gear.
  • According to one aspect of the above embodiment, the drive mechanism includes a second drive screw coupled to the end effector and configured to articulate the end effector about a pivot axis transverse to the longitudinal axis, the second drive screw mechanically engaged to a second gear disposed within the drive coupling assembly.
  • According to one aspect of the above embodiment, the retraction assembly includes: a cam lock including a cam slot; and a slidable button slidably disposed within the drive coupling assembly, the slidable button including a pin disposed within the cam slot, wherein proximal movement of the slidable button actuates the cam lock to meshingly-engage with the second gear.
  • According to one aspect of the above embodiment, the retraction assembly further includes a spring-loaded release switch slidably coupled to the drive coupling configured to prevent longitudinal movement of the slidable button.
  • According to one aspect of the above embodiment, the slidable button further includes a latch at a proximal end thereof configured to engage the drive coupling assembly when the slidable button is moved in a proximal direction.
  • According to one embodiment of the present disclosure, a surgical device is disclosed. The surgical device includes: an end effector including a first jaw and a second jaw moveable relative to the first jaw; a handle assembly including at least one motor mechanically coupled to the jaw assembly; an adapter assembly removably coupled to a proximal end of the jaw assembly and a distal end of the handle assembly. The adapter assembly includes: a housing; a drive mechanism disposed within the housing and configured to couple the at least one motor to the end effector; and a drive coupling assembly coupled to the surgical device adapter and selectively couplable to the surgical instrument, the drive coupling assembly including a retraction assembly selectively couplable to the drive mechanism such that rotation of the drive coupling assembly about a longitudinal axis defined by the surgical device adapter and relative to the housing actuates the drive mechanism.
  • According to one aspect of the above embodiment, the drive mechanism includes: a first drive screw coupled to the end effector and configured to actuate the first and second jaws, the first drive screw mechanically engaged to a first gear disposed within the drive coupling assembly; and a second drive screw coupled to the end effector and configured to articulate the end effector about a pivot axis transverse to the longitudinal axis, the second drive screw mechanically engaged to a second gear disposed within the drive coupling assembly.
  • According to one aspect of the above embodiment, the retraction assembly includes: a lock rocker pivotally coupled within the drive coupling assembly; and a lock ring rotatable relative to the drive coupling assembly, wherein upon rotation thereof the lock ring is configured to engage the lock rocker to meshingly-engage the lock rocker with the first gear.
  • According to one aspect of the above embodiment, the retraction assembly further includes a spring-loaded lock bolt slidably coupled to the drive coupling and engaged with the lock ring, the lock bolt configured to prevent rotation of the lock ring.
  • According to one aspect of the above embodiment, the lock ring further includes a flexible, resilient tab configured to engage the drive coupling assembly and prevent rotation of the lock ring.
  • According to one aspect of the above embodiment, the drive coupling assembly includes at least one latch pivotally coupled therein and configured to engage the surgical device, wherein the at least one latch includes a tab coupled to a distal end thereof, the tab configured to engage the first gear.
  • According to one aspect of the above embodiment, the drive coupling assembly includes a lock ring rotatable relative to the drive coupling assembly, wherein upon rotation thereof the lock ring is configured to engage the tab to meshingly-engage the tab with the first gear.
  • According to one aspect of the above embodiment, the retraction assembly includes: a cam lock including a cam slot; and a slidable button slidably disposed within the drive coupling assembly, the slidable button including a pin disposed within the cam slot, wherein proximal movement of the slidable button actuates the cam lock to meshingly-engage with the second gear; and a spring-loaded release switch slidably coupled to the drive coupling configured to prevent longitudinal movement of the slidable button.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:
    • Fig. 1 is a perspective view of an electromechanical surgical system including a surgical instrument, an end effector and an adapter assembly according to the present disclosure;
    • Fig. 2 is a perspective, front view of the surgical instrument of Fig. 1, according to the present disclosure;
    • Fig. 3 is a perspective, rear view of the adapter assembly of Fig. 1, according to the present disclosure;
    • Fig. 4 is a rear view of the adapter assembly of Fig. 1, according to the present disclosure;
    • Fig. 5 is a further perspective, rear view of the adapter assembly of Fig. 1, according to the present disclosure;
    • Fig. 6 is a perspective view of a drive coupling of the adapter assembly of Fig. 1, according to the present disclosure;
    • Fig. 7 is a perspective view of a pair of opposing latches of the drive coupling of Fig. 6, according to the present disclosure;
    • Fig. 8 is a perspective view of one latch of the pair of latches of Fig. 7, according to the present disclosure;
    • Fig. 9 is a perspective, partially-disassembled view of the adapter assembly of Fig. 1, according to the present disclosure;
    • Fig. 10 is a perspective view of a proximal housing block of the adapter assembly of Fig. 1, according to the present disclosure;
    • Fig. 11 is a perspective view of shafts and a pin of the adapter assembly of Fig. 1, according to the present disclosure;
    • Fig. 12 is a rear, partially-disassembled view of the adapter assembly of Fig. 1, according to the present disclosure;
    • Fig. 13 is a perspective view of a proximal housing block of the adapter assembly of Fig. 1, according to the present disclosure;
    • Fig. 14 is a cross-sectional, side view of the adapter assembly of Fig. 1, taken across the lines 14-14 of Fig. 3, according to the present disclosure;
    • Fig. 15 is a partially-disassembled, side view of the drive coupling assembly including a retraction assembly and the adapter assembly of Fig. 1, according to the present disclosure;
    • Fig. 16 is a perspective view of the drive coupling assembly of Fig. 15, according to the present disclosure;
    • Fig. 17 is a cross-sectional view of the adapter assembly of Fig. 15, taken along the line 17-17 of Fig. 16, with a lock rocker of the retraction assembly disengaged from a drive mechanism, according to the present disclosure;
    • Fig. 18 is a cross-sectional view of the adapter assembly of Fig. 15, taken along the line 17-17 of Fig. 16, with the lock rocker of the retraction assembly engaged to the drive mechanism, according to the present disclosure;
    • Fig. 19 is a cross-sectional view of the adapter assembly of Fig. 15, taken along the line 14-14 of Fig. 3, with a lock bolt engaged with a lock ring of the retraction assembly, according to the present disclosure;
    • Fig. 20 is a perspective, partially-disassembled view of the drive mechanism of Fig. 17, according to the present disclosure;
    • Fig. 21 is a rear, partially-disassembled view of the adapter assembly of Fig. 15, according to the present disclosure;
    • Fig. 22 is a perspective view of a spacer, according to the present disclosure;
    • Fig. 23 is a side, partially-disassembled view of the adapter assembly of Fig. 15, according to the present disclosure;
    • Fig. 24 is a rear view of the adapter assembly of Fig. 15, according to the present disclosure;
    • Fig. 25 is a perspective view of the lock bolt of Fig. 19, according to the present disclosure;
    • Fig. 26 is a perspective view of the lock rocker of Fig. 17, according to the present disclosure;
    • Fig. 27 is a perspective view of the lock ring of Fig. 19, according to the present disclosure;
    • Fig. 28 is a perspective, partially-disassembled view of the retraction assembly of Fig. 17 in its home configuration, according to the present disclosure;
    • Fig. 29 is a perspective, partially-disassembled view of the retraction assembly of Fig. 17 with the lock bolt disengaged from the lock ring, according to the present disclosure;
    • Fig. 30 is a perspective, partially-disassembled view of the retraction assembly of Fig. 17 with the lock ring partially-rotated, according to the present disclosure;
    • Fig. 31 is a perspective, partially-disassembled view of the retraction assembly of Fig. 17 with the lock ring fully rotated pivoting the lock, according to the present disclosure;
    • Fig. 32 is a side view of the drive coupling assembly with a retraction assembly according to another embodiment of the present disclosure;
    • Fig. 33 is a perspective view of a lock bolt of the retraction assembly of Fig. 32, according to the present disclosure;
    • Fig. 34 is a perspective view of a lock ring of the retraction assembly of Fig. 32, according to the present disclosure;
    • Fig. 35 is a side view of the drive coupling assembly with a retraction assembly according to another embodiment of the present disclosure;
    • Fig. 36 is a perspective view of a lock ring of the retraction assembly of Fig. 35, according to the present disclosure;
    • Fig. 37 is a perspective, partially-disassembled view of the drive coupling assembly with a retraction assembly according to another embodiment of the present disclosure;
    • Fig. 38 is a perspective, partially-disassembled view of a lock ring and latches of the retraction assembly of Fig. 37, according to the present disclosure;
    • Fig. 39 is a rear, perspective view of the adapter assembly of Fig. 1 with an articulation drive mechanism and an articulation retraction assembly, according to the present disclosure;
    • Fig. 40 is a side, partially-disassembled view of the articulation retraction assembly of Fig. 39, according to the present disclosure;
    • Fig. 41 is a side view of a slidable button and a cam lock of the articulation retraction assembly of Fig. 39, according to the present disclosure;
    • Fig. 42 is a side view of the adapter assembly of Fig. 1 with the articulation retraction assembly in a home configuration, according to the present disclosure;
    • Fig. 43 is a side view of the adapter assembly of Fig. 1 with the articulation retraction assembly engaged with the articulation drive mechanism, according to the present disclosure;
    • Fig. 44 is a side view of the adapter assembly of Fig. 1 with the articulation retraction assembly in a home configuration and a release switch in a closed configuration, according to the present disclosure;
    • Fig. 45 is a side view of the adapter assembly of Fig. 1 with a release switch in an open configuration and the slidable button in a distal configuration, according to the present disclosure;
    • Fig. 46 is a side view of the adapter assembly of Fig. 1 with a release switch in the open configuration and the slidable button in a proximal configuration, according to the present disclosure; and
    • Fig. 47 is a side view of the adapter assembly of Fig. 1 with a release switch in the closed configuration and the slidable button in the proximal configuration, according to the present disclosure.
    DETAILED DESCRIPTION OF EMBODIMENTS
  • Embodiments of the presently disclosed electromechanical surgical system, apparatus and/or device are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term "distal" refers to that portion of the electromechanical surgical system, apparatus and/or device, or component thereof, that are farther from the user, while the term "proximal" refers to that portion of the electromechanical surgical system, apparatus and/or device, or component thereof, that are closer to the user. The terms "left" and "right" refer to that portion of the electromechanical surgical system, apparatus and/or device, or component thereof, that are on the left and right sides, respectively, from the perspective of the user facing the distal end of the electromechanical surgical system, apparatus and/or device from the proximal end while the surgical system, apparatus and/or device is oriented in non-rotational (e.g., home) configuration.
  • Referring initially to Figs. 1-3, an electromechanical, hand-held, powered surgical system, in accordance with an embodiment of the present disclosure is shown and generally designated 10. Electromechanical surgical system 10 includes a surgical apparatus or device in the form of an electromechanical, hand-held, powered surgical instrument 100 that is configured for selective attachment thereto of a plurality of different end effectors 300, via an adapter assembly 200 (e.g., elongated body). The end effector 300 and the adapter assembly 200 are configured for actuation and manipulation by the electromechanical, hand-held, powered surgical instrument 100. In particular, the surgical instrument 100, the adapter assembly 200, and the end effector 300 are separable from each other such that the surgical instrument 100 is configured for selective connection with adapter assembly 200, and, in turn, adapter assembly 200 is configured for selective connection with any one of a plurality of different end effectors 300.
  • Reference may be made to International Application No. PCT/US2008/077249, filed September 22, 2008 (Inter. Pub. No. WO 2009/039506 ) and U.S. Patent Application Publication No. 2011/0121049 , the entire contents of all of which are incorporated herein by reference, for a detailed description of the construction and operation of exemplary electromechanical, hand-held, powered surgical instrument 100.
  • As illustrated in Figs. 1 and 2, surgical instrument 100 includes a handle housing 102 including one or more controllers, a power source, and a drive mechanism having one or more motors, gear selector boxes, gearing mechanisms, and the like. The housing 102 also supports a control assembly 103. Control assembly 103 may include one or more finger-actuated control buttons, rocker devices, joystick or other directional controls, whose input is transferred to the drive mechanism to actuation the adapter assembly 200 and the end effector 300.
  • In particular, drive mechanism is configured to drive shafts and/or gear components in order to selectively move tool assembly 304 of end effector 300 relative to proximal body portion 302 of end effector 300, to rotate end effector 300 about a longitudinal axis "X-X" (Fig. 1) defined by the adapter assembly 200 relative to handle housing 102, to move anvil assembly 306 relative to cartridge assembly 308 of end effector 300, and/or to fire a stapling and cutting cartridge within cartridge assembly 308 of end effector 300.
  • With continued reference to Fig. 2, the housing 102 defines a nose or connecting portion 108 configured to accept a corresponding drive coupling assembly 210 of adapter assembly 200. The connecting portion 108 of surgical instrument 100 has a cylindrical recess 108b that receives the drive coupling assembly 210 of adapter assembly 200 when adapter assembly 200 is mated to surgical instrument 100. Connecting portion 108 houses one or more rotatable drive connectors that interface with corresponding rotatable connector sleeves of the adapter assembly 200 as described in further detail below. The surgical instrument 100 include rotatable drive connector 118, 120, 122 disposed within the connecting portion 108 that are actuated by the drive mechanism.
  • With reference to Figs. 2 and 4, when adapter assembly 200 is mated to surgical instrument 100, each of rotatable drive connectors 118, 120, 122 of surgical instrument 100 couples with a corresponding rotatable connector sleeve 218, 220, 222 of adapter assembly 200. In this regard, the interface between corresponding first drive connector 118 and first connector sleeve 218, the interface between corresponding second drive connector 120 and second connector sleeve 220, and the interface between corresponding third drive connector 122 and third connector sleeve 222 are keyed such that rotation of each of drive connectors 118, 120, 122 of surgical instrument 100 causes a corresponding rotation of the corresponding connector sleeve 218, 220, 222 of adapter assembly 200.
  • The mating of drive connectors 118, 120, 122 of surgical instrument 100 with connector sleeves 218, 220, 222 of adapter assembly 200 allows rotational forces to be independently transmitted via each of the three respective connector interfaces. The drive connectors 118, 120, 122 of surgical instrument 100 are configured to be independently rotated by drive mechanism.
  • Since each of drive connectors 118, 120, 122 of surgical instrument 100 has a keyed and/or substantially non-rotatable interface with respective connector sleeves 218, 220, 222 of adapter assembly 200, when adapter assembly 200 is coupled to surgical instrument 100, rotational force(s) are selectively transferred from drive mechanism of surgical instrument 100 to adapter assembly 200.
  • The selective rotation of drive connector(s) 118, 120 and/or 122 of surgical instrument 100 allows surgical instrument 100 to selectively actuate different functions of end effector 300. As discussed in greater detail below, selective and independent rotation of first drive connector 118 of surgical instrument 100 corresponds to the selective and independent opening and closing of tool assembly 304 of end effector 300, and driving of a stapling/cutting component of tool assembly 304 of end effector 300. Also, the selective and independent rotation of second drive connector 120 of surgical instrument 100 corresponds to the selective and independent articulation of tool assembly 304 of end effector 300 about an articulation axis that is transverse to longitudinal axis "X-X" (Fig. 1). In particular, the end effector 300 defines a second longitudinal axis and is movable from a first position in which the second longitudinal axis is substantially aligned with the first longitudinal axis "X-X" to at least a second position in which the second longitudinal axis is disposed at a non-zero angle with respect to the first longitudinal axis "X-X." Additionally, the selective and independent rotation of third drive connector 122 of surgical instrument 100 corresponds to the selective and independent rotation of end effector 300 about longitudinal axis "X-X" (Fig. 1) relative to handle housing 102 of surgical instrument 100.
  • With reference to Figs. 3 and 5, the drive coupling assembly 210 of adapter assembly 200 includes an orienting groove 230 for orienting the adapter assembly 200 to the instrument 100. The adapter assembly 200 also includes an adapter housing 232 coupled to the coupling assembly 210 which encloses a drive mechanism 330 as described in further detail below with respect to Figs. 20 and 21. In embodiments, the drive coupling assembly 210 may be removably coupled to the drive housing 232. The adapter housing 232 may include two portions interconnected via fasteners 233 (Fig. 14).
  • With reference to Figs. 6-8, the drive coupling assembly 210 includes a pair of opposing, spring-loaded latches 236. Each of the latches 236 includes a tooth 242, a pivot pin 238 pivotally coupling the latch 236 to the drive coupling assembly 210, and defines a slot 240 for enclosing a spring 235. The latches 236 automatically rotate/pivot open when they engage corresponding slots 108a of the connecting portion 108 (Fig. 2) with the teeth 242. To disengage the drive coupling assembly 210 from the connector portion 108 the latches 236 are pressed down, thereby pivoting the latches 236 and lifting the teeth 242 from the slots 108a.
  • Figs. 9-11 illustrate a drive assembly 250 of the adapter assembly 200. The drive assembly 250 includes a distal housing block 252 having a substantially cylindrical body enclosed within the housing 232. The block 252 includes a plurality of openings 254 therein, which may be threaded, or may include threaded shafts 256 to guide drive screws (not shown) therethrough. The drive screws may be coupled to the corresponding rotatable connector sleeve 218, 220, 222 of adapter assembly 200. The block 252 may also include additional pins 258 to provide structural integrity. The shafts 256 also act as thermal conductors during autoclaving to sterilize the drive screws.
  • Figs. 4 and 12-14 illustrate final assembly of the adapter assembly 200. Fig. 12 shows the drive coupling assembly 210 coupled to the adapter housing 232. A distal housing block 260 (Fig. 13) is thereafter coupled to the distal housing block 252 as shown in Fig. 4. As shown in Figs. 13 and 14, the proximal housing 260 also includes a plurality of openings 259 therethrough configured to mate with the shafts 256 and the pin 258, which provide structural support for the housing blocks 252 and 260. Various fasteners 253 (e.g., screws, bolts, etc.) may be used to secure the housing blocks 252 and 260 (Fig. 4).
  • With reference to Figs. 3 and 15-19, the adapter assembly 200 also includes a first retraction assembly 280 disposed within the drive coupling assembly 210 for manually reversing the drive mechanism 330. In particular, the retraction assembly 280 is configured to reverse the clamp and firing strokes of the adapter assembly 200 by retracting an actuation drive screw 332 (Fig. 20) coupled to the corresponding rotatable connector sleeve 218 of adapter assembly 200.
  • The retraction assembly 280 includes a lock ring 282, a spring-loaded lock bolt 284, and a lock rocker 285. The lock ring 282 is used to manually engage the lock rocker 285 with the drive mechanism 330 such that continual clockwise rotation of the lock ring 282 reverses the drive mechanism 330 as described in further detail below. The lock bolt 284 is a safety mechanism, which prevents accidental engagement of the lock ring 282 with the drive mechanism 330. The lock bolt 284 is spring-loaded and is thereby continually engaged with the lock ring 282 until it is pulled proximally to allow for actuation of the lock ring 282.
  • With reference to Figs. 17-21, the drive mechanism 330 (Fig. 20) of the adapter assembly 200 is shown. The drive mechanism 330 includes the drive screw 332 having a keyed distal end 331 dimensioned and configured to engage the connector sleeve 218 such that rotation thereof is transferred to the drive screw 332. The drive screw 332 also includes a spur gear 334 meshingly engaged with an idler gear 336. The drive mechanism 330 further includes an outer gear 338 having an inner gearing surface 338a and an outer gearing surface 338b. The idler gear 336 is rotationally disposed over one of the shafts 256 and acts as a planetary gear interconnecting the spur gear 334 with the outer gear 338 thereby allowing for transfer of rotational motion from the spur gear 334 to the outer gear 338. The outer gear 338 is freely rotatable unless engaged by the lock ring 282 as described in further below.
