EP2780485A1 - Alloy for high temperature tooling applications - Google Patents

Alloy for high temperature tooling applications

Info

Publication number
EP2780485A1
EP2780485A1 EP12813975.5A EP12813975A EP2780485A1 EP 2780485 A1 EP2780485 A1 EP 2780485A1 EP 12813975 A EP12813975 A EP 12813975A EP 2780485 A1 EP2780485 A1 EP 2780485A1
Authority
EP
European Patent Office
Prior art keywords
alloy
thermal
thermal fatigue
cycles
stellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12813975.5A
Other languages
German (de)
French (fr)
Other versions
EP2780485B1 (en
Inventor
Osman Cakir
Fahri ALAGEYIK
Yucel Birol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TUBITAK
Original Assignee
TUBITAK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to TR201111434 priority Critical
Application filed by TUBITAK filed Critical TUBITAK
Priority to PCT/IB2012/056511 priority patent/WO2013072899A1/en
Publication of EP2780485A1 publication Critical patent/EP2780485A1/en
Application granted granted Critical
Publication of EP2780485B1 publication Critical patent/EP2780485B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Abstract

Thermal fatigue is the predominant mechanism that limits the service life of dies in semi-solid forming of steels since the feedstock to be shaped has a paste-like character. A novel alloy, more resistant to these conditions than any other alloy, has been developed. Eutectic carbides in Stellite alloys are replaced in this novel alloy with molybdenum-rich intermetallic compound particles between dendrites. This novel alloy offers at least 3 times longer service life with respect to Stellite 6 alloy that has been tested under conditions that mimic the steel semi-solid forming process and has been identified as the most suitable. The exceptional performance of the novel alloy is attributed to its outstanding resistance to oxidation and to softening at elevated temperatures and to its cobalt based matrix free from the hard and brittle carbides that have a negative impact on crack growth process.

