EP2777533B1 - Surgical stapling apparatus - Google Patents

Surgical stapling apparatus Download PDF

Info

Publication number
EP2777533B1
EP2777533B1 EP14159099.2A EP14159099A EP2777533B1 EP 2777533 B1 EP2777533 B1 EP 2777533B1 EP 14159099 A EP14159099 A EP 14159099A EP 2777533 B1 EP2777533 B1 EP 2777533B1
Authority
EP
European Patent Office
Prior art keywords
configuration
cartridge
actuator
configured
working end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14159099.2A
Other languages
German (de)
French (fr)
Other versions
EP2777533A1 (en
Inventor
Justin Williams
Christopher Penna
Lee Ann Olson
Stanislaw Marczyk
Kenneth M. Cappola
Thomas R. Hessler
Ernest Aranyi
Stanislaw Kostrzewski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201361779873P priority Critical
Priority to US13/924,054 priority patent/US9668729B2/en
Priority to US13/923,832 priority patent/US9888921B2/en
Priority to US13/923,557 priority patent/US9566064B2/en
Priority to US13/923,970 priority patent/US9289211B2/en
Priority to US13/923,651 priority patent/US9668728B2/en
Priority claimed from EP16187137.1A external-priority patent/EP3135225A3/en
Application filed by Covidien LP filed Critical Covidien LP
Publication of EP2777533A1 publication Critical patent/EP2777533A1/en
Publication of EP2777533B1 publication Critical patent/EP2777533B1/en
Application granted granted Critical
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/10Surgical instruments, devices or methods, e.g. tourniquets for applying or removing wound clamps, e.g. containing only one clamp or staple; Wound clamp magazines
    • A61B17/105Wound clamp magazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • A61B2017/00473Distal part, e.g. tip or head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07257Stapler heads characterised by its anvil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07271Stapler heads characterised by its cartridge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07278Stapler heads characterised by its sled or its staple holder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07285Stapler heads characterised by its cutter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0814Preventing re-use