  • With reference to Figs. 15 and 21-24, assembly of the drive mechanism 330 and the retraction assembly 280 is illustrated. As shown in Figs. 17-19, the gears 334, 336, 338 are disposed between the distal and proximal housing blocks 252 and 260. Initially, the lock ring 282 is inserted over the distal end of the drive coupling assembly 210, which is then inserted into the proximal housing block 252, as shown in Fig. 23. The housing 232 (e.g., two halves are mated) is then coupled to the proximal housing block 252. The drive mechanism 330 is then inserted into the proximal housing block 252 as shown in Fig. 21 followed by a spacer 262 (Fig. 22).
  • With reference to Fig. 22, the spacer 262 is disposed between the proximal and distal housing blocks 252 and 260 providing for adequate clearance for the gears 334, 336, 338 to rotate as described above. The spacer 262 includes a plurality of cylindrical surface features 263 having openings 263a therein for the passage of the shafts 256 and the pin 258 therethrough. During assembly, the drive mechanism 330 including the gears 334, 336, 338 are disposed over the proximal end of the distal housing block 252 and the spacer 262 is inserted over the gears 334, 336, 338, followed by the distal housing block 260 as shown in Fig. 24, which are then secured as described above.
  • With reference to Figs. 19 and 25, the lock bolt 284 includes a proximally-facing post 286 having a spring 288 disposed thereon, which biases the lock bolt 284 in a distal direction. The lock bolt 284 also includes a feature 290 for interfacing with the lock ring 282 as described in further detail below and a grip feature 292 allowing for better grip by the user. The lock bolt 284 further includes opposing, laterally-facing tabs 294a, 294b for slidable coupling of the lock bolt 284 to the drive coupling assembly 210.
  • With reference to Figs. 17, 18, and 26, the lock rocker 285 includes a pivot pin 310 disposed within an opening 311 pivotally coupling the lock rocker 285 to the drive coupling assembly 210 beneath one of the latches 236. The lock rocker 285 includes a latching feature 312 disposed at a proximal end thereof, a tooth feature 314 disposed distally of the pivot pin 310, and a camming feature 316 disposed at a distal end thereof. The latching feature 312 is configured to engage a slot 260a disposed on the distal housing block 260 as shown in Figs. 17 and 24. The tooth feature 314 of the lock rocker 285 is configured to engage the outer gearing surface 338b of the outer gear 338 and the camming feature 316 of the lock rocker 285 is configured to engage the lock ring 282 as shown in Fig. 18 and described in further detail below.
  • With reference to Figs. 16-19 and 27, the lock ring 282 includes a radial slot 318 configured and dimensioned for engaging the feature 290 of the lock bolt 284. The lock ring 282 also includes first and second camming surfaces 320, 324 for engaging the camming feature 316 of the lock rocker 285. The first camming surface 320 is disposed on an inner circumference of the lock ring 282 and maintains the lock rocker 285 engaged with the distal housing block 260 as shown in Figs. 17 and 24. The first camming surface 320 also includes an abutment surface 322 configured and dimensioned for engaging the feature 290 of the lock bolt 284 after the lock ring 282 has been rotated. The second camming slot 324 is disposed on an outer circumference of the lock ring 282 and includes first and second camming portions 324a, 324b. The second camming surface slot 324 is used to guide the lock rocker 285 into engagement with the outer gear 338 as shown in Fig. 18 and described in further detail below.
  • Figs. 28-31, show operation of the retraction assembly 280. Retraction may be attempted following disconnection of the instrument 100 from the adapter assembly 200, e.g., in the event the instrument 100 should fail or become inoperable during a surgical procedure. Figs. 17, 19, and 28 show the retraction assembly 280 in its so-called "home" configuration, in which the lock rocker 285 is disengaged from the drive mechanism 330. In the "home" configuration, the lock bolt 284 is biased by the spring 288 to engage the lock ring 282 at the slot 318, as shown in Figs. 19 and 28, thereby preventing rotation of the lock ring 282. The lock rocker 285, in turn, is engaged with the slot 260a of the distal housing block 260 as shown in Figs. 17, 25, and 28. The lock rocker 285, and in particular the camming feature 316 of the lock rocker 285 is initially engaged with the first camming surface 320 of the lock ring 282.
  • Fig. 29 shows the lock bolt 284 being disengaged from the lock ring 282 by pulling the lock bolt 284 proximally as indicated by arrow "A," thus allowing for rotation of the lock ring 282 in a clockwise direction to begin the retraction process. With reference to Fig. 30, as the lock ring 282 is initially rotated as indicated by arrow "B," the camming feature 316 of the lock rocker 285 is still engaged with the first camming surface 320 but travels along the first camming surface 320 and eventually contacts the first camming portion 324a of the second camming surface 320. As the rotation of the lock ring 282 is continued, the camming feature 316 of the lock rocker 285 continues to travel along the second camming portion 324b of the second camming surface 320. Concomitantly therewith, the lock bolt 284 is also reengaged with the lock ring 282 by the spring 288 and rests against the abutment surface 322.
  • Figs. 18 and 31 show completed rotation of the lock ring 282 in which the drive coupling assembly 210 is engaged with the drive mechanism 330, namely, via the lock ring 282 to the outer gear 338. As the drive coupling assembly 210 is manually rotated relative to the drive housing 232, in a clockwise direction as indicated by arrow "B," along with the lock ring 282, the outer gear 338 is also rotated via the lock rocker 285. This in turn rotates the drive screw 332 via the idler gear 334 and reverses and/or retracts the anvil assembly 306 relative to cartridge assembly 308 of end effector 300 that is connected to the distal end of adapter assembly 200. This prevents counterclockwise rotation of the lock ring 282 and any forward (e.g., clamping and/or firing) movement of the drive screw 332.
  • Figs. 32-34 show another embodiment of a retraction assembly 380, which is substantially similar to the retraction assembly 280 and only the differences therebetween are described. The retraction assembly 380 includes a lock ring 382, a spring-loaded lock bolt 384, and the lock rocker 285, which is unchanged.
  • With reference to Figs. 32 and 33, the lock bolt 384 includes a proximally-facing post 386 having a spring 388 disposed therein, which biases the lock bolt 384 in a distal direction. The lock bolt 384 also includes a feature (e.g., post) 390 for interfacing with the lock ring 382 as described in further detail below and a grip feature 392 allowing for better grip by the user and also abutting the spring 388.
  • With reference to Figs. 32 and 34, the lock ring 382 includes a first slot 418 configured and dimensioned for engaging the feature 390 of the lock bolt 384. The lock ring 382 also includes first and second camming surfaces 420, 424 for engaging the camming feature 316 of the lock rocker 285. The first camming surface 320 is disposed on an inner circumference of the lock ring 382 and maintains the lock rocker 285 engaged with the distal housing block 260 as shown in Fig. 17 with respect to the lock ring 282. The lock ring 382 also includes a second slot 420 configured and dimensioned for engaging the feature 390 of the lock bolt 384 after the lock ring 382 has been rotated. The second camming slot 424 is disposed on an outer circumference of the lock ring 382 and includes first and second camming portions 424a, 424b. The second camming surface slot 424 is used to guide the lock rocker 285 into engagement with the outer gear 338 as shown in Fig. 18 with respect to the lock ring 282.
  • The lock ring 382 is operated in a similar manner as the lock ring 282 as described above with respect to Figs. 28-31. Initially, the lock bolt 384 is pulled proximally out of the first slot 418 and the lock ring 382 is rotated in a clockwise direction. After rotation is completed, the lock rocker 285 is engaged with the drive mechanism 330, namely, the outer gear 338, as described above. The lock bolt 384 is also reengaged with the lock ring 382 by the spring 388 and the feature 390 engages the second slot 422. The drive coupling assembly 210 is then manually rotated relative to the drive housing 232 in a clockwise direction as indicated by arrow "C," to retract/reverse the drive mechanism 330.
  • Figs. 35 and 36 show another embodiment of a retraction assembly 480, which is substantially similar to the retraction assembly 280 and only the differences therebetween are described. The retraction assembly 480 includes a lock ring 482 and the lock rocker 285, which is unchanged. The lock ring 482 includes a flexible, resilient tab 484 coupled thereto, which performs the function of the lock bolts 284 and 384. The resilient tab 484 includes a feature (e.g., block) 490 for interfacing with first and second openings 518 and 520 defined on the outer surface of the device coupling assembly 210. The resilient tab 484 also includes a grip feature 492 allowing for better grip by the user. The lock ring 482 is substantially similar to the lock rings 282 and 382 described above and includes similar camming surfaces for interfacing with the lock rocker 285.
  • The lock ring 482 is operated in a similar manner as the lock rings 282 and 382 as described above with respect to Figs. 28-34. Initially, the resilient tab 484 is pulled out of the first opening 518 and the lock ring 482 is rotated in a clockwise direction. After rotation is completed, the lock rocker 285 is engaged with the drive mechanism 330, namely, the outer gear 338 as described above. The resilient tab 484 is also reengaged with the device coupling assembly 210 as the feature 490 engages the second slot 520. The drive coupling assembly 210 is then manually rotated relative to the drive housing 232 in a clockwise direction to retract/reverse the drive mechanism 330.
  • Figs. 37 and 38 show another embodiment of a retraction assembly 580, which is substantially similar to the retraction assembly 280 and only the differences therebetween are described. The retraction assembly 580 includes a lock ring 582 and a pair of tabs 584 coupled to the distal ends of the latches 236. In embodiments, only one of the pair of latches 236 may include the tab 584. The tab 584 is configured and dimensioned to interface with the outer gearing surface 338b of the outer gear 338. The lock ring 582 includes a pair of camming tabs 586 configured and dimensioned to interface with the tabs 584 of the latches 236, thereby engaging the tabs 584 with the outer gear 338.
  • During operation, after the instrument 100 is disconnected from the adapter assembly 200, the latches 236 are pressed down, thereby pivoting the latches 236 and engaging the tabs 584 with the outer gear 338. The lock ring 582 is then rotated in a clockwise direction to engage the tabs 586 with the tabs 584 thereby maintaining engagement of the tabs 584 with the outer gear 338. Continual rotation of the lock ring 582 reverses and/or retracts the drive mechanism 330 as described above with respect to Figs. 28-36.
  • Figs. 39-47 illustrate a second retraction assembly 680 for retracting and/or reversing an articulation mechanism 630 of the drive mechanism 330. With reference to Figs. 39 and 40, the articulation mechanism 630 is configured to articulate the tool assembly 304 of end effector 300 about an articulation axis that is transverse to longitudinal axis "X-X" (Fig. 1). The articulation mechanism 630 includes an articulation drive screw (not shown) having a keyed distal end dimensioned and configured to engage the connector sleeve 220 such that rotation thereof is transferred to the articulation drive screw. The articulation drive screw also includes a spur gear (not shown) meshingly engaged with an idler gear (not shown). The drive mechanism 630 further includes an outer gear 638 (Figs. 39 and 40). The idler gear is rotationally disposed over one of the shafts 256 and acts as a planetary gear interconnecting the spur gear with the outer gear 638 thereby allowing for transfer of rotational motion form the spur gear to the outer gear 638. The outer gear 638 is freely rotatable unless engaged by the retraction assembly 680 as described in further below.
  • With reference to Figs. 40-43, the retraction assembly 680 includes a slidable button 682 disposed within a slot 211 of the drive coupling assembly 210. The slidable button 682 includes a proximally-facing latch 684 for engaging the drive coupling assembly 210 when the slidable button 682 is pulled in a proximal direction. The slidable button 682 also includes a pin 686 at a distal end thereof for interfacing with a cam lock 690, as described in further detail below, and a grip feature 688 extending upwardly through the drive coupling assembly 210 allowing for better grip by the user.
  • The retraction assembly 680 also includes the cam lock 690 having a cam slot 692 therein for engaging the pin 686 of the slidable button 682. The cam lock 690 is pivotally coupled to the drive coupling assembly 210 via a pivot pin 691. The cam lock 690 also includes a feature 694 for engaging the outer gear 638 of the articulation mechanism 630. As slidable button 684 is pulled in the proximal direction, the pin 686 travels through the cam slot 692 of the cam lock 690, pushing the cam lock 690 in the distal and downward directions thereby engaging the feature 694 with the outer gear 638.
  • The retraction assembly 680 also includes a spring-loaded release switch 696, which controls longitudinal movement of the slidable button 682. The release switch 696 moves along an axis transverse to the axis "X-X" (Fig. 1) and prevents movement of grip feature 688 unless the release switch 696 is drawn back. When the slidable button 682 is in its so-called "home" (e.g., proximal) configuration and the cam lock 690 is disengaged from the articulation mechanism 630, the release switch 696 is disposed proximally of the grip feature 688. When the slidable button 682 is in its distal configuration and the cam lock 690 is engaged with the articulation mechanism 630, the release switch 696 is disposed distally of the grip feature 688. Thus, to transition from proximal or distal configurations, the release switch 696 is drawn back prior to movement of the grip feature 688 to either engage or disengage the retraction assembly 680 with the articulation mechanism 630.
  • With reference to Figs. 44-47, operation of the retraction assembly 680 is described. During use, when manual retraction of the articulation mechanism 630 is desired, the adapter assembly 200 is disconnected from the surgical instrument 100. Thereafter the retraction assembly 680 is engaged with the articulation mechanism 630. As shown in Figs. 42 and 44, initially the retraction assembly 680 is in its so-called "home" configuration in which the slidable button 682 is in its distal configuration and the cam lock 690 is not engaged with the outer gear 638 of the articulation mechanism 680. As shown in Figs. 45 and 46, the release switch 696 is pulled across the slot 211 allowing the slidable button 682 to be pulled proximally. As the slidable button 682 is pulled back the proximally-facing latch 684 engages the drive coupling assembly 210, maintaining the slidable button 682 in the proximal configuration. The cam lock 690 also engages the outer gear 638 of the articulation mechanism 680 as described above and the release switch 696 is slid back into place, preventing distal movement of the slidable button 682.
  • It will be understood that various modifications may be made to the embodiments disclosed herein. For example, the instrument 100 need not apply staples but rather may apply two part fasteners as is known in the art. Further, the length of the linear row of staples or fasteners may be modified to meet the requirements of a particular surgical procedure. Thus, the length of a single stroke of the actuation shaft and/or the length of the linear row of staples and/or fasteners within a disposable loading unit may be varied accordingly. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended thereto.
  • The invention may be described by reference to the following numbered paragraphs:-
  1. 1. A surgical device adapter for coupling an end effector to a handle assembly, the surgical device adapter comprising:
    • a housing;
    • a drive mechanism disposed within the housing and couplable to the handle assembly and the end effector; and
    • a drive coupling assembly coupled to the surgical device adapter and selectively couplable to the handle assembly, the drive coupling assembly comprising a retraction assembly selectively couplable to the drive mechanism such that rotation of the drive coupling assembly about a longitudinal axis defined by the surgical device adapter and relative to the housing actuates the drive mechanism.
  2. 2. The surgical device adapter according to paragraph 1, wherein the drive mechanism comprises a first drive screw coupled to the end effector and configured to actuate the end effector, the first drive screw mechanically engaged to a first gear disposed within the drive coupling assembly.
  3. 3. The surgical device adapter according to paragraph 2, wherein the retraction assembly comprises:
    • a lock rocker pivotally coupled within the drive coupling assembly; and
    • a lock ring rotatable about the longitudinal axis and relative to the drive coupling assembly, wherein upon rotation thereof the lock ring is configured to actuate the lock rocker to meshingly-engage the lock rocker with the first gear.
  4. 4. The surgical device adapter according to paragraph 3, wherein the retraction assembly further comprises:
    • a spring-loaded lock bolt slidably coupled to the drive coupling and engaged with the lock ring, the lock bolt configured to prevent rotation of the lock ring.
  5. 5. The surgical device adapter according to paragraph 3, wherein the lock ring further comprises a flexible, resilient tab configured to engage the drive coupling assembly and prevent rotation of the lock ring.
  6. 6. The surgical device adapter according to paragraph 2, wherein the drive coupling assembly comprises:
    • at least one latch pivotally coupled therein and configured to engage the handle assembly.
  7. 7. The surgical device adapter according to paragraph 6, wherein the at least one latch comprises a tab coupled to a distal end thereof, the tab configured to engage the first gear.
  8. 8. The surgical device adapter according to paragraph 7, wherein the drive coupling assembly comprises:
    • a lock ring rotatable relative to the drive coupling assembly, wherein upon rotation the lock ring is configured to engage the tab to meshingly-engage the tab with the first gear.
  9. 9. The surgical device adapter according to paragraph 1, wherein the drive mechanism comprises a second drive screw coupled to the end effector and configured to articulate the end effector about a pivot axis transverse to the longitudinal axis, the second drive screw mechanically engaged to a second gear disposed within the drive coupling assembly.
  10. 10. The surgical device adapter according to paragraph 9, wherein the retraction assembly comprises:
    • a cam lock comprising a cam slot; and
    • a slidable button slidably disposed within the drive coupling assembly, the slidable button comprising a pin disposed within the cam slot, wherein proximal movement of the slidable button actuates the cam lock to meshingly-engage with the second gear.
  11. 11. The surgical device adapter according to paragraph 10, wherein the retraction assembly further comprises:
    • a spring-loaded release switch slidably coupled to the drive coupling configured to prevent longitudinal movement of the slidable button.
  12. 12. The surgical device adapter according to paragraph 10, wherein the slidable button further comprises a latch at a proximal end thereof configured to engage the drive coupling assembly when the slidable button is moved in a proximal direction.
  13. 13. A surgical device comprising:
    • an end effector comprising a first jaw and a second jaw moveable relative to the first jaw;
    • a handle assembly comprising at least one motor mechanically coupled to the jaw assembly; and
    • an adapter assembly removably coupled to a proximal end of the jaw assembly and a distal end of the handle assembly, the adapter assembly comprising:
      • a housing;
      • a drive mechanism disposed within the housing and configured to couple the at least one motor to the end effector; and
      • a drive coupling assembly coupled to the surgical device adapter and selectively couplable to the surgical instrument, the drive coupling assembly comprising a retraction assembly selectively couplable to the drive mechanism such that rotation of the drive coupling assembly about a longitudinal axis defined by the surgical device adapter and relative to the housing actuates the drive mechanism.
  14. 14. The surgical device according to paragraph 13, wherein the drive mechanism comprises:
    • a first drive screw coupled to the end effector and configured to actuate the first and second jaws, the first drive screw mechanically engaged to a first gear disposed within the drive coupling assembly; and
    • a second drive screw coupled to the end effector and configured to articulate the end effector about a pivot axis transverse to the longitudinal axis, the second drive screw mechanically engaged to a second gear disposed within the drive coupling assembly.
  15. 15. The surgical device adapter according to paragraph 14, wherein the retraction assembly comprises:
    • a lock rocker pivotally coupled within the drive coupling assembly; and
    • a lock ring rotatable relative to the drive coupling assembly, wherein upon rotation thereof the lock ring is configured to engage the lock rocker to meshingly-engage the lock rocker with the first gear.
  16. 16. The surgical device adapter according to paragraph 15, wherein the retraction assembly further comprises:
    • a spring-loaded lock bolt slidably coupled to the drive coupling and engaged with the lock ring, the lock bolt configured to prevent rotation of the lock ring.
  17. 17. The surgical device adapter according to paragraph 15, wherein the lock ring further comprises a flexible, resilient tab configured to engage the drive coupling assembly and prevent rotation of the lock ring.
  18. 18. The surgical device adapter according to paragraph 14, wherein the drive coupling assembly comprises:
    • at least one latch pivotally coupled therein and configured to engage the surgical device, wherein the at least one latch comprises a tab coupled to a distal end thereof, the tab configured to engage the first gear.
  19. 19. The surgical device adapter according to paragraph 18, wherein the drive coupling assembly comprises:
    • a lock ring rotatable relative to the drive coupling assembly, wherein upon rotation thereof the lock ring is configured to engage the tab to meshingly-engage the tab with the first gear.
  20. 20. The surgical device adapter according to paragraph 14, wherein the retraction assembly comprises:
    • a cam lock comprising a cam slot; and
    • a slidable button slidably disposed within the drive coupling assembly, the slidable button comprising a pin disposed within the cam slot, wherein proximal movement of the slidable button actuates the cam lock to meshingly-engage with the second gear; and
    • a spring-loaded release switch slidably coupled to the drive coupling configured to prevent longitudinal movement of the slidable button.