Description

    ALLOY FOR HIGH TEMPERATURE TOOLING APPLICATIONS DESCRIPTION
  • Tool materials that can withstand the process conditions are employed in forming operations. The tool materials to be used in tooling for high temperature forming operations must withstand the high temperatures, the mechanical and thermal loads encountered at these temperatures, oxidation and loss of strength. The present invention offers a new tool material for the semi-solid processing of steels, an attractive near-net shaping process that has not been commercialized until today due to a lack of suitable die materials.
  • The die materials intended for semi-solid forming of steels must withstand thermo-mechanical cycles at elevated temperatures, wear and oxidation. The tool material described by the present invention offers a three-fold improvement in the service life with respect to that provided by cobalt-based alloys that have been the material of choice and widely used until today. Hence, it is a very attractive material for the manufacturers of forged steel parts. The material of the present invention, whether employed as the die material or as a hardfacing alloy, offers a very significant opportunity for semi-solid processing of steels, an attractive near-net shaping process that has not been commercialized until today due to a lack of suitable die materials.
  • STATE OF THE PRESENT ART
  • Tooling issue is a very critical one since tool assemblies are responsible for one fifth of the part cost in plastic forming operations [1]. Dies employed in semi-solid forging of steel parts are among tooling that are faced with the most severe conditions [2-5]. Stresses originating from thermal cycles are essentially the major life-limiting factors since the mechanical stresses are limited owing to paste-like features of the feedstock to be shaped in the forming dies [6].
  • Hot work tool steels are not at all suitable for tooling to be employed in semi-solid forming of steels in spite of the fact that they are very attractive from a cost standpoint [7-15].
  • Cobalt-based alloys are attractive candidates for high temperature tooling applications owing to an exceptional performance in a wide temperature range [16-22]. Stellite 6, a popular cobalt-based alloy which can be used as the die material or as a hardfacing alloy, has been shown with the present art to offer a three-fold improvement in tool service life with respect to hot work tool steels [23, 24]. However, the hard and brittle carbides dispersed in between the ferrite dendrite arms have played a key role in crack growth and led to an increase in the crack growth rate. Additionally, carbides were found to be more susceptible to oxidation in high temperature wear tests and have impaired the wear resistance of cobalt-based Stellite alloys by increasing the wear rate [25]. The high cost of cobalt based alloys is the major impediment that limits their wide spread use.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A novel cobalt based alloy has been developed in the present invention to be employed in the semi-solid shaping of steels. This novel alloy has been designed without carbon with a consideration of the negative impact of the carbides in stellite alloys on crack propagation under thermal cycles encountered at elevated temperatures. Another critical feature of the alloy of the present invention that is different from its counterparts is its much higher iron content (up to 12 wt%).
  • This compositional adjustment is intended to account for the dilution of the hardfacing layer with iron from the underlying steel substrate during hardfacing operations.
  • Another motivation for this change is to provide a substantial cost reduction in the cobalt based alloy.
  • The alloy of the present invention does not contain carbon. Besides, its iron content is much higher than its counterparts. This feature not only improves the cost aspect but also accounts for the dilution effect often encountered in hardfacing of tool steels.
  • Owing to the chemical composition of the present alloy, the eutectic carbides typical of stellite alloys are replaced by molybdenum-rich intermetallic compound particles dispersed at dendrite boundaries.
  • The alloy of the present invention offers a three-fold improvement in the service life of dies with respect to those manufactured from stellite 6 alloy that has been identified to be the best die material tested until today under semi-solid steel forming process conditions. This exceptional performance of this novel material is attributed to its resistance to high temperature oxidation and to temper softening as well as to a cobalt-rich matrix phase free from the hard and brittle carbides that impair the crack growth resistance.
  • Carbon-free cobalt based alloy of the present invention was prepared by melting commercial purity elements in a 2 kg capacity induction furnace under vacuum. The alloy melt thus obtained was subsequently cast into boron nitride coated permanent mould between 1580-1600 ° C under vacuum.
  • The microstructure of the alloy of the present invention consists of a ferritic dendritic solid solution matrix phase and molybdenum-rich intermetallic compound particles at interdendritic sites (Figure 1).
  • Carbides in stellite alloys are replaced in the alloy of the present invention with molybdenum-rich intermetallic compound particles. The hardness of these particles is nearly two times higher than that of the matrix phase. The hardness of the matrix and the molybdenum-rich particles were measured to be 382 ± 52 HV and 700 ± 143 HV respectively.