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/779,873, filed March 13, 2013 ..
  • BACKGROUND Technical Field
  • The present disclosure relates to surgical stapling apparatuses. More particularly, the present disclosure relates to surgical stapling apparatuses including knife drive lockout mechanisms.
  • Description of Related Art
  • Surgical stapling apparatuses that are configured to staple and, subsequently, sever tissue are well known in the art. Such stapling apparatuses, typically, include, a housing and an elongated member that extends from the housing. In certain instances, a multi use loading unit (MULU) that includes a reload may be configured to releasably couple to a distal end of the elongated member. Alternatively, the reload may be fixedly supported at the distal end of the elongated member. In either of the aforementioned reload configurations, an anvil and cartridge may be provided on jaws of the reload and configured to staple tissue. A knife (or other suitable device) may be utilized to sever the stapled tissue. The knife may be actuated via one or more actuation devices operably associated with the surgical stapling apparatus and translated through the anvil and cartridge to sever the staple tissue. US 2011/295269 describes a motorized surgical cutting and fastening device with a disposable loading unit having a bayonet type coupling.
  • While the aforementioned reload configurations provide numerous advantages, it may be desirable to prevent inadvertent firing of the knife of the surgical stapler when a staple cartridge is not installed or is spent.
  • SUMMARY
  • As can be appreciated, surgical stapling apparatuses that include knife drive lockout mechanisms may prove useful in the surgical arena.
  • Embodiments of the present disclosure are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein, the term "distal" refers to the portion that is being described which is further from a user, while the term "proximal" refers to the portion that is being described which is closer to a user.
  • An aspect of the present disclosure provides a surgical stapling apparatus (stapler). The stapler includes a housing and an elongated member that extends therefrom. The elongated member is configured to operably support a reload at a distal end thereof. A cartridge is configured to selectively couple to a first jaw member of the reload. The cartridge includes fasteners and a platform area, the cartridge defining a knife channel and an aperture. A second jaw member has an anvil with staple forming depressions and a drive member is movable from a retracted to an advanced position to drive the fasteners towards the anvil, the drive member having a working end for supporting a knife, the working end being configured to move through the knife channel from a retracted to an advanced distal position for severing tissue positioned between the jaw members. The apparatus further includes a locking mechanism comprising an actuator rotably disposed in the aperture of the cartridge and an interlock, the actuator being movable between an initial pre-fired configuration wherein the actuator rests on the platform area and is engaged with the interlock to allow distal movement of the working end, to a final post-fired configuration wherein the actuator is raised above the platform area and is disengaged from the interlock to lock out and prevent distal movement of the working end, wherein the actuator has a head portion at an upper end, and a notch at a lower end, the actuator being biased in a downwardly direction, the actuator having a tip extending into the knife channel when the actuator is in the first pre-fired position and the interlock having an upright extension and being rotatably disposed adjacent the actuator so that the upright extension is engaged with the notch when the actuator is in the first pre-fired position, the interlock moving to a position blocking the knife channel when the actuator moves to the seond post-fired postion, the working end of the drive member further comprising a top flange that contacts the head portion when the drive member moves from the retracted, pre-fired position t the advanced, post-fired position thereby moving the head portion to effect disengagement of the actuator from the interlock such that the interlock is positioned inside of the translation path of the working end and the working end is locked out and unable to move distally..
  • Further optional features of the invention are set out in the dependent claims .
  • Paragraph deleted.
  • Paragraph deleted.
  • Paragraph deleted.
  • Paragraph deleted.
  • Paragraph deleted.
  • Paragraph deleted.
  • Paragraph deleted
  • Paragraph deleted.
  • Paragraph deleted.
  • Paragraph deleted.
  • Paragraph deleted.
  • Paragraph deleted.
  • Paragraph deleted.
  • Paragraph deleted.
  • Paragraph deleted.
  • Paragraph deleted.
  • Paragraph deleted.
  • Paragraph deleted.
  • Paragraph deleted.
  • BRIEF DESCRIPTION OF THE DRAWING
  • Various embodiments of the present disclosure are described hereinbelow with references to the drawings, wherein:
    • Fig. 1 is a perspective view of a powered surgical stapling apparatus;
    • Fig. 2 is a perspective view of a manual surgical stapling apparatus;
    • Fig. 3A is a perspective view of a reload of Figs. 1 and 2 including a drive lockout mechanism representing background art of the instant disclosure;
    • Fig. 3B is an exploded, perspective view of the reload of Fig. 3A with the parts separated;
    • Fig. 4A is a partial, perspective view of a removable cartridge including a spring clip shown in an extended configuration;
    • Fig. 4B is a perspective view of a proximal portion of the cartridge with the spring clip of Fig. 4A removed;
    • Fig. 5 is a perspective view of the spring clip of Fig. 4A;
    • Fig. 6 is a perspective view of an anvil uncoupled to a corresponding jaw member to illustrate a recess configured to receive the spring clip therein;
    • Fig. 7 is a perspective view of a pivot beam that is configured to releasably engage the spring clip;
    • Fig. 8 is a partial, perspective view of the anvil and cartridge with a top portion of the anvil being removed to illustrate a knife in a pre-fired configuration and the spring clip and pivot beam in an engaged configuration;
    • Fig. 9 is a cut-away view taken along line-segment 9-9 in Fig. 8;
    • Figs. 10-12 are perspective views illustrating a firing sequence of the knife through the cartridge and anvil;
    • Fig. 13 is a perspective view of a reload including a drive lockout mechanism representing background art of the present disclosure;
    • Fig. 14 is a perspective view of the reload and a cartridge depicted in Fig. 13 uncoupled from one another;
    • Fig. 15 is an exploded, perspective view of the reload with the parts separated and removed;
    • Fig. 16 is an exploded, perspective view of the cartridge assembly with parts separated;
    • Fig. 17 is an exploded, bottom view of a sled of the cartridge with parts separated;
    • Fig. 18 is a bottom view of the sled of Fig. 17 in an assembled configuration;
    • Fig. 19 is an exploded, rear perspective view of the sled with parts separated;
    • Fig. 20 is a rear perspective view of the sled of Fig. 19 in an assembled configuration;
    • Fig. 21 is an enlarged area of detail of Fig. 15 illustrating a latch;
    • Fig. 22 is a perspective view of the latch depicted in Fig. 21 shown inverted;
    • Fig. 23 is perspective view of the reload with parts removed;
    • Fig. 24 is an enlarged area of detail of Fig. 23;
    • Fig. 25 is a partial, perspective view of the reload with parts removed illustrating a pivot assembly;
    • Fig. 26 is a cross-sectional view taken along line portion 26 in Fig. 25;
    • Figs. 27 is a partial, cross-sectional view of the cartridge illustrating the cartridge being installed to a corresponding jaw member;
    • Fig. 28 is a partial, cross-sectional view of the cartridge illustrating the cartridge fully installed to the corresponding jaw member;
    • Fig. 29 is a partial, cross-sectional view of the cartridge illustrating the cartridge being approximated towards;
    • Fig. 30 is a partial, cross-sectional view of the cartridge illustrating the anvil and cartridge being in a fully approximated configuration;
    • Fig. 31 is a partial, cross-sectional view of the cartridge illustrating a firing motion of a knife of the reload;
    • Fig. 32 is a partial, cross-sectional view of cartridge illustrating the knife being retracted back to a pre-fired configuration;
    • Fig. 33 is a partial, cross-sectional view of the cartridge illustrating the anvil and cartridge in an open configuration and the knife in the retracted configuration;
    • Fig. 34 is a partial, cross-sectional view of the cartridge illustrating the knife in the retracted configuration and the latch in position for removal of the reload from a trocar;
    • Fig. 35 is a partial, cross-sectional view of the cartridge illustrating the knife in the retracted configuration and the latch in a locked out configuration;
    • Fig. 36 is perspective view of a reload with parts removed and including a drive lockout mechanism representing background art of the present disclosure;
    • Fig. 37 is an enlarged area of detail of Fig. 36;
    • Fig. 38 is an exploded, perspective view of the reload depicted in Fig. 36;
    • Fig. 39 is an exploded, perspective view of a cartridge assembly with parts separated;
    • Fig. 40 is an enlarged area of detail of Fig. 38 illustrating a latch;
    • Fig. 41 is a perspective view of the latch depicted in Fig. 21 shown inverted;
    • Fig. 42 is a perspective view of the reload with parts removed illustrating a pivot assembly;
    • Fig. 43 is a perspective view of the reload with parts removed including a portion of the pivot assembly to illustrate a distal end of a knife assembly;
    • Fig. 44 is a partial, cross-sectional view of the reload with the cartridge not installed on a corresponding jaw member;
    • Fig. 45 is a partial, cross-sectional view of the cartridge installed on a corresponding jaw member;
    • Fig. 46 is a partial, cross-sectional view of the cartridge illustrating a knife being translated therethrough;
    • Fig. 47 is a partial, cross-sectional view of the cartridge illustrating a knife in a retracted configuration and locked out;
    • Fig. 48 is a perspective view of a reload with parts removed and including a drive lockout mechanism representing background art of the present disclosure;
    • Fig. 49 is an enlarged area of detail of Fig. 48;
    • Fig. 50 is a partial, cut-away view of a cartridge shown in a pre-fired configuration;
    • Fig. 51 is an exploded, perspective view of the cartridge with parts removed;
    • Fig. 52 is a perspective view of an actuator of the cartridge depicted in Figs. 50 and 51;
    • Fig. 53 is a perspective view of the actuator depicted in Fig. 52 shown inverted;
    • Fig. 54 is a perspective view of a rotating interlock of the cartridge;
    • Fig. 55 is a top elevational view of the cartridge;
    • Fig. 56 is a cut-away view taken along line section 56-56 shown in Fig. 55;
    • Fig. 57 is a partial, perspective view of the cartridge with parts removed illustrating a knife during a firing sequence;
    • Fig. 58 is a cut-away view taken along line section 58-58 shown in Fig. 57;
    • Fig. 59 is a partial, perspective view of the cartridge with parts removed illustrating the knife in a locked-out configuration;
    • Fig. 60 is a perspective view of a reload with parts removed and including a drive lockout mechanism according to another embodiment of the present disclosure;
    • Fig. 61 is an enlarged area of detail of Fig. 60;
    • Fig. 62 is an exploded, perspective view of the cartridge assembly of Fig. 60 with parts separated;
    • Fig. 63 is an enlarged area of detail of Fig. 62;
    • Fig. 64 is a partial, perspective view of a proximal end of the cartridge;
    • Fig. 65 is an exploded, perspective view of the cartridge assembly with parts separated;
    • Fig. 66 is an exploded, perspective view of a jaw member of the reload with parts separated;
    • Fig. 67 is an enlarged area of detail of Fig. 65 illustrating an actuator of the cartridge;
    • Fig. 68 is an enlarged area of detail of Fig. 66 illustrating a locking assembly with parts separated;
    • Fig. 69 is a perspective view illustrating a spring clip and locking lever of the locking assembly coupled to one another;
    • Figs. 70A-70C are perspective views illustrating the locking lever and spring clip in various configurations;
    • Fig. 71 is a perspective view of the cartridge shown with a portion of a cover removed;
    • Fig. 72 is an enlarged area of detail of Fig. 71;
    • Fig. 73 is a partial, cut-away view of the cartridge illustrating the knife, actuator and locking assembly shown in a pre-fired configuration;
    • Fig. 74 is a partial, top elevational view of the cartridge of Fig. 73;
    • Fig. 75 is a partial, cut-away view of the cartridge illustrating a firing sequence of the knife with the actuator and locking assembly shown in a locked out configuration;
    • Fig. 76 is a partial, top elevational view of the cartridge of Fig. 75;
    • Fig. 77 is a perspective view of a reload with parts removed and including a drive lockout mechanism representing background art of the present disclosure;
    • Fig. 78 is an enlarged area of detail of Fig. 77;
    • Fig. 79 is a top elevational view of a cartridge coupled to a jaw member of Fig. 77;
    • Fig. 80 is an enlarged area of detail of Fig. 79;
    • Fig. 81 is an exploded, perspective view the jaw member with parts separated;
    • Fig. 82 is a right perspective view of a locking lever;
    • Fig. 83 is a left perspective view of the locking lever depicted in Fig. 82;
    • Fig. 84 is a perspective view of an actuator;
    • Fig. 85 is an enlarged area of detail of Fig. 81;
    • Fig. 86 is a partial, cross sectional view of a distal end of the reload;
    • Fig. 87 is a perspective view of the jaw member and cartridge uncoupled from one another;
    • Fig. 88 is an enlarged area of detail of Fig. 87;
    • Fig. 89 is a partial, top elevational view of the cartridge with parts removed in a pre-fired configuration;
    • Fig. 90 is a partial, perspective view of the cartridge with parts removed in the pre-fired configuration;
    • Fig. 91 is a partial, top elevational view of the cartridge with parts removed in a post-fired configuration;
    • Fig. 92 is a partial, perspective view of the cartridge with parts removed in the post -fired configuration;
    • Fig. 93 is a perspective view of a reload with parts removed and including a drive lockout mechanism representing background art of the present disclosure;
    • Fig. 94 is a partial, cross-sectional view taken along line section 94-94 shown in Fig. 93;
    • Fig. 95 is an enlarged area of detail of Fig. 94;
    • Fig. 96 is an exploded, perspective view of the reload with parts removed and separated;
    • Fig. 97 is an enlarged area of detail of Fig. 96;
    • Fig. 98 is a partial, cross-sectional view of jaw members of the reload with the cartridge installed;
    • Fig. 99 is an enlarged area of detail of Fig. 98;
    • Fig. 100 is a partial, cross-sectional view of the jaw members in an approximated and pre-fired configuration;
    • Fig. 101 is a partial, cross-sectional view of the jaw members in an approximated configuration and illustrating a knife being translated therethrough;
    • Fig. 102 is a partial, cross-sectional view of the jaw members in an approximated and post-fired configuration with the knife in a retracted configuration;
    • Fig. 103 is a partial, cross-sectional view of reload including a drive lockout mechanism representing background art of the present disclosure;
    • Fig. 104 is an exploded view of a pawl of an anvil with parts separated;
    • Fig. 105 is a perspective view of a reload with parts removed and including a drive lockout mechanism representing background art of the present disclosure;
    • Fig. 106 is an enlarged area of detail of Fig. 105;
    • Fig. 107 is a perspective view of a jaw member depicted in Fig. 105;
    • Fig. 108 is an enlarged area of detail of Fig. 107;
    • Fig. 109 is a proximal end of the jaw member depicted in Fig. 107 with parts separated;
    • Fig. 110 is an exploded view of a lock out assembly associated with the reload depicted in Fig. 105 with parts separated;
    • Fig. 111 is a partial, top cross sectional view of a jaw member with the locking member in an unlocked configuration;
    • Fig. 112 is a partial, top cross sectional view of a jaw member with the locking member in a locked configuration;
    • Fig. 113 is a cut-away view taken along line section 113-113 shown in Fig. 112;
    • Fig. 114 is a partial, front perspective view of a proximal end of a cartridge configured for use with the reload depicted in Fig. 105;
    • Fig. 115 is a partial, back perspective view of proximal end of the cartridge depicted in Fig. 114;
    • Fig. 116 is an exploded view of the cartridge with parts separated;
    • Fig. 117 is a cut-away view taken along line section 117-117 shown in Fig. 115;
    • Fig. 118 is a perspective view of an actuation sled associated with the cartridge having an actuator coupled thereto;
    • Fig, 119 is a side, perspective view of the actuator;
    • Fig. 120 is a front, perspective view of the actuation sled;
    • Fig. 121 is a cut-away view taken along line section 121-121 shown in Fig. 118;
    • Fig. 122 is a top elevational view of the cartridge and jaw member coupled to one another;
    • Fig. 123 is an enlarged area of detail of Fig. 122;
    • Fig. 124 is a partial, top cross-sectional view of the cartridge and jaw member coupled to one another with a knife in a pre-fired configuration;
    • Fig. 125 is a partial, top cross-sectional view of the cartridge and jaw member coupled to one another with the knife in a post-fired configuration;
    • Fig. 126 is a partial, top elevation view of the cartridge and jaw member coupled to one another with the locking assembly in a locked out configuration;
    • Fig. 127 is a cut-away view taken along line section 127-127 shown in Fig. 126;
    • Fig. 128 is a schematic, elevation view of a knife assembly of a reload including a drive lockout mechanism representing background art of the present disclosure;
    • Fig. 129 is a schematic, elevation view of a knife assembly of a reload in an unlocked configuration;
    • Fig. 130 is a top, cross-sectional view of the cartridge illustrating the knife in a locked configuration;
    • Fig. 131 is a schematic, elevation view of the knife assembly uncoupled from a locking lever;
    • Fig. 132 is a perspective view of the locking lever;
    • Fig. 133 is a perspective view of the knife assembly;
    • Figs. 134-135 are top, cross-sectional views of a jaw member and cartridge of a reload including a drive lockout mechanism representing background art of the present disclosure with a locking lever in unlocked and locked configurations;
    • Fig. 136 is a schematic, plan view of the knife assembly in a locked configuration;
    • Fig. 137 is a perspective view of the knife assembly;
    • Fig. 138 is a schematic view of a jaw member and knife of a reload including a drive lockout mechanism representing background art of the present disclosure with a locking lever in a locked configuration;
    • Figs. 139-140 are schematic views of the jaw member having a cartridge installed and with the locking lever in an unlocked and locked configuration, respectively;
    • Fig. 141 is a partial, perspective view of a reload with parts removed and including a drive lockout mechanism representing background art of the present disclosure;
    • Fig. 142 is an enlarged area of detail of Fig. 141;
    • Fig. 143 is an exploded view with parts separated of a jaw member of the reload;
    • Fig. 144 is a perspective view of a cam block and lockout structure;
    • Fig. 145 is another perspective view of a cam block and lockout structure associated with the jaw member;
    • Fig. 146 is a partial, perspective view of the reload with parts removed illustrating the cam block and lockout structure without a cartridge installed;
    • Fig. 147 is a partial, perspective view of the reload with parts removed illustrating the cam block and lockout structure with a cartridge installed;
    • Fig. 148 is partial perspective with of the releasable reload with parts removed and with the cartridge installed;
    • Fig. 149 is an enlarged area of detail of Fig. 148;
    • Fig. 150 is a partial, perspective view of a reload with parts removed and including a drive lockout mechanism representing background art of the present disclosure;
    • Fig. 151 is an enlarged area of detail of Fig. 150;
    • Fig. 152 is a perspective view of a cartridge configured for use with the reload depicted in Fig. 150;
    • Fig. 153 is an enlarged area of detail of Fig. 152;
    • Fig. 154 is a partial, perspective view of the cartridge illustrating a knife just after firing thereof;
    • Fig. 155 is a partial, perspective view of the cartridge illustrating with the knife being moved to a retracted configuration;
    • Fig. 156 is a partial, perspective view of the cartridge illustrating with the knife in the retracted configuration;
    • Fig. 157 is a partial, perspective view looking into a cartridge assembly configured for use with a reload including a drive lockout mechanism representing background art of the present disclosure in a pre-fired configuration; and
    • Fig. 158 is a is a partial, perspective view looking into a cartridge assembly configured for use with a reload including a drive lockout mechanism representing background art of the present disclosure in a post-fired configuration.
    DETAILED DESCRIPTION
  • Detailed embodiments of the present disclosure are disclosed herein; however, the disclosed embodiments are merely examples of the disclosure, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.
  • In accordance with the instant disclosure, various drive lockout mechanisms are disclosed herein and are configured for use with reloads that are adapted to couple to one or more types of surgical stapling apparatuses. The various drive lockout mechanisms are configured to prevent misfiring of a knife without a cartridge installed, or firing with a spent cartridge installed.
  • Fig. 1 illustrates a powered surgical stapling apparatus shown generally as 100. Fig. 2 illustrates a manual surgical stapling apparatus shown generally as 200. The powered apparatus includes one or more motors and an internal or external power source, whereas the manual apparatus has a movable handle 136 and a mechanism for driving the functions of the apparatus. See U.S. Patent Nos. 5,865,361 ; 5,782,396 ; International WO 04/032,760 ; U.S. Patent Publication No. 2010/0276741 ; and U.S. Patent Application Ser. No. 13/444,228 .
  • Briefly, the surgical stapling apparatus 100, 200 includes a housing 102 a retractor 136, a firing mechanism 116 (Fig. 2), an elongated member 104 extending from housing 102, and a reload 106 that is releasably coupled to a distal end of elongated member 104. Reload 106 includes a proximal shaft portion 109 having a distal end which a tool assembly including first and second jaw members 108, 110. First jaw member 108 is configured to support a cartridge 112 which includes a plurality of fasteners 117a and a corresponding plurality of pusher members 117b that are engaged with fasteners 117a (see Fig. 3B). Cartridge 112 includes one or more retention slots 119 that extend longitudinally along a tissue contacting surface 121 of a cartridge housing 123 and are configured to house fasteners 117a (Fig. 3B). Cartridge housing 123 (Fig. 3B) is configured to releasably couple to first jaw member 108 via one or more suitable coupling methods. A removable and replaceable cartridge assembly is disclosed in U.S. Patent Application Ser. No. 13/280,880 entitled Multi-Use Loading Unit. In any of the embodiments disclosed herein, a removable and replaceable cartridge assembly may be coupled to a jaw using detents, latches, clips and the like. Second jaw member 110 is provided with an anvil 111 (as best seen in Fig. 3B) which defines a plurality of buckets or depressions 107 (see Fig. 3A) that are configured to receive corresponding fasteners 117a when fasteners 117a are ejected from cartridge 112.
  • Fig. 3B illustrates components that are housed within shaft 109. A drive member "D" includes a drive beam 103 having a working end 101 which supports a knife 10. Working end 101 includes an I-beam configuration having top and bottom flanges 118a, 118b and includes a distal abutment surface 118c which engages a central support wedge 113 of actuation sled 115 (see Fig. 3B). Working end 101 is configured to move through a knife channel 114 (Fig. 3B) defined in cartridge 112 from a retracted position to an advanced position for severing stapled tissue positioned between the jaw 108, 110. Knife blade 105 travels slightly behind actuation sled 115 during a stapling procedure such that an incision is formed in tissue after the tissue has been stapled.
  • A pivot assembly 150 (Fig. 3A) is provided at a distal end of shaft 109 and couples first and second jaw members 108, 110 to shaft 109. Pivot assembly 150 includes lower and top portions 151b, 151a that are operably coupled to one another and the tool assembly to facilitate articulation of the tool assembly about an axis transverse to a longitudinal axis of shaft 104 (Fig. 3B).
  • For a more detailed discussion of the construction and operation of reload 106, reference may be made to U.S. Patent Nos. 5,865,361 and 7,225,963 , the entire contents of which are incorporated herein by reference.
  • In accordance with the instant disclosure, reload 106 includes a locking mechanism according to an embodiment of the instant disclosure. Specifically, and with reference to Figs. 4A-4B, cartridge housing 123 includes one or more recesses 125 (Fig. 4B) of suitable configuration that are configured to receive and/or operably house one or more resilient members 126 (see Fig. 5). A single recess 125 which opens onto a top surface of the cartridge 112 is shown in the illustrated embodiment. Recess 125 is configured to allow flexure of kegs 128a, 128b of the resilient member 126 within the confines of recess 125.
  • Continuing with reference to Fig. 5, resilient member(s) 126 may be formed from any suitable resilient material including but not limited to plastic, rubber, metal, etc. In the illustrated embodiment, resilient member is made from a relatively soft plastic and formed into a spring-clip 127. Spring-clip 127 is movable from an extended position (Fig 4a) to a retracted position (Fig. 10) and includes a generally arcuate configuration and is defined by opposing legs 128a, 128b that form a generally "U" configuration; this "U" configuration facilitates positioning spring-clip 127 within recess 125. In accordance with the instant disclosure, prior to use of cartridge 112, spring-clip 127 extends a predetermined distance above tissue contacting surface 121. To this end, one or both of legs 128a, 128b may include one or more flanges 129 (Figs. 4A and 5) that are configured to releasably engage a surface 121 of cartridge 112 adjacent proximal end of the tissue contacting surface of cartridge 112 (Fig. 4A). In the illustrated embodiment, each of legs 128a, 128b includes a single flange 129. Moreover, one or both of legs 128a, 128b may have beveled or angled ends 131a, 131b positioned for engagement with top flange 118a of the knife 105 when knife 105 is advanced from a retracted position towards an advanced position. In the illustrated embodiment, each of sidewalls 128a, 128b includes angled surfaces 131a, 131b that culminate at tips 133a, 133b. Resilient member(s) 126 are configured for insertion through a corresponding recess 130 disposed on anvil 111 (Figs. 6 and 10). Recess 130 on anvil 111 is in vertical registration with recess 125 of cartridge 112 to facilitate insertion of resilient member 126 within recess 130.
  • Referring now to Fig. 6, anvil 111 is illustrated uncoupled from jaw member 110 to illustrate recess 130. Recess 130 is of suitable configuration to receive spring-clip 126 therein. Specifically, angled end surfaces 131a, 131b are configured for positioning within recess 130 when a newly inserted (e.g., a pre-fired) cartridge 112 is coupled to jaw member 108 and jaw members 108, 110 are approximated, see Fig. 9 for example. In the extended configuration, spring clip 127 prevents movement of the locking member 132 (Fig. 7) within an internal cavity 134 (see Fig. 9 for example) of jaw member 110 to a blocking position as will be described in further detail below.
  • With reference to Fig. 7, locking member 132 has a generally elongated configuration and includes a distal end 124 that is operably coupled to a side wall 138 of anvil 111 to facilitate movement of the locking member 132 upwardly and transversely from an outer surface of anvil 111 towards the center of anvil 111 to a position to obstruct movement of the working end 101 of drive member "D" (Figs. 8 and 10). A cam surface 137 is disposed at a proximal end 140 of locking member 132 and is configured to engage top flange 118b disposed on a top portion 144 of knife 105 (Figs. 8 and 11-12). Engagement between cam surface 137 and top flange 118a prevents knife 105 from moving distally past locking member 132 after the cartridge 112 has been fired as will be described in further detail below. A sidewall 135 of locking member 132 is configured to contact a top portion 144 of knife 105 as knife 105 is moved from the advanced configuration to the retracted configuration (see Fig. 11 for example) to move the locking member 132 from the locking position (Fig. 12) to a non-blocking position to allow the knife to move from the retracted position.
  • In use, when cartridge 112 is not coupled to jaw member 108, locking member 132 is in the blocking position for engaging knife 105 (or component associated therewith, e.g., top flange 118). That is, cam surface 137 is flush with the plane of translation of knife 105 such that an end of locking member 132 engages top flange 118b to prevent knife 105 from traveling distally past locking member 132 (see Fig. 12). Thus, the locking member 132 prevents firing of apparatus 100, 200 when a cartridge 112 has not been inserted into jaw 108.
  • When cartridge 112 is coupled to jaw member 108, locking member 132 pivots upwardly as a result of contact with resilient member 126 (see Figs. 8-9). This contact allows working end 101 of the drive member "D" to travel distally past the locking member 132 when knife 105 is fired (Fig. 10). Specifically, this contact raises the cam surface 137 off the plane of translation of working end 101 and above top flange 118b, which, in turn, prevents engagement therebetween so as to allow knife 105 to travel distally past locking member 132 when working end 101 is advanced. Essentially, top flange 118b slides beneath cam surface(s) 137 as knife 105 is translated distally.
  • Contact between top flange 118b and tips 133a, 133b and/or angled surfaces 131a, 131b as the working end 101 is advanced causes flanges 129 to disengage from tissue contacting surface 121 of cartridge 112, which, in turn, causes tips 133a, 133b and/or angled surfaces 131a, 131b to fall beneath the translation plane of working end 101 (Fig. 10). This allows locking member 132 to return to its initial configuration (Fig. 11) obstructing distal movement of the working end 101.
  • As working end 101 is moved proximally back to its retracted configuration, top portion 144 contacts a sidewall 135 (Fig. 8) of locking member 132 to pivot locking member 132 sideways towards sidewall 138 of anvil 111. Once top portion 144 has been moved proximally past cam surface(s) 137 of locking member 132, locking member 132 again returns to its initial configuration. In its initial configuration, cam surface 137 is flush with the plane of translation of working end 101 and positioned to engage top portion 144 of working end 101 (Fig. 12).