Claims (15)

  1. A surgical device adapter for coupling an end effector to a handle assembly, the surgical device adapter comprising:
    a housing;
    a drive mechanism disposed within the housing and couplable to the handle assembly and the end effector; and
    a drive coupling assembly coupled to the housing and selectively couplable to the handle assembly, the drive coupling assembly including a retraction assembly selectively couplable to the drive mechanism such that rotation of the drive coupling assembly about a longitudinal axis defined by the surgical device adapter and relative to the housing actuates the drive mechanism.
  2. The surgical device adapter according to claim 1, wherein the drive mechanism includes a first drive screw coupled to the end effector and configured to actuate the end effector, the first drive screw mechanically engaged to a first gear disposed within the drive coupling assembly.
  3. The surgical device adapter according to claim 2, wherein the retraction assembly includes:
    a lock rocker pivotally coupled within the drive coupling assembly; and
    a lock ring rotatable about the longitudinal axis and relative to the drive coupling assembly, wherein rotation of the lock ring actuates the lock rocker to meshingly-engage the lock rocker with the first gear, preferably wherein the lock ring further includes a flexible, resilient tab configured to engage the drive coupling assembly and prevent rotation of the lock ring.
  4. The surgical device adapter according to claim 3, wherein the retraction assembly further includes:
    a spring-loaded lock bolt slidably coupled to the drive coupling assembly and engaged with the lock ring, the lock bolt configured to prevent rotation of the lock ring.
  5. The surgical device adapter according to claim 2 to 4, wherein the drive coupling assembly further includes:
    at least one latch pivotally coupled therein and configured to engage the handle assembly preferably wherein the at least one latch includes a tab coupled to a distal end thereof, the tab configured to engage the first gear.
  6. The surgical device adapter according to claim 7, wherein the drive coupling assembly further includes:
    a lock ring rotatable relative to the housing, wherein rotation of the lock ring engages the lock ring with the tab to meshingly-engage the tab with the first gear.
  7. The surgical device adapter according to any preceding claim, wherein the drive mechanism includes a second drive screw coupled to the end effector and configured to articulate the end effector about a pivot axis transverse to the longitudinal axis, the second drive screw mechanically engaged to a second gear disposed within the drive coupling assembly, preferably wherein the retraction assembly includes:
    a cam lock including a cam slot; and
    a slidable button slidably disposed within the drive coupling assembly, the slidable button including a pin disposed within the cam slot, wherein proximal movement of the slidable button actuates the cam lock to meshingly-engage with the second gear.
  8. The surgical device adapter according to claim 7, wherein the retraction assembly further includes:
    a spring-loaded release switch slidably coupled to the drive coupling assembly and configured to prevent longitudinal movement of the slidable button, preferably wherein the slidable button further includes a latch at a proximal end thereof configured to engage the drive coupling assembly when the slidable button is moved in a proximal direction.
  9. A surgical device comprising:
    an end effector including a first jaw and a second jaw moveable relative to the first jaw;
    a handle assembly including at least one motor mechanically coupled to the end effector; and
    an adapter assembly removably coupled to a proximal end of the end effector and a distal end of the handle assembly, the adapter assembly including:
    a housing;
    a drive mechanism disposed within the housing and configured to couple the at least one motor to the end effector; and
    a drive coupling assembly coupled to the housing and selectively couplable to the handle assembly, the drive coupling assembly including a retraction assembly selectively couplable to the drive mechanism such that rotation of the drive coupling assembly about a longitudinal axis defined by the adapter assembly and relative to the housing actuates the drive mechanism.
  10. The surgical device according to claim 9, wherein the drive mechanism includes:
    a first drive screw coupled to the end effector and configured to actuate the first and second jaws, the first drive screw mechanically engaged to a first gear disposed within the drive coupling assembly; and
    a second drive screw coupled to the end effector and configured to articulate the end effector about a pivot axis transverse to the longitudinal axis, the second drive screw mechanically engaged to a second gear disposed within the drive coupling assembly.
  11. The surgical device according to claim 9 or 10, wherein the retraction assembly includes:
    a lock rocker pivotally coupled within the drive coupling assembly; and
    a lock ring rotatable relative to the drive coupling assembly, wherein rotation of the lock ring engages the lock ring with the lock rocker to meshingly-engage the lock rocker with the first gear, preferably wherein the retraction assembly further includes:
    a spring-loaded lock bolt slidably coupled to the drive coupling assembly and engaged with the lock ring, the lock bolt configured to prevent rotation of the lock ring.
  12. The surgical device according to claim 11, wherein the lock ring further includes a flexible, resilient tab configured to engage the drive coupling assembly and prevent rotation of the lock ring.
  13. The surgical device according to claim 9 to 12, wherein the drive coupling assembly further includes:
    at least one latch pivotally coupled therein and configured to engage the handle assembly, wherein the at least one latch includes a tab coupled to a distal end thereof, the tab configured to engage the first gear.
  14. The surgical device according to claim 9 to 13, wherein the drive coupling assembly includes:
    a lock ring rotatable relative to the housing, wherein rotation of the lock ring engages the lock ring with the tab to meshingly-engage the tab with the first gear.
  15. The surgical device according to claim 9 to 14, wherein the retraction assembly includes:
    a cam lock including a cam slot; and
    a slidable button slidably disposed within the drive coupling assembly, the slidable button including a pin disposed within the cam slot, wherein proximal movement of the slidable button actuates the cam lock to meshingly-engage with the second gear; and
    a spring-loaded release switch slidably coupled to the drive coupling assembly and configured to prevent longitudinal movement of the slidable button.
EP14173314.7A 2013-06-20 2014-06-20 Adapter direct drive with manual retraction, lockout and connection mechanisms Active EP2815705B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201361837225P true 2013-06-20 2013-06-20
US14/286,053 US9797486B2 (en) 2013-06-20 2014-05-23 Adapter direct drive with manual retraction, lockout and connection mechanisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15197132.2A EP3011913B1 (en) 2013-06-20 2014-06-20 Adapter direct drive with manual retraction, lockout and connection