  • Samples of the present alloy, 25mmx25mmx20mm in size, were submitted to thermal fatigue testing in order to identify their performance. The minimum and the maximum temperatures of the thermal cycle were selected to be 450 centigrade and 750 centigrade, respectively, with a consideration of the die surface temperatures encountered in the conventional forging and semi-solid forging operations. The former temperature is the temperature to which the die is heated to in plastic forming operations while the latter is the highest temperature measured at the surface of the die during semi-solid forging of steels. The front face of the thermal fatigue test sample was heated to 750 centigrade within 30 seconds with an oxyacetylene torch and subsequently cooled to 450 centigrade within the next 30 seconds with forced air blow (Figure 2). The temperature of the front and rear faces of the thermal fatigue test samples were measured with K-type thermocouples fixed into 3 mm diameter holes drilled at 0.1 mm from the respective surfaces. Thermal fatigue tests were terminated as soon as oxidation and/or thermal fatigue cracks were detected on the front face. The damage introduced with thermal cycling were evaluated qualitatively with optical and stereo microscopes.
  • The lowest and the highest temperatures at the rear face of the thermal fatigue sample were measured to be 486 and 580 centigrade, respectively, when the temperature of the front face was cycled between the minimum and maximum temperatures of 450 and 750 centigrade. These temperature differences between the front and rear faces have set up thermal gradients across the section of the samples. The temperature difference between the front and rear faces of the sample is as much as 192 centigrade within 27 seconds of the start of a typical thermal cycle. The maximum tensile and compressive stresses acting on the front face of the thermal fatigue samples were estimated to be 472 MPa and 210 MPa, respectively, with a consideration of the thermal gradients measured across the section of the samples.
  • The front face of the thermal fatigue sample prepared from the alloy of the present invention faces the highest temperatures and thus the highest thermal stresses during thermal cycling and is shown in Figure 3. The thermal fatigue resistance of this sample revealed no signs of thermal fatigue cracking until 13000 thermal cycles and was thus identified to be exceptional. Several minor lines linked with the blistering and wrinkling of the surface oxide film were detected on the front face during the regular checks performed every 500 cycles after a total of 13000 thermal cycles (Figure 3a). It has taken these minor traces another 3000 thermal cycles to develop into legitimate thermal fatigue cracks (Figure 3b). Finally, a surface crack of considerable size has formed by the spallation of the surface oxides at the intersection of two surface wrinkles after a total of 16000 thermal cycles (Figure 3b). The thermal fatigue test was terminated at this point and the front face of the sample was prepared for investigation with standard metallographic practices. The surface crack was found to go through the grains instead of through the grain boundaries (Figure 3c).
  • Thermal fatigue test had to be terminated after 5000 cycles when the hot work tool steel sample coated with Stellite 6 alloy hardfacing tested under exactly the same conditions. Thermal fatigue cracks had already traversed the 2 mm thick stellite 6 surface layer entirely at this point. Thermal fatigue cracking was found to start after 4500 cycles and the thermal fatigue crack was found to grow nearly 2 mm during the next 500 cycles during the regular 500 cycle inspections [24].
  • It takes 13000 thermal cycles for thermal cracking to start and another 3000 cycles for the thermal fatigue crack that has formed to grow only 1 mm. (Figure 4).
  • This simple comparison evidences that the crack growth rate in the alloy of the present invention is at least 10 times lower than that in the Stellite 6 alloy. It is fair to claim from the foregoing that the alloy of the present invention offers not only an outstanding thermal fatigue crack initiation but also to thermal fatigue crack growth resistance. This exceptional crack growth resistance of the alloy of the present invention is attributed to its microstructure free of brittle carbides that were shown to encourage crack propagation in Stellite 6 alloy [24, 26].
  • The potential of the alloy of the present invention under thermal cycling conditions at elevated temperatures is appreciated more when the performance of the hot work tool steels under the same conditions are considered. Hot work tool steels could withstand the same conditions only for 1000 thermal cycles due to surface degradation linked with severe oxidation [23, 24]. Deep cracks filled with voluminous oxides were noted on the front face of the hot work tool steel sample when the thermal cycling was terminated after 15000 cycles.
  • Stellite 6 alloy that has been identified to be the most successful high temperature alloy until today, whether employed as the die material itself or as weld overlay surface layer, could withstand these cycling conditions for only 5000 cycles without cracking on the front face [23]. It is thus fair to claim that the alloy of the present invention offers at least 3 and at least 10 times longer service life with respect to Stellite 6 alloy and hot work tool steel, respectively.