  • The unique configuration of locking member 132 and resilient member 126 overcomes the aforementioned drawbacks that are, typically, associated with conventional surgical stapling apparatus. Specifically, the locking member 132 prevents firing of the stapling apparatus 100, 200 when a cartridge 112 is not coupled to jaw 108 or when cartridge 112 has already been fired.
  • From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, while the surgical stapling apparatuses 100, 200 have been described herein as including one locking member 132 and one corresponding resilient member 126, it is within the purview of the present disclosure to utilize two or more locking members 132 and corresponding resilient members 126.
  • Additionally, while surgical stapling apparatuses 100, 200 have been described herein utilizing a reload 106 the drive lockout mechanism described above can be supported on the tool assembly of any stapler having a replaceable cartridge.
  • In addition, reloads that include other types of locking mechanisms may also be utilized with surgical stapling apparatuses 100, 200. The following reloads are similar in concept and design to reload 106. Accordingly, only those features unique to the hereinafter described embodiments of reloads are described in detail.
  • With reference to Figs. 13-35, and initially with reference to Figs. 13-14, a reload 206 includes a locking mechanism that does not form part of the invention and is configured for use with surgical stapling apparatuses 100, 200 (Figs. 1 and 2).
  • Reload 206 is generally as described above but the configuration of the locking mechanism has changed as described below. Reload 206 includes shaft 209 that supports a tool assembly 207 including jaw members 208, 210, respectively. Jaw member 208 is configured to releasably engage a cartridge 212 and jaw member 210 is provided with an anvil 211. Jaw members 208, 210 function in a manner as described above with respect to jaw members 108, 110.
  • A pivot assembly 250 is configured to function in a manner as described above with respect to pivot assembly 150 and includes top and lower portions 251a, 251b (see Fig. 15 for example). Unlike lower portion 151b, however, lower portion 251b is configured to operably support a pair of latches 232a, 232b that are operable to lock a working end 101 of a drive member "D" in a retracted configuration. Specifically, lower portion 251b includes a pair of distally extending leg members 253a, 253b (Figs. 15 and 25). Leg members 253a, 253b are spaced-apart a predetermined distance from one another to receive knife 205 (Fig. 15) so as to allow working end 101 to move through a firing sequence of surgical stapling apparatuses 100, 200, as will be described in greater detail below.
  • A shelf 255 (Figs. 24-25) of suitable configuration is provided on lower portion 251b and is positioned proximally with respect to latches 232a, 232b. Shelf 255 extends across lower portion 251b and is configured to support finger portions 257a, 257b of latches 232a, 232b, respectively. A pair of spaced-apart holders 259a, 259b are provided on lower portion 251b and are positioned adjacent shelf 255. Holders 259a, 259b extend distally from lower portion 251b such that a distal face of holders 259a, 259b aligns with a distal edge of shelf 255 (Fig. 26). Holders 259a, 259b are configured to engage finger portions 257a, 257b to maintain direct contact between finger portions 257a, 257b and shelf 255. In embodiments, holders 259a, 259b may be replaced with a single holder that extends along an entire length of the shelf 255.
  • Continuing with reference to Fig, 25, leg member 253b includes a generally flat medial portion 265b (Figs. 15 and 25) that defines a cavity 261b of suitable configuration defined therein that is configured to house a spring 267, e.g., a compression spring, (Fig. 26). Medial portion 265b is angled in a direction towards a toe portion 269b of leg member 253b. Toe portion 269b extends distally from medial portion 265b and includes a generally flat top surface 271b (Fig. 25) that is elevated a predetermined distance above medial portion 265b. Top portion 271b is configured to contact an offset flange portion 273b (Fig. 24) of cartridge 212. A proximal face 272b (Fig. 26) of toe portion 269b is angled toward medial portion 265b and a sidewall 274b is angled in an outward direction (Fig. 25) away from top surface 271b. A cavity 263b of suitable configuration is defined in toe portion 269b and is configured to house an optional spring 270, e.g., a compression spring, (Fig. 26). Spring 270 may be configured to bias cartridge 212 to the open position.
  • A second toe portion 269a extends distally from a medial portion (not explicitly shown) of leg member 253a and defines a cavity 263a that is configured to house spring 270 (Fig. 25). Toe portion 269a includes a generally flat top surface 271a (Fig. 25) that contacts a corresponding offset flange portion 273a (Fig. 24) of cartridge 212. The medial portion of leg member 253a includes a cavity (not explicitly shown) that is configured to house a spring 267.
  • Referring to Figs. 16-19, actuation sled 215 is similar to actuation sled 115 and includes a central support 213. Unlike actuation sled 115, however, actuation sled 215 includes a blocking member 217. Blocking member 217 may be monolithically formed with actuation sled 215 or blocking member 127 may be a separate component that is coupled to actuation sled 215 via one or more suitable coupling methods, e.g., press-fit, friction-fit, adhesive, etc. In the illustrated embodiment, actuation sled 215 and blocking member 217 are formed as separate components via an injection molding process and, subsequently, coupled to one another via a press-fit. Blocking member 217 includes a generally curvilinear base portion 219 that complements a corresponding recess 221 provided on a bottom portion of actuation sled 215. A detent 223 is provided on base portion 219 of actuation sled 215 and abuts a bottom surface 225 of central wedge 213 when actuation sled 215 is in an assembled configuration (Figs. 18 and 20). Blocking member 217 is configured to contact a pair of distal protuberances 234a, 234b (Figs. 21-22) of latches 232a, 232b when a loaded cartridge 212 is coupled to jaw member 208 (Fig. 30). In further embodiments, one or more latches may be used.
  • Referring now to Figs. 21-22, latches 232a, 232b may be formed via any suitable process and include proximal ends 236a, 236b and distal ends 238a, 238b, respectively. Body portions 240a, 240b are provided at respective proximal ends 236a, 126b and are configured to contact flange 218b when knife 205 is in a retracted configuration (Figs. 26-29 and 33-34). This contact between flange 218b and body portions 240a, 240b maintains latches 232a, 232b in an unlatched configuration.
  • Lateral extensions 242a, 242b of latches 232a, 232b include generally arcuate shoulder portions 243a, 243b that extend from proximal ends 236a, 236b and have respective arms 245a, 245b that abut sidewalls 241a, 241b of body portions 240a, 240b. Distal ends of arms 245a, 245b are received within corresponding apertures 247a, 247b (Figs. 21-22) defined in body portions 242a, 242b. Finger portions 257a, 257b extend in a generally orthogonal direction from shoulder portions 243a, 243b and proximally toward shelf 255 for engagement with corresponding holders 259a, 259b. Arms 245a, 245b are configured to engage springs 267 provided on leg members 253a, 253b to bias latches 232a, 232b in a downwardly direction (Fig. 28).
  • Continuing with reference to Figs. 21-22, extending distally from body portions 240a, 240b are elongated members 248a, 248b from which trailing surfaces 260a, 260b extend in a generally orthogonal direction and culminate at protuberances 234a, 234b. Protuberances 234a, 234b are configured to selectively engage a recess 254 that is provided on an underside of jaw member 208, see Fig. 24 in combination with Fig. 31. Protuberances 234a, 234b and/or trailing surfaces 260a, 260b are configured to engage flange 218b of working end 201 of the drive member "D" when protuberances 234a, 234b are engaged with recess 254(Fig. 35 ). Extending distally from protuberances 234a, 234b are angled leading surfaces 249a, 249b that are configured to contact flange 218b of knife 205 when knife 205 is moved proximally back to the retracted configuration. Leading surfaces 249a, 249b allow flange 218b to slide past protuberances 234a, 234b to allow the working end 201 to be move proximally back to the retracted configuration(Fig. 32).
  • Operation of surgical stapling apparatuses 100, 200 that utilize reload 206 is described herein. Initially, jaw members 208, 210 may be in an open configuration to load cartridge 212 onto jaw member 208 (Figs. 14 and 26-27). In the open configuration, working end 201 is in a fully retracted configuration and flange 218b contacts body portions 240a, 240b. Moreover, arm portion 245b is pressed against springs 267.
  • Thereafter, cartridge 212 may be inserted in jaw member 208. In the loaded configuration, blocking member 217 is positioned over recess 254 and in contact with protuberances 234a, 234b so as not to allow protuberances 234a, 234b to engage recess 254 prior to actuation sled 215 and/or the drive member "D" being fired (Figs. 28-29).
  • Subsequently, reload 206 including jaw members 208, 210 may be inserted through a portal, e.g., a trocar (or other suitable device), and positioned within a cavity of a patient adjacent tissue of interest. Tissue may be positioned between jaw members 208, 210 and jaw members 208, 210 may be approximated towards one another to grasp tissue for stapling thereof.
  • When the working end 201 is advanced to staple and sever tissue, flange 218b translates distally and moves out of engagement with body portions 240a, 240b. However, because blocking member 217 covers recess 254 and contacts with protuberance 234b, the working end 210 is free to continue to move distally and contact central cam wedge 213 of actuation sled 215, which, in turn, moves blocking member 217 out of contact with protuberances 234a, 234b. Accordingly, protuberances 234a, 234b are allowed to engage recess 254 (Fig. 31) as a result of bias of spring 267.
  • Subsequent to stapling and severing tissue, the working end 210 may be moved proximally and returned to its fully retracted configuration. Specifically, flange 218b of knife 205 contacts and slides past leading surfaces 249a, 249b so as to allow the working end 210 to be moved back to its fully retracted continuation (Figs. 32-33). Flange 218b of knife 205 contacts body portions 240a, 240 and protuberances 234a, 234b are prevented from engaging recess 254. Accordingly, jaw members 208, 210 may be approximated towards one another for removal through the portal without interference from protuberances 234a, 234b (Fig. 34). That is, because the protuberances 234a, 234b are prevented from engaging recess 254, the likelihood of the protuberances 234a, 234b contacting the portal is reduced, if not eliminated. Latches 232a, 232b prevent forward movement of knife 205 until surgical stapling apparatuses 100, 200 are loaded with unused cartridge assembly.
  • In accordance with the instant disclosure, if flange 218b should come out of contact with body portions 240a, 240b, the biasing force provided springs 267 against arm portions 245a, 245b would cause protuberances 234a, 234b and/or trailing surfaces 260a, 260b to engage recess 254 and extend a predetermined distance therethrough to engage flange 218b and, thus, prevent knife 205 from traveling distally therepast (Fig. 35).
  • With reference to Figs. 36-47, a reload 306 includes a locking mechanism not forming part of the invention and is configured for use with surgical stapling apparatuses 100, 200 (Figs. 1 and 2).
  • With initial reference to Figs. 37 and 42, a lower portion 351b of pivot 350 includes two spaced-apart upright extensions 359a, 359b that are provided adjacent a shelf 355 to form a holding area for a locking member 343. Specifically, extensions 359a, 359b are positioned distally with respect to shelf 355 and extend a predetermined distance above shelf 355 to engage locking member 343 to prevent locking member 343 from moving distally past extensions 359a, 359b. Extensions 359a, 359b are spaced apart a predetermined distance from one another so as to allow a working end 301 to advance through a firing sequence of the surgical stapling apparatus 100, 200.
  • Continuing with reference to Fig. 42, a leg member 353b extends from extension 359b and includes a generally flat top surface 365b defining a cavity 361b (see Fig. 45) that is configured to house an optional spring 367, e.g., a compression spring. A claw portion 369b extends in a generally upright orientation from top surface 365b and is configured to couple to a corresponding hinge member 344b of latch 332 (Figs. 42 and 44) so as to allow hinge member 344b to pivot thereabout to facilitate sliding of locking member 343 along a notch 360 and/or a distal top surface 364b of drive beam members 303 (Fig. 43). A distal face 372b (Fig. 42) of leg member 353b defines a cavity 363b that is configured to house a spring 370, e.g., a compression spring, (Figs. 44-45). Spring 370 includes a predetermined spring constant and is configured to contact a lateral extension 345b of latch 332 to bias latch 332 in a generally upright configuration.
  • Extension 359a is identical to extension 359b and includes all the aforementioned components described with respect to extension 359b. Accordingly, a detailed description of extension 359a is not provided.
  • Referring now to Figs. 40-41, latch 332 is illustrated. Unlike latch 232, latch 332 is a single component having locking member 343 formed at a proximal end 341 and a bifurcated configuration including two (2) generally elongated members 342a, 342b extending distally therefrom. Members 342a, 342b are spaced apart a predetermined distance from one another to the working end 301 of the drive member "D" to move therebetween during a firing sequence of surgical apparatuses 100, 200.
  • Hinge members 344a, 344b are provided at a medial portion of respective members 342a, 342b and include a generally arcuate configuration. Each of hinge members 344a, 344b extends a predetermined distance orthogonally from members 342a, 342b and curve outward therefrom to pivotably engage corresponding claw portions 369a, 369b to allow latch 332 to pivot as locking member 343 slides along drive beam members 303.
  • A pair of protuberances 334a, 334b are provided at a distal end of latch 332 and are configured to contact blocking member 317 (Fig. 45) when cartridge 312 is coupled to jaw member 308. Specifically, when protuberances 334a, 334b contact blocking member 317, latch 332 pivots about hinge members 344a, 344b which raises locking member 343 a predetermined distance and out of engagement with notch 360, as will be described in greater detail below.
  • Lateral extensions 345a, 345b are positioned proximally with respect to protuberances 334a, 334b and, when coupled to pivot assembly 350, adjacent coil sprigs 370 for contact therewith to urge protuberances 344a, 344b in a generally upward direction. Lateral extension 345b is configured to maintain coil spring 370 within cavity 363b as latch 332 pivots (Figs. 44-45). Likewise, lateral extension 345a is configured to maintain coil spring 370 within the corresponding cavity (not explicitly shown) as latch 332 pivots.
  • Fig. 43 illustrates a distal end of drive beam members 303. Unlike drive beam members 103, drive beam members 303 collectively define notch 360. Specifically, notch 360 is provided adjacent to where a distal end of the drive beam members 303 couple to knife 305, as best seen in Fig. 43. Notch 360 may be formed during manufacture of drive beam members 303 by suitable methods including but not limited to etching, stamping, cutting, etc. Notch 360 includes a generally upright proximal wall 361 that extends from a generally flat medial portion 362. Wall 361 extends upwardly to meet with a proximal top surface 364a of drive beam members 303 and is configured to selectively engage locking bar 343 of a latch 332 to lock-out knife 305 so as to prevent misfiring of knife 305, as described in greater detail below. A ramp portion 363 extends distally from medial portion 362 and is provided towards a distal end of notch 360. Ramp portion 363 may extend at any suitable angle distally from medial portion 362 and is configured to slidably engage locking bar 343 when knife 305 is translated proximally and distally. Ramp portion 363 extends distally to meet a distal top surface 364b of drive beam members 303. Distal top surface 364b is configured to allow locking bar 343 to slide thereon when knife 305 is moved to a retracted configuration.
  • Operation of surgical stapling apparatuses 100, 200 that utilize reload 306 is described herein. Initially, jaw members 308, 310 may be in an open configuration to load cartridge 312 onto jaw member 308 (Fig. 44). In accordance with the embodiment illustrated in Figs. 36-47, when cartridge 312 is not coupled to jaw member 308 the working end 301 of the drive member "D" is locked out. Specifically, coil springs 370 contact lateral extensions 345a, 345b (in Fig. 44, only coil spring 370 is illustrated contacting extension 345b) to urge protuberances 343a, 343b in the generally upwardly direction, and locking member 343 in the generally downwardly direction into notch 360 and into contact with proximal wall 361. This contact between proximal wall 361 and locking member 343 maintains the working end 301 in a locked-out configuration.
  • Thereafter, cartridge 312 may be loaded onto jaw member 308. In the loaded configuration, blocking member 317 is positioned to contact with protuberances 334a, 334b. This contact between protuberances 334a, 334b and blocking member 317 forces protuberances 334a, 334b in a generally downwardly direction and causes latch 332 to pivot about pivot member 344a, 344b, which, in turn, causes locking member 343 to pivot in a generally upwardly direction and out of contact with proximal wall 361, see Fig. 45; with locking member 343 in this configuration, knife 305 may be fired.
  • When working end 301 is advanced to staple and sever tissue, blocking member 317 moves distally with actuation sled 315 and out of contact with protuberances 334a, 334b (Fig. 46). Accordingly, protuberances 334a, 334b as a result of bias of spring 370 are once again forced in a generally upwardly direction and locking member 343 in the generally downwardly direction.
  • Subsequent to stapling and severing tissue, the working end 301 may be moved proximally and returned to its fully retracted configuration. As the working end 301 is being moved proximally, locking member 343 slides a predetermined distance along proximal top surface 364a until such time locking member 343 is forced downwardly into notch 360 and into contact with proximal wall 361. With locking member 343 engaged with notch 360, knife 305 is locked out and prevented from misfiring.
  • With reference to Figs. 48-59, a reload 406 includes a locking mechanism according to an embodiment of the instant disclosure and is configured for use with surgical stapling apparatuses 100, 200 is illustrated. Loading unit 406 can generally be configured as described above.
  • Beginning with reference to Figs. 48-51, reload 406 includes a cartridge 412 that is similar to the previously described cartridge assemblies, e.g., cartridge 112. Unlike cartridge 112, however, one or more recessed platform areas 427a, 427b are provided adjacent to a proximal end of tissue contacting surface 421 of cartridge 412, as best seen in Fig. 51.
  • An aperture 420 is defined through platform area 427a and is configured to receive a post 433 of an actuator 432 (Fig. 51). Aperture 420 is configured to allow rotation of post 433 and a head portion 434 of actuator 432 when head portion 434 is contacted by a top flange 418b disposed on knife 405 (Figs. 48-49). In a pre-fired configuration (e.g., prior to top flange 418b contacting head portion 434), head portion 434 rests on platform area 427a (Fig. 56). In a post-fired configuration (e.g., subsequent to top flange 418b contacting head portion 434), head portion 434 is raised a predetermined distance above platform area 427a (Fig. 58).
  • A pair of apertures 425a, 425b of suitable configuration are defined through a bottom interior wall 422 of cartridge housing 423 and are configured to receive a corresponding rivet 424a, 424b therein (Fig. 51). Aperture 425a is in vertical registration with aperture 420 to align post 433 with an interlock 450 (see Figs. 51 and 56).
  • With reference to Figs. 52-53, actuator 432 is illustrated. Actuator 432 is rotatable within aperture 420 from an initial configuration wherein head portion 434 rests on platform 427a and post 433 is engaged with interlock 450 (Fig. 56) to a final configuration wherein head portion 434 is raised above platform 427a and post 433 is disengaged from interlock 450 (Fig. 58). When post 433 is engaged with interlock 450, working end 401 is free to move distally (Figs. 50 and 56). Conversely, when post 433 is disengaged from interlock 450, the working end 401 is locked out and unable to move distally (Figs. 58 and 59).
  • Continuing with reference to Figs. 52-53, post 433 extends from head portion 434 and includes a generally elongated, cylindrical configuration. A notch 436 is provided adjacent a bottom portion of post 433 and is defined by a generally hemispherical top surface 437 that is defined by a semi-circular peripheral edge and an interior linear edge 439. Edge 439 meets a wall 447 of suitable configuration that extends in a generally orthogonal direction from top surface 437 to meet an interior linear edge 443 that meets with a semi-circular peripheral edge 445. Linear edge 443 and peripheral edge 445 define a generally hemispherical bottom surface 449. A pair of beveled side edges 441a, 441b are provided on wall 447 and extend between bottom and top surfaces 449 and 439, respectively, to facilitate rotation of post 433 about interlock 450.
  • Head portion 434 includes top and bottom surfaces 451a, 451b that are joined by a sidewall 455 extending in a curvilinear manner around top and bottom surfaces 451a, 451b to form a generally cone-like configuration (Figs. 52-53). A tip 451 of head portion 434 is configured to extend at least partially within a knife channel 414 when actuator 432 and a working end 401 are in the pre-fired configuration, see Fig. 55 for example. A protuberance 452 is provided on bottom surface 451a and is configured to contact an interior edge 453 (Figs. 55 and 59) that extends into knife channel 414. Protuberance 452 may include any suitable configuration. In the illustrated embodiment, for example, protuberance 452 includes a generally rounded configuration, e.g., a dot-like configuration. The rounded configuration of protuberance 452 facilitates raising head portion 434 above platform area 427a when protuberance 452 contacts an interior edge 453 disposed adjacent platform area 427a (Fig. 56). In addition, interior edge 453 may be beveled/slanted (Figs. 56 and 58) or otherwise configured to facilitate raising head portion 434 above platform 427a when protuberance contacts interior edge 453.
  • A spring 470 (e.g., a coil spring or other suitable resilient member (Figs. 50-51) is operably coupled to post 433 and is configured to bias actuator 432 in a downwardly direction. Specifically, spring 470 is configured to contact an interior wall 454 that lies beneath tissue contacting surface 421 of cartridge 412 (Figs. 56 and 58). One or more suitable coupling methods and/or devices may be utilized to couple spring 470 to post 433. In the illustrated embodiment, for example, a lock washer 471 is utilized to couple spring 470 to post 433 (Fig. 51). Lock washer 471 is also utilized to rotatably secure post 433 of actuator 432 within aperture 420.
  • Referring to Fig. 54, interlock 450 is illustrated. Interlock 450 is rotatable within aperture 425a from an initial configuration wherein interlock 450 is engaged with sidewall 447 of post 433 (Fig. 56) to a final configuration wherein interlock 450 is disengaged from sidewall 447 (Fig. 58) and engaged with rivet 425b (Fig. 59). When interlock 450 is engaged with sidewall 447, interlock 450 is positioned outside of a translation path of the working end 401 and the working end 401 is free to move distally (Figs. 50 and 56). Conversely, when interlock 450 is disengaged from sidewall 447, interlock 450 is positioned inside of translation path of the working end 401 and the working end 401 is locked out and unable to move distally (see Figs. 58 and 59 for example).
  • Continuing with reference to Fig. 54, interlock 450 includes a stepped configuration having a proximal end 426 and a distal end 428. Proximal end 426 includes a generally rectangular configuration having a relatively flat top surface 429 that is configured to receive bottom surface 449 of post 433 thereon (Fig. 50). A bottom surface (not explicitly shown) of interlock 450 is configured to slide along bottom interior wall 422 as interlock 450 rotates. A sidewall 431c extends from the bottom surface and meets top surface 429 forming an edge 431d. Sidewall 431c forms a first step and is configured to contact rivet 424b when interlock is in the post-fired configuration (Fig. 59). A generally rectangular upright extension 430 of suitable configuration is provided on top surface 429 and includes interior sidewall portions 431a, 431b that form second step. Sidewall portion 431a extends in a straight manner a predetermined distance from a proximal edge of top surface 429. Sidewall portion 431b extends at an angle a predetermined distance from a distal end of sidewall portion 431a. In the pre-fired configuration, sidewall 447 of post 433 is flush with sidewall portion 431a (Fig. 50). As post 433 rotates during a firing sequence, the beveled configuration of sidewalls 441a, 441b in conjunction with the angle at which sidewall portion 431b extends facilitates the transition of post 433 and interlock 450 from their pre-fired configuration to their post-fired configuration.
  • A generally circumferential sidewall 460 (Fig. 54) is provided at distal end 428 and includes an aperture 435 of suitable configuration defined therethrough. Aperture 435 is configured to receive rivet 424a therein for coupling interlock 450 to cartridge housing 423. Rivet 424a is configured to allow rotation of interlock 450 from the pre-fired configuration to the post-fired configuration (see Figs. 50-51 and 59).
  • A spring 467, e.g., a torsion spring 467, having a suitable spring coefficient operably couples via one or more suitable coupling methods and/or devices to the bottom surface of interlock 450. (Fig. 51). Spring 467 is configured to bias interlock 450 towards the post-fired configuration, as best seen in Fig. 59. In the post-fired configuration, sidewall 431c engages rivet 424b to prevent rotation of interlock 450 past a predetermined point and lockout the working end 401 (Fig. 59).
  • In use, actuator 432 is, initially, in the pre-fired configuration with tip 451 in the translation path of the working end 401 (Figs. 50 and 55-56). Thereafter, the working end 401 may be advanced and flange 442 contacts head portion 434 of actuator 432, which, in turn, causes post 433 to rotate and protuberance 452 to ride up along interior edge 453 and onto platform 427a. As post 433 rotates, sidewall 447 rotates about sidewall 431a and begins to rise above extension 430 as a result of the upward bias of spring 470.
  • Once protuberance 452 is moved into position on platform 427a, sidewall 447 will be sufficiently raised so as to disengage sidewall 431a (Figs. 57-79). As a result thereof, interlock 450 under the bias of spring 467 is forced to rotate until such time that sidewall 431d contacts rivet 424b (Figs. 58-59).
  • The working end 401 may be moved back to its retracted, pre-fired configuration against the biasing force of spring 467. Specifically, a trailing surface (not explicitly shown, see trailing surface 118d in Fig. 3B for example) of the working end 401 contacts sidewall 431c so as to push interlock 450 proximally and out of engagement with rivet 424b until the working end 401 is moved therepast and to its retracted, pre-fired configuration. The trailing surface is desirably a cam surface or angled to facilitate this. Once the working end 401 is moved back to its retracted, pre-fired configuration, interlock 450 is once again forced forward by spring 467 and into contact with rivet 424b (Fig. 59). With interlock 450 in contact with rivet 424b, the working end 401 is locked out and prevented from distal translation.
  • With reference to Figs. 60-76, a reload 506 includes a locking mechanism according to an embodiment of the instant disclosure and is configured for use with surgical stapling apparatuses 100, 200 is illustrated.
  • With reference initially to Figs. 60-61, reload 506 includes a lockout assembly 530 that is configured to lock out a working end 501 to prevent misfiring thereof when a cartridge 512 is not coupled to jaw member 508 or when a spent cartridge 512 is coupled to jaw member 508. An actuator 532 is provided at a proximal end of cartridge 512 and is configured to selectively disengage lockout assembly 530 from a lock out configuration to allow advancement of the working end 501 of the drive member "D" (Figs. 62-66). The reload can generally be configured as discussed above.
  • Continuing with reference to Figs. 62-65, an actuator 532 operably couples to actuation sled 515 and is positioned between wedge members 513b, 513c that are positioned to the right of a central support wedge 513a. Actuator 532 is translatable distally between wedge members 513a, 513b from an initial configuration (see Figs. 60, 62-64 and 73-74) to a final configuration (see Figs. 75-76). Actuator 532 is maintained in the initial configuration as a result of contact with a corresponding pusher 518 of plurality of double pushers 517b that are configured to eject corresponding fasteners 517a when contacted by wedge members 513b, 513c (see Fig. 65 in combination with Fig. 73 for example). In the illustrated embodiment corresponding pusher 518 is positioned first in the outer row of plurality of pushers 517 (see Figs. 73 and 75 for example). Alternatively, a single, dedicated pusher (not shown) may be utilized to engage actuator 532; this single dedicated pusher may be configured to push a corresponding fastener, or may function to simply maintain actuator 532 in the initial configuration. Wedge member 513c is configured to contact pusher 518 and move pusher 518 in an upwardly direction to deploy corresponding one of the surgical fasteners 517a.
  • A resilient member 567 (or other suitable device, e.g. a spring) is configured to contact a proximal end 532a of actuator 532 to bias a distal end 532b thereof against pusher 517b (Figs. 60, 63-65). Specifically, resilient member 567 is provided on a bottom portion or cover 561 of cartridge 512 (as best seen in Fig. 65). Spring 567 includes a generally elongated configuration and extends distally in a generally inwardly manner at an angle from cover 561 to bias actuator 532 distally into contact with pusher 518. Resilient member 567 may include any suitable spring constant or configuration or shape. In accordance with the instant disclosure, a suitable spring constant will be sufficient so as allow resilient member 567 to bias actuator 532 against pusher 518 and translate actuator 532 a predetermined distance past pusher 518, as will be described in greater detail below.
  • Actuator 532 may be formed from any suitable material including but not limited to metal, plastic, etc. In the illustrated embodiment, actuator 532 is formed from metal, e.g., sheet metal, and includes a generally elongated configuration having proximal and distal ends 532a, 532b, respectively (Figs. 65 and 67).