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP15197132.2A Division-Into EP3011913B1 (en) 2013-06-20 2014-06-20 Adapter direct drive with manual retraction, lockout and connection
EP15197132.2A Division EP3011913B1 (en) 2013-06-20 2014-06-20 Adapter direct drive with manual retraction, lockout and connection

Publications (2)

Publication Number Publication Date
EP2815705A1 true EP2815705A1 (en) 2014-12-24
EP2815705B1 EP2815705B1 (en) 2016-02-03

Family

ID=50980181

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14173314.7A Active EP2815705B1 (en) 2013-06-20 2014-06-20 Adapter direct drive with manual retraction, lockout and connection mechanisms
EP15197132.2A Active EP3011913B1 (en) 2013-06-20 2014-06-20 Adapter direct drive with manual retraction, lockout and connection

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15197132.2A Active EP3011913B1 (en) 2013-06-20 2014-06-20 Adapter direct drive with manual retraction, lockout and connection

Country Status (7)

Country Link
US (1) US9797486B2 (en)
EP (2) EP2815705B1 (en)
JP (1) JP6400346B2 (en)
CN (1) CN104224258B (en)
AU (1) AU2014203035A1 (en)
CA (1) CA2854745A1 (en)
ES (1) ES2564412T3 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2881045A1 (en) * 2013-12-04 2015-06-10 Covidien LP Adapter direct drive push button retention mechanism
EP2848204A3 (en) * 2013-09-17 2015-06-10 Covidien LP Adapter direct drive with manual retraction, lockout, and connection mechanisms for improper use prevention
US9216013B2 (en) 2013-02-18 2015-12-22 Covidien Lp Apparatus for endoscopic procedures
US9282963B2 (en) 2010-11-02 2016-03-15 Covidien Lp Adapter for powered surgical devices
US9295522B2 (en) 2013-11-08 2016-03-29 Covidien Lp Medical device adapter with wrist mechanism
US9364220B2 (en) 2012-06-19 2016-06-14 Covidien Lp Apparatus for endoscopic procedures
US9370361B2 (en) 2005-06-03 2016-06-21 Covidien Lp Surgical stapler with timer and feedback display
US9402604B2 (en) 2012-07-20 2016-08-02 Covidien Lp Apparatus for endoscopic procedures
US9421014B2 (en) 2012-10-18 2016-08-23 Covidien Lp Loading unit velocity and position feedback
US9421003B2 (en) 2013-02-18 2016-08-23 Covidien Lp Apparatus for endoscopic procedures
US9480492B2 (en) 2011-10-25 2016-11-01 Covidien Lp Apparatus for endoscopic procedures
US9492189B2 (en) 2013-03-13 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US9492146B2 (en) 2011-10-25 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US9504455B2 (en) 1999-06-02 2016-11-29 Covidien Lp Shaft for an electro-mechanical surgical device
EP3123960A1 (en) * 2015-07-28 2017-02-01 Covidien LP Adapter assemblies for surgical devices
US9597104B2 (en) 2012-06-01 2017-03-21 Covidien Lp Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
EP3175800A1 (en) * 2015-12-01 2017-06-07 Covidien LP Adapter, extension, and connector assemblies for surgical devices
US9700318B2 (en) 2013-04-09 2017-07-11 Covidien Lp Apparatus for endoscopic procedures
US9706981B2 (en) 2010-04-16 2017-07-18 Covidien Lp Hand-held surgical devices
US9713466B2 (en) 2014-05-16 2017-07-25 Covidien Lp Adaptor for surgical instrument for converting rotary input to linear output
US20170224345A1 (en) * 2016-02-10 2017-08-10 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
US9775610B2 (en) 2013-04-09 2017-10-03 Covidien Lp Apparatus for endoscopic procedures
US9782187B2 (en) 2013-01-18 2017-10-10 Covidien Lp Adapter load button lockout
WO2017180622A1 (en) * 2016-04-14 2017-10-19 Smith & Nephew, Inc. Surgical handpiece and latching hub system
US9797486B2 (en) 2013-06-20 2017-10-24 Covidien Lp Adapter direct drive with manual retraction, lockout and connection mechanisms
US9801646B2 (en) 2013-05-30 2017-10-31 Covidien Lp Adapter load button decoupled from loading unit sensor
US9839480B2 (en) 2012-07-09 2017-12-12 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US9839424B2 (en) 2014-01-17 2017-12-12 Covidien Lp Electromechanical surgical assembly
US9868198B2 (en) 2012-06-01 2018-01-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
US9913643B2 (en) 2014-05-09 2018-03-13 Covidien Lp Interlock assemblies for replaceable loading unit
US9918713B2 (en) 2013-12-09 2018-03-20 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US9955967B2 (en) 2004-07-30 2018-05-01 Covidien Lp Flexible shaft extender and method of using same
US9962157B2 (en) 2013-09-18 2018-05-08 Covidien Lp Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument
US9974540B2 (en) 2013-10-18 2018-05-22 Covidien Lp Adapter direct drive twist-lock retention mechanism
EP3338662A1 (en) * 2016-12-21 2018-06-27 Ethicon LLC Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10022123B2 (en) 2012-07-09 2018-07-17 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US10080552B2 (en) 2014-04-21 2018-09-25 Covidien Lp Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US10080563B2 (en) 2012-06-01 2018-09-25 Covidien Lp Loading unit detection assembly and surgical device for use therewith
US10105140B2 (en) 2009-11-20 2018-10-23 Covidien Lp Surgical console and hand-held surgical device
US10236616B2 (en) 2013-12-04 2019-03-19 Covidien Lp Adapter assembly for interconnecting surgical devices and surgical attachments, and surgical systems thereof
US10271840B2 (en) 2014-08-19 2019-04-30 Covidien Lp Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US7665647B2 (en) 2006-09-29 2010-02-23 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
US9055943B2 (en) 2007-09-21 2015-06-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US10041822B2 (en) 2007-10-05 2018-08-07 Covidien Lp Methods to shorten calibration times for powered devices
JP5410110B2 (en) 2008-02-14 2014-02-05 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. The surgical cutting and fastening instrument with Rf electrode
JP6224070B2 (en) 2012-03-28 2017-11-01 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Retainer assembly including a tissue thickness compensator
RU2606493C2 (en) 2011-04-29 2017-01-10 Этикон Эндо-Серджери, Инк. Staple cartridge, containing staples, located inside its compressible part
US9549758B2 (en) 2011-03-23 2017-01-24 Covidien Lp Surgical access assembly with adapter
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US20140005678A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Rotary drive arrangements for surgical instruments
BR112015021098A2 (en) 2013-03-01 2017-07-18 Ethicon Endo Surgery Inc articulated surgical instruments with conductive pathways to sign communication
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
US9629633B2 (en) 2013-07-09 2017-04-25 Covidien Lp Surgical device, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
MX2016002328A (en) 2013-08-23 2016-12-14 Ethicon Endo-Surgery Llc End effector detection systems for surgical instruments.
US9937626B2 (en) 2013-12-11 2018-04-10 Covidien Lp Wrist and jaw assemblies for robotic surgical systems
CN105813580A (en) 2013-12-12 2016-07-27 柯惠Lp公司 Gear train assemblies for robotic surgical systems
US9808245B2 (en) 2013-12-13 2017-11-07 Covidien Lp Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof
US10226305B2 (en) 2014-02-12 2019-03-12 Covidien Lp Surgical end effectors and pulley assemblies thereof
US10028761B2 (en) 2014-03-26 2018-07-24 Ethicon Llc Feedback algorithms for manual bailout systems for surgical instruments
US10164466B2 (en) 2014-04-17 2018-12-25 Covidien Lp Non-contact surgical adapter electrical interface
US9751176B2 (en) * 2014-05-30 2017-09-05 Black & Decker Inc. Power tool accessory attachment system
US9763661B2 (en) 2014-06-26 2017-09-19 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US9987095B2 (en) 2014-06-26 2018-06-05 Covidien Lp Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units
US10163589B2 (en) 2014-06-26 2018-12-25 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US9839425B2 (en) 2014-06-26 2017-12-12 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10226254B2 (en) 2014-10-21 2019-03-12 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
US10085750B2 (en) * 2014-10-22 2018-10-02 Covidien Lp Adapter with fire rod J-hook lockout
US9949737B2 (en) 2014-10-22 2018-04-24 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US10085744B2 (en) * 2014-12-08 2018-10-02 Covidien Lp Loading unit attachment band for surgical stapling instrument
US10188385B2 (en) * 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9968355B2 (en) 2014-12-18 2018-05-15 Ethicon Llc Surgical instruments with articulatable end effectors and improved firing beam support arrangements
US10085748B2 (en) * 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10111665B2 (en) 2015-02-19 2018-10-30 Covidien Lp Electromechanical surgical systems
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US20160249916A1 (en) 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc System for monitoring whether a surgical instrument needs to be serviced
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10190888B2 (en) 2015-03-11 2019-01-29 Covidien Lp Surgical stapling instruments with linear position assembly
US20160287250A1 (en) 2015-03-31 2016-10-06 Ethicon Endo-Surgery, Llc Surgical instrument with progressive rotary drive systems
US10226239B2 (en) 2015-04-10 2019-03-12 Covidien Lp Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US10117650B2 (en) 2015-05-05 2018-11-06 Covidien Lp Adapter assembly and loading units for surgical stapling devices
US10117655B2 (en) * 2015-07-22 2018-11-06 Covidien Lp Loading unit locking band for surgical stapling instrument
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10182813B2 (en) * 2015-09-29 2019-01-22 Ethicon Llc Surgical stapling instrument with shaft release, powered firing, and powered articulation
US20170086832A1 (en) 2015-09-30 2017-03-30 Ethicon Endo-Surgery, Llc Tubular absorbable constructs
US10253847B2 (en) 2015-12-22 2019-04-09 Covidien Lp Electromechanical surgical devices with single motor drives and adapter assemblies therfor
US20170224335A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Articulatable surgical instruments with off-axis firing beam arrangements
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US20180056527A1 (en) * 2016-08-25 2018-03-01 Board Of Regents Of The University Of Nebraska Quick-Release End Effector Tool Interface
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080237296A1 (en) * 2007-03-28 2008-10-02 Boudreaux Chad P Surgical stapling and cutting instrument with side mounted retraction member
US20080308603A1 (en) * 2007-06-18 2008-12-18 Shelton Frederick E Cable driven surgical stapling and cutting instrument with improved cable attachment arrangements
WO2009039506A1 (en) 2007-09-21 2009-03-26 Power Medical Interventions, Inc. Surgical device
US20090090763A1 (en) * 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Powered surgical stapling device
US20110121049A1 (en) 2009-11-20 2011-05-26 Power Medical Interventions, Llc. Surgical console and hand-held surgical device
US20120143002A1 (en) * 2008-01-10 2012-06-07 Ernest Aranyi Apparatus for Endoscopic Procedures