  • The outstanding thermal fatigue performance of the alloy of the present invention evidences its exceptional resistance to high temperature oxidation. This oxidation resistance is attributed to chromium in the alloy composition that oxidizes preferentially and forms a slowly growing, stable and protective oxide film on the surface [23, 24]. The presence of such an oxide (Cr2O3) film on the surface was confirmed with low angle x-ray diffraction analysis. This stable and protective Cr2O3 layer served as a barrier to excessive oxidation under thermal cycling test conditions. The much lower tendency of the alloy of the present invention to oxidation with respect to hot work tool steels is evidenced also by thermo gravimetric analysis and by the metallographic analysis of sections of samples submitted to thermal cycling. The surface oxide of the alloy of the present invention is only 3-4 m m thick after 16000 thermal cycles, much thinner than the oxide on the surface of hot work tool steel samples, measured to be nearly 50 m m after only 500 thermal cycles. Cr2O3 film on the surface is claimed to be resistant to thermal stresses and retains its integrity.
  • Another feature that imparts to the alloy of the present invention its high thermal fatigue resistance is its resistance to loss of strength at elevated temperatures. Resistance to softening is a key feature required in tool materials to ensure adequate resistance to crack initiation as well as to crack growth. A hard alloy protects its surface oxides and the surface oxides, in turn, protect the underlying die steel. Surface oxide films offer this protection by resisting against plastic deformations produced by mechanical and/or thermal stresses, against blistering, expansions and finally to cracking and spallation. Hence, surface deterioration and damage are avoided and cracking is thus delayed.
  • The resistance of the alloy of the present invention to loss of strength at elevated temperatures has been confirmed with hardness measurements across the section of the samples submitted to thermal cycling. The softening in the present alloy is very small and is confined to the surface during the first couple of thousand cycles (Figure 5). The average hardness measured to be 560 HV before thermal cycling, is still 500 HV after the first 5000 cycles. This hardness level implies a much higher softening resistance of the present alloy with respect to hot work tool steels, the hardness of which is measured to be as low as 250 HV after the same number of thermal cycles [23]. Hardness of the alloy of the present invention has continued to decrease steadily with increasing number of thermal fatigue cycles. However, the hardness of the alloy of the present invention even after 16000 thermal cycles is 400 HV, and is thus higher than the hardness measured in Stellite 6 alloy after 5000 cycles. It is fair to conclude in view of the foregoing that the high resistance to softening of the alloy of the present invention makes a favourable impact on its high thermal fatigue resistance.
  • DESCRIPTION OF FIGURES
  • Figure 1: Microstructure of the alloy of the present invention: (a) dendritic matrix phase, (b) Molybdenum-rich intermetallic phase.
    Figure 2: Change in temperatures measured on the front and rear faces of the sample during a typical thermal cycle.
    Figure 3: Surface blistering detected on the front face of the thermal fatigue test sample of the cobalt-based alloy of the present invention after 13000 thermal cycles (a), (b, c) development of this surface blister into a thermal fatigue crack after 16000 cycles. (a and b) scanning electron and (c) optical microscope micrographs.
    Figure 4: Section view of the thermal fatigue crack after 16000 thermal cycles.
    Figure 5: Change in hardness across the section of the thermal fatigue sample with number of thermal cycles.
  • REFERENCES
  • [1] E. Doege, H. Nagele, U. Schliephake, J. Eng. Manuf. 208 (1994) 111.
    [2] K. Bobzin, E. Lugscheider, M. Maes, P. Immich, Solid State Phenomena, 116-117 (2006) 704.
    [3] R. Kopp, J. Kallweit, T. Moller, I. Seidl, J. Mater. Process Tech. 130-131 (2002) 562.
    [4] Y. Birol, Steel Res. Int., 80 (2009) 588.
    [5] Y. Birol, Ironmak & Steelmak, 36 (2009) 397.
    [6] Y. Birol, Steel Res. Int. 80, (2009) 165.
    [7] S. Muenstermann, K. Uibel, T. Tonnesen, R. Telle, Solid State Phenomena, 116-117 (2006) 696.
    [8] E. Lugscheider, K. Bobzin, C. Barimani, St. Barwulf, Th. Hornig, Adv. Eng. Mater. 2 (2000) 33.
    [9] M.Z. Omar, E.J Palmiere, A.A. Howe, H.V. Atkinson, P. Kapranos, Mater. Sci. Eng. A395 (2005) 53.
    [10] E. Lugscheider, Th. Hornig, D. Neuschutz, O. Kyrylov, R. Prange, in: G.L. Chiarmetta, M. Rosso (Eds.) Proc. 6th Int. Conf.On Semi-Solid Processing of Alloys and Composites, Turin, 2000, pp. 587-592.
    [11] R. Telle, S. Muenstermann, C. Beyer, Solid State Phenomena, Vol. 116-117 (2006) 690.
    [12] Y. Birol, Ironmak & Steelmak, 36 (2009) 555.
    [13] Y. Birol, Steel Research Int., 80 (2009) 165.
    [14] Y. Birol, Int. J. Mater. Form. 3 (2010) 65.
    [15] Y. Birol, Ironmak. Steelmak. 37 (2010) 41.
    [16] J.C. Shin, J.M. Doh, J.K. Yoon, D.K. Lee, J.S. Kim, Surf. Coat. Tech. 166 (2003) 117.
    [17] I. Radu, D.Y. Li, Wear 259 (2005) 453.
    [18] J.N. Aoh, Y.R. Jeng, E.L. Chu, L.T. Wu, Wear 225-229 (1999) 1114.
    [19] H. Kashani, A. Amadeh, H.M. Ghasemi, Wear 262 (2007) 800.
    [20] M.X. Yao, J.B.C. Wu, Y. Xie, Mat. Sci. Eng. A 407 (2005) 234.
    [21] C. Navas, A. Conde, M. Cadenas and J. de Damborenea, Surf. Eng. 22 (2006) 26.
    [22] B.F. Levin, J.N. DuPont, A.R. Marder, Wear 181-183 (1995) 810.
    [23] Y. Birol, Mater. Sci. Eng. A527 (2010) 1938.
    [24] Y. Birol, Mater. Sci. Eng. A 527 (2010) 6091.
    [25] Y. Birol, Wear, 269 (2010) 664.
    [26] Y. Birol, A. Kayihan, Metal. Mater. Trans., 42 (2011) 3277