  • Distal end 532b includes a leading edge 533 that is configured to engage a corresponding trailing edge 518a (Figs. 65 and 75) of pusher 518. In embodiments, such as the illustrated embodiment, leading edge 533 includes a generally arcuate configuration (e.g., a groove) to facilitate contact with trailing edge 518a that includes a complementary arcuate configuration (e.g., a tongue) of leading edge 533. Alternatively, leading edge 533 and trailing edge 518a may be relatively flat, or may have some other shape.
  • In the final configuration, e.g., a post-fired configuration, leading edge 533 extends a predetermined distance past trailing edge 518a. The predetermined distance that leading edge 533 may extend past trailing edge 518a may range from about .050 inches to about .070 inches. In other words, actuator 532 has been moved distally by resilient member 567 away from lockout member 540.
  • A notch 535 is provided on actuator 532 and is defined by a back wall portion 535a that extends orthogonally from a top surface 535b (Fig. 67). Notch 535 is configured to engage a blocking member 536 extending downwardly from a top interior wall provided within cartridge 512 (Figs. 73 and 75). Blocking member 536 is configured to contact back wall portion 535a to limit distal translation of actuator 532 during a firing sequence such that leading edge 533 extends past trailing edge 518a within the above specified ranges. Moreover, blocking member 536 and top surface 535b may serve to guide actuator 532 as actuator 532 is translated between wedge members 513b, 513c.
  • A generally elongated finger portion 531 of suitable configuration is provided at proximal end 532a and extends proximally therefrom to move lockout assembly 530 into a pre-fired configuration when cartridge 512 is coupled to jaw member 508, see Figs. 64 and 67. In the illustrated embodiment, a proximal end 531a of finger portion 531 extends inwardly from proximal end 532a to laterally offset the finger portion 531 from proximal end 532a. Alternatively, finger portion 531 may be provided on an interior sidewall 532c (Fig. 67) of actuator 532. Finger portion 531 is offset from proximal end 532a to align and couple with lockout assembly 530 when cartridge 512 is coupled to jaw member 508 (see Figs. 63-64).
  • With reference to Figs. 60, 62-64, 66 and 68 lockout assembly 530 is illustrated. As noted above, lockout assembly 530 is configured to lock out the working end 501 to prevent misfiring thereof when cartridge 512 is not coupled to jaw member 508 or when a spent cartridge 512 is coupled to jaw member 508. With this purpose in mind, lockout assembly 530 is operably positioned at a proximal end of jaw 508 and located distal of pivot assembly 550 (Figs. 62-63). Lockout assembly 530 includes three main components, a locking lever 540, a mounting member 560 and a spring clip 570.
  • Continuing with reference to Fig. 68, locking lever 540 includes a base portion 540a of suitable configuration that is configured to seat within a recess 542 provided at a proximal end of jaw member 508, see Figs 64 and 66 for example. A bottom surface of base portion 540a is provided with a generally circumferential protuberance (not explicitly shown) that is configured to be received within a corresponding aperture 544a (as best seen in Fig. 66) that is provided within recess 542 and defined through a bottom wall portion of jaw member 508. In an assembled configuration, the protuberance is configured to allow rotation of locking lever 540 within recess 542 when locking lever 540 is contacted by finger portion 531, see Figs. 62-64.
  • A generally arcuate cutout 540b is provided on base portion 540a and includes a tip 540c configured to contact a corresponding sidewall 542a that helps define recess 542 (see
  • Figs. 64 and 67). Moreover, a boss 540d of suitable configuration extends in a generally orthogonal direction from base portion 540a and is configured to contact finger portion 531. Specifically, when cartridge 512 is coupled to jaw member 508, finger portion 531 of actuator 532 contacts boss 540d and rotates locking lever 540 until boss 540d contacts a trailing edge 564 of mounting member 560 and tip 540c contacts sidewall 542a of recess 542 (Fig. 64). Moreover, tip 540c is configured to contact and slide against a bottom portion 503a of drive beam members 503 (Fig. 73) after finger portion 531 of actuator 532 is disengaged from boss 540d, as will be described in more detail below.
  • A protrusion 540e is provided on base portion 540a and is supported by a post 540f that extends from base portion 540a (Figs. 68-70). Protrusion 540e includes a generally circumferential configuration and is configured to rotatably engage a corresponding opening 562 provided on mounting member 560 for securing locking lever 540 within recess 542. Post 540f includes a generally oblong configuration and is configured to be received between spaced-apart leg portions 571a, 571b of spring clip 570 (as best seen in Figs. 69-70A) so as to allow rotation thereof including locking lever 540 within aperture 544a. Specifically, leg portions 571a, 571b are configured to bias post 540f and, thus, locking lever 540 into a locked out configuration. More specifically, when cartridge 512 is coupled to jaw member 508, finger portion 531 contacts boss 540d and urges boss 540d proximally, which, in turn, partially rotates post 540f into contact with and against the biasing force provided by leg portions 571a, 571b (Fig. 70B). When finger portion 531 moves out of contact with boss 540d, tip 540c is urged into contact with and slides against bottom portion 503a of drive beam members 503 until such time that the working end 501 is moved proximally past tip 540c and back to the retracted configuration. Once the working end 501 is moved to the retracted configuration, tip 540c of locking member 540 is moved back to the locked out configuration. The biasing force provided by leg portions 571 a, 571b on post 540f prevents the working end 501 from moving past tip portion 540c. That is, the biasing force provided by leg portions 571a, 571b on post 540f is greater than the force utilized to fire and/or translate the working end 501 distally and, therefore, leg portions 571a, 571b do not move apart from one another as a result of contact between the working end 501 and tip portion 540c as the working end 501 is moved distally (Fig. 70a).
  • Leg portions 571a, 571b meet at a generally arcuate proximal end 572 of spring clip 570 (Figs. 68-70). The arcuate configuration of proximal end 572 provides a suitable spring constant and is configured to allow leg portions 571a, 571b flex or move a predetermined distance away from one another when post 540f contacts leg portions 571a, 571b. An aperture 576 of suitable configuration is provided adjacent proximal end 572 and is configured to receive therethrough a corresponding protrusion 563 that is provided on a bottom surface of mounting member 560 (Fig. 68).
  • Mounting member 560 includes a generally elongated configuration having opening 562 at a distal end thereof and protrusion 563 at a proximal end thereof to mount locking lever 540 to jaw member 508 (Fig. 68). Specifically, protrusion 540e is positioned within aperture 562 and protrusion 563 is positioned through aperture 576 and through an aperture 544b provided within recess 542 adjacent aperture 544a (see Fig. 66).
  • In use, locking lever 540 is, initially, in a locked out configuration (Figs. 62-63) with tip 540c positioned across the knife channel 514 to prevent distal translation of the working end 501. Thereafter, cartridge 512 may be coupled to jaw member 508. In doing so, finger portion 531 contacts and pushes boss 540d proximally to partially rotate locking lever 540 within recess 542. Locking lever 540 rotates within recess 542 until boss 540d contacts trailing edge 564 and tip portion 540c contacts sidewall 542c (Figs. 73-74). At this time, post 540f moves leg portions 571a, 571b away from one another and is biased by the force provided therefrom (Fig. 70B). Concomitantly, spring 567 biases actuator 532 distally against pusher 518 (see Fig. 63 in combination with Fig. 74).
  • With locking lever 540 and actuator 532 in the pre-fired configuration, the working end 501 including actuation sled 515 may be fired to staple and, subsequently, sever the stapled tissue. When fired, the working end 501 including sled 515 are moved distally and wedge 513c contacts pusher 518 so as to allow actuator 532 to move a predetermined distance distally in a manner as described hereinabove. Distal translation of actuator 532 allows locking lever 540 to move back to the locked-out configuration (Figs. 75-76). Specifically, when the working end 501 is moved proximally past locking lever 540 to the retracted configuration, locking lever 540 against the bias of spring clip 570 is moved back to the locked out configuration. Once in the retracted configuration, the working end 501 is locked out from translating distally past tip portion 540c as a result of the biasing force provided on post 540f by leg portions 571a, 571b.
  • With reference to Figs. 77-92, a reload 606 includes a locking mechanism according to an embodiment of the instant disclosure and is configured for use with surgical stapling apparatuses 100, 200 is illustrated.
  • With reference initially to Figs. 77-78, reload 606 includes a lockout assembly 630 and an actuator 632 that collectively are configured to lock out the working end 601 to prevent misfiring thereof subsequent to cartridge 612 being coupled to jaw member 608. Actuator 632 is provided at a proximal end of cartridge 612 and is configured to selectively engage lockout assembly 630 that is provided at a proximal end of jaw member 508 (see Figs. 78-81 for example).
  • A notch 603a of suitable configuration is defined at a distal end of drive beam members 603 adjacent the working end 601 (Fig. 78). Notch 603a includes a proximal wall 603b that is configured to contact at least a portion of a locking lever 640 of lockout assembly 632 (see Fig. 92 for example) when locking lever 640 is in the locked out configuration.
  • Continuing with reference to Figs. 78-81 and 85, actuator 632 operably couples to cartridge 612 and is configured to selectively engage locking lever 640. Actuator 632 includes a generally elongated configuration having proximal and distal ends 632a, 632b, respectively. Distal end 632b includes a protuberance 634 that projects inwardly and is configured to contact a cam feature 616 that is disposed on actuation sled 615 adjacent a top surface of a central cam wedge 613 (Fig. 85). A tab 636 of suitable configuration is provided on a bottom surface 634c of actuator 632 and is configured to movably seat within a corresponding aperture 622a having a complementary configuration provided at a proximal end of cartridge 612 (see Fig. 80 in combination with Fig. 85). Specifically, tab 636 is configured to move in a generally sideways or lateral direction when protuberance 634 is contacted by cam feature 616 as actuation sled 615 is moved distally.
  • A support structure 638 is provided on bottom surface 632c adjacent proximal end 632a and includes a beam portion 638a and post portion 638b (Fig. 84). Beam portion 638a is configured to be received within a recess 642 that is provided at a proximal end of cartridge 612 (Fig. 84). Beam portion 638a includes a generally elongated configuration and includes a detent 637 at a distal end thereof (Fig. 84). Detent 637 is positioned proximally with respect to tab 636 and is received within a corresponding aperture 632b that is provided at a proximal end of cartridge 612 adjacent aperture 622b (Figs. 78 and 85). Detent 637 is configured to couple actuator 632 to cartridge 612 so as to allow tab 636 to move within aperture 622a in a manner as described above. Specifically, contact between cam member 616 and protuberance 634 causes actuator 632 to pivot about detent 637, which, in turn, causes tab 636 to move sideways within aperture 622a. Post portion 638b extends in a generally orthogonal direction from bottom surface 632c and is configured to contact and rotate locking member 640 into an unlocked configuration when cartridge 612 is coupled to jaw member 608. Moreover, as actuator 632 pivots about detent 637, post portion 638b moves out of contact with locking lever 640 and allows locking lever 640 to return to the locked out configuration (Figs. 87-88 and 91-92).
  • Lockout assembly 640 includes locking lever 640, a spring 670 and a mounting member, e.g., a rivet 660, see Fig. 81 for example. Spring 670 may be any suitable type of spring including coil, torsion, etc. In the illustrated embodiment, spring 670 is in the form of a torsion spring and includes two leg members 671a, 671b that are wound and joined to one another to form a central aperture 670a (Fig. 81) of suitable configuration. Central aperture 670a is aligned with an aperture 641 defined through locking member 640 and is configured to receive rivet 660 therethrough to couple locking lever 640 to jaw member 608. Leg portions 671a, 671b are configured to bias locking lever 640 in the locked out configuration. Specifically, one or both of leg portions 671a, 671b (e.g., leg portions 671a) is configured to contact a pivot member 643 that is provided on locking lever 640 to bias locking lever 640 in the locked out configuration (see Figs, 78, 88, 90 and 92). A top portion 660b of rivet 660 is configured to couple spring 670 and locking lever 640 to one another (Fig. 78).
  • With reference to Figs. 82-83, locking lever 640 is illustrated. Locking lever 640 includes a generally rectangular configuration having proximal and distal ends 640a, 640b, respectively. Pivot member 643 extends in a generally orthogonal direction from a top surface 640c of locking member 640 and includes proximal and distal sidewalls 640d, 640e that are joined by a medial sidewall portion 640f. Proximal sidewall 640d includes a generally arcuate configuration and is positioned adjacent top portion 660b of rivet 660 to facilitate rotation of locking lever 640 about rivet 660. Distal sidewall 640e is angled to facilitate contact with post portion 638b of actuator 632 when cartridge 612 is being coupled to jaw member 608.
  • Continuing with reference to Figs. 82-83, top surface 640c extends a predetermined distance from a bottom surface (not explicitly shown) of locking lever 640 so as to allow post portion 638b of actuator 632 to slide along top surface 640c and contact distal wall 640e when cartridge 612 is being coupled to jaw member 608 (Fig. 78). Proximal end 640a includes a proximal wall 640k having a relatively flat configuration and a rounded inside corner portion 640g that is configured to slide along a lower portion of drive beam members 603 as the working end 601 is translated distally and/or proximally (Fig. 90). Proximal wall 640k is configured to selectively engage notch 603a. Corner portion 640g meets an inner sidewall 640i having a proximal and distal sidewall portions 640j, 640h, respectively. Proximal sidewall portion 640j includes a relatively flat configuration and extends distally to meet distal sidewall portion 640h which includes a bowed or concave configuration. This bowed configuration of distal sidewall portion 640h facilitates proximal translation of the working end 601 past locking lever 640 as the working end 601 is moved back to the retracted configuration.
  • In use, locking lever 640 is, initially, biased inwardly to the locked out configuration to prevent distal translation of the working end 601 (Fig. 87). Specifically, proximal wall 640k and inner sidewall 640i are positioned adjacent the working end 601 and distal with respect to notch 603a so as to be able to engage notch 603a if the working end 601 is moved a predetermined distance distally (see Figs. 91-92). That is, locking lever 640 is biased inwardly against the bottom portion of drive beam members 603 so that proximal wall 640k and/or inner sidewall 640i can engage notch 603a as the working end 601 is moved distally.
  • Thereafter, cartridge 612 may be coupled to jaw member 608. In doing so, post 638b contacts distal sidewall 640e and pushes pivot member 643 proximally to partially rotate locking lever 640 out of the locked out configuration and away from notch 303a (Figs. 79-80 and 88).
  • With locking lever 640 in the pre-fired configuration, the working end 601 including actuation sled 615 may be fired to staple and, subsequently, sever the stapled tissue. When fired, the working end 601 including actuation sled 615 move a predetermined distance distally such that cam feature 616 contacts protuberance 634 so as to pivot actuator 632 about detent 637, which, in turn, causes tab 636 to move inwardly within aperture 622a (Figs. 89-90). As a result of thereof, post 638b slides across distal sidewall 640e and moves out of contact therewith, which, in turn, causes locking lever 640 to pivot inwardly about rivet 660 and against the bottom portion of drive beam members 603 into the locked out configuration. In accordance with the instant disclosure, at the time cam feature 616 contacts protuberance 634, notch 603a will be positioned distally of inner sidewall 640i so as to allow complete translation of the working end 601 through knife channel 614 (see Fig. 90).
  • With locking lever 640 in the locked out configuration, the working end 601 may be moved proximally back to the retracted configuration, wherein notch 603a is again positioned proximally with respect to locking lever 640. Once in the retracted configuration, the working end 601 is locked out from translating distally past locking lever 640 while the spent cartridge is attached to jaw member 608.
  • With reference to Figs. 93-104, a reload 706 (for illustrative purposes being shown without a shaft coupled thereto) includes a locking mechanism not forming part of the invention is configured for use with surgical stapling apparatuses 100, 200 is illustrated.
  • With reference initially to Figs. 93-95, a jaw member 710 includes an anvil 711 and is coupled to a jaw member 708 configured to selectively couple to a cartridge 712. An actuation sled 715 is provided in cartridge 712 and includes a central support wedge 713. When cartridge 712 is coupled to jaw member 708, and jaw members 708, 710 are in an approximated configuration, central support wedge 713 is configured to contact a pawl 732 of a lock out assembly 730 that is operably coupled to jaw member 710 (see Fig. 100).
  • Referring to Fig. 96, jaw member 710 includes a proximal end 710a that is configured to cover a proximal end 711a of anvil 710. In an assembled configuration, proximal end 710a extends a predetermined distance from proximal end 711a of anvil so as to allow pawl 732 to pivot through a knife channel 714 defined through anvil 711. Knife channel 714 extends along a length of anvil 711 and is configured to receive a top flange 718a of knife 705 so as to allow proximal and distal translation of the working end 701. Similarly, a bottom flange 718b of knife 705 is provided through a knife channel (not explicitly shown) that extends through a bottom surface of jaw member 708 (see knife channel 614 above for example).
  • With reference to Fig. 97, lock out assembly 730 is configured to lock out the working end 701 to prevent misfiring thereof prior to coupling cartridge 712 to jaw member 708, and subsequent to coupling cartridge 712 and firing knife 708, i.e., when cartridge 712 is spent. Lock out assembly 730 includes a bracket 731 of suitable configuration that operably couples to an inner surface (not explicitly shown) of jaw member 710. In the illustrated embodiment, a pivot pin 733, rivet or the like may be utilized to mount bracket 731 to the inner surface of jaw member 710. Alternatively, bracket may be coupled to the inner surface of jaw member 710 via welding (e.g., laser beam or electron beam welding), ultrasonic welding, brazing, soldering or other suitable device or method. Bracket 731 includes a bifurcated configuration having a closed proximal end 731a and an open distal end 731b that is defined by two elongated fingers 734a, 734b that are spaced apart a predetermined distance from one another. Specifically, fingers 734a, 734b are spaced apart from one another a distance that allows pawl 732 to pivot unobstructed between fingers 734a, 734b. In embodiments, distal end 731b may be closed.
  • With continued reference to Fig. 97, pivot pin 733 extends through a pair of apertures 736 that are defined through fingers 734a, 734, and is coupled to the inner surface of jaw member 710 via one or more suitable coupling methods, e.g., laser beam or electron beam welding. Pivot pin 733 is also positioned through an aperture 738 of suitable configuration that is defined through pawl 732. Pivot pin 733 is operable to allow pawl 732 to pivot thereabout when pawl 732 is contacted by central wedge 713. Pivot pin 733 is positioned distally with respect to resilient member 760 that is provided on bracket 731.
  • Resilient member 760 may be any suitable resilient member. In the illustrated embodiment, for example, resilient member 760 is formed from a relatively resilient strip of plastic material that has been bent to form a generally "U" shape (Fig. 97). Resilient member 760 is operable to pivot pawl 732 about pivot pin 733. Accordingly, resilient member 760 includes a base portion 761 that couples via one or more suitable coupling methods, e.g., laser beam or electron beam welding, to a bottom surface 731c that extends from proximal end 731a and along fingers 734a, 734b. Base portion 761 meets an arcuate medial portion 762 that serves as a living hinge that meets a flexure portion 763 that couples to pawl 732. Flexure portion 763 provides an upwards biasing force that urges pawl 732 through knife channel 714 when cartridge 712 is not coupled to jaw member 708 (see Figs. 94-95) and after the working end 701 has been fired (Figs. 100-101) and moved back to the retracted configuration (see Fig. 102). Moreover, flexure portion 763 flexes about medial portion 762 when pawl 732 is contacted by central wedge 713 (Figs. 100-101). Coupling base portion 761 along the bottom surface 731c prevents base portion 761 from moving as pawl 732 pivots about pivot pin 733 and flexure portion 763 flexes about medial portion 762.
  • Continuing with reference to Fig. 97, pawl 732 may be formed from any suitable material including but not limited to metal, plastic, ceramic, etc. In the illustrated embodiment, pawl 732 is formed from metal. Pawl 732 includes a generally elongated configuration having proximal and distal portions 732a, 732b with a generally arcuate recess 732c therebetween. Proximal portion 732a includes a generally rectangular configuration and distal portion 732b extends distally from arcuate recess 732c so as to form a distal tip 732d. A bottom surface 732e of pawl 732 is configured to contact central wedge 713 when cartridge 712 is coupled to jaw member 708.
  • In use, pawl 732 is, initially, biased upwardly via flexure portion 762 to the locked out configuration to prevent distal translation of the working end 701 (Figs. 94-95). Thereafter, cartridge 712 may be coupled to jaw member 708. In doing so, central wedge 713 contacts bottom surface 732e of pawl 732 which causes pawl 732 to pivot about pivot pin 733, which, in turn, causes distal tip 732d, against the biasing force of flexure portion 762, to move from within knife channel 714 (Figs. 98-100).
  • With pawl 732 in the pre-fired configuration, the working end 701 including actuation sled 715 may be fired to staple and, subsequently, sever the stapled tissue. When fired, the working end 701 including actuation sled 715 move distally and, thus, central wedge 713 moves out of contact with bottom surface 732e (Figs. 89-90). As a result of thereof, pawl 732 is biased upwardly via flexure portion 762 to the lock out configuration.
  • With pawl 732 in the locked out configuration, the working end 701 may be moved proximally back to the retracted configuration. As the working end 701 is being moved proximally to the retracted configuration, top flange 718a contacts distal end 732b then distal tip 732d, which, in turn, causes pawl 732 to pivot downwardly about pivot pin 733. Once in the retracted configuration, the working end 701 is locked out from translating distally past pawl 732 while the spent cartridge is still attached to jaw member 708 (see Fig. 102).
  • With reference to Figs. 103-104, a pawl 770 and resilient member 780 may be utilized instead of pawl 732 and resilient member 760. In this embodiment, pivot pin 733 is not utilized. Rather, a generally hemispherical protrusion 771 may extend from either side or both sides of pawl 770. For illustrative purposes, one protrusion 771 is shown extending from a left sidewall 770a of pawl 770.
  • A relatively flat bottom surface 771a is provided on protrusion 771 and is coupled to a top surface 781a of resilient member 780, e.g., a leaf spring, adjacent a proximal portion 781b thereof. Top surface 781a at a distal portion 781c of resilient member 780 is coupled to an inner top surface of jaw member 710 and a medial portion 781d is configured to flex when central wedge 713 contacts pawl 770. Pawl 770 is functionally the same as pawl 732; therefore, a detailed description of operation of pawl 770 is not described herein.
  • With reference to Figs. 105-127, a reload 806 includes a locking mechanism not forming part of the invention and is configured for use with surgical stapling apparatuses 100, 200 is illustrated.
  • With reference initially to Figs. 105-113, reload 806 includes a lockout assembly 830 which is similar to lockout assembly 530. Specifically, lockout assembly 830 is operably positioned at a proximal end of jaw member 808 and located distal of the pivot assembly (Figs. 105-108); only a portion of the pivot assembly coupled to jaw member 808 is illustrated in the Figs. As with lockout assembly 530, lockout assembly 830 is configured to lock out knife 808 (Fig. 106) when a cartridge 812 is not coupled to jaw member 808 or when a spent cartridge 812 is coupled to jaw member 808. To this end, lockout assembly 830 includes three main components, a locking lever 840, a mounting member 860 and a spring clip 870 (Figs. 109-110).
  • Continuing with reference to Figs. 109-110, locking lever 840 includes a base portion 840a of suitable configuration that is configured to seat within a recess 842 provided at a proximal end of jaw member 808. A bottom surface of base portion 840a is provided with a generally circumferential protuberance 840f that is configured to be received within a corresponding aperture 844a that is provided within recess 842 and defined through a bottom wall portion of jaw member 808. In an assembled configuration, protuberance 840f is configured to allow rotation of locking lever 840 within recess 842; in this embodiment, however, rotation is a result of contact with an inwardly extending detent 831 that is provided on an actuator 832 (see Fig. 119).
  • A generally arcuate cutout 840b is provided on base portion 840a and includes a tip 840c configured to contact a corresponding sidewall 842a that helps define recess 842 (see Fig. 109). Unlike locking lever 540, however, which includes a boss 540d, a latch 840d (Figs. 109-110) of suitable configuration is provided on a protrusion 840e (which extends from base portion 840a) and is configured to contact detent 831. Specifically, when cartridge 812 is coupled to jaw member 808, detent 831 of actuator 832 contacts latch 840d and rotates locking lever 840 until latch 840d contacts a trailing edge 864 of mounting member 860 and tip 840c contacts sidewall 842a of recess 842 (see Figs. 123-125).
  • Protrusion 840e is provided on base portion 840a and is supported by a post 840f that extends from base portion 840a (Figs. 109-112). Protrusion 840e includes a generally circumferential configuration and is configured to rotatably engage a corresponding opening 862 provided on mounting member 860 for securing locking lever 840 within recess 842. Post 840f includes a generally oblong configuration and is configured to be received between spaced-apart leg portions 871a, 871b of spring clip 870 (as best seen in Figs. 111-112) so as to allow rotation thereof including locking lever 840 within aperture 844a. Specifically, leg portions 871a, 871b are configured to bias post 840f and, thus, locking lever 840 into a locked out configuration. More specifically, when cartridge 812 is coupled to jaw member 808, detent 831 contacts latch 840d and urges latch 840d proximally, which, in turn, partially rotates post 840f into contact with and against the biasing force provided by leg portions 871a, 871b (Fig. 111). In the locked out configuration, the biasing force provided by leg portions 871a, 871b on post 840f prevents the working end 801 from moving past tip portion 840c. That is, the biasing force provided by leg portions 871a, 871b on post 840f is greater than the force utilized to fire and/or translate the working end 801 distally and, therefore, leg portions 871a, 871b do not move apart from one another as a result of contact between the working end 801 and tip portion 840c as the working end 801 is moved distally.
  • Leg portions 871a, 871b meet at a generally arcuate proximal end 872 of spring clip 870 (Fig. 109-112). The arcuate configuration of proximal end 872 provides a suitable spring constant and is configured to allow leg portions 871a, 871b flex or move a predetermined distance away from one another when post 840f contacts leg portions 871a, 871b. An aperture 876 (Figs. 109-110) of suitable configuration is provided adjacent proximal end 872 and is configured to receive therethrough a corresponding protrusion 863 that is provided on a bottom surface of mounting member 860 (Figs. 109-110).
  • Mounting member 860 includes a generally elongated configuration having opening 862 at a distal end thereof and protrusion 863 at a proximal end thereof to mount locking lever 840 to jaw member 808 (Fig. 109). Specifically, protrusion 840e is positioned within aperture 862 and protrusion 863 is positioned through aperture 876 and through an aperture 844b provided within recess 842 adjacent aperture 844a (see Fig. 109). A slit 865 having a complementary configuration to latch 840d is provided on mounting member 860 adjacent aperture 862 and is configured to accommodate reception of latch 840d therethrough; alignment of latch 840d with slit 865 enables protrusion 840e to be positioned through aperture 862.
  • Turning now to Figs. 114-123, actuator 832 is provided at a proximal end of cartridge 812 (Fig. 114) and is configured to selectively disengage lockout assembly 830 from the locked out configuration to allow firing of the working end 801 (Fig. 123). Actuator 832 may be formed from any suitable material including but not limited to metal, plastic, etc. In the illustrated embodiment, actuator 832 is formed from a relatively rigid plastic material and includes a generally elongated configuration having proximal and distal ends 832a, 832b, respectively (Fig. 115).
  • Referring to Figs. 116-119, actuator 832 is positioned between a central support wedge member 813a and side wedge member 813b that is positioned to the right of central support wedge member 813a. Actuator 832 is configured to translate a predetermined distance distally within cartridge 812 as actuation sled 815 is moved through cartridge 812 to eject the plurality of fasteners (not shown). In accordance therewith, actuator 832 releasably couples to actuation sled 815 via one or more suitable coupling method. In the illustrated embodiment, for example, an indent/detent configuration is utilized to releasably couple actuator 832 and actuation sled 815 to one another. Specifically, an indent 833a of suitable configuration is provided on a bottom surface 832c of actuator 832 and is configured to releasably couple to a corresponding detent 833b that is provided in between central support wedge 813a and wedge 813b (see Figs. 119-121).