Family Cites Families (364)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2777340A (en) 1955-09-28 1957-01-15 Leonard J Hettwer Offset drilling attachment
US2957353A (en) 1958-08-26 1960-10-25 Teleflex Inc Connector
US3111328A (en) 1961-07-03 1963-11-19 Rito Vincent L J Di Multiuse adapter for manipulators
US3734515A (en) 1971-01-29 1973-05-22 Thor Power Tool Co Power wrench with interchangeable adapters
US3695058A (en) 1971-05-26 1972-10-03 Marvin W Keith Jr Flexible link rotatable drive coupling
US3759336A (en) 1972-01-21 1973-09-18 D Marcovitz Interchangeable power operated tools
US4162399A (en) 1977-09-16 1979-07-24 Bei Electronics, Inc. Optical encoder with fiber optics
US4606343A (en) 1980-08-18 1986-08-19 United States Surgical Corporation Self-powered surgical fastening instrument
US4705038A (en) 1985-01-23 1987-11-10 Dyonics, Inc. Surgical system for powered instruments
US4722685A (en) 1985-05-30 1988-02-02 Estrada Juan M De Tool for adapting a portable lathe to treat the back molar teeth of horses
US4823807A (en) 1988-02-11 1989-04-25 Board Of Regents, Univ. Of Texas System Device for non-invasive diagnosis and monitoring of articular and periarticular pathology
US4874181A (en) 1988-05-31 1989-10-17 Hsu Shing Wang Coupling member for securing a drilling head to the rotatable rod of a pneumatic tool body
US5301061A (en) 1989-07-27 1994-04-05 Olympus Optical Co., Ltd. Endoscope system
US5152744A (en) 1990-02-07 1992-10-06 Smith & Nephew Dyonics Surgical instrument
US5033552A (en) * 1990-07-24 1991-07-23 Hu Cheng Te Multi-function electric tool
JP3034019B2 (en) 1990-11-26 2000-04-17 旭光学工業株式会社 Distal end portion of the endoscope
US5129570A (en) 1990-11-30 1992-07-14 Ethicon, Inc. Surgical stapler
US5413267A (en) 1991-05-14 1995-05-09 United States Surgical Corporation Surgical stapler with spent cartridge sensing and lockout means
US5129118A (en) 1991-07-29 1992-07-14 Walmesley Mark W Accessory tool apparatus for use on power drills
US5356064A (en) * 1991-10-18 1994-10-18 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5478003A (en) 1991-10-18 1995-12-26 United States Surgical Corporation Surgical apparatus
US5312023A (en) 1991-10-18 1994-05-17 United States Surgical Corporation Self contained gas powered surgical apparatus
US5326013A (en) 1991-10-18 1994-07-05 United States Surgical Corporation Self contained gas powered surgical apparatus
US5197649A (en) 1991-10-29 1993-03-30 The Trustees Of Columbia University In The City Of New York Gastrointestinal endoscoptic stapler
US5383874A (en) 1991-11-08 1995-01-24 Ep Technologies, Inc. Systems for identifying catheters and monitoring their use
US5383880A (en) 1992-01-17 1995-01-24 Ethicon, Inc. Endoscopic surgical system with sensing means
US5433721A (en) 1992-01-17 1995-07-18 Ethicon, Inc. Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
US5350355A (en) 1992-02-14 1994-09-27 Automated Medical Instruments, Inc. Automated surgical instrument
US5389098A (en) 1992-05-19 1995-02-14 Olympus Optical Co., Ltd. Surgical device for stapling and/or fastening body tissues
US5658300A (en) 1992-06-04 1997-08-19 Olympus Optical Co., Ltd. Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues
US5609560A (en) 1992-08-19 1997-03-11 Olympus Optical Co., Ltd. Medical operation device control system for controlling a operation devices accessed respectively by ID codes
US6165169A (en) 1994-03-04 2000-12-26 Ep Technologies, Inc. Systems and methods for identifying the physical, mechanical, and functional attributes of multiple electrode arrays
US5626587A (en) 1992-10-09 1997-05-06 Ethicon Endo-Surgery, Inc. Method for operating a surgical instrument
US5601224A (en) 1992-10-09 1997-02-11 Ethicon, Inc. Surgical instrument
US5431323A (en) 1992-10-09 1995-07-11 Ethicon, Inc. Endoscopic surgical instrument with pivotable and rotatable staple cartridge
US5400267A (en) 1992-12-08 1995-03-21 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5540706A (en) 1993-01-25 1996-07-30 Aust; Gilbert M. Surgical instrument
US5540375A (en) 1993-04-20 1996-07-30 United States Surgical Corporation Endoscopic stapler
US5467911A (en) 1993-04-27 1995-11-21 Olympus Optical Co., Ltd. Surgical device for stapling and fastening body tissues
CA2124109A1 (en) 1993-05-24 1994-11-25 Mark T. Byrne Endoscopic surgical instrument with electromagnetic sensor
US5542594A (en) 1993-10-06 1996-08-06 United States Surgical Corporation Surgical stapling apparatus with biocompatible surgical fabric
US5487499A (en) 1993-10-08 1996-01-30 United States Surgical Corporation Surgical apparatus for applying surgical fasteners including a counter
US5476379A (en) 1993-11-04 1995-12-19 Disel; Jimmy D. Illumination system and connector assembly for a dental handpiece
WO1995018572A1 (en) 1994-01-04 1995-07-13 Alpha Surgical Technologies, Inc. Stapling device
US5526822A (en) 1994-03-24 1996-06-18 Biopsys Medical, Inc. Method and apparatus for automated biopsy and collection of soft tissue
CA2145723A1 (en) 1994-03-30 1995-10-01 Steven W. Hamblin Surgical stapling instrument with remotely articulated stapling head assembly on rotatable support shaft
US5529235A (en) 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
US5553675A (en) 1994-06-10 1996-09-10 Minnesota Mining And Manufacturing Company Orthopedic surgical device
EP0699418A1 (en) 1994-08-05 1996-03-06 United States Surgical Corporation Self-contained powered surgical apparatus
US5779130A (en) 1994-08-05 1998-07-14 United States Surgical Corporation Self-contained powered surgical apparatus
EP0705571A1 (en) 1994-10-07 1996-04-10 United States Surgical Corporation Self-contained powered surgical apparatus
US5549637A (en) 1994-11-10 1996-08-27 Crainich; Lawrence Articulated medical instrument
US5868760A (en) 1994-12-07 1999-02-09 Mcguckin, Jr.; James F. Method and apparatus for endolumenally resectioning tissue
US5704534A (en) 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
US6321855B1 (en) 1994-12-29 2001-11-27 George Edward Barnes Anti-vibration adaptor
US5649956A (en) 1995-06-07 1997-07-22 Sri International System and method for releasably holding a surgical instrument
US5762256A (en) 1995-08-28 1998-06-09 United States Surgical Corporation Surgical stapler
US5782396A (en) 1995-08-28 1998-07-21 United States Surgical Corporation Surgical stapler
US6032849A (en) 1995-08-28 2000-03-07 United States Surgical Surgical stapler
CA2206156A1 (en) 1995-09-15 1997-04-03 Robert Lee Thompson Surgical/diagnostic imaging device
US6010054A (en) 1996-02-20 2000-01-04 Imagyn Medical Technologies Linear stapling instrument with improved staple cartridge
US5820009A (en) 1996-02-20 1998-10-13 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved jaw closure mechanism
US6699177B1 (en) 1996-02-20 2004-03-02 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5713505A (en) 1996-05-13 1998-02-03 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US6119913A (en) 1996-06-14 2000-09-19 Boston Scientific Corporation Endoscopic stapler
US6017354A (en) 1996-08-15 2000-01-25 Stryker Corporation Integrated system for powered surgical tools
US6129547A (en) 1997-05-06 2000-10-10 Ballard Medical Products Oral care system
US6126651A (en) 1997-08-11 2000-10-03 Mayer; Paul W. Motorized motion-canceling suture tool holder
US6434507B1 (en) 1997-09-05 2002-08-13 Surgical Navigation Technologies, Inc. Medical instrument and method for use with computer-assisted image guided surgery
US5865361A (en) 1997-09-23 1999-02-02 United States Surgical Corporation Surgical stapling apparatus
US5863159A (en) 1997-12-12 1999-01-26 Lasko; Leonard J. Drill angle attachment coupling
AU2775199A (en) 1998-02-19 1999-09-06 California Institute Of Technology Apparatus and method for providing spherical viewing during endoscopic procedures
US7699835B2 (en) 2001-02-15 2010-04-20 Hansen Medical, Inc. Robotically controlled surgical instruments
US6239732B1 (en) 1998-04-13 2001-05-29 Dallas Semiconductor Corporation One-wire device with A-to-D converter
US6126058A (en) 1998-06-19 2000-10-03 Scimed Life Systems, Inc. Method and device for full thickness resectioning of an organ
US6256859B1 (en) 1998-09-25 2001-07-10 Sherwood Services Ag Method of manufacturing an aspiring tool
US5993454A (en) 1998-09-29 1999-11-30 Stryker Corporation Drill attachment for a surgical drill
US7238021B1 (en) 1998-12-03 2007-07-03 Johnson Gary E Powered cutting surface with protective guard for equine teeth
US7141049B2 (en) 1999-03-09 2006-11-28 Thermage, Inc. Handpiece for treatment of tissue
US6860892B1 (en) 1999-05-28 2005-03-01 General Surgical Innovations, Inc. Specially shaped balloon device for use in surgery and method of use
US6443973B1 (en) 1999-06-02 2002-09-03 Power Medical Interventions, Inc. Electromechanical driver device for use with anastomosing, stapling, and resecting instruments
EP3158942B1 (en) 2001-06-22 2018-08-08 Covidien LP Electro-mechanical surgical device
US6981941B2 (en) 1999-06-02 2006-01-03 Power Medical Interventions Electro-mechanical surgical device
US6315184B1 (en) 1999-06-02 2001-11-13 Powermed, Inc. Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6793652B1 (en) 1999-06-02 2004-09-21 Power Medical Interventions, Inc. Electro-mechanical surgical device
US7951071B2 (en) 1999-06-02 2011-05-31 Tyco Healthcare Group Lp Moisture-detecting shaft for use with an electro-mechanical surgical device
US6716233B1 (en) 1999-06-02 2004-04-06 Power Medical Interventions, Inc. Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US7032798B2 (en) 1999-06-02 2006-04-25 Power Medical Interventions, Inc. Electro-mechanical surgical device
US6264087B1 (en) 1999-07-12 2001-07-24 Powermed, Inc. Expanding parallel jaw device for use with an electromechanical driver device
US6451007B1 (en) 1999-07-29 2002-09-17 Dale E. Koop Thermal quenching of tissue
US6611793B1 (en) 1999-09-07 2003-08-26 Scimed Life Systems, Inc. Systems and methods to identify and disable re-use single use devices based on detecting environmental changes
US6368324B1 (en) 1999-09-24 2002-04-09 Medtronic Xomed, Inc. Powered surgical handpiece assemblies and handpiece adapter assemblies
US6348061B1 (en) 2000-02-22 2002-02-19 Powermed, Inc. Vessel and lumen expander attachment for use with an electromechanical driver device
US6533157B1 (en) 2000-02-22 2003-03-18 Power Medical Interventions, Inc. Tissue stapling attachment for use with an electromechanical driver device
US6491201B1 (en) 2000-02-22 2002-12-10 Power Medical Interventions, Inc. Fluid delivery mechanism for use with anastomosing, stapling, and resecting instruments
US6488197B1 (en) 2000-02-22 2002-12-03 Power Medical Interventions, Inc. Fluid delivery device for use with anastomosing resecting and stapling instruments
JP3897962B2 (en) 2000-07-19 2007-03-28 株式会社モリタ製作所 Instrument of identifying, identifying type of the adapter, the identification type tube, medical device using these
AU8846201A (en) 2000-08-30 2002-03-13 Cerebral Vascular Applic Inc Medical instrument
US6817508B1 (en) 2000-10-13 2004-11-16 Tyco Healthcare Group, Lp Surgical stapling device
US7905897B2 (en) 2001-03-14 2011-03-15 Tyco Healthcare Group Lp Trocar device
JP4443116B2 (en) * 2001-03-14 2010-03-31 ブラウン ゲーエムベーハー Cleaning method and apparatus of the teeth
EP1381321B1 (en) 2001-04-20 2012-04-04 Tyco Healthcare Group LP Bipolar or ultrasonic surgical device
WO2003001329A2 (en) 2001-06-20 2003-01-03 Power Medical Interventions, Inc. A method and system for integrated medical tracking
US6716226B2 (en) 2001-06-25 2004-04-06 Inscope Development, Llc Surgical clip
US7044911B2 (en) 2001-06-29 2006-05-16 Philometron, Inc. Gateway platform for biological monitoring and delivery of therapeutic compounds
US6516896B1 (en) * 2001-07-30 2003-02-11 The Stanley Works Torque-applying tool and control therefor
EP2314233B1 (en) 2001-08-08 2013-06-12 Stryker Corporation A surgical tool system with an intermediate attachment located between the handpiece and an accessory or an implant, the attachment able to transmit energy from the handpiece to the accessory or the implant and the transmission of data signals from the accessory or implant to the handpiece
DE10147145C2 (en) 2001-09-25 2003-12-18 Kunz Reiner Multifunction tool for micro-invasive surgery
EP3056155A1 (en) 2001-10-05 2016-08-17 Covidien LP Surgical stapling device
US6783533B2 (en) 2001-11-21 2004-08-31 Sythes Ag Chur Attachable/detachable reaming head for surgical reamer
EP1453432B1 (en) 2001-12-04 2012-08-01 Tyco Healthcare Group LP System and method for calibrating a surgical instrument
US8016855B2 (en) 2002-01-08 2011-09-13 Tyco Healthcare Group Lp Surgical device
IL148702A (en) 2002-03-14 2008-04-13 Innoventions Inc Insertion and retrieval system for inflatable devices
WO2003090630A2 (en) 2002-04-25 2003-11-06 Tyco Healthcare Group, Lp Surgical instruments including micro-electromechanical systems (mems)
US7743960B2 (en) 2002-06-14 2010-06-29 Power Medical Interventions, Llc Surgical device
US20030038938A1 (en) 2002-06-20 2003-02-27 Jung Wayne D. Apparatus and method for measuring optical characteristics of an object or material
US8182494B1 (en) 2002-07-31 2012-05-22 Cardica, Inc. Minimally-invasive surgical system
US6645218B1 (en) 2002-08-05 2003-11-11 Endius Incorporated Surgical instrument
US20040176751A1 (en) 2002-08-14 2004-09-09 Endovia Medical, Inc. Robotic medical instrument system
DE60332362D1 (en) 2002-09-30 2010-06-10 Power Medical Interventions Llc Independent sterilizable surgical system
ES2379348T3 (en) 2002-10-04 2012-04-25 Tyco Healthcare Group Lp Motorized surgical stapling device pneumatically
US7559927B2 (en) 2002-12-20 2009-07-14 Medtronic Xomed, Inc. Surgical instrument with telescoping attachment
JP2004208922A (en) 2002-12-27 2004-07-29 Olympus Corp Medical apparatus, medical manipulator and control process for medical apparatus
US7380695B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US7044352B2 (en) 2003-05-20 2006-05-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7143923B2 (en) 2003-05-20 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a firing lockout for an unclosed anvil
US7140528B2 (en) 2003-05-20 2006-11-28 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
US7380696B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US6988649B2 (en) 2003-05-20 2006-01-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a spent cartridge lockout
EP1628632B1 (en) 2003-05-21 2013-10-09 The Johns Hopkins University Devices and systems for minimally invasive surgery of the throat and other portions of mammalian body
US20050004559A1 (en) 2003-06-03 2005-01-06 Senorx, Inc. Universal medical device control console
US8926637B2 (en) * 2003-06-13 2015-01-06 Covidien Lp Multiple member interconnect for surgical instrument and absorbable screw fastener
EP1635712B1 (en) 2003-06-20 2015-09-30 Covidien LP Surgical stapling device
US6964363B2 (en) 2003-07-09 2005-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having articulation joint support plates for supporting a firing bar
US6981628B2 (en) 2003-07-09 2006-01-03 Ethicon Endo-Surgery, Inc. Surgical instrument with a lateral-moving articulation control
US7111769B2 (en) 2003-07-09 2006-09-26 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis
US7055731B2 (en) 2003-07-09 2006-06-06 Ethicon Endo-Surgery Inc. Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint
JP4398813B2 (en) 2003-07-18 2010-01-13 ヤーマン株式会社 Beautiful skin equipment
US6905057B2 (en) 2003-09-29 2005-06-14 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission
US7364061B2 (en) 2003-09-29 2008-04-29 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing position indicator and retraction mechanism
US6959852B2 (en) 2003-09-29 2005-11-01 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with multistroke firing incorporating an anti-backup mechanism
CA2542532C (en) 2003-10-17 2012-08-14 Tyco Healthcare Group, Lp Surgical stapling device with independent tip rotation
US7641655B2 (en) 2003-10-31 2010-01-05 Medtronic, Inc. Coupling system for surgical instrument
US7172415B2 (en) 2003-11-22 2007-02-06 Flexi-Float, Llc Equine dental grinding apparatus
DE10357105B3 (en) * 2003-12-06 2005-04-07 Richard Wolf Gmbh Medical instrument for medical applications comprises an insert and a handle detachedly connected to each other
DE602005001328T2 (en) 2004-02-17 2008-02-14 Tyco Healthcare Group Lp, Norwalk A surgical stapling device
US8025199B2 (en) 2004-02-23 2011-09-27 Tyco Healthcare Group Lp Surgical cutting and stapling device
WO2005084556A1 (en) 2004-03-10 2005-09-15 Olympus Corporation Treatment tool for surgery
US7059508B2 (en) 2004-06-30 2006-06-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an uneven multistroke firing mechanism having a rotary transmission
EP1778116A4 (en) 2004-07-27 2008-02-06 Biolase Tech Inc Identification connector for a medical laser handpiece
US7147138B2 (en) 2004-07-28 2006-12-12 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism
AU2006222753B2 (en) 2005-09-30 2012-09-27 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for linear surgical stapler
US7487899B2 (en) 2004-07-28 2009-02-10 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP complete firing system lockout mechanism
US7143925B2 (en) 2004-07-28 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP blocking lockout mechanism
WO2006015319A2 (en) 2004-07-30 2006-02-09 Power Medical Interventions, Inc. Flexible shaft extender and method of using same
US7922719B2 (en) 2004-10-06 2011-04-12 Biodynamics, Llc Adjustable angle pawl handle for surgical instruments
US7846155B2 (en) 2004-10-08 2010-12-07 Ethicon Endo-Surgery, Inc. Handle assembly having hand activation for use with an ultrasonic surgical instrument
WO2006063156A1 (en) 2004-12-09 2006-06-15 Stryker Corporation Wireless system for providing instrument and implant data to a surgical navigation unit
US20060142740A1 (en) 2004-12-29 2006-06-29 Sherman Jason T Method and apparatus for performing a voice-assisted orthopaedic surgical procedure
US7143926B2 (en) 2005-02-07 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with return spring rotary manual retraction system
US7822458B2 (en) 2005-05-19 2010-10-26 The Johns Hopkins University Distal bevel-tip needle control device and algorithm
US7464847B2 (en) 2005-06-03 2008-12-16 Tyco Healthcare Group Lp Surgical stapler with timer and feedback display
US20120223121A1 (en) 2005-06-03 2012-09-06 Viola Frank J Surgical stapler with timer and feedback display
EP1736112B1 (en) 2005-06-20 2011-08-17 Heribert Schmid Medical device
US8579176B2 (en) 2005-07-26 2013-11-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting device and method for using the device
US7770773B2 (en) 2005-07-27 2010-08-10 Power Medical Interventions, Llc Surgical device
US8241322B2 (en) 2005-07-27 2012-08-14 Tyco Healthcare Group Lp Surgical device
EP1912570B1 (en) 2005-07-27 2014-10-08 Covidien LP Shaft, e.g., for an electro-mechanical surgical device
US20070029363A1 (en) 2005-08-07 2007-02-08 Sergey Popov Surgical apparatus with remote drive
US8348855B2 (en) 2005-08-29 2013-01-08 Galil Medical Ltd. Multiple sensor device for measuring tissue temperature during thermal treatment
JP4125311B2 (en) 2005-08-30 2008-07-30 株式会社東芝 Robots and manipulators
US7407078B2 (en) 2005-09-21 2008-08-05 Ehthicon Endo-Surgery, Inc. Surgical stapling instrument having force controlled spacing end effector
US7641091B2 (en) 2005-10-04 2010-01-05 Tyco Healthcare Group Lp Staple drive assembly
US20070102472A1 (en) 2005-11-04 2007-05-10 Ethicon Endo-Surgery, Inc. Electrosurgical stapling instrument with disposable severing / stapling unit