Claims (4)

  1. A cobalt based alloy with no carbon and 9-15 wt% iron in its chemical composition.
  2. An alloy according to claim 1, with a ferritic dendritic matrix phase and molybdenum-rich intermetallic particles at dendrite boundaries.
  3. An alloy according to claim 1, the extent of softening after 5000 cycles in thermal fatigue test of which, is less than %15.
  4. An alloy according to claim 1, containing 0.72 wt% Si, 1.58 wt% Mn, 29.22 wt% Cr, 5.50 wt% Mo, 3.77 wt% Ni, wt% 11.50 Fe, the balance being Co.
EP12813975.5A 2011-11-18 2012-11-16 Alloy for high temperature tooling applications Active EP2780485B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR201111434 2011-11-18
PCT/IB2012/056511 WO2013072899A1 (en) 2011-11-18 2012-11-16 Alloy for high temperature tooling applications

Publications (2)

Publication Number Publication Date
EP2780485A1 true EP2780485A1 (en) 2014-09-24
EP2780485B1 EP2780485B1 (en) 2018-10-24

Family

ID=47557408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12813975.5A Active EP2780485B1 (en) 2011-11-18 2012-11-16 Alloy for high temperature tooling applications

Country Status (5)

Country Link
US (1) US20140334968A1 (en)
EP (1) EP2780485B1 (en)
CN (1) CN104080933B (en)
TR (1) TR201819886T4 (en)
WO (1) WO2013072899A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3410732A (en) * 1965-04-30 1968-11-12 Du Pont Cobalt-base alloys
EP0018942B1 (en) * 1979-04-12 1984-07-04 Les Fabriques d'Assortiments Réunies Ductile magnetic alloys, method of making same and magnetic body
JPH0332623B2 (en) * 1986-11-07 1991-05-14 Sankin Ind Co
FR2733416B1 (en) * 1995-04-28 1997-07-25 Bourrelly Georges Alloy for dental prostheses based on cobalt-chrome aluminum
JP3865293B2 (en) * 2001-05-30 2007-01-10 日立粉末冶金株式会社 Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same
DE10252776A1 (en) * 2002-11-07 2004-07-22 Dentaurum J.P. Winkelstroeter Kg Dental casting alloy
SE0300881D0 (en) * 2003-03-27 2003-03-27 Hoeganaes Ab Powder metal composition and method for producing components thereof
EP1959024A4 (en) * 2005-12-05 2009-12-23 Japan Science & Tech Agency Co BASED ALLOY AND PROCESS FOR PRODUCING THE SAME
JP5472704B2 (en) * 2009-08-26 2014-04-16 三菱マテリアル株式会社 Co-based alloy member for electric melting furnace and electric melting furnace for high-level radioactive waste vitrification treatment