  • Actuator 832 includes a pair of generally elongated sidewalls 834a, 834b that extend a predetermined length along actuator 832 (Fig. 119). Sidewalls 834a, 834b are spaced apart from one another to receive therein a corresponding stop member 835 of suitable configuration that is provided an interior sidewall 836 within cartridge 812, see Fig. 115 in combination with 117. Interior sidewall 836 including stop member 835 are positioned within cartridge 812 so as to allow distal translation of actuation sled 815 through cartridge 812. Each of sidewalls 834a, 834b includes a respective groove 837a, 837b that is configured to engage corresponding top and bottom projections 838a, 838b of stop member 835 to form a dovetail joint, as best seen in Fig. 117. In accordance with the instant disclosure, when actuation sled 815 translates a predetermined distance past interior sidewall 836, distal end 832b of actuator 832 contacts interior sidewall 836 and grooves 837a, 837b engage top and bottom projections 838a, 838b to prevent distal translation of actuator 832 past interior sidewall 836. Moreover, with grooves 837a, 837b engaged with top and bottom projections 838a, 838b, actuator 832 is secured and prevented from moving within cartridge 812. It should be noted that detent 833b is configured to disengage from indent 833a after such time that actuator 832 is secured to stop member 835.
  • Detent 831 is provided at proximal end 832a and extends a predetermined distance inwardly therefrom to move latch 840d of lockout assembly 830 into a pre-fired configuration when cartridge 812 is coupled to jaw member 808, see Figs. 122-123. Detent 831 may be angled (as in the instant embodiment) or otherwise configured to facilitate contact with latch 840d (Fig. 123). When detent 831 moves out of contact with latch 840d, tip 840c is urged into contact with and slides against a bottom portion (not explicitly shown) of drive beam members 803 (Figs. 124-125 and 127) until such time that the working end 801 is moved proximally past tip 840c and back to the retracted configuration (as best seen in Fig. 127). Once the working end 801 is moved to the retracted configuration, tip 840c of locking member 840 is moved back to the locked out configuration. The biasing force provided by leg portions 871a, 871b on post 840f prevents the working end 801 from moving past tip portion 840c. That is, the biasing force provided by leg portions 871a, 871b on post 840f is greater than the force utilized to fire and/or translate the working end 801 distally and, therefore, leg portions 871a, 871b do not move apart from one another as a result of contact between the working end 801 and tip portion 840c as the working end 801 is moved distally.
  • In use, locking lever 840 is, initially, in a locked out configuration with tip 840c positioned across the knife channel 814 to prevent distal translation of the working end 501 (Figs. 106-108 and 112). Thereafter, cartridge 812 may be coupled to jaw member 808. In doing so, detent 831 contacts and latch 840d proximally to partially rotate locking lever 840 within recess 842. Locking lever 840 rotates within recess 842 until latch 840d contacts trailing edge 864 and tip portion 840c contacts sidewall 842a (Figs. 111 and 122-123). At this time, post 840f moves leg portions 871a, 871b away from one another and is biased by the force provided therefrom (Fig. 111 for example).
  • With locking lever 840 and actuator 832 in the pre-fired configuration, the working end 801 including actuation sled 815 may be fired to staple and, subsequently, sever the stapled tissue. When fired, the working end 801 including actuation sled 815 and actuator 832 coupled thereto move distally, which results in actuator 832 contacting stop member 835 in a manner as described hereinabove. Distal translation of actuator 832 causes detent 831 to disengage from latch 840d and allows locking lever 840 to move back to the locked-out configuration (Figs. 126-127). Specifically, when the working end 801 is moved proximally past locking lever 840 to the retracted configuration, locking lever 840 against the bias of spring clip 870 is moved back to the locked out configuration. Once in the retracted configuration, the working end 801 is locked out from translating distally past tip portion 840c as a result of the biasing force provided on post 840f by leg portions 871a, 871b.
  • With reference to Figs. 128-133, a reload 1006 includes a locking mechanism not forming part of the invention and is configured for use with surgical stapling apparatuses 100, 200 is illustrated.
  • Fig. 130 illustrates a cartridge 1012 installed on a jaw member 1008 with the working end 1001 in a locked out configuration. Unlike the previously disclosed knives, knife 1005 includes a slot 1005a of suitable configuration that is defined by respective upper and lower interior walls 1005c, 1005d and is positioned adjacent a bottom flange 1018a. Slot 1005a extends horizontally across knife 1005 (Fig. 133) such that knife 1005 can engage and/or disengage from a locking lever 1030 (Fig. 132) and move from a retracted configuration to an extended configuration. A notch 1005b of suitable configuration is defined through lower interior wall 1005d and is configured to selectively engage a corresponding lateral extension 1031 that is provided on locking lever 1030 to lock out knife 1005 and prevent misfiring thereof (see Figs. 128 and 132-133). Slot 1005a including notch 1005b may be formed via one or more suitable processes, e.g., etching or milling process, during a manufacturing process of knife 1005.
  • With reference to Fig. 132, locking lever 1030 is illustrated including a generally elongated configuration including proximal and distal ends 1030a, 1030b, respectively. An aperture 1032 of suitable configuration is provided adjacent proximal end 1030a and is configured to couple to a rivet 1009a that is configured along with an opposing rivet 1009b to couple jaw members 1008 and 1010 to one another (Fig. 130). Locking lever 1030 pivots about rivet 1009a so as to allow lateral extension 1031 to selectively engage with and disengage from notch 1005b (see Figs. 128-129). A spring (not shown) operably couples to locking lever 1030 and is utilized to bias distal end 1030b of locking lever 1030 downwardly and into contact with a blocking member 1040 (Figs. 128-130).
  • Blocking member 1040 is provided at a proximal end of an actuation sled (not shown) of the cartridge (not shown) and includes a slanted proximal end 1040a that is configured to engage the distal end 1030b of the locking lever 1030 when the cartridge is coupled to the jaw member. When the proximal end 1040a of the blocking member 1040 engages the distal end 1030b of the locking lever 1030, the locking lever 1030 moves downwardly and the lateral extension 1031 moves out of engagement with the notch 1005b which allows the working end 1001 to advance through the cartridge.
  • In use, locking lever 1030 is, initially, in a locked out configuration with lateral extension 1031 positioned within the notch 1005b of the knife 1005 to prevent distal translation of the working end 1001 (Fig. 128). Thereafter, the cartridge may be coupled to jaw member which causes the proximal end 1040a of the blocking member 1040 to engage the distal end 1030b of the locking lever 1030 which moves the lateral extension 1031 of the locking lever 1030 out of engagement with the notch 1005b which allows the working end 1001 to advance through the cartridge (Fig. 129).
  • When fired, the working end 1001 engages the blocking member 1040 of the actuation sled to move the working end 1001 and blocking members 1040 including the actuation sled distally through the cartridge. The locking lever 1030 will move back to upward configuration as a result of the blocking member 1040 being advanced through the cartridge. When the working end 1001 is moved back to the retracted configuration, the working end 1001 is locked out from advancing as a result of engagement between the lateral extension 1031 and notch 1005b of the knife 1005.
  • With reference to Figs. 134-137, a reload 1106 includes a locking mechanism not forming part of the invention and is configured for use with surgical stapling apparatuses 100, 200 is illustrated. The locking mechanisms utilized by reload 1106 and reload 1006 are substantially similar to one another. Accordingly only those features unique to reload 1106 are described in further detail.
  • Unalike knife 1005 that includes a notch 1005b, a notch 1105b of suitable configuration is defined within a slot 1105a as opposed to a lower interior wall 1105d (see Fig. 137 for example). Slot 1105b is configured to selectively engage a proximal end 1130a that is provided on a locking lever 1130 to lock out knife 1105 and prevent misfiring thereof (see Figs. 134-135).
  • Locking lever 1130 is configured to move sideways as opposed to up and down as with locking lever 1030. Accordingly, locking lever 1130 is biased outwardly to the right to urge proximal end 1130a into engagement with notch 1150b to lock out knife 1105 (Fig. 135).
  • A blocking member 1140 is provided on an actuation sled 1115 (shown in phantom) and is configured to engage a distal end 1130b of locking lever 1130 (Fig. 134). Specifically, a proximal portion 1115a of blocking member 1140 is angled and configured to selectively engage distal end 1130b to move distal end 1130b inwardly to the left such that proximal end 1130a moves out of engagement of notch 1105b (Fig. 134). Once proximal end 1130a is moved out of engagement with notch 1105b, knife 1105 may be fired.
  • In use, locking lever 1130 is, initially, biased to a locked out configuration so that knife 1105 cannot be fired (Fig. 135). Cartridge 1112 may be coupled to jaw 1108. In doing so, proximal portion 1140a of blocking member 1140 moves into contact with distal end 1130b of locking lever 1130 and moves proximal end 1130a of locking lever 1130 out of engagement with notch 1105b (Fig. 134).
  • With proximal end 1130a disengaged from notch 1105b, knife 1105 may then be fired. As knife 1105 travels distally, it contacts actuation sled 1115, which, in turn, moves proximal end 1140a of blocking member 1140 out of engagement with distal end 1130b locking lever 1130 so as to allow distal end 1130b to move back to the biased configuration and locking lever 1130 back to the locked out configuration. In the locked out configuration, proximal end 1130a is allowed to engage notch 1105b when knife 1105 is in the retracted configuration (Fig. 135).
  • With reference to Figs. 138-140, a reload 1206 includes a locking mechanism not forming part of the invention and is configured for use with surgical stapling apparatuses 100, 200 is illustrated.
  • A locking lever 1230 is pivotably coupled to a bottom surface 1208a adjacent a channel 1214 of jaw member 1208 at a proximal end thereof adjacent the working end 1201. A pivot pin 1231 is utilized to couple locking lever 1230 to bottom surface 1208a and is configured to allow locking lever 1230 to pivot thereabout from an activated (or locked out) configuration (Fig. 138), wherein the working end 1201 is locked out, to a deactivated configuration wherein the working end 1201 is allowed to move distally through cartridge 1212 (Fig. 140). A detent or protuberance 1232 of suitable configuration is provided on a bottom surface of locking lever 1230 and is configured to contact bottom flange 1218b of the working end 1201 as the working end 1201 is translated distally through cartridge 1212. Protuberance 1232 includes a proximal portion 1234a and a distal portion 1234b that are configured to cam locking lever 1230 such that the working end 1201 may move distally past locking lever 1230 and configured to cam locking lever 1230 such that the working end 1201 may be moved proximally past locking lever 1230. A spring (not explicitly shown) may be utilized to bias locking lever 1230 into the activated configuration. Specifically, the spring, e.g., a torsion spring, is configured to bias locking lever 1230 such that a proximal edge 1233 serves as a stop and contacts bottom flange 1218b when the working end 1201 is moved distally.
  • A bottom portion 1212a of cartridge 1212 adjacent an actuation sled 1215 (shown in phantom) includes a removable tab portion 1240 that is configured to urge locking lever 1230 into the deactivated configuration when cartridge 1212 is installed (Fig. 139). Tab portion 1240 may be affixed to bottom portion 1212a via any suitable methods. For example, in the illustrated embodiment, tab portion 1240 is perforated and configured to be removed when contacted by the working end 1201 as the working end 1201 is translated distally through cartridge 1212 (Fig. 140).
  • In use, locking lever 1230 is, initially, in the activated configuration to lock out the working end 1201 to prevent misfire thereof (Fig. 138). Thereafter, cartridge 1212 may be installed. In doing so, bottom portion 1212a including tab portion 1240 is positioned over locking lever 1240 to urge locking lever 1240 into the deactivated configuration (Fig. 139).
  • The working end 1201 may then be fired. As the working end 1201 is translated distally, bottom flange 1218b contacts proximal portion 1234a which causes protuberance 1232 to move upwards, which, in turn, breaks off (e.g., removes) tab portion 1240 (Fig. 140) from the bottom surface 1212a of cartridge 1212. When tab portion 1240 is removed, locking lever 1230 is urged back to the activated configuration and into the cartridge 1212 (see Fig. 138). The working end 1201 may then be moved back to the retracted configuration. Specifically, bottom portion 1218b contacts distal portion 1234b and cams locking lever 1230 such that the working end 1201 may slide over protuberance 1232 and back to the retracted configuration. In the retracted configuration, the working end 1201 is locked out and prevented from misfiring.
  • With reference to Figs. 141-149, a reload 1306 includes a locking mechanism not forming part of the invention and is configured for use with surgical stapling apparatuses 100, 200 is illustrated.
  • With reference to Figs. 141-143, initially, reload 1306 includes a pivot assembly 1350 that includes top and lower portions 1350a, 1350b. Unlike the previously described pivot assemblies, e.g., pivot assembly 150, lower portion 1350b of pivot assembly 1350 includes two leg members 1353a, 1353b that are not identical. Specifically, leg member 1353a extends distally past leg member 1353b and includes an aperture 1354 of suitable configuration that is configured to receive therein a lockout structure 1330. In the illustrated embodiment, aperture 1354 includes a generally square configuration that complements a configuration of lockout structure 1330 (Figs. 143-144). Aperture 1354 is configured so as to allow locking structure 1330 to move outwardly from an activated (locked out) configuration (Figs. 142 and 146) to a deactivated (or non-locked out) configuration (Figs. 147 and 149).
  • With continued reference to Figs. 141-143, a cam block 1340 operably couples to a channel 1341 (Fig. 142) that is provided within jaw member 1308. Cam block 1340 is translatable along channel 1341 and is configured to contact lockout structure 1330 when cartridge 1312 is installed (Figs, 146-147). Cam block 1340 includes a proximal portion 1340a and a distal portion 1340b. Distal portion 1340b includes a generally rectangular configuration having a distal wall 1342 that is configured to contact a proximal end of an actuation sled (not shown) of cartridge 1312 when cartridge 1312 is installed. This contact between the actuation sled and distal wall 1342 moves cam block 1340 proximally and into contact with lockout structure 1330. Specifically, an outer facing, slanted, sidewall 1343 is provided at proximal portion 1340a and is configured to cam a corresponding inner facing, slanted, sidewall 1331 provided on lockout structure 1330 (Figs. 144-145).
  • In embodiments, cam block 1340 may be configured to selectively couple to the actuation sled via one or more suitable coupling methods. For example, in an embodiment an indent/detent configuration may be utilized to couple cam block 1340 to the actuation sled when the actuation sled is installed. In this particular embodiment, for example, cam block 1340 may include a detent (not shown) that is configured to couple to a corresponding indent on the actuation sled. Moreover, cam block 1340 may be configured to translate distally when the actuation sled is contacted by the working end 1301 and moved distally through cartridge 1312.
  • Alternatively, while cam block 1340 has bee described herein as being a separate component of the actuation sled, it is within the purview of the instant disclosure to provide cam block 1340 at a proximal end of the actuation sled. In this particular embodiment, cam block 1340 may be monolithically formed with the actuation sled; or may be a separate component that is coupled to the actuation sled via one or more coupling methods, e.g. ultrasonic welding.
  • Referring to Figs. 144-145, lockout structure 1330 includes a base portion 1334 and a generally upright post portion 1332. Base portion 1334 is configured so as to allow sidewall 1343 of cam block 1340 to move beneath lockout structure 1330 and into contact with sidewall 1331 lockout structure 1330 as cam block 1340 is moved proximally. Sidewall 1331 extends diagonally across a bottom surface 1334a of base portion 1334 and is configured so as to allow cam block 1340 to cam lockout structure 1330 outwardly (Figs. 146-147) as cam block 1340 is moved proximally. A top surface 1334b of base portion 1334 slidably contacts a bottom surface 1352 of leg member 1353b and slides therealong when lockout structure 1330 is moved outwardly, see Figs. 146-147).
  • Post portion 1332 extends orthogonally from top surface 1334b of base portion 1334 and includes a generally rectangular configuration (Figs. 144-145). Post portion 1332 is received through aperture 1354 and includes a top portion 1336 that extends past a top surface of leg member 1353a so as to contact a top flange 1318a of a knife 1305 prior to cartridge 1312 being installed (Figs. 141-142). Specifically, top portion 1336 includes a notched corner 1338 of suitable configuration defined by sidewalls 1338a, 1338b that are disposed at a 90 degree angle with respect to one another and a bottom wall 1338c from which sidewalls 1338a, 1338b extend. Notched corner 1338 is configured to contact top flange 1318a of knife 1305 to lock out the working end 1301 and prevent misfiring thereof.
  • In embodiments, a leading corner edge 1338c (shown in phantom in Fig. 144) may be provided and configured to allow the working end 1301 to move proximally past lockout structure 1330 so that the working end 1301 may be moved back to the retracted configuration. In this particular embodiment, a top flange 1318a is configured to contact and slide against leading corner edge 1338c so as to allow the working end 1301 to be moved to the retracted configuration.
  • A spring 1367, e.g., a coil spring, (Fig. 1367) of suitable configuration is provided within aperture 1354 and is configured to bias lockout structure 1330 inwardly. More particularly, spring 1367 is provided within aperture 1354 and contacts an outer sidewall (not explicitly show) of post portion 1332 to urge lockout structure 1330 inwardly. Coil spring 1367 me be coupled to the outer sidewall of post portion 1332 via any suitable coupling methods. For example, an annular recess of suitable configuration may be provided on the outer wall of post portion 1332 and configured to receive coil spring 1367 therein.
  • In use, lockout structure 1330 is, initially, in the activated configuration to lock out the working end 1301 to prevent misfire thereof (Fig. 142). Thereafter, cartridge 1312 may be installed. As noted above, actuation sled 1315 and cam block 1340 may be configured to couple to one another when cartridge 1312 is installed. In this particular embodiment, actuation sled 1315 contacts cam block 1340 and couples thereto to move cam block 1340 proximally such that sidewall 1343 of cam block 1340 contacts sidewall 1331 of lockout structure 1330 to move top portion 1336 including notched corner 1338 outwardly and out of contact (and/or out of a path of translation of the working end 1301) with top flange 1318a of the working end 1301 (Figs. 148-149).
  • The working end 1301 may then be fired. As the working end 1301 translates distally, it contacts the actuation sled and moves the actuation sled including cam block 1340 coupled thereto distally. As a result thereof, cam block 1340 moves out of contact with lockout structure 1330 and lockout structure 1330 moves back to the locked out configuration as a result of the biasing force against the outer wall of post portion 1332 provided by spring 1367.
  • The working end 1301 may then be moved proximally past lockout structure 1330 and back to the retracted configuration. Once the working end 1301 is moved back to the retracted configuration, lockout structure 1330 locks out the working end 1301 in a manner as described above.
  • In embodiments where the actuation sled and cam block 1340 are not configured to couple to one another, e.g., such as when the working end 1301 is not configured for multiple firing, cam block 1340 may remain in contact with lockout structure 1330 when the working end 1301 is fired. In this particular embodiment, cam block 1340 maintains lockout structure 1330 in an outward configuration, e.g., a deactivated configuration.
  • With reference to Figs. 150-156, and initially with reference to Figs. 150-151, a reload 1406 includes a locking mechanism not forming part of the invention and is configured for use with surgical stapling apparatuses 100, 200 is illustrated.
  • Unalike the previously described embodiments of reloads that utilize locking mechanisms that are configured to prevent firing without a cartridge or spent cartridge installed, reload 1406 (Fig. 150) utilizes a locking mechanism that prevents misfiring of the working end 1401 only when a spent cartridge is coupled to a jaw member 1408. To this end, jaw member 1408 is configured to couple to a cartridge 1412 that includes a latch 1440 and a locking pin 1430 that collectively are configured to prevent misfiring of the working end 1401 when a spent cartridge 1412 is coupled to jaw member 1408.
  • Latch 1440 is provided at a proximal end of cartridge 1412 and is coupled thereto via one or more suitable coupling methods (Figs. 151-153). In the illustrated embodiment, for example, latch 1440 includes a generally elongated configuration having an aperture 1441 of suitable configuration that is configured to receive therethrough a rivet 1442, pin or the like. Rivet 1442 extends through a tissue contacting surface 1421 of cartridge 1412 and couples latch 1440 to cartridge 1412 such that a bottom surface (not explicitly shown) of latch 1440 rests against a top surface 1421a that lies in the same general plane as tissue contacting surface 1421 of cartridge 1412. Moreover, rivet 1442 couples latch 1440 to cartridge 1412 so as to allow latch 1440 to rotate about rivet 1442 when latch 1440 is contacted by a top flange 1418a of knife 1405 (Fig. 154).
  • A boss 1444 extends a predetermined distance orthogonally from a top surface 1446 of latch 1440 and is configured to contact a leading edge 1419a of top flange 1418a (Figs. 151 and 154). Boss 1444 includes a generally circumferential configuration which facilitates contact between leading edge 1419a and boss 1444 as the working end 1401 is translated distally.
  • In an initial configuration, latch 1440 positioned at least partially over recess 1431 to contact locking pin 1430 and maintain locking pin 1430 in a deactivated configuration (Fig. 151). Moreover, contact between leading edge 1419a and boss 1444 as the working end 1401 translates distally therepast causes latch 1440 to rotate about rivet 1442 and move out of contact with locking pin 1430 so that locking pin 1430 may move into the locked out configuration. (Figs. 154-156).
  • Continuing with reference to Figs. 151-153, locking pin 1430 is provided at a proximal end of cartridge 1412 adjacent latch 1440 and is received within an aperture 1431 that extends through tissue contacting surface 1421 of cartridge 1412. Locking pin 1430 includes a generally circumferential configuration having a flange 1432 at a bottom end thereof configured to contact an interior top wall of cartridge 1412. A tip 1434 of locking pin 1430 includes a distal end 1430a that is chamfered, beveled, slanted, etc., to slidably contact a trailing edge 1419b of top flange 1418a when the working end 1401 is moved back to the retracted configuration; the chamfered configuration of distal end 1430a allows for a smooth transition of the working end 1401 past locking pin 1430 (Fig. 155). Moreover, a proximal end 1430b does not include a chamfer and is configured to contact leading edge 1419a of the working end 1401 to lock out the working end 1401 and prevent misfiring thereof.
  • Locking pin 1430, e.g., tip 1434, is movable within aperture 1431 from deactivated configuration (Fig. 151), wherein tip 1434 is flush with the tissue contacting surface 1421 of cartridge 1412 (Fig. 151) to an activated (or locked out) configuration, wherein tip 1434 is disposed a predetermined distance above tissue contacting surface 1421 (Figs. 154 and 156). In the deactivated configuration of locking pin 1434, the working end 1401 including top flange 1418a of the knife 1405 is allowed to translate distally past locking pin 1430.
  • A spring 1467 (or other suitable device) operably couples to locking pin 1430 adjacent flange 1432 and is configured to upwardly bias locking pin 1430 into the activated configuration (Figs. 152-153). A protrusion of suitable configuration (not shown) may be provided on a bottom surface of locking pin 1430 and configured to couple to spring 1467 to maintain spring 1467 in contact with locking pin 1430. Alternatively, spring 1467 may be fixedly coupled to locking pin 1430 by one or more suitable fixation methods, e.g., an adhesive.
  • In use, latch 1440 is, initially, positioned over locking pin 1430 to maintain locking in 1430 in the deactivated configuration (Fig. 151). In the deactivated configuration, the working end 1401 is allowed to move distally past locking pin 1430 to the engage actuation sled.
  • The working end 1401 may then be fired. As the working end 1401 translates distally, leading edge 1419a contacts boss 1444, which, in turn rotates latch 1440 about rivet 1442 and moves out of contact with locking pin 1430 so that locking pin 1430 may move into the locked out configuration. (Figs. 154-156).
  • The working end 1401 may then be moved back to the retracted configuration. As noted above, the chamfered configuration of distal end 1430a allows for a smooth transition of the working end 1401 past locking pin 1430 (Fig. 155).
  • Once in the retracted configuration, a proximal end 1430b contacts leading edge 1419a of the working end 1401 to lock out the working end 1401 and prevent misfiring thereof (Fig. 156).
  • With reference to Figs. 157-158, a cartridge assembly 1512 is configured for use with a reload (not explicitly shown) that includes a locking mechanism not forming part of the invention and is configured for use with surgical stapling apparatuses 100, 200 is illustrated.
  • One or more mechanical interfaces are provided on a proximal end of an actuation sled 1515 and are configured to selectively engage one or more mechanical interfaces disposed on a knife (not explicitly shown). In the illustrated embodiment, for example, a female end 1530 of suitable configuration is provided adjacent a bottom surface 1515a of actuation sled 1515 and is configured to selectively engage a corresponding male end (not explicitly shown) that is operably coupled to the knife. Female end 1530 includes a pair of bifurcated posts 1531a, 1531b that extend in a generally orthogonal direction relative to bottom surface 1515a (Figs, 157-158) and are aligned with the corresponding male end on the knife. Posts 1531a, 1531b are spaced apart from one another so that a press or friction fit may be utilized to selectively couple the knife and actuation sled 1515 to one another as the knife is translated distally through a firing sequence. As can be appreciated, actuation sled 1515 may include the male end and the knife may include female end 1530. Moreover, it is within the purview of the instant disclosure to utilize other mechanical interfaces to selectively couple actuation sled 1515 and the knife to one another.
  • A lockout clip 1540 of suitable configuration is provided on bottom surface 1515a of actuation sled 1515 and is configured to selectively engage a cover 1561 of cartridge 1512 (Figs. 157-158) after the knife is fired and moved back to the retracted configuration. Lockout clip 1540 may be monolithically formed with actuation sled 1515 or may be coupled thereto via one or more suitable coupling methods, e.g., adhesive, ultrasonic welding, etc.
  • In an embodiment, such as the illustrated embodiment, lockout clip 1540 includes a generally elongated portion 1541 that is utilized to couple to bottom surface 1515a of actuation sled 1515; this embodiment is particularly useful when lockout clip 1540 is formed as separate component from actuation sled 1515 and, subsequently, coupled thereto. Alternatively, in embodiments, such as when lockout clip 1540 is monolithically formed with actuation sled 1515, elongated portion 1541 may be eliminated.
  • A generally arcuate portion 1542 extends distally from elongated portion 1541 to form a living hinge thereabout and includes a lip 1543 that engages cover 1561 (Fig. 158). Alternatively, arcuate portion 1542 including lip 1543 may be formed on bottom surface 1515a during a manufacturing process of actuation sled 1515. In either instance, arcuate portion 1542 including lip 1543 are configured such that in a pre-installed configuration, lip 1543 is biased towards elongated portion 1541 and bottom surface 1515a of actuation sled 1515 so as not to engage cover 1561 (Fig. 157). In accordance with the instant disclosure, locking clip 1540 (and operable components associated therewith) is/are configured not to impede distal translation of the knife through cartridge 1512.
  • In use, in a pre-installed configuration, actuation sled 1515 is positioned within cartridge 1521 as shown in Fig. 157. In this configuration, locking clip 1540 is not in a locked out configuration and the knife is free to translate distally through a firing sequence.
  • The knife may then be fired. As the knife translates distally, the male end on the knife engages female end 1530 (Figs. 154-156) on actuation sled 1515. Thereafter, the knife including actuation sled 1515 now coupled thereto may be moved proximally past a proximal edge 1562 of cartridge 1512 to the retracted configuration. In doing so, lip 1543 is free to flex away from elongated portion 1542 and bottom surface 1515a of actuation sled to a locked out configuration. In the locked out configuration, lip 1543 is positioned to engage proximal edge 1562 of cover 1512, which, in turn, prevents distal translation and, thus, misfiring of the knife (Fig. 158).
  • The figures show a replaceable loading unit with surgical stapling jaws that has a shaft (such as a shaft 109) that can be attached to a surgical stapling apparatus. Other configurations are contemplated. For example, the replaceable loading unit can itself have a removable and replaceable cartridge assembly. Alternatively, the jaws of the instrument can be permanently attached and configured to receive a removable and replaceable cartridge.
  • In any of the embodiments disclosed herein, the instrument housing 102 can be manually operated or powered.