US7328828B2 (en) 2005-11-04 2008-02-12 Ethicon Endo-Surgery, Inc, Lockout mechanisms and surgical instruments including same
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7673780B2 (en) 2005-11-09 2010-03-09 Ethicon Endo-Surgery, Inc. Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument
US7799039B2 (en) 2005-11-09 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument having a hydraulically actuated end effector
US7246734B2 (en) 2005-12-05 2007-07-24 Ethicon Endo-Surgery, Inc. Rotary hydraulic pump actuated multi-stroke surgical instrument
US7481824B2 (en) 2005-12-30 2009-01-27 Ethicon Endo-Surgery, Inc. Surgical instrument with bending articulation controlled articulation pivot joint
US7670334B2 (en) 2006-01-10 2010-03-02 Ethicon Endo-Surgery, Inc. Surgical instrument having an articulating end effector
US7575144B2 (en) 2006-01-31 2009-08-18 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with single cable actuator
US7416101B2 (en) 2006-01-31 2008-08-26 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with loading force feedback
US7422139B2 (en) 2006-01-31 2008-09-09 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting fastening instrument with tactile position feedback
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US7644848B2 (en) 2006-01-31 2010-01-12 Ethicon Endo-Surgery, Inc. Electronic lockouts and surgical instrument including same
US20070175950A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Disposable staple cartridge having an anvil with tissue locator for use with a surgical cutting and fastening instrument and modular end effector system therefor
US7464849B2 (en) 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Electro-mechanical surgical instrument with closure system and anvil alignment components
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US7568603B2 (en) 2006-01-31 2009-08-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with articulatable end effector
US7766210B2 (en) 2006-01-31 2010-08-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with user feedback system
US20070175951A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Gearing selector for a powered surgical cutting and fastening instrument
US20070175955A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Surgical cutting and fastening instrument with closure trigger locking mechanism
US7464846B2 (en) 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a removable battery
US7770775B2 (en) 2006-01-31 2010-08-10 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with adaptive user feedback
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
EP2486871A3 (en) 2006-05-19 2013-03-06 Ethicon Endo-Surgery, Inc. Surgical instrument and method for post-termination braking of a motor in a surgical instrument
US8627995B2 (en) 2006-05-19 2014-01-14 Ethicon Endo-Sugery, Inc. Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US8551076B2 (en) 2006-06-13 2013-10-08 Intuitive Surgical Operations, Inc. Retrograde instrument
US7740159B2 (en) 2006-08-02 2010-06-22 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US20080029574A1 (en) 2006-08-02 2008-02-07 Shelton Frederick E Pneumatically powered surgical cutting and fastening instrument with actuator at distal end
US7448525B2 (en) 2006-08-02 2008-11-11 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with manually operated retraction apparatus
US9554843B2 (en) 2006-09-01 2017-01-31 Conmed Corporation Adapter and method for converting gas-enhanced electrosurgical coagulation instrument for cutting
US8807414B2 (en) * 2006-10-06 2014-08-19 Covidien Lp System and method for non-contact electronic articulation sensing
US8733614B2 (en) 2006-10-06 2014-05-27 Covidien Lp End effector identification by mechanical features
US7845535B2 (en) 2006-10-06 2010-12-07 Tyco Healthcare Group Lp Surgical instrument having a plastic surface
US7967178B2 (en) 2006-10-06 2011-06-28 Tyco Healthcare Group Lp Grasping jaw mechanism
JP5085996B2 (en) 2006-10-25 2012-11-28 テルモ株式会社 Manipulator system
US20080109012A1 (en) 2006-11-03 2008-05-08 General Electric Company System, method and apparatus for tableside remote connections of medical instruments and systems using wireless communications
JP2008114339A (en) 2006-11-06 2008-05-22 Terumo Corp Manipulator
SE530262C2 (en) * 2006-11-08 2008-04-15 Atlas Copco Tools Ab Power tools with interchangeable gear unit
US8882113B2 (en) 2006-11-09 2014-11-11 Westport Medical, Inc. Bit holders
US7721930B2 (en) 2006-11-10 2010-05-25 Thicon Endo-Surgery, Inc. Disposable cartridge with adhesive for use with a stapling device
WO2008061313A1 (en) 2006-11-24 2008-05-29 Mems-Id Pty Ltd Tagging methods and apparatus
US7721931B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Prevention of cartridge reuse in a surgical instrument
US7738971B2 (en) 2007-01-10 2010-06-15 Ethicon Endo-Surgery, Inc. Post-sterilization programming of surgical instruments
US7900805B2 (en) 2007-01-10 2011-03-08 Ethicon Endo-Surgery, Inc. Surgical instrument with enhanced battery performance
US7954682B2 (en) 2007-01-10 2011-06-07 Ethicon Endo-Surgery, Inc. Surgical instrument with elements to communicate between control unit and end effector
US7950562B2 (en) 2007-01-31 2011-05-31 Tyco Healthcare Group Lp Surgical instrument with replaceable loading unit
US10179247B2 (en) 2007-02-05 2019-01-15 Novian Health, Inc. Interstitial laser therapy control system
EP3431016A1 (en) 2007-03-06 2019-01-23 Covidien LP Surgical stapling apparatus
US7422136B1 (en) 2007-03-15 2008-09-09 Tyco Healthcare Group Lp Powered surgical stapling device
EP2139422B1 (en) 2007-03-26 2016-10-26 Hansen Medical, Inc. Robotic catheter systems and methods
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8800837B2 (en) 2007-04-13 2014-08-12 Covidien Lp Powered surgical instrument
US20080255413A1 (en) 2007-04-13 2008-10-16 Michael Zemlok Powered surgical instrument
US20080251561A1 (en) 2007-04-13 2008-10-16 Chad Eades Quick connect base plate for powder actuated tool
US20080281301A1 (en) 2007-04-20 2008-11-13 Deboer Charles Personal Surgical Center
ES2400538T3 (en) 2007-04-20 2013-04-10 Doheny Eye Institute independent surgical center
US20090012533A1 (en) 2007-04-23 2009-01-08 Hansen Medical, Inc. Robotic instrument control system
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US7549564B2 (en) 2007-06-22 2009-06-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulating end effector
US8968276B2 (en) 2007-09-21 2015-03-03 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
AU2013203675B2 (en) 2012-05-31 2014-11-27 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US9023014B2 (en) 2007-09-21 2015-05-05 Covidien Lp Quick connect assembly for use between surgical handle assembly and surgical accessories
EP2197364B1 (en) 2007-09-21 2016-07-20 Covidien LP Surgical device
US9055943B2 (en) 2007-09-21 2015-06-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US20130214025A1 (en) 2007-10-05 2013-08-22 Covidien Lp Powered surgical stapling device
US20110022032A1 (en) * 2007-10-05 2011-01-27 Tyco Healthcare Group Lp Battery ejection design for a surgical device
US8960520B2 (en) 2007-10-05 2015-02-24 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US8967443B2 (en) 2007-10-05 2015-03-03 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US7909220B2 (en) 2007-10-05 2011-03-22 Tyco Healthcare Group Lp Surgical stapler having an articulation mechanism
US9113880B2 (en) 2007-10-05 2015-08-25 Covidien Lp Internal backbone structural chassis for a surgical device
US7922063B2 (en) * 2007-10-31 2011-04-12 Tyco Healthcare Group, Lp Powered surgical instrument
US8758342B2 (en) 2007-11-28 2014-06-24 Covidien Ag Cordless power-assisted medical cauterization and cutting device
EP2214575A2 (en) 2007-11-29 2010-08-11 SurgiQuest, Incorporated Surgical instruments with improved dexterity for use in minimally invasive surgical procedures
US20090171147A1 (en) 2007-12-31 2009-07-02 Woojin Lee Surgical instrument
JP5535084B2 (en) 2008-01-10 2014-07-02 コヴィディエン リミテッド パートナーシップ An imaging system for a surgical device
TWI328496B (en) 2008-02-01 2010-08-11 Mobiletron Electronics Co Ltd
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US7857185B2 (en) 2008-02-14 2010-12-28 Ethicon Endo-Surgery, Inc. Disposable loading unit for surgical stapling apparatus
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US7959051B2 (en) 2008-02-15 2011-06-14 Ethicon Endo-Surgery, Inc. Closure systems for a surgical cutting and stapling instrument
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US8733611B2 (en) 2008-03-12 2014-05-27 Covidien Lp Ratcheting mechanism for surgical stapling device
US20090254094A1 (en) 2008-04-08 2009-10-08 Knapp Troy D Ratcheting mechanical driver for cannulated surgical systems
WO2009132359A2 (en) 2008-04-25 2009-10-29 Downey Earl C Laparoscopic surgical instrument
US7922061B2 (en) 2008-05-21 2011-04-12 Ethicon Endo-Surgery, Inc. Surgical instrument with automatically reconfigurable articulating end effector
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8303581B2 (en) 2008-09-02 2012-11-06 Covidien Lp Catheter with remotely extendible instruments
KR101056232B1 (en) 2008-09-12 2011-08-11 정창욱 How a tool for minimally invasive surgery and its use
US20100069942A1 (en) 2008-09-18 2010-03-18 Ethicon Endo-Surgery, Inc. Surgical instrument with apparatus for measuring elapsed time between actions
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8372057B2 (en) 2008-10-10 2013-02-12 Coeur, Inc. Luer lock adapter
US8020743B2 (en) 2008-10-15 2011-09-20 Ethicon Endo-Surgery, Inc. Powered articulatable surgical cutting and fastening instrument with flexible drive member
DE102008053842B4 (en) 2008-10-30 2010-08-26 Kirchner, Hilmar O. surgical machining apparatus
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US8016178B2 (en) 2009-03-31 2011-09-13 Tyco Healthcare Group Lp Surgical stapling apparatus
US8365972B2 (en) 2009-03-31 2013-02-05 Covidien Lp Surgical stapling apparatus
US8011550B2 (en) 2009-03-31 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
US8348126B2 (en) 2009-03-31 2013-01-08 Covidien Lp Crimp and release of suture holding buttress material
US7967179B2 (en) 2009-03-31 2011-06-28 Tyco Healthcare Group Lp Center cinch and release of buttress material
US8012170B2 (en) 2009-04-27 2011-09-06 Tyco Healthcare Group Lp Device and method for controlling compression of tissue
US8827134B2 (en) 2009-06-19 2014-09-09 Covidien Lp Flexible surgical stapler with motor in the head
US8146790B2 (en) 2009-07-11 2012-04-03 Tyco Healthcare Group Lp Surgical instrument with safety mechanism
US8314354B2 (en) 2009-07-27 2012-11-20 Apple Inc. Accessory controller for electronic devices
US20110077673A1 (en) 2009-09-29 2011-03-31 Cardiovascular Systems, Inc. Rotational atherectomy device with frictional clutch having magnetic normal force
ES2333509B2 (en) 2009-10-07 2011-01-03 Fundacion Marques De Valdecilla Instrument for endoscopic surgery.
US8157151B2 (en) 2009-10-15 2012-04-17 Tyco Healthcare Group Lp Staple line reinforcement for anvil and cartridge
US10105140B2 (en) 2009-11-20 2018-10-23 Covidien Lp Surgical console and hand-held surgical device
US8806973B2 (en) 2009-12-02 2014-08-19 Covidien Lp Adapters for use between surgical handle assembly and surgical end effector
EP2333509A1 (en) 2009-12-08 2011-06-15 Dingens BG bvba Precision Anaeroid barometer with a capillary tube as a pressure indicator.
US8561871B2 (en) 2009-12-31 2013-10-22 Covidien Lp Indicators for surgical staplers
WO2011108840A2 (en) 2010-03-05 2011-09-09 주식회사 이턴 Surgical instrument, coupling structure of the surgical instrument, and method for adjusting origin point
US8517241B2 (en) 2010-04-16 2013-08-27 Covidien Lp Hand-held surgical devices
US8562592B2 (en) 2010-05-07 2013-10-22 Ethicon Endo-Surgery, Inc. Compound angle laparoscopic methods and devices
CN101856251B (en) 2010-06-07 2011-10-05 常州威克医疗器械有限公司 Disposable linear anastomat
US8968337B2 (en) 2010-07-28 2015-03-03 Covidien Lp Articulating clip applier
KR101765727B1 (en) 2010-09-01 2017-08-08 (주)미래컴퍼니 Coupling structure and zero point calibration method of surgical instrument
CN101966093B (en) 2010-09-28 2012-01-11 上海创亿医疗器械技术有限公司 Cavity mirror surgical incision anastomat with replaceable nail bin
US8292150B2 (en) 2010-11-02 2012-10-23 Tyco Healthcare Group Lp Adapter for powered surgical devices
US20120116368A1 (en) 2010-11-10 2012-05-10 Viola Frank J Surgical instrument with add-on power adapter for accessory
US8523043B2 (en) 2010-12-07 2013-09-03 Immersion Corporation Surgical stapler having haptic feedback
US8348130B2 (en) 2010-12-10 2013-01-08 Covidien Lp Surgical apparatus including surgical buttress
US8936614B2 (en) 2010-12-30 2015-01-20 Covidien Lp Combined unilateral/bilateral jaws on a surgical instrument
US20120211542A1 (en) 2011-02-23 2012-08-23 Tyco Healthcare Group I.P Controlled tissue compression systems and methods
US9549758B2 (en) 2011-03-23 2017-01-24 Covidien Lp Surgical access assembly with adapter
CN102247182A (en) 2011-04-29 2011-11-23 常州市康迪医用吻合器有限公司 Electric anastomat for surgical department
US9017314B2 (en) 2011-06-01 2015-04-28 Covidien Lp Surgical articulation assembly
US9381010B2 (en) 2011-06-27 2016-07-05 Covidien Lp Surgical instrument with adapter for facilitating multi-direction end effector articulation
DE102011084499A1 (en) 2011-10-14 2013-04-18 Robert Bosch Gmbh tool attachment
US9480492B2 (en) 2011-10-25 2016-11-01 Covidien Lp Apparatus for endoscopic procedures
US8899462B2 (en) 2011-10-25 2014-12-02 Covidien Lp Apparatus for endoscopic procedures
US9492146B2 (en) 2011-10-25 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US8672206B2 (en) 2011-10-25 2014-03-18 Covidien Lp Apparatus for endoscopic procedures
US8657177B2 (en) 2011-10-25 2014-02-25 Covidien Lp Surgical apparatus and method for endoscopic surgery
US9168042B2 (en) 2012-01-12 2015-10-27 Covidien Lp Circular stapling instruments
US9241757B2 (en) 2012-01-13 2016-01-26 Covidien Lp System and method for performing surgical procedures with a reusable instrument module
US10080563B2 (en) 2012-06-01 2018-09-25 Covidien Lp Loading unit detection assembly and surgical device for use therewith
US9597104B2 (en) 2012-06-01 2017-03-21 Covidien Lp Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US9868198B2 (en) 2012-06-01 2018-01-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
US9364220B2 (en) 2012-06-19 2016-06-14 Covidien Lp Apparatus for endoscopic procedures
US9364230B2 (en) * 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US10022123B2 (en) 2012-07-09 2018-07-17 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US9839480B2 (en) 2012-07-09 2017-12-12 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US20140012289A1 (en) 2012-07-09 2014-01-09 Covidien Lp Apparatus for endoscopic procedures
US9402604B2 (en) * 2012-07-20 2016-08-02 Covidien Lp Apparatus for endoscopic procedures
US9421014B2 (en) 2012-10-18 2016-08-23 Covidien Lp Loading unit velocity and position feedback
US20140207185A1 (en) 2013-01-18 2014-07-24 W.L. Gore & Associates, Inc. Sealing Device and Delivery System
US9782187B2 (en) 2013-01-18 2017-10-10 Covidien Lp Adapter load button lockout
US20140207125A1 (en) 2013-01-24 2014-07-24 Covidien Lp Intelligent adapter assembly for use with an electromechanical surgical system
US9216013B2 (en) 2013-02-18 2015-12-22 Covidien Lp Apparatus for endoscopic procedures
US9421003B2 (en) 2013-02-18 2016-08-23 Covidien Lp Apparatus for endoscopic procedures
US20140249557A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Thumbwheel switch arrangements for surgical instruments
US9492189B2 (en) 2013-03-13 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US9107685B2 (en) * 2013-03-13 2015-08-18 Ethicon Endo-Surgery, Inc. Electrosurgical device with disposable shaft having clamshell coupling
US9700318B2 (en) 2013-04-09 2017-07-11 Covidien Lp Apparatus for endoscopic procedures
US9775610B2 (en) 2013-04-09 2017-10-03 Covidien Lp Apparatus for endoscopic procedures
US9956677B2 (en) * 2013-05-08 2018-05-01 Black & Decker Inc. Power tool with interchangeable power heads
US9801646B2 (en) 2013-05-30 2017-10-31 Covidien Lp Adapter load button decoupled from loading unit sensor
US9797486B2 (en) 2013-06-20 2017-10-24 Covidien Lp Adapter direct drive with manual retraction, lockout and connection mechanisms
US9636112B2 (en) * 2013-08-16 2017-05-02 Covidien Lp Chip assembly for reusable surgical instruments
US9987006B2 (en) * 2013-08-23 2018-06-05 Ethicon Llc Shroud retention arrangement for sterilizable surgical instruments
US9955966B2 (en) 2013-09-17 2018-05-01 Covidien Lp Adapter direct drive with manual retraction, lockout, and connection mechanisms for improper use prevention
US9295522B2 (en) 2013-11-08 2016-03-29 Covidien Lp Medical device adapter with wrist mechanism
US20150157321A1 (en) 2013-12-09 2015-06-11 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US9808245B2 (en) 2013-12-13 2017-11-07 Covidien Lp Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof
US9706674B2 (en) * 2014-02-04 2017-07-11 Covidien Lp Authentication system for reusable surgical instruments
US10164466B2 (en) 2014-04-17 2018-12-25 Covidien Lp Non-contact surgical adapter electrical interface
US10080552B2 (en) 2014-04-21 2018-09-25 Covidien Lp Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US9913643B2 (en) 2014-05-09 2018-03-13 Covidien Lp Interlock assemblies for replaceable loading unit
US9713466B2 (en) 2014-05-16 2017-07-25 Covidien Lp Adaptor for surgical instrument for converting rotary input to linear output
US9751176B2 (en) * 2014-05-30 2017-09-05 Black & Decker Inc. Power tool accessory attachment system
US10163589B2 (en) 2014-06-26 2018-12-25 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US9763661B2 (en) 2014-06-26 2017-09-19 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US20150374371A1 (en) 2014-06-26 2015-12-31 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US9987095B2 (en) 2014-06-26 2018-06-05 Covidien Lp Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units
US20150374372A1 (en) 2014-06-26 2015-12-31 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US9839425B2 (en) 2014-06-26 2017-12-12 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US20160095585A1 (en) 2014-10-07 2016-04-07 Covidien Lp Handheld electromechanical surgical system
US10226254B2 (en) 2014-10-21 2019-03-12 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
US10085750B2 (en) 2014-10-22 2018-10-02 Covidien Lp Adapter with fire rod J-hook lockout
US9949737B2 (en) 2014-10-22 2018-04-24 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US10111665B2 (en) * 2015-02-19 2018-10-30 Covidien Lp Electromechanical surgical systems
US20160270835A1 (en) * 2015-03-17 2016-09-22 Covidien Lp Connecting end effectors to surgical devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080237296A1 (en) * 2007-03-28 2008-10-02 Boudreaux Chad P Surgical stapling and cutting instrument with side mounted retraction member
US20080308603A1 (en) * 2007-06-18 2008-12-18 Shelton Frederick E Cable driven surgical stapling and cutting instrument with improved cable attachment arrangements
WO2009039506A1 (en) 2007-09-21 2009-03-26 Power Medical Interventions, Inc. Surgical device
US20090090763A1 (en) * 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Powered surgical stapling device
US20120143002A1 (en) * 2008-01-10 2012-06-07 Ernest Aranyi Apparatus for Endoscopic Procedures
US20110121049A1 (en) 2009-11-20 2011-05-26 Power Medical Interventions, Llc. Surgical console and hand-held surgical device