Also Published As

Publication number Publication date
TR201819886T4 (en) 2019-01-21
EP2780485B1 (en) 2018-10-24
US20140334968A1 (en) 2014-11-13
CN104080933B (en) 2016-03-30
WO2013072899A1 (en) 2013-05-23
CN104080933A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
US20170268084A1 (en) Tool steel alloy with high thermal conductivity
US9738959B2 (en) Non-magnetic metal alloy compositions and applications
Hsu et al. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition
CA2420010C (en) Metal material having good resistance to metal dusting
Verdi et al. Cr3C2 incorporation into an Inconel 625 laser cladded coating: effects on matrix microstructure, mechanical properties and local scratch resistance
Birol High temperature sliding wear behaviour of Inconel 617 and Stellite 6 alloys
Sudhakar et al. Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing
ES2266557T3 (en) Duplex steel alloy.
Anton et al. Selecting high-temperature structural intermetallic compounds: the engineering approach
Tetsui et al. Fabrication of TiAl components by means of hot forging and machining
Hassan et al. Development of high strength magnesium based composites using elemental nickel particulates as reinforcement
CN102002612B (en) Nickel based super alloy and goods thereof
Rahmani et al. Evaluation of microstructure and mechanical properties in dissimilar austenitic/super duplex stainless steel joint
Hsu et al. On the superior hot hardness and softening resistance of AlCoCrxFeMo0. 5Ni high-entropy alloys
US9714724B2 (en) Exhaust valve spindle for an exhaust valve in an internal combustion engine
Sun et al. Microstructure and wear resistance enhancement of cast steel rolls by laser surface alloying NiCr–Cr3C2
CN102260805B (en) Zirconium titanium based alloy and preparation method thereof
EP0925131B1 (en) Apparatus for processing corrosive molten metals
Spigarelli et al. Analysis of the creep behaviour of modified P91 (9Cr–1Mo–NbV) welds
EP2781612B1 (en) Seamless austenite heat-resistant alloy tube
KR100342304B1 (en) Aluminum alloys for die casting
Fernandes et al. Effect of arc current on microstructure and wear characteristics of a Ni-based coating deposited by PTA on gray cast iron
Shnawah et al. Microstructure, mechanical, and thermal properties of the Sn–1Ag–0.5 Cu solder alloy bearing Fe for electronics applications
Puli et al. Microstructures and properties of friction surfaced coatings in AISI 440C martensitic stainless steel
US7540403B2 (en) Controlled thermal expansion of welds to enhance toughness

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17P Request for examination filed

Effective date: 20140429

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CAKIR, OSMAN

Inventor name: BIROL, YUCEL

Inventor name: ALAGEYIK, FAHRI

DAX Request for extension of the european patent (to any country) (deleted)
17Q First examination report despatched

Effective date: 20161013

INTG Intention to grant announced

Effective date: 20180416

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ALAGEYIK, FAHRI

Inventor name: BIROL, YUCEL

Inventor name: CAKIR, OSMAN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1056736

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012052668

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181024

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1056736

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190125

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012052668

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190124

26N No opposition filed

Effective date: 20190725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181116

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190124

PGFP Annual fee paid to national office [announced from national office to epo]

Ref country code: DE

Payment date: 20191115

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181116

PGFP Annual fee paid to national office [announced from national office to epo]

Ref country code: FR

Payment date: 20191129

Year of fee payment: 8

Ref country code: IT

Payment date: 20191121

Year of fee payment: 8

Ref country code: BE

Payment date: 20191126

Year of fee payment: 8

PGFP Annual fee paid to national office [announced from national office to epo]

Ref country code: TR

Payment date: 20191105

Year of fee payment: 8