Claims (11)

  1. A surgical stapling apparatus, comprising:
    a first jaw member;
    a cartridge (412) configured to selectively couple to the first jaw member, the cartridge having fasteners and a platform area (427a, 427b), the cartridge defining a knife channel (414) and an aperture (420);
    a second jaw member having an anvil with staple forming depressions;
    a drive member movable from a retracted to an advanced position to drive the fasteners toward the anvil, the drive member having a working end (401) for supporting a knife, the working end being configured to move through the knife channel (414) from a retracted to an advanced distal position for severing tissue positioned between the jaw members ; and
    a locking mechanism comprising an actuator (432) rotatably disposed in the aperture (420) of the cartridge and an interlock (450), the actuator being movable between an initial pre-fired configuration wherein the actuator (432) has a post (433) and a head portion (434) at an upper end, which rests on a platform area (427a) and is engaged with the interlock (450) to allow distal movement of the working end (401), to a final post-fired configuration wherein the actuator is raised above the platform area and is disengaged from the interlock to lock out and prevent distal movement of the working end;
    wherein the actuator has a notch (436) at a lower end, the actuator being biased in a downwardly direction, the head portion of the actuator having a tip 451) extending into the knife channel (414) when the actuator is in the first pre-fired position and the interlock (450) having an upright extension (430) and being rotatably disposed adjacent the actuator (432) so that the upright extension is engaged with the notch (436) when the actuator is in the first pre-fired position, the interlock moving to a position blocking the knife channel when the actuator moves to the second post-fired position; the working end (401) of the drive member further comprising a top flange (418b) that contacts the head portion (434) when the drive member moves from the retracted, pre-fired position to the advanced, post-fired position thereby moving the head portion to effect disengagement of the actuator from the interlock such that the interlock is positioned inside of the translation path of the working end and the working end is locked out and unable to move distally.
  2. The surgical stapling apparatus according to claim 1, wherein the actuator (432) is biased in a downward direction so that the head portion (434) rises when contacted by the top flange (418b).
  3. The surgical stapling apparatus according to any preceding claim, wherein the actuator (432) moves upwardly to the second position so that the notch (436) is moved away from the upright extension (430).
  4. The surgical stapling apparatus according to any preceding claim, wherein the actuator (432) has beveled side edges (441a, 441b) to facilitate rotation of the actuator.
  5. The surgical stapling apparatus according to any preceding claim, wherein the head portion (434) has a conical shape.
  6. The surgical stapling apparatus according to any preceding claim, wherein a bottom surface (451a) of head portion (434) has a protuberance (452) for engaging the platform area (427a).
  7. The surgical stapling apparatus according to any preceding claim, wherein the interlock (450) engages a rivet (424b) in the position blocking the knife channel (414).
  8. The surgical stapling apparatus according to any preceding claim, wherein the interlock (450) is biased toward the position blocking the channel (414).
  9. The surgical stapling apparatus according to any preceding claim, wherein the interlock (450) has a trailing surface, the working end (401) of the drive member engaging the trailing surface when moved to the retracted position.
  10. The surgical stapling apparatus according to any preceding claim, further comprising one or more motors.
  11. The surgical stapling apparatus according to any preceding claim, further comprising a manually operated trigger.
EP14159099.2A 2013-03-13 2014-03-12 Surgical stapling apparatus Active EP2777533B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US201361779873P true 2013-03-13 2013-03-13
US13/923,832 US9888921B2 (en) 2013-03-13 2013-06-21 Surgical stapling apparatus
US13/923,557 US9566064B2 (en) 2013-03-13 2013-06-21 Surgical stapling apparatus
US13/923,970 US9289211B2 (en) 2013-03-13 2013-06-21 Surgical stapling apparatus
US13/923,651 US9668728B2 (en) 2013-03-13 2013-06-21 Surgical stapling apparatus
US13/924,054 US9668729B2 (en) 2013-03-13 2013-06-21 Surgical stapling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16187137.1A EP3135225A3 (en) 2013-03-13 2014-03-12 Surgical stapling apparatus