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9504455B2 (en) 1999-06-02 2016-11-29 Covidien Lp Shaft for an electro-mechanical surgical device
US9955967B2 (en) 2004-07-30 2018-05-01 Covidien Lp Flexible shaft extender and method of using same
US9987005B2 (en) 2005-06-03 2018-06-05 Covidien Lp Surgical stapler with timer and feedback display
US9370361B2 (en) 2005-06-03 2016-06-21 Covidien Lp Surgical stapler with timer and feedback display
US10105140B2 (en) 2009-11-20 2018-10-23 Covidien Lp Surgical console and hand-held surgical device
US9706981B2 (en) 2010-04-16 2017-07-18 Covidien Lp Hand-held surgical devices
US10004504B2 (en) 2010-11-02 2018-06-26 Covidien Lp Adapter for powered surgical devices
US9282963B2 (en) 2010-11-02 2016-03-15 Covidien Lp Adapter for powered surgical devices
US9492146B2 (en) 2011-10-25 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US9480492B2 (en) 2011-10-25 2016-11-01 Covidien Lp Apparatus for endoscopic procedures
US9597104B2 (en) 2012-06-01 2017-03-21 Covidien Lp Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US10080563B2 (en) 2012-06-01 2018-09-25 Covidien Lp Loading unit detection assembly and surgical device for use therewith
US9868198B2 (en) 2012-06-01 2018-01-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
US9364220B2 (en) 2012-06-19 2016-06-14 Covidien Lp Apparatus for endoscopic procedures
US9839480B2 (en) 2012-07-09 2017-12-12 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US10251644B2 (en) 2012-07-09 2019-04-09 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US10022123B2 (en) 2012-07-09 2018-07-17 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US9402604B2 (en) 2012-07-20 2016-08-02 Covidien Lp Apparatus for endoscopic procedures
US9421014B2 (en) 2012-10-18 2016-08-23 Covidien Lp Loading unit velocity and position feedback
US9782187B2 (en) 2013-01-18 2017-10-10 Covidien Lp Adapter load button lockout
US9421003B2 (en) 2013-02-18 2016-08-23 Covidien Lp Apparatus for endoscopic procedures
US9987008B2 (en) 2013-02-18 2018-06-05 Covidien Lp Apparatus for endoscopic procedures
US9216013B2 (en) 2013-02-18 2015-12-22 Covidien Lp Apparatus for endoscopic procedures
US9492189B2 (en) 2013-03-13 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US10085752B2 (en) 2013-03-13 2018-10-02 Covidien Lp Apparatus for endoscopic procedures
US9775610B2 (en) 2013-04-09 2017-10-03 Covidien Lp Apparatus for endoscopic procedures
US9700318B2 (en) 2013-04-09 2017-07-11 Covidien Lp Apparatus for endoscopic procedures
US9801646B2 (en) 2013-05-30 2017-10-31 Covidien Lp Adapter load button decoupled from loading unit sensor
US9797486B2 (en) 2013-06-20 2017-10-24 Covidien Lp Adapter direct drive with manual retraction, lockout and connection mechanisms
EP2848204A3 (en) * 2013-09-17 2015-06-10 Covidien LP Adapter direct drive with manual retraction, lockout, and connection mechanisms for improper use prevention
US9955966B2 (en) 2013-09-17 2018-05-01 Covidien Lp Adapter direct drive with manual retraction, lockout, and connection mechanisms for improper use prevention
US9962157B2 (en) 2013-09-18 2018-05-08 Covidien Lp Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument
US9974540B2 (en) 2013-10-18 2018-05-22 Covidien Lp Adapter direct drive twist-lock retention mechanism
US9295522B2 (en) 2013-11-08 2016-03-29 Covidien Lp Medical device adapter with wrist mechanism
US10236616B2 (en) 2013-12-04 2019-03-19 Covidien Lp Adapter assembly for interconnecting surgical devices and surgical attachments, and surgical systems thereof
EP2881045A1 (en) * 2013-12-04 2015-06-10 Covidien LP Adapter direct drive push button retention mechanism
US9918713B2 (en) 2013-12-09 2018-03-20 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US9839424B2 (en) 2014-01-17 2017-12-12 Covidien Lp Electromechanical surgical assembly
US10080552B2 (en) 2014-04-21 2018-09-25 Covidien Lp Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US9913643B2 (en) 2014-05-09 2018-03-13 Covidien Lp Interlock assemblies for replaceable loading unit
US9713466B2 (en) 2014-05-16 2017-07-25 Covidien Lp Adaptor for surgical instrument for converting rotary input to linear output
US10271840B2 (en) 2014-08-19 2019-04-30 Covidien Lp Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument
EP3123960A1 (en) * 2015-07-28 2017-02-01 Covidien LP Adapter assemblies for surgical devices
EP3175800A1 (en) * 2015-12-01 2017-06-07 Covidien LP Adapter, extension, and connector assemblies for surgical devices
US20170224345A1 (en) * 2016-02-10 2017-08-10 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
WO2017180622A1 (en) * 2016-04-14 2017-10-19 Smith & Nephew, Inc. Surgical handpiece and latching hub system
WO2018118401A1 (en) * 2016-12-21 2018-06-28 Ethicon Llc Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
EP3338662A1 (en) * 2016-12-21 2018-06-27 Ethicon LLC Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system

Also Published As

Publication number Publication date
CN104224258A (en) 2014-12-24
JP2015003015A (en) 2015-01-08
CN104224258B (en) 2018-10-16
JP6400346B2 (en) 2018-10-03
US9797486B2 (en) 2017-10-24
AU2014203035A1 (en) 2015-01-22
US20140373652A1 (en) 2014-12-25
ES2564412T3 (en) 2016-03-22
EP2815705B1 (en) 2016-02-03
EP3011913A1 (en) 2016-04-27
CA2854745A1 (en) 2014-12-20
EP3011913B1 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
RU2641977C2 (en) Surgical device with robotic drive and manually activated reversing system
US8968276B2 (en) Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US10085750B2 (en) Adapter with fire rod J-hook lockout
CN104582594B (en) Structure for the rotary drive of a surgical instrument
CN104739476B (en) Surgical and surgical handle assembly for use between the end adapter
US9055943B2 (en) Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US7588175B2 (en) Surgical stapling and cutting instrument with improved firing system
CN104582593B (en) Firing system for a surgical instrument disposed latch
EP2777538B1 (en) Control systems for surgical instruments
US9808245B2 (en) Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof
CN103536325B (en) Surgical adapter assembly used in the operating room and the handle assembly of the surgical end effector
CA2627120C (en) Surgical stapling apparatus with powered retraction
JP6192396B2 (en) Surgical adapter assembly used during the surgical handle assembly and the surgical end effector
CA2576445C (en) Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
CN104602618B (en) The joint assembly for rotatably supporting a first portion of a surgical instrument coupled to a second portion of the surgical instrument
CN104039251B (en) A surgical instrument having an integral scalpel blade
US10004504B2 (en) Adapter for powered surgical devices
JP6498509B2 (en) For converting a rotational input into a linear output, the adapter for a surgical instrument
JP6448076B2 (en) Equipment for endoscopic procedures
ES2663859T3 (en) Hand electromechanical surgical system
EP3042617A2 (en) Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US20190008512A1 (en) Loading unit detection assembly and surgical device for use therewith
EP2937047B1 (en) Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US9782187B2 (en) Adapter load button lockout
EP2866717B1 (en) Surgical instrument system including replaceable end effectors

Legal Events

Date Code Title Description
AK Designated contracting states:

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent to

Extension state: BA ME

17P Request for examination filed

Effective date: 20140620

R17P Request for examination filed (correction)

Effective date: 20150608

RBV Designated contracting states (correction):

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Announcement of intention to grant

Effective date: 20150805

RIN1 Inventor (correction)

Inventor name: RICHARD, PAUL

Inventor name: CABRERA, RAMIRO

Inventor name: SUBRAMANIAN, ANAND

Inventor name: CHOWANIEC, DAVID

Inventor name: ZERGIEBEL, EARL

Inventor name: WILLIAMS, RYAN

AK Designated contracting states:

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 773287

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014000836

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2564412

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160322

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20160203

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 773287

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160203

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160603

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160603

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014000836

Country of ref document: DE

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

26N No opposition filed

Effective date: 20161104

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160503

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140620

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160620

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

PGFP Postgrant: annual fees paid to national office

Ref country code: DE

Payment date: 20180522

Year of fee payment: 5

Ref country code: IE

Payment date: 20180524

Year of fee payment: 5

PGFP Postgrant: annual fees paid to national office

Ref country code: FR

Payment date: 20180525

Year of fee payment: 5

Ref country code: IT

Payment date: 20180523

Year of fee payment: 5

PGFP Postgrant: annual fees paid to national office

Ref country code: GB

Payment date: 20180522

Year of fee payment: 5

Ref country code: ES

Payment date: 20180702

Year of fee payment: 5

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203