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP16187137.1A Division EP3135225A3 (en) 2013-03-13 2014-03-12 Surgical stapling apparatus
EP16187137.1A Division-Into EP3135225A3 (en) 2013-03-13 2014-03-12 Surgical stapling apparatus

Publications (2)

Publication Number Publication Date
EP2777533A1 EP2777533A1 (en) 2014-09-17
EP2777533B1 true EP2777533B1 (en) 2016-10-12

Family

ID=55970583

Family Applications (5)

Application Number Title Priority Date Filing Date
EP14159037.2A Active EP2777526B1 (en) 2013-03-13 2014-03-12 Surgical stapling apparatus
EP14159118.0A Active EP2777535B1 (en) 2013-03-13 2014-03-12 Surgical stapling apparatus
EP14159075.2A Active EP2777530B1 (en) 2013-03-13 2014-03-12 Surgical stapling apparatus
EP14159099.2A Active EP2777533B1 (en) 2013-03-13 2014-03-12 Surgical stapling apparatus
EP14159032.3A Active EP2777525B1 (en) 2013-03-13 2014-03-12 Surgical stapling apparatus

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP14159037.2A Active EP2777526B1 (en) 2013-03-13 2014-03-12 Surgical stapling apparatus
EP14159118.0A Active EP2777535B1 (en) 2013-03-13 2014-03-12 Surgical stapling apparatus
EP14159075.2A Active EP2777530B1 (en) 2013-03-13 2014-03-12 Surgical stapling apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14159032.3A Active EP2777525B1 (en) 2013-03-13 2014-03-12 Surgical stapling apparatus

Country Status (6)

Country Link
US (7) US9566064B2 (en)
EP (5) EP2777526B1 (en)
JP (5) JP2014176673A (en)
CN (5) CN104042275B (en)
AU (4) AU2014200691A1 (en)
CA (5) CA2844385A1 (en)

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US9833238B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Retainer assembly including a tissue thickness compensator
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9833242B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Tissue thickness compensators
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9867618B2 (en) 2008-02-14 2018-01-16 Ethicon Llc Surgical stapling apparatus including firing force regulation
US9872682B2 (en) 2007-06-29 2018-01-23 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9895147B2 (en) 2005-11-09 2018-02-20 Ethicon Llc End effectors for surgical staplers
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9901344B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US9918716B2 (en) 2012-03-28 2018-03-20 Ethicon Llc Staple cartridge comprising implantable layers
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US9924947B2 (en) 2010-09-30 2018-03-27 Ethicon Llc Staple cartridge comprising a compressible portion
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9962158B2 (en) 2008-02-14 2018-05-08 Ethicon Llc Surgical stapling apparatuses with lockable end effector positioning systems
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9974538B2 (en) 2012-03-28 2018-05-22 Ethicon Llc Staple cartridge comprising a compressible layer
US9987003B2 (en) 2007-06-04 2018-06-05 Ethicon Llc Robotic actuator assembly
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10004498B2 (en) 2006-01-31 2018-06-26 Ethicon Llc Surgical instrument comprising a plurality of articulation joints
US10004506B2 (en) 2011-05-27 2018-06-26 Ethicon Llc Surgical system
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10045778B2 (en) 2008-09-23 2018-08-14 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10052102B2 (en) 2015-06-18 2018-08-21 Ethicon Llc Surgical end effectors with dual cam actuated jaw closing features
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10058963B2 (en) 2006-01-31 2018-08-28 Ethicon Llc Automated end effector component reloading system for use with a robotic system
US10064621B2 (en) 2012-06-15 2018-09-04 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US10064688B2 (en) 2006-03-23 2018-09-04 Ethicon Llc Surgical system with selectively articulatable end effector
US10070863B2 (en) 2005-08-31 2018-09-11 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil
US10070861B2 (en) 2006-03-23 2018-09-11 Ethicon Llc Articulatable surgical device
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10098636B2 (en) 2006-01-31 2018-10-16 Ethicon Llc Surgical instrument having force feedback capabilities
US10098642B2 (en) 2015-08-26 2018-10-16 Ethicon Llc Surgical staples comprising features for improved fastening of tissue
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10117653B2 (en) 2014-03-26 2018-11-06 Ethicon Llc Systems and methods for controlling a segmented circuit
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10117652B2 (en) 2011-04-29 2018-11-06 Ethicon Llc End effector comprising a tissue thickness compensator and progressively released attachment members
US10149683B2 (en) 2008-10-10 2018-12-11 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10172616B2 (en) 2006-09-29 2019-01-08 Ethicon Llc Surgical staple cartridge
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10201349B2 (en) 2013-08-23 2019-02-12 Ethicon Llc End effector detection and firing rate modulation systems for surgical instruments
US10201363B2 (en) 2006-01-31 2019-02-12 Ethicon Llc Motor-driven surgical instrument
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US10206678B2 (en) 2006-10-03 2019-02-19 Ethicon Llc Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US10238391B2 (en) 2013-03-14 2019-03-26 Ethicon Llc Drive train control arrangements for modular surgical instruments
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
US10245032B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Staple cartridges for forming staples having differing formed staple heights
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258333B2 (en) 2012-06-28 2019-04-16 Ethicon Llc Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
US10265074B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Implantable layers for surgical stapling devices
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10271846B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Staple cartridge for use with a surgical stapler
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10293100B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Surgical stapling instrument having a medical substance dispenser
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10314589B2 (en) 2006-06-27 2019-06-11 Ethicon Llc Surgical instrument including a shifting assembly
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506799A (en) 2005-06-03 2009-02-19 タイコ ヘルスケア グループ リミテッド パートナーシップ Powered surgical instruments
US7464847B2 (en) * 2005-06-03 2008-12-16 Tyco Healthcare Group Lp Surgical stapler with timer and feedback display
US7866525B2 (en) 2006-10-06 2011-01-11 Tyco Healthcare Group Lp Surgical instrument having a plastic surface
US7954685B2 (en) * 2007-11-06 2011-06-07 Tyco Healthcare Group Lp Articulation and firing force mechanisms
US10349935B2 (en) 2009-08-11 2019-07-16 Datascope Corp. Delivery device and method for compliant tissue fasteners
US8074859B2 (en) * 2010-03-31 2011-12-13 Tyco Healthcare Group Lp Surgical instrument
US9155537B2 (en) * 2011-08-08 2015-10-13 Covidien Lp Surgical fastener applying apparatus
US9566064B2 (en) 2013-03-13 2017-02-14 Covidien Lp Surgical stapling apparatus
US9757129B2 (en) * 2013-07-08 2017-09-12 Covidien Lp Coupling member configured for use with surgical devices
US20160296233A1 (en) * 2013-11-19 2016-10-13 Datascope Corp. Fastener applicator with interlock
US20150173749A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical staples and staple cartridges
US9757126B2 (en) 2014-03-31 2017-09-12 Covidien Lp Surgical stapling apparatus with firing lockout mechanism
US9943312B2 (en) * 2014-09-02 2018-04-17 Ethicon Llc Methods and devices for locking a surgical device based on loading of a fastener cartridge in the surgical device
US9788835B2 (en) 2014-09-02 2017-10-17 Ethicon Llc Devices and methods for facilitating ejection of surgical fasteners from cartridges
US9700320B2 (en) * 2014-09-02 2017-07-11 Ethicon Llc Devices and methods for removably coupling a cartridge to an end effector of a surgical device
WO2016107585A1 (en) * 2014-12-30 2016-07-07 苏州天臣国际医疗科技有限公司 Nail head assembly and suturing and cutting apparatus for endoscopic surgery
US10111665B2 (en) 2015-02-19 2018-10-30 Covidien Lp Electromechanical surgical systems
US10039545B2 (en) 2015-02-23 2018-08-07 Covidien Lp Double fire stapling
US10085749B2 (en) 2015-02-26 2018-10-02 Covidien Lp Surgical apparatus with conductor strain relief
US10285698B2 (en) 2015-02-26 2019-05-14 Covidien Lp Surgical apparatus
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10143474B2 (en) 2015-05-08 2018-12-04 Just Right Surgical, Llc Surgical stapler
US10349941B2 (en) 2015-05-27 2019-07-16 Covidien Lp Multi-fire lead screw stapling device
US10172615B2 (en) 2015-05-27 2019-01-08 Covidien Lp Multi-fire push rod stapling device
US10064622B2 (en) 2015-07-29 2018-09-04 Covidien Lp Surgical stapling loading unit with stroke counter and lockout
US10045782B2 (en) 2015-07-30 2018-08-14 Covidien Lp Surgical stapling loading unit with stroke counter and lockout
US10314587B2 (en) 2015-09-02 2019-06-11 Ethicon Llc Surgical staple cartridge with improved staple driver configurations
US10213204B2 (en) 2015-10-02 2019-02-26 Covidien Lp Micro surgical instrument and loading unit for use therewith
US10111660B2 (en) 2015-12-03 2018-10-30 Covidien Lp Surgical stapler flexible distal tip
US10349937B2 (en) 2016-02-10 2019-07-16 Covidien Lp Surgical stapler with articulation locking mechanism
WO2017180785A1 (en) * 2016-04-12 2017-10-19 Applied Medical Resources Corporation Reload shaft assembly for surgical stapler
US20170296172A1 (en) * 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Surgical instrument comprising a lockout
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US20170367696A1 (en) 2016-06-24 2017-12-28 Ethicon Endo-Surgery, Llc Stapling system for use with wire staples and stamped staples
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD822206S1 (en) 2016-06-24 2018-07-03 Ethicon Llc Surgical fastener
US20180168614A1 (en) * 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Anvil arrangements for surgical staplers
US20180168602A1 (en) * 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10299790B2 (en) 2017-03-03 2019-05-28 Covidien Lp Adapter with centering mechanism for articulation joint
WO2019005705A1 (en) * 2017-06-26 2019-01-03 Justright Surgical, Llc Anti-buckling actuator
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces

Family Cites Families (803)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079606A (en) 1960-01-04 1963-03-05 Bobrov Boris Sergeevich Instrument for placing lateral gastrointestinal anastomoses
US3490675A (en) 1966-10-10 1970-01-20 United States Surgical Corp Instrument for placing lateral gastrointestinal anastomoses
US3499591B1 (en) 1967-06-23 1988-09-20
US3675688A (en) 1970-04-27 1972-07-11 United States Surgical Corp Instrument for ligating, suturing and dividing organic tubular structures
US3777538A (en) 1972-03-15 1973-12-11 Weck & Co Edward Surgical clip applicator
DE7318970U (en) 1973-05-19 1973-08-30 Wolf R Gmbh Tongs for putting of tantalum clips
US3882854A (en) 1973-08-23 1975-05-13 Research Corp Surgical clip and applicator
SU659146A1 (en) 1974-02-12 1979-04-30 Организация П/Я М-5237 Surgical instrument for placing anastomoses between hollow organs
US4027510A (en) 1974-05-15 1977-06-07 Siegfried Hiltebrandt Forceps
JPS51149985U (en) 1975-05-27 1976-11-30
JPS51149985A (en) 1975-06-17 1976-12-23 Kanebo Ltd Continuous printing method of cloths
GB1552185A (en) 1975-06-18 1979-09-12 Gewerk Eisenhuette Westfalia Conveyors for use in mineral mining installations
GB1555455A (en) 1976-06-11 1979-11-07 Cox Mastic Appliances Ltd P C Dispensing gun
US4086926A (en) 1976-10-08 1978-05-02 United States Surgical Corporation Ligating and dividing organic structures
SU728848A1 (en) 1977-05-24 1980-04-25 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing arrangement
SU1036324A1 (en) 1978-03-31 1983-08-23 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing device
DE2903159A1 (en) 1979-01-27 1980-07-31 Georg Kirchner Motor driven medical instrument with piercing needles - has needle carrier reciprocated by eccentric drive mounted on motor shaft
DE2917783C2 (en) 1979-05-03 1982-07-01 Richard Wolf Gmbh, 7134 Knittlingen, De
US4429695A (en) 1980-02-05 1984-02-07 United States Surgical Corporation Surgical instruments
AU534210B2 (en) 1980-02-05 1984-01-12 United States Surgical Corporation Surgical staples
US4319576B1 (en) 1980-02-26 1986-02-25
SU980703A1 (en) 1980-05-16 1982-12-15 Иркутский Государственный Медицинский Институт Device for dissection of tissues
US4331277A (en) 1980-05-23 1982-05-25 United States Surgical Corporation Self-contained gas powered surgical stapler
DE3114135C2 (en) 1981-04-08 1985-01-31 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen, De
SU990220A1 (en) 1981-06-15 1983-01-23 Московский научно-исследовательский институт микрохирургии глаза Iris retractor
EP0096694B1 (en) 1981-12-22 1989-03-01 Hospital Products Limited Surgical stapling instrument
FR2542188B1 (en) 1983-03-11 1985-08-16 Foures Bernard Tweezers for linear mechanical suture viscera of the chest and abdominal cavities
US4527724A (en) 1983-06-10 1985-07-09 Senmed, Inc. Disposable linear surgical stapling instrument
US4589413A (en) 1983-07-21 1986-05-20 Malyshev Boris N Surgical instrument for resection of hollow organs
SU1183082A1 (en) 1983-08-19 1985-10-07 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suture apparatus
US5220928A (en) 1983-08-22 1993-06-22 Stryker Sales Corporation Surgical procedure for joining tissue in an internal body cavity
US4602634A (en) 1983-09-23 1986-07-29 Ethicon, Inc. Method and instrument for applying a fastener to a tissue using means to grasp, guide and pull the fastener through the tissue
US4530453A (en) 1983-10-04 1985-07-23 United States Surgical Corporation Surgical fastener applying apparatus
US4505414A (en) 1983-10-12 1985-03-19 Filipi Charles J Expandable anvil surgical stapler
US4610383A (en) 1983-10-14 1986-09-09 Senmed, Inc. Disposable linear surgical stapler
US4612933A (en) 1984-03-30 1986-09-23 Senmed, Inc. Multiple-load cartridge assembly for a linear surgical stapling instrument
US4671445A (en) 1984-08-09 1987-06-09 Baxter Travenol Laboratories, Inc. Flexible surgical stapler assembly
GB8422863D0 (en) 1984-09-11 1984-10-17 Univ London Sewing machine
US4605001A (en) 1984-10-19 1986-08-12 Senmed, Inc. Surgical stapling instrument with dual staple height mechanism
US4633874A (en) 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
US4608981A (en) 1984-10-19 1986-09-02 Senmed, Inc. Surgical stapling instrument with staple height adjusting mechanism
US4633861A (en) 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw clamping mechanism
US4703887A (en) 1985-01-28 1987-11-03 Ethicon, Inc. Collapsible purse string aid for use with intraluminal stapling device
AU5476586A (en) 1985-03-14 1986-09-18 Hospital Products Ltd. Surgical stapler cartridge
US4665916A (en) 1985-08-09 1987-05-19 United States Surgical Corporation Surgical stapler apparatus
US4728020A (en) 1985-08-30 1988-03-01 United States Surgical Corporation Articulated surgical fastener applying apparatus
US4715520A (en) 1985-10-10 1987-12-29 United States Surgical Corporation Surgical fastener applying apparatus with tissue edge control
US4700703A (en) 1986-03-27 1987-10-20 Semion Resnick Cartridge assembly for a surgical stapling instrument
US4752024A (en) 1986-10-17 1988-06-21 Green David T Surgical fastener and surgical stapling apparatus
US5119983A (en) 1987-05-26 1992-06-09 United States Surgical Corporation Surgical stapler apparatus
FR2622429A1 (en) 1987-11-16 1989-05-05 Blagoveschensky G Surgical suture apparatus
US4951860A (en) 1987-12-28 1990-08-28 Edward Weck & Co. Method and apparatus for storing, dispensing and applying surgical staples
GB8800909D0 (en) 1988-01-15 1988-02-17 Ethicon Inc Gas powered surgical stapler
AT103160T (en) 1988-01-15 1994-04-15 Ethicon Inc Pressure regulator for a surgical clamp instrument.
EP0324638A1 (en) 1988-01-15 1989-07-19 Ethicon Inc. Surgical stapler safety and sequencing mechanisms
US4863088A (en) 1988-03-09 1989-09-05 Minnesota Mining And Manufacturing Company Surgical stapling instrument
US4944443A (en) 1988-04-22 1990-07-31 Innovative Surgical Devices, Inc. Surgical suturing instrument and method
US4869415A (en) 1988-09-26 1989-09-26 Ethicon, Inc. Energy storage means for a surgical stapler
US4892244B1 (en) * 1988-11-07 1991-08-27 Ethicon Inc
AT129622T (en) 1988-11-11 1995-11-15 United States Surgical Corp A surgical instrument.
US5111987A (en) 1989-01-23 1992-05-12 Moeinzadeh Manssour H Semi-disposable surgical stapler
US4991764A (en) 1989-01-23 1991-02-12 Edward Weck Incorporated Surgical stapling instrument
US5188274A (en) 1989-01-23 1993-02-23 Moeinzadeh Manssour H Semi-disposable surgical stapler
US5486185A (en) 1989-01-30 1996-01-23 Dexide, Inc. Surgical apparatus
US5040715B1 (en) 1989-05-26 1994-04-05 United States Surgical Corp Apparatus and method for placing staples in laparoscopic or endoscopic procedures
US5413268A (en) 1989-05-26 1995-05-09 United States Surgical Corporation Apparatus and method for placing stables in laparoscopic or endoscopic procedures
US4978049A (en) 1989-05-26 1990-12-18 United States Surgical Corporation Three staple drive member
US5106008A (en) 1989-05-26 1992-04-21 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
US5031814A (en) 1989-05-26 1991-07-16 United States Surgical Corporation Locking mechanism for surgical fastening apparatus
US5318221A (en) 1989-05-26 1994-06-07 United States Surgical Corporation Apparatus and method for placing staples in laparoscopic or endoscopic procedures
US4955959A (en) 1989-05-26 1990-09-11 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
US5505363A (en) 1989-05-26 1996-04-09 United States Surgical Corporation Surgical staples with plated anvils
US5084057A (en) 1989-07-18 1992-01-28 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US5922001A (en) 1989-12-05 1999-07-13 Yoon; Inbae Surgical instrument with jaws and a movable internal blade member and method for use thereof
US5014899A (en) 1990-03-30 1991-05-14 United States Surgical Corporation Surgical stapling apparatus
FR2660851A1 (en) 1990-04-11 1991-10-18 Cardial Sa Device for unblocking vascular channels, such as the arteries
US5074454A (en) 1990-06-04 1991-12-24 Peters Ronald L Surgical stapler
US5531744A (en) 1991-11-01 1996-07-02 Medical Scientific, Inc. Alternative current pathways for bipolar surgical cutting tool
US5156614A (en) 1990-09-17 1992-10-20 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US5156315A (en) 1990-09-17 1992-10-20 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
US5253793A (en) 1990-09-17 1993-10-19 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US5653373A (en) 1990-09-17 1997-08-05 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
DE69120208T3 (en) 1990-10-05 2001-02-15 United States Surgical Corp An apparatus for applying clips in laparoscopic or endoscopic procedures
US5282807A (en) 1990-11-05 1994-02-01 Knoepfler Dennis J Automatic stapler for laparoscopic procedure with selective cutter, nontraumatic jaws and suction irrigator
US5129570A (en) 1990-11-30 1992-07-14 Ethicon, Inc. Surgical stapler
CA2055943C (en) 1990-12-06 2003-09-23 Daniel P. Rodak Surgical fastening apparatus with locking mechanism
US5083695A (en) 1990-12-18 1992-01-28 Minnesota Mining And Manufacturing Company Stapler and firing device
US5141144A (en) 1990-12-18 1992-08-25 Minnesota Mining And Manufacturing Company Stapler and firing device
BR9107241A (en) 1990-12-18 1994-02-16 Minnesota Mining & Mfg clamps cartridge assembly adapted for use in a surgical stapler
CA2061885A1 (en) 1991-03-14 1992-09-15 David T. Green Approximating apparatus for surgical jaw structure
US5336232A (en) 1991-03-14 1994-08-09 United States Surgical Corporation Approximating apparatus for surgical jaw structure and method of using the same
US5170925A (en) 1991-03-18 1992-12-15 Ethicon, Inc. Laparoscopic stapler with knife means
US5065929A (en) 1991-04-01 1991-11-19 Ethicon, Inc. Surgical stapler with locking means
US5470010A (en) 1991-04-04 1995-11-28 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
US5171247A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier with rotating shaft
US5339799A (en) 1991-04-23 1994-08-23 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
EP0514139B1 (en) 1991-05-14 1999-08-18 United States Surgical Corporation Surgical stapler with spent cartridge sensing and lockout means
US5221036A (en) 1991-06-11 1993-06-22 Haruo Takase Surgical stapler
US5173133A (en) 1991-07-23 1992-12-22 United States Surgical Corporation Method for annealing stapler anvils
US5246156A (en) 1991-09-12 1993-09-21 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
FR2681775B1 (en) 1991-10-01 1998-09-11 Boutmy Ets Endoscopic surgery pliers tool tilt.
CA2075141C (en) 1991-10-17 1998-06-30 Donald A. Morin Anvil for surgical staplers
US5364001A (en) 1991-10-18 1994-11-15 United States Surgical Corporation Self contained gas powered surgical apparatus
US5431322A (en) 1991-10-18 1995-07-11 United States Surgical Corporation Self contained gas powered surgical apparatus
AU657364B2 (en) 1991-10-18 1995-03-09 United States Surgical Corporation Self contained gas powered surgical apparatus
CA2075227C (en) 1991-10-18 2004-02-10 Robert J. Geiste Surgical fastening apparatus with shipping interlock
US5478003A (en) 1991-10-18 1995-12-26 United States Surgical Corporation Surgical apparatus
US5711472A (en) 1991-10-18 1998-01-27 United States Surgical Corporation Self contained gas powered surgical apparatus
US6250532B1 (en) 1991-10-18 2001-06-26 United States Surgical Corporation Surgical stapling apparatus
US5307976A (en) 1991-10-18 1994-05-03 Ethicon, Inc. Linear stapling mechanism with cutting means
CA2078794C (en) 1991-10-18 1998-10-06 Frank J. Viola Locking device for an apparatus for applying surgical fasteners
US5326013A (en) 1991-10-18 1994-07-05 United States Surgical Corporation Self contained gas powered surgical apparatus
US5497933A (en) 1991-10-18 1996-03-12 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5366134A (en) 1991-10-18 1994-11-22 United States Surgical Corporation Surgical fastening apparatus
US5289963A (en) 1991-10-18 1994-03-01 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
CA2079756A1 (en) 1991-10-18 1993-04-19 David T. Green Apparatus for applying surgical fasteners
US5484095A (en) 1992-03-31 1996-01-16 United States Surgical Corporation Apparatus for endoscopically applying staples individually to body tissue
US5485947A (en) 1992-07-20 1996-01-23 Ethicon, Inc. Linear stapling mechanism with cutting means
US5308576A (en) 1991-10-18 1994-05-03 United States Surgical Corporation Injection molded anvils
US5397046A (en) 1991-10-18 1995-03-14 United States Surgical Corporation Lockout mechanism for surgical apparatus
US5312023A (en) 1991-10-18 1994-05-17 United States Surgical Corporation Self contained gas powered surgical apparatus
US5356064A (en) 1991-10-18 1994-10-18 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5240163A (en) 1991-10-30 1993-08-31 American Cyanamid Company Linear surgical stapling instrument
CA2122475C (en) 1991-11-01 2005-01-11 Paul C. Nardella Electrosurgical cutting tool
US5665085A (en) 1991-11-01 1997-09-09 Medical Scientific, Inc. Electrosurgical cutting tool
US5395034A (en) 1991-11-07 1995-03-07 American Cyanamid Co. Linear surgical stapling instrument
US5433721A (en) 1992-01-17 1995-07-18 Ethicon, Inc. Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
US5383880A (en) 1992-01-17 1995-01-24 Ethicon, Inc. Endoscopic surgical system with sensing means
FI90622C (en) 1992-01-24 1994-03-10 Biocon Oy Surgical installation instrument
US5180092A (en) 1992-02-05 1993-01-19 Lawrence Crainich Linear surgical stapling instrument
US5163943A (en) 1992-03-12 1992-11-17 Mohiuddin Mohammed M Circumcision instrument with staple means
US5242457A (en) 1992-05-08 1993-09-07 Ethicon, Inc. Surgical instrument and staples for applying purse string sutures
US5484451A (en) 1992-05-08 1996-01-16 Ethicon, Inc. Endoscopic surgical instrument and staples for applying purse string sutures
US5389098A (en) 1992-05-19 1995-02-14 Olympus Optical Co., Ltd. Surgical device for stapling and/or fastening body tissues
US5431667A (en) 1992-05-26 1995-07-11 Origin Medsystems, Inc. Gas-sealed instruments for use in laparoscopic surgery
US5658300A (en) 1992-06-04 1997-08-19 Olympus Optical Co., Ltd. Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues
US5263629A (en) 1992-06-29 1993-11-23 Ethicon, Inc. Method and apparatus for achieving hemostasis along a staple line
CA2099100C (en) 1992-06-30 2005-02-22 David T. Green Apparatus for applying surgical fasteners
US5330486A (en) 1992-07-29 1994-07-19 Wilk Peter J Laparoscopic or endoscopic anastomosis technique and associated instruments
CA2100532C (en) 1992-09-21 2004-04-20 David T. Green Device for applying a meniscal staple
US5485952A (en) 1992-09-23 1996-01-23 United States Surgical Corporation Apparatus for applying surgical fasteners
CA2103507C (en) 1992-09-23 1998-09-15 David A. Nicholas Locking mechanism for endoscopic or laparoscopic surgical instruments
US5423471A (en) 1992-10-02 1995-06-13 United States Surgical Corporation Apparatus for applying two-part surgical fasteners in laparoscopic or endoscopic procedures
US5573169A (en) 1992-10-02 1996-11-12 United States Surgical Corporation Apparatus for applying two-part surgical fasteners in laparoscopic or endoscopic procedures
US5381943A (en) 1992-10-09 1995-01-17 Ethicon, Inc. Endoscopic surgical stapling instrument with pivotable and rotatable staple cartridge
US5626587A (en) 1992-10-09 1997-05-06 Ethicon Endo-Surgery, Inc. Method for operating a surgical instrument
US5662662A (en) 1992-10-09 1997-09-02 Ethicon Endo-Surgery, Inc. Surgical instrument and method
US5330502A (en) 1992-10-09 1994-07-19 Ethicon, Inc. Rotational endoscopic mechanism with jointed drive mechanism
US5601224A (en) 1992-10-09 1997-02-11 Ethicon, Inc. Surgical instrument
US5431323A (en) 1992-10-09 1995-07-11 Ethicon, Inc. Endoscopic surgical instrument with pivotable and rotatable staple cartridge
US5374277A (en) 1992-10-09 1994-12-20 Ethicon, Inc. Surgical instrument
US5275166A (en) 1992-11-16 1994-01-04 Ethicon, Inc. Method and apparatus for performing ultrasonic assisted surgical procedures
US5328077A (en) 1992-11-19 1994-07-12 Lou Ek Seng Method and apparatus for treating female urinary incontinence
DE4300307C2 (en) 1993-01-08 1996-09-19 Aesculap Ag A surgical instrument
US5382255A (en) 1993-01-08 1995-01-17 United States Surgical Corporation Apparatus and method for assembly of surgical instruments
EP0613661B1 (en) 1993-01-29 1998-04-15 SMITH & NEPHEW, INC. Rotatable curved instrument
US5397324A (en) 1993-03-10 1995-03-14 Carroll; Brendan J. Surgical stapler instrument and method for vascular hemostasis
US5540375A (en) 1993-04-20 1996-07-30 United States Surgical Corporation Endoscopic stapler
US5467911A (en) 1993-04-27 1995-11-21 Olympus Optical Co., Ltd. Surgical device for stapling and fastening body tissues
US5407293A (en) 1993-04-29 1995-04-18 Crainich; Lawrence Coupling apparatus for medical instrument
US5464300A (en) 1993-04-29 1995-11-07 Crainich; Lawrence Medical instrument and coupling apparatus for same
JP3559561B2 (en) 1993-04-30 2004-09-02 ユナイテッド・ステイツ・サージカル・コーポレイション Surgical instrument with a joint jaw structure and a removable knife
US6716232B1 (en) 1993-04-30 2004-04-06 United States Surgical Corporation Surgical instrument having an articulated jaw structure and a detachable knife
US5447265A (en) 1993-04-30 1995-09-05 Minnesota Mining And Manufacturing Company Laparoscopic surgical instrument with a mechanism for preventing its entry into the abdominal cavity once it is depleted and removed from the abdominal cavity
US5415334A (en) 1993-05-05 1995-05-16 Ethicon Endo-Surgery Surgical stapler and staple cartridge
US5364003A (en) 1993-05-05 1994-11-15 Ethicon Endo-Surgery Staple cartridge for a surgical stapler
CA2124109A1 (en) 1993-05-24 1994-11-25 Mark T. Byrne Endoscopic surgical instrument with electromagnetic sensor
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5810811A (en) 1993-07-22 1998-09-22 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
GR940100335A (en) 1993-07-22 1996-05-22 Ethicon Inc. Electrosurgical device for placing staples.
US5344061A (en) 1993-08-03 1994-09-06 Lawrence Crainich Ratchet assembly for medical instrument
US5441193A (en) 1993-09-23 1995-08-15 United States Surgical Corporation Surgical fastener applying apparatus with resilient film
US5542594A (en) 1993-10-06 1996-08-06 United States Surgical Corporation Surgical stapling apparatus with biocompatible surgical fabric
CA2132503C (en) 1993-10-07 2005-05-10 Donald F. Wilson Curved knife for linear staplers
US5439155A (en) 1993-10-07 1995-08-08 United States Surgical Corporation Cartridge for surgical fastener applying apparatus
US5562682A (en) 1993-10-08 1996-10-08 Richard-Allan Medical Industries, Inc. Surgical Instrument with adjustable arms
US5725554A (en) 1993-10-08 1998-03-10 Richard-Allan Medical Industries, Inc. Surgical staple and stapler
US5487499A (en) 1993-10-08 1996-01-30 United States Surgical Corporation Surgical apparatus for applying surgical fasteners including a counter
US5560532A (en) 1993-10-08 1996-10-01 United States Surgical Corporation Apparatus and method for applying surgical staples to body tissue
CA2117744A1 (en) 1993-10-14 1995-04-15 David T. Green Gas powered apparatus for applying surgical fasteners to body tissue
US5376095A (en) 1993-11-04 1994-12-27 Ethicon Endo-Surgery Endoscopic multi-fire flat stapler with low profile
US5490856A (en) 1993-12-14 1996-02-13 Untied States Surgical Corporation Purse string stapler
US5743456A (en) 1993-12-16 1998-04-28 Stryker Corporation Hand actuable surgical handpiece
WO1995018572A1 (en) 1994-01-04 1995-07-13 Alpha Surgical Technologies, Inc. Stapling device
US5452837A (en) 1994-01-21 1995-09-26 Ethicon Endo-Surgery, Inc. Surgical stapler with tissue gripping ridge
US5597107A (en) 1994-02-03 1997-01-28 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5465895A (en) 1994-02-03 1995-11-14 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5487500A (en) 1994-02-03 1996-01-30 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5501689A (en) 1994-02-03 1996-03-26 United States Surgical Corporation Plaque stapler
US5452836A (en) 1994-02-07 1995-09-26 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved jaw closure and staple firing actuator mechanism
US5503638A (en) 1994-02-10 1996-04-02 Bio-Vascular, Inc. Soft tissue stapling buttress
US5507773A (en) 1994-02-18 1996-04-16 Ethicon Endo-Surgery Cable-actuated jaw assembly for surgical instruments
WO1995023557A1 (en) 1994-03-01 1995-09-08 United States Surgical Corporation Surgical stapler with anvil sensor and lockout
CA2144818C (en) 1994-04-07 2006-07-11 Henry Bolanos Graduated anvil for surgical stapling instruments
US5415335A (en) 1994-04-07 1995-05-16 Ethicon Endo-Surgery Surgical stapler cartridge containing lockout mechanism
US5529235A (en) 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
US5489058A (en) 1994-05-02 1996-02-06 Minnesota Mining And Manufacturing Company Surgical stapler with mechanisms for reducing the firing force
US5470007A (en) 1994-05-02 1995-11-28 Minnesota Mining And Manufacturing Company Laparoscopic stapler with overload sensor and interlock
CA2148667A1 (en) 1994-05-05 1995-11-06 Carlo A. Mililli Self-contained powered surgical apparatus
US5628446A (en) 1994-05-05 1997-05-13 United States Surgical Corporation Self-contained powered surgical apparatus
US5474566A (en) 1994-05-05 1995-12-12 United States Surgical Corporation Self-contained powered surgical apparatus
US5814057A (en) 1994-06-03 1998-09-29 Gunze Limited Supporting element for staple region
US5833695A (en) 1994-07-13 1998-11-10 Yoon; Inbae Surgical stapling system and method of applying staples from multiple staple cartridges
US5551622A (en) 1994-07-13 1996-09-03 Yoon; Inbae Surgical stapler
AU694225B2 (en) 1994-08-02 1998-07-16 Ethicon Endo-Surgery, Inc. Ultrasonic hemostatic and cutting instrument
US5779130A (en) 1994-08-05 1998-07-14 United States Surgical Corporation Self-contained powered surgical apparatus
US5507426A (en) 1994-08-05 1996-04-16 United States Surgical Corporation Apparatus for applying surgical fasteners
EP0699418A1 (en) 1994-08-05 1996-03-06 United States Surgical Corporation Self-contained powered surgical apparatus
US5480089A (en) 1994-08-19 1996-01-02 United States Surgical Corporation Surgical stapler apparatus with improved staple pockets
US5571116A (en) 1994-10-02 1996-11-05 United States Surgical Corporation Non-invasive treatment of gastroesophageal reflux disease
US5797538A (en) 1994-10-05 1998-08-25 United States Surgical Corporation Articulating apparatus for applying surgical fasteners to body tissue
US5901895A (en) 1994-10-05 1999-05-11 United States Surgical Corporation Articulating apparatus for applying surgical fasteners to body tissue
EP0705571A1 (en) 1994-10-07 1996-04-10 United States Surgical Corporation Self-contained powered surgical apparatus
US5868760A (en) 1994-12-07 1999-02-09 Mcguckin, Jr.; James F. Method and apparatus for endolumenally resectioning tissue
US5988479A (en) 1994-12-13 1999-11-23 United States Surgical Corporation Apparatus for applying surgical fasteners
US5636779A (en) * 1994-12-13 1997-06-10 United States Surgical Corporation Apparatus for applying surgical fasteners
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
US5704534A (en) 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US5575799A (en) 1995-03-30 1996-11-19 United States Surgical Corporation Articulating surgical apparatus
US5624452A (en) 1995-04-07 1997-04-29 Ethicon Endo-Surgery, Inc. Hemostatic surgical cutting or stapling instrument
US5553765A (en) 1995-04-28 1996-09-10 Ethicon Endo-Surgery, Inc. Surgical stapler with improved operating lever mounting arrangement
US5630540A (en) 1995-05-24 1997-05-20 United States Surgical Corporation Surgical staple and staple drive member
US5579107A (en) 1995-05-25 1996-11-26 Horiba Instruments, Inc. Method and apparatus for dry particle analysis
US5653928A (en) 1995-06-15 1997-08-05 Schnipke Family Partnership Method for assembling a surgical stapling cartridge
US5752644A (en) 1995-07-11 1998-05-19 United States Surgical Corporation Disposable loading unit for surgical stapler
USRE38708E1 (en) 1995-07-11 2005-03-01 United States Surgical Corporation Disposable loading unit for surgical stapler
US5702409A (en) 1995-07-21 1997-12-30 W. L. Gore & Associates, Inc. Device and method for reinforcing surgical staples
US5810855A (en) 1995-07-21 1998-09-22 Gore Enterprise Holdings, Inc. Endoscopic device and method for reinforcing surgical staples
US5715988A (en) 1995-08-14 1998-02-10 United States Surgical Corporation Surgical stapler with lockout mechanism
US5718359A (en) 1995-08-14 1998-02-17 United States Of America Surgical Corporation Surgical stapler with lockout mechanism
US5782396A (en) 1995-08-28 1998-07-21 United States Surgical Corporation Surgical stapler
US5762256A (en) 1995-08-28 1998-06-09 United States Surgical Corporation Surgical stapler
US6032849A (en) 1995-08-28 2000-03-07 United States Surgical Surgical stapler
US5814055A (en) 1995-09-19 1998-09-29 Ethicon Endo-Surgery, Inc. Surgical clamping mechanism
US5653721A (en) 1995-10-19 1997-08-05 Ethicon Endo-Surgery, Inc. Override mechanism for an actuator on a surgical instrument
US5697542A (en) 1995-10-19 1997-12-16 Ethicon Endo-Surgery, Inc. Endoscopic surgical stapler with compact profile
US5680938A (en) * 1995-10-23 1997-10-28 Rubinstein; Joseph Apparatus for hanging binders
US5941442A (en) 1995-10-27 1999-08-24 United States Surgical Surgical stapler
US5651491A (en) * 1995-10-27 1997-07-29 United States Surgical Corporation Surgical stapler having interchangeable loading units
JPH09135837A (en) 1995-11-13 1997-05-27 Yasumasa Onuki Ligating and suturing device
US5762255A (en) 1996-02-20 1998-06-09 Richard-Allan Medical Industries, Inc. Surgical instrument with improvement safety lockout mechanisms
US5725536A (en) 1996-02-20 1998-03-10 Richard-Allen Medical Industries, Inc. Articulated surgical instrument with improved articulation control mechanism
US5820009A (en) 1996-02-20 1998-10-13 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved jaw closure mechanism
US6010054A (en) 1996-02-20 2000-01-04 Imagyn Medical Technologies Linear stapling instrument with improved staple cartridge
US5797537A (en) 1996-02-20 1998-08-25 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved firing mechanism
US5673842A (en) * 1996-03-05 1997-10-07 Ethicon Endo-Surgery Surgical stapler with locking mechanism
US5772673A (en) 1996-03-07 1998-06-30 United States Surgical Corporation Apparatus for applying surgical clips
US5732806A (en) 1996-03-29 1998-03-31 Pilling Weck, Incorporated Compensator to prevent backlash in a surgical instrument
US5772099A (en) 1996-04-01 1998-06-30 United States Surgical Corporation Surgical fastening apparatus with alignment pin
US5785232A (en) 1996-04-17 1998-07-28 Vir Engineering Surgical stapler
US5823066A (en) 1996-05-13 1998-10-20 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US5713505A (en) 1996-05-13 1998-02-03 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US5792135A (en) 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US6109500A (en) 1996-10-04 2000-08-29 United States Surgical Corporation Lockout mechanism for a surgical stapler
US5769892A (en) 1996-10-22 1998-06-23 Mitroflow International Inc. Surgical stapler sleeve for reinforcing staple lines
US5911352A (en) 1996-12-17 1999-06-15 United States Surgical Corporation Surgical stapling apparatus
US5931847A (en) 1997-01-09 1999-08-03 Ethicon Endo-Surgery, Inc. Surgical cutting instrument with improved cutting edge
US5919198A (en) 1997-04-17 1999-07-06 Ethicon Endo-Surgery, Inc. Disposable cartridge with drivers
US5878938A (en) * 1997-08-11 1999-03-09 Ethicon Endo-Surgery, Inc. Surgical stapler with improved locking mechanism
US7624902B2 (en) 2007-08-31 2009-12-01 Tyco Healthcare Group Lp Surgical stapling apparatus
US5865361A (en) 1997-09-23 1999-02-02 United States Surgical Corporation Surgical stapling apparatus
AU2002300129B2 (en) 1997-09-23 2005-06-23 United States Surgical Corporation Surgical Stapling Apparatus
US5980510A (en) 1997-10-10 1999-11-09 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having improved clamp arm pivot mount
US5873873A (en) 1997-10-10 1999-02-23 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having improved clamp mechanism
US6197017B1 (en) 1998-02-24 2001-03-06 Brock Rogers Surgical, Inc. Articulated apparatus for telemanipulator system
US6554844B2 (en) 1998-02-24 2003-04-29 Endovia Medical, Inc. Surgical instrument
US6279809B1 (en) 1998-03-10 2001-08-28 Enrico Nicolo Circular stapler for side to end, side to side and end to side anastomosis
US6099551A (en) 1998-03-12 2000-08-08 Shelhigh, Inc. Pericardial strip and stapler assembly for dividing and sealing visceral tissues and method of use thereof
FR2778081B1 (en) 1998-04-29 2000-08-25 Fabrice Thevenet reinforcing implant for tissue sutures
US6131790A (en) 1998-09-02 2000-10-17 Piraka; Hadi A. Surgical stapler and cartridge
JP2002532751A (en) 1998-12-16 2002-10-02 ウェズリー ジェッセン コーポレイション Aspheric multifocal contact lenses
US6594552B1 (en) 1999-04-07 2003-07-15 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
US6565554B1 (en) 1999-04-07 2003-05-20 Intuitive Surgical, Inc. Friction compensation in a minimally invasive surgical apparatus
US6315184B1 (en) 1999-06-02 2001-11-13 Powermed, Inc. Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6443973B1 (en) 1999-06-02 2002-09-03 Power Medical Interventions, Inc. Electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6488196B1 (en) 1999-06-30 2002-12-03 Axya Medical, Inc. Surgical stapler and method of applying plastic staples to body tissue
US6325810B1 (en) 1999-06-30 2001-12-04 Ethicon, Inc. Foam buttress for stapling apparatus
US6264087B1 (en) 1999-07-12 2001-07-24 Powermed, Inc. Expanding parallel jaw device for use with an electromechanical driver device
US7766924B1 (en) 1999-07-28 2010-08-03 Cardica, Inc. System for performing anastomosis
US7063712B2 (en) 2001-04-27 2006-06-20 Cardica, Inc. Anastomosis method
US20050154406A1 (en) 1999-07-28 2005-07-14 Cardica, Inc. Method for anastomosing vessels
US7285131B1 (en) 1999-07-28 2007-10-23 Cardica, Inc. System for performing anastomosis
US7850703B2 (en) 1999-07-28 2010-12-14 Cardica, Inc. System for performing anastomosis
US7682368B1 (en) 1999-07-28 2010-03-23 Cardica, Inc. Anastomosis tool actuated with stored energy
US7300444B1 (en) 1999-07-28 2007-11-27 Cardica, Inc. Surgical system and method for connecting hollow tissue structures
US6391038B2 (en) 1999-07-28 2002-05-21 Cardica, Inc. Anastomosis system and method for controlling a tissue site
JP2001087272A (en) 1999-09-24 2001-04-03 Motoko Iwabuchi Automatic suturing unit for excising living body tissue
US6269977B1 (en) 2000-01-26 2001-08-07 Kim Ira Moore Stackable container cover
US9173658B2 (en) 2000-03-06 2015-11-03 Covidien Lp Apparatus and method for performing a bypass procedure in a digestive system
US6731473B2 (en) 2000-04-12 2004-05-04 Seagate Technology Llc Dual pseudo spin valve heads
AU8846201A (en) 2000-08-30 2002-03-13 Cerebral Vascular Applic Inc Medical instrument
US6755338B2 (en) 2001-08-29 2004-06-29 Cerebral Vascular Applications, Inc. Medical instrument
KR100381188B1 (en) 2000-09-15 2003-04-23 엘지전자 주식회사 Power brush assembly of vacuum cleaner
JP4014792B2 (en) 2000-09-29 2007-11-28 株式会社東芝 manipulator
DE60135920D1 (en) * 2000-10-13 2008-11-06 Tyco Healthcare A surgical instrument for creating of cling
US20040267310A1 (en) 2000-10-20 2004-12-30 Racenet David C Directionally biased staple and anvil assembly for forming the staple
US6439446B1 (en) 2000-12-01 2002-08-27 Stephen J. Perry Safety lockout for actuator shaft
US6612053B2 (en) 2000-12-08 2003-09-02 Chu-Yuan Liao Fluid decoration
US6835199B2 (en) 2001-01-31 2004-12-28 Rex Medical, L.P. Apparatus and method for resectioning gastro-esophageal tissue
ES2372164T3 (en) 2001-04-03 2012-01-16 Tyco Healthcare Group Lp Surgical stapling device.
US6783524B2 (en) 2001-04-19 2004-08-31 Intuitive Surgical, Inc. Robotic surgical tool with ultrasound cauterizing and cutting instrument
US6544274B2 (en) 2001-05-02 2003-04-08 Novare Surgical Systems, Inc. Clamp having bendable shaft
US6592597B2 (en) 2001-05-07 2003-07-15 Ethicon Endo-Surgery, Inc. Adhesive for attaching buttress material to a surgical fastening device
US6656193B2 (en) 2001-05-07 2003-12-02 Ethicon Endo-Surgery, Inc. Device for attachment of buttress material to a surgical fastening device
US6503257B2 (en) 2001-05-07 2003-01-07 Ethicon Endo-Surgery, Inc. Method for releasing buttress material attached to a surgical fastening device
US6587750B2 (en) 2001-09-25 2003-07-01 Intuitive Surgical, Inc. Removable infinite roll master grip handle and touch sensor for robotic surgery
AU2002330262C1 (en) 2001-10-05 2009-05-14 Covidien Lp Surgical stapling apparatus and method
EP3056155A1 (en) 2001-10-05 2016-08-17 Covidien LP Surgical stapling device
US7334717B2 (en) 2001-10-05 2008-02-26 Tyco Healthcare Group Lp Surgical fastener applying apparatus
USD480808S1 (en) 2001-10-12 2003-10-14 Tyco Healthcare Group Lp Surgical fastener applying apparatus
US10285694B2 (en) 2001-10-20 2019-05-14 Covidien Lp Surgical stapler with timer and feedback display
US7695485B2 (en) 2001-11-30 2010-04-13 Power Medical Interventions, Llc Surgical device
US6602252B2 (en) 2002-01-03 2003-08-05 Starion Instruments Corporation Combined dissecting, cauterizing, and stapling device
US7128748B2 (en) 2002-03-26 2006-10-31 Synovis Life Technologies, Inc. Circular stapler buttress combination
US7070083B2 (en) 2002-04-11 2006-07-04 Tyco Healthcare Group Lp Surgical stapling apparatus including an anvil and cartridge each having cooperating mating surfaces
US7377928B2 (en) 2002-04-15 2008-05-27 Cook Biotech Incorporated Apparatus and method for producing a reinforced surgical staple line
ES2360613T3 (en) 2002-04-16 2011-06-07 Tyco Healthcare Group Lp surgical stapler.
WO2003090630A2 (en) 2002-04-25 2003-11-06 Tyco Healthcare Group, Lp Surgical instruments including micro-electromechanical systems (mems)
ES2270045T3 (en) 2002-05-10 2007-04-01 Tyco Healthcare Group Lp Applier wound closure material and stapler.
WO2003094745A1 (en) 2002-05-10 2003-11-20 Tyco Healthcare Group, Lp Electrosurgical stapling apparatus
EP2292151B1 (en) 2002-05-10 2014-08-27 Covidien LP Surgical stapling apparatus having a wound closure material applicator assembly
US7743960B2 (en) 2002-06-14 2010-06-29 Power Medical Interventions, Llc Surgical device
US8454628B2 (en) 2002-09-20 2013-06-04 Syntheon, Llc Surgical fastener aligning instrument particularly for transoral treatment of gastroesophageal reflux disease
CA2712039C (en) 2002-10-04 2013-03-12 Tyco Healthcare Group Lp Tool assembly for surgical stapling device
EP1897503B1 (en) 2002-10-04 2010-12-08 Tyco Healthcare Group, LP Surgical stapler with universal articulation and tissue pre-clamp
ES2379348T3 (en) 2002-10-04 2012-04-25 Tyco Healthcare Group Lp Motorized surgical stapling device pneumatically
DE60330473D1 (en) 2002-10-04 2010-01-21 Tyco Healthcare Dividing head for a surgical clip device
US7399310B2 (en) 2002-12-16 2008-07-15 Edrich Vascular Devices, Inc. Endovascular stapler
US7287682B1 (en) 2003-01-20 2007-10-30 Hazem Ezzat Surgical device and method
US7559449B2 (en) 2003-03-26 2009-07-14 Tyco Healthcare Group Lp Energy stored in spring with controlled release
US20040199180A1 (en) 2003-04-02 2004-10-07 Knodel Bryan D. Method of using surgical device for anastomosis
US20040199181A1 (en) 2003-04-02 2004-10-07 Knodel Bryan D. Surgical device for anastomosis
US20040243151A1 (en) 2003-04-29 2004-12-02 Demmy Todd L. Surgical stapling device with dissecting tip
US8714429B2 (en) 2003-04-29 2014-05-06 Covidien Lp Dissecting tip for surgical stapler
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US7143923B2 (en) 2003-05-20 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a firing lockout for an unclosed anvil
US7380696B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US7000818B2 (en) 2003-05-20 2006-02-21 Ethicon, Endo-Surger, Inc. Surgical stapling instrument having separate distinct closing and firing systems
US7044352B2 (en) 2003-05-20 2006-05-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US6988649B2 (en) * 2003-05-20 2006-01-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a spent cartridge lockout
US7140528B2 (en) 2003-05-20 2006-11-28 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
US7380695B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US7494039B2 (en) 2003-06-17 2009-02-24 Tyco Healthcare Group Lp Surgical stapling device
EP1635713B1 (en) 2003-06-17 2012-04-11 Tyco Healthcare Group LP Surgical stapling device
EP1635712B1 (en) 2003-06-20 2015-09-30 Covidien LP Surgical stapling device
US7055731B2 (en) 2003-07-09 2006-06-06 Ethicon Endo-Surgery Inc. Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint
US6964363B2 (en) 2003-07-09 2005-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having articulation joint support plates for supporting a firing bar
US7213736B2 (en) 2003-07-09 2007-05-08 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an electroactive polymer actuated firing bar track through an articulation joint
US6786382B1 (en) 2003-07-09 2004-09-07 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an articulation joint for a firing bar track
US6981628B2 (en) 2003-07-09 2006-01-03 Ethicon Endo-Surgery, Inc. Surgical instrument with a lateral-moving articulation control
US7111769B2 (en) 2003-07-09 2006-09-26 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis
US7000819B2 (en) 2003-09-29 2006-02-21 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having multistroke firing incorporating a traction-biased ratcheting mechanism
US7303108B2 (en) 2003-09-29 2007-12-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with a flexible rack
US7083075B2 (en) 2003-09-29 2006-08-01 Ethicon Endo-Surgery, Inc. Multi-stroke mechanism with automatic end of stroke retraction
US7434715B2 (en) 2003-09-29 2008-10-14 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having multistroke firing with opening lockout
US7364061B2 (en) 2003-09-29 2008-04-29 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing position indicator and retraction mechanism
US6959852B2 (en) 2003-09-29 2005-11-01 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with multistroke firing incorporating an anti-backup mechanism
US6905057B2 (en) 2003-09-29 2005-06-14 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission
US7097650B2 (en) 2003-10-14 2006-08-29 Satiety, Inc. System for tissue approximation and fixation
US7914543B2 (en) 2003-10-14 2011-03-29 Satiety, Inc. Single fold device for tissue fixation
CA2542532C (en) * 2003-10-17 2012-08-14 Tyco Healthcare Group, Lp Surgical stapling device with independent tip rotation
EP1680028B1 (en) 2003-10-17 2012-01-25 Tyco Healthcare Group LP Surgical stapling device
US7296722B2 (en) 2003-10-17 2007-11-20 Tyco Healthcare Group Lp Surgical fastener applying apparatus with controlled beam deflection
US20050177176A1 (en) 2004-02-05 2005-08-11 Craig Gerbi Single-fold system for tissue approximation and fixation
EP1563794B1 (en) 2004-02-17 2007-04-25 Tyco Healthcare Group Lp Surgical stapling apparatus with locking mechanism
EP1563792B1 (en) 2004-02-17 2007-04-18 Tyco Healthcare Group Lp Surgical stapling apparatus with locking mechanism
DE602005000889T2 (en) 2004-02-17 2008-01-17 Tyco Healthcare Group Lp, Norwalk A surgical stapling device with locking mechanism
DE602005001328T2 (en) 2004-02-17 2008-02-14 Tyco Healthcare Group Lp, Norwalk A surgical stapling device
US7886952B2 (en) 2004-02-17 2011-02-15 Tyco Healthcare Group Lp Surgical stapling apparatus with locking mechanism
US6953138B1 (en) 2004-02-18 2005-10-11 Frank W. Dworak Surgical stapler anvil with nested staple forming pockets
US8252009B2 (en) 2004-03-09 2012-08-28 Ethicon Endo-Surgery, Inc. Devices and methods for placement of partitions within a hollow body organ
TWM259538U (en) 2004-04-12 2005-03-21 Shi-Du Wang Suspended hanger for trowels
US7401720B1 (en) 2004-05-07 2008-07-22 Ayaz Mahmud Durrani Dual surgical stapler
EP1746940A2 (en) 2004-05-17 2007-01-31 Datascope Investment Corp. Surgical stapling system
US7367485B2 (en) 2004-06-30 2008-05-06 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing mechanism having a rotary transmission
US7059508B2 (en) 2004-06-30 2006-06-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an uneven multistroke firing mechanism having a rotary transmission
US7407077B2 (en) 2004-07-28 2008-08-05 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for linear surgical stapler
US7857183B2 (en) 2004-07-28 2010-12-28 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation mechanism
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US7513408B2 (en) 2004-07-28 2009-04-07 Ethicon Endo-Surgery, Inc. Multiple firing stroke surgical instrument incorporating electroactive polymer anti-backup mechanism
US7404509B2 (en) 2004-07-28 2008-07-29 Ethicon Endo-Surgery, Inc. Electroactive polymer-based articulation mechanism for linear stapler
US7487899B2 (en) 2004-07-28 2009-02-10 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP complete firing system lockout mechanism
US7506790B2 (en) 2004-07-28 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation mechanism
US7143925B2 (en) 2004-07-28 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP blocking lockout mechanism
US7407074B2 (en) 2004-07-28 2008-08-05 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for multi-fire surgical fastening instrument
US7147138B2 (en) 2004-07-28 2006-12-12 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism
US7128254B2 (en) 2004-09-07 2006-10-31 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing mechanism having a rotary slip-clutch transmission
KR100646762B1 (en) 2004-09-10 2006-11-23 인하대학교 산학협력단 A staple for operation and a stapler for operation provided with the same
JP4879900B2 (en) 2004-09-10 2012-02-22 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical stapling instrument
US7121446B2 (en) 2004-12-13 2006-10-17 Niti Medical Technologies Ltd. Palm-size surgical stapler for single hand operation
US7328829B2 (en) 2004-12-13 2008-02-12 Niti Medical Technologies Ltd. Palm size surgical stapler for single hand operation
US7678121B1 (en) 2004-12-23 2010-03-16 Cardica, Inc. Surgical stapling tool
US7462185B1 (en) 2004-12-23 2008-12-09 Cardican Inc. Intravascular stapling tool
US7229895B2 (en) 2005-01-14 2007-06-12 Micron Technology, Inc Memory array buried digit line
US7438208B2 (en) 2005-01-25 2008-10-21 Entrigue Surgical, Inc. Septal stapler apparatus
US7143926B2 (en) 2005-02-07 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with return spring rotary manual retraction system
US7559450B2 (en) 2005-02-18 2009-07-14 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating a fluid transfer controlled articulation mechanism
US7559452B2 (en) 2005-02-18 2009-07-14 Ethicon Endo-Surgery, Inc. Surgical instrument having fluid actuated opposing jaws
US7654431B2 (en) 2005-02-18 2010-02-02 Ethicon Endo-Surgery, Inc. Surgical instrument with guided laterally moving articulation member
US7784662B2 (en) 2005-02-18 2010-08-31 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground
JP4712409B2 (en) 2005-02-28 2011-06-29 マニー株式会社 Medical stapler
US7780055B2 (en) 2005-04-06 2010-08-24 Tyco Healthcare Group Lp Loading unit having drive assembly locking mechanism
US20100012703A1 (en) 2005-05-05 2010-01-21 Allison Calabrese Surgical Gasket
US7464847B2 (en) 2005-06-03 2008-12-16 Tyco Healthcare Group Lp Surgical stapler with timer and feedback display
US7717312B2 (en) 2005-06-03 2010-05-18 Tyco Healthcare Group Lp Surgical instruments employing sensors
JP2009506799A (en) 2005-06-03 2009-02-19 タイコ ヘルスケア グループ リミテッド パートナーシップ Powered surgical instruments
US20060289602A1 (en) 2005-06-23 2006-12-28 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with double pivot closure and single pivot frame ground
US8579176B2 (en) 2005-07-26 2013-11-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting device and method for using the device
JP5329956B2 (en) 2005-07-27 2013-10-30 コヴィディエン リミテッド パートナーシップ Staple pocket arrangement of a surgical stapler
US8241322B2 (en) 2005-07-27 2012-08-14 Tyco Healthcare Group Lp Surgical device
US7770773B2 (en) 2005-07-27 2010-08-10 Power Medical Interventions, Llc Surgical device
US7559937B2 (en) 2005-08-09 2009-07-14 Towertech Research Group Surgical fastener apparatus and reinforcing material
US7401721B2 (en) 2005-08-15 2008-07-22 Tyco Healthcare Group Lp Surgical stapling instruments including a cartridge having multiple staple sizes
US7398908B2 (en) 2005-08-15 2008-07-15 Tyco Healthcare Group Lp Surgical stapling instruments including a cartridge having multiple staple sizes
US8579178B2 (en) 2005-08-15 2013-11-12 Covidien Lp Surgical stapling instruments including a cartridge having multiple staples sizes
US7407075B2 (en) 2005-08-15 2008-08-05 Tyco Healthcare Group Lp Staple cartridge having multiple staple sizes for a surgical stapling instrument
US20070191868A1 (en) 2005-08-25 2007-08-16 Microline Pentax Inc. Indicating system for clip applying device
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7500979B2 (en) 2005-08-31 2009-03-10 Ethicon Endo-Surgery, Inc. Surgical stapling device with multiple stacked actuator wedge cams for driving staple drivers
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US7407078B2 (en) 2005-09-21 2008-08-05 Ehthicon Endo-Surgery, Inc. Surgical stapling instrument having force controlled spacing end effector
US7472815B2 (en) 2005-09-21 2009-01-06 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with collapsible features for controlling staple height
US7451904B2 (en) 2005-09-26 2008-11-18 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having end effector gripping surfaces
US7357287B2 (en) 2005-09-29 2008-04-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having preloaded firing assistance mechanism
US7635074B2 (en) 2005-10-04 2009-12-22 Tyco Healthcare Group Lp Staple drive assembly
US7641091B2 (en) 2005-10-04 2010-01-05 Tyco Healthcare Group Lp Staple drive assembly
US8096459B2 (en) 2005-10-11 2012-01-17 Ethicon Endo-Surgery, Inc. Surgical stapler with an end effector support
CA2563147C (en) 2005-10-14 2014-09-23 Tyco Healthcare Group Lp Surgical stapling device
AU2006228045B2 (en) 2005-10-14 2011-11-24 Covidien Lp Apparatus for laparoscopic or endoscopic procedures
US20070102472A1 (en) 2005-11-04 2007-05-10 Ethicon Endo-Surgery, Inc. Electrosurgical stapling instrument with disposable severing / stapling unit
US7607557B2 (en) 2005-11-04 2009-10-27 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for pump-assisted delivery of medical agents
US7328828B2 (en) 2005-11-04 2008-02-12 Ethicon Endo-Surgery, Inc, Lockout mechanisms and surgical instruments including same
US7673783B2 (en) 2005-11-04 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for delivery of medical agents
US7799039B2 (en) 2005-11-09 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument having a hydraulically actuated end effector
US7673780B2 (en) 2005-11-09 2010-03-09 Ethicon Endo-Surgery, Inc. Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7354447B2 (en) 2005-11-10 2008-04-08 Ethicon Endo-Surgery, Inc. Disposable loading unit and surgical instruments including same
US7651017B2 (en) 2005-11-23 2010-01-26 Ethicon Endo-Surgery, Inc. Surgical stapler with a bendable end effector
US7246734B2 (en) 2005-12-05 2007-07-24 Ethicon Endo-Surgery, Inc. Rotary hydraulic pump actuated multi-stroke surgical instrument
CN2868208Y (en) * 2005-12-14 2007-02-14 苏州天臣国际医疗科技有限公司 Tubular binding instrument having automatic safety unit
US7481824B2 (en) 2005-12-30 2009-01-27 Ethicon Endo-Surgery, Inc. Surgical instrument with bending articulation controlled articulation pivot joint
US7670334B2 (en) 2006-01-10 2010-03-02 Ethicon Endo-Surgery, Inc. Surgical instrument having an articulating end effector
US20070175955A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Surgical cutting and fastening instrument with closure trigger locking mechanism
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7770775B2 (en) 2006-01-31 2010-08-10 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with adaptive user feedback
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US7464846B2 (en) 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a removable battery
US7644848B2 (en) 2006-01-31 2010-01-12 Ethicon Endo-Surgery, Inc. Electronic lockouts and surgical instrument including same
US7568603B2 (en) 2006-01-31 2009-08-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with articulatable end effector
US7766210B2 (en) 2006-01-31 2010-08-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with user feedback system
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US7416101B2 (en) 2006-01-31 2008-08-26 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with loading force feedback
US7464849B2 (en) 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Electro-mechanical surgical instrument with closure system and anvil alignment components
US20110290856A1 (en) * 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US20070175951A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Gearing selector for a powered surgical cutting and fastening instrument
US20070175950A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Disposable staple cartridge having an anvil with tissue locator for use with a surgical cutting and fastening instrument and modular end effector system therefor
US7422139B2 (en) 2006-01-31 2008-09-09 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting fastening instrument with tactile position feedback
US20120292367A1 (en) * 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7575144B2 (en) 2006-01-31 2009-08-18 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with single cable actuator
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US9629626B2 (en) 2006-02-02 2017-04-25 Covidien Lp Mechanically tuned buttress material to assist with proper formation of surgical element in diseased tissue
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8721630B2 (en) 2006-03-23 2014-05-13 Ethicon Endo-Surgery, Inc. Methods and devices for controlling articulation
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US20110163146A1 (en) 2006-03-23 2011-07-07 Ortiz Mark S Surgical Stapling And Cuttting Device
US8267849B2 (en) 2006-04-18 2012-09-18 Wazer David E Radioactive therapeutic fastening instrument
US7278563B1 (en) 2006-04-25 2007-10-09 Green David T Surgical instrument for progressively stapling and incising tissue
US7552854B2 (en) 2006-05-19 2009-06-30 Applied Medical Resources Corporation Surgical stapler with firing lock mechanism
US7635373B2 (en) 2006-05-25 2009-12-22 Ethicon Endo-Surgery, Inc. Absorbable gastric restriction devices and methods
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
AT486527T (en) 2006-07-07 2010-11-15 Ethicon Endo Surgery Inc The surgical clip applier and clip magazine and brace for such a device
IL176889D0 (en) 2006-07-16 2006-10-31 Medigus Ltd Devices and methods for treating morbid obesity
US20080029574A1 (en) 2006-08-02 2008-02-07 Shelton Frederick E Pneumatically powered surgical cutting and fastening instrument with actuator at distal end
US7448525B2 (en) 2006-08-02 2008-11-11 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with manually operated retraction apparatus
US7740159B2 (en) 2006-08-02 2010-06-22 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US8403196B2 (en) 2006-09-08 2013-03-26 Covidien Lp Dissection tip and introducer for surgical instrument
US8136711B2 (en) 2006-09-08 2012-03-20 Tyco Healthcare Group Lp Dissection tip and introducer for surgical instrument
US8794496B2 (en) 2006-09-11 2014-08-05 Covidien Lp Rotating knob locking mechanism for surgical stapling device
US20100133317A1 (en) 2006-09-29 2010-06-03 Shelton Iv Frederick E Motor-Driven Surgical Cutting And Fastening Instrument with Tactile Position Feedback
US7665647B2 (en) 2006-09-29 2010-02-23 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
US7866525B2 (en) 2006-10-06 2011-01-11 Tyco Healthcare Group Lp Surgical instrument having a plastic surface
US7845535B2 (en) 2006-10-06 2010-12-07 Tyco Healthcare Group Lp Surgical instrument having a plastic surface
US8336751B2 (en) 2006-10-06 2012-12-25 Covidien Lp Grasping jaw mechanism
US7963431B2 (en) 2006-10-06 2011-06-21 Tyco Healthcare Group, Lp Grasping jaw mechanism
US7481348B2 (en) 2006-10-06 2009-01-27 Tyco Healthcare Group Lp Surgical instrument with articulating tool assembly
US7967178B2 (en) 2006-10-06 2011-06-28 Tyco Healthcare Group Lp Grasping jaw mechanism
WO2008057281A2 (en) 2006-10-26 2008-05-15 Tyco Healthcare Group Lp Methods of using shape memory alloys for buttress attachment
US7721930B2 (en) 2006-11-10 2010-05-25 Thicon Endo-Surgery, Inc. Disposable cartridge with adhesive for use with a stapling device
US20080110961A1 (en) 2006-11-10 2008-05-15 Ethicon Endo-Surgery, Inc. Initiator Coating of Staples
US7434716B2 (en) 2006-12-21 2008-10-14 Tyco Healthcare Group Lp Staple driver for articulating surgical stapler
US7721931B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Prevention of cartridge reuse in a surgical instrument
US8652120B2 (en) * 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US7900805B2 (en) 2007-01-10 2011-03-08 Ethicon Endo-Surgery, Inc. Surgical instrument with enhanced battery performance
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US7954682B2 (en) 2007-01-10 2011-06-07 Ethicon Endo-Surgery, Inc. Surgical instrument with elements to communicate between control unit and end effector
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US7721936B2 (en) * 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
US20080169328A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Buttress material for use with a surgical stapler
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US7950562B2 (en) 2007-01-31 2011-05-31 Tyco Healthcare Group Lp Surgical instrument with replaceable loading unit
US7753246B2 (en) 2007-01-31 2010-07-13 Tyco Healthcare Group Lp Surgical instrument with replaceable loading unit
US7682367B2 (en) 2007-02-28 2010-03-23 Tyco Healthcare Group Lp Surgical stapling apparatus
US8011555B2 (en) 2007-03-06 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
EP3431016A1 (en) 2007-03-06 2019-01-23 Covidien LP Surgical stapling apparatus
US7473258B2 (en) 2007-03-08 2009-01-06 Cardica, Inc. Surgical stapler
US7431188B1 (en) 2007-03-15 2008-10-07 Tyco Healthcare Group Lp Surgical stapling apparatus with powered articulation
US7422136B1 (en) 2007-03-15 2008-09-09 Tyco Healthcare Group Lp Powered surgical stapling device
CA2681186C (en) 2007-03-22 2015-07-21 Tyco Healthcare Group Lp Apparatus for forming variable height surgical fasteners
US7490749B2 (en) 2007-03-28 2009-02-17 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with manually retractable firing member
US8056787B2 (en) 2007-03-28 2011-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with travel-indicating retraction member
US8006885B2 (en) 2007-04-09 2011-08-30 Tyco Healthcare Group Lp Surgical stapling apparatus with powered retraction
US7950560B2 (en) 2007-04-13 2011-05-31 Tyco Healthcare Group Lp Powered surgical instrument
US7708182B2 (en) 2007-04-17 2010-05-04 Tyco Healthcare Group Lp Flexible endoluminal surgical instrument
US8028882B2 (en) 2007-05-01 2011-10-04 Tyco Healthcare Group Anvil position detector for a surgical stapler
US7823760B2 (en) 2007-05-01 2010-11-02 Tyco Healthcare Group Lp Powered surgical stapling device platform
US20080287987A1 (en) 2007-05-16 2008-11-20 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Dispensing system for tissue sealants
US7832611B2 (en) 2007-05-16 2010-11-16 The Invention Science Fund I, Llc Steerable surgical stapler
US7922064B2 (en) 2007-05-16 2011-04-12 The Invention Science Fund, I, LLC Surgical fastening device with cutter
US7823761B2 (en) 2007-05-16 2010-11-02 The Invention Science Fund I, Llc Maneuverable surgical stapler
US7810691B2 (en) 2007-05-16 2010-10-12 The Invention Science Fund I, Llc Gentle touch surgical stapler
US7798385B2 (en) 2007-05-16 2010-09-21 The Invention Science Fund I, Llc Surgical stapling instrument with chemical sealant
US8038045B2 (en) 2007-05-25 2011-10-18 Tyco Healthcare Group Lp Staple buttress retention system
US7810693B2 (en) 2007-05-30 2010-10-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with articulatable end effector
US7798386B2 (en) 2007-05-30 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument articulation joint cover
US8631991B2 (en) 2007-05-30 2014-01-21 Ethicon Endo-Surgery, Inc. Surgical instrument
US20080296346A1 (en) 2007-05-31 2008-12-04 Shelton Iv Frederick E Pneumatically powered surgical cutting and fastening instrument with electrical control and recording mechanisms
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7819299B2 (en) 2007-06-04 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical instrument having a common trigger for actuating an end effector closing system and a staple firing system
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US7665646B2 (en) 2007-06-18 2010-02-23 Tyco Healthcare Group Lp Interlocking buttress material retention system
US7950561B2 (en) 2007-06-18 2011-05-31 Tyco Healthcare Group Lp Structure for attachment of buttress material to anvils and cartridges of surgical staplers
US7731072B2 (en) 2007-06-18 2010-06-08 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with improved anvil opening features
US7918276B2 (en) 2007-06-20 2011-04-05 Schlumberger Technology Corporation System and method for creating a gravel pack
US7658311B2 (en) 2007-06-22 2010-02-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a geared return mechanism
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US7597229B2 (en) 2007-06-22 2009-10-06 Ethicon Endo-Surgery, Inc. End effector closure system for a surgical stapling instrument
US7441685B1 (en) 2007-06-22 2008-10-28 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a return mechanism
US7845533B2 (en) 2007-06-22 2010-12-07 Tyco Healthcare Group Lp Detachable buttress material retention systems for use with a surgical stapling device
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7604150B2 (en) 2007-06-22 2009-10-20 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an anti-back up mechanism
US8062330B2 (en) 2007-06-27 2011-11-22 Tyco Healthcare Group Lp Buttress and surgical stapling apparatus
US20090001121A1 (en) 2007-06-29 2009-01-01 Hess Christopher J Surgical staple having an expandable portion
US7669747B2 (en) 2007-06-29 2010-03-02 Ethicon Endo-Surgery, Inc. Washer for use with a surgical stapling instrument
US20090001130A1 (en) 2007-06-29 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US7600663B2 (en) 2007-07-05 2009-10-13 Green David T Apparatus for stapling and incising tissue
US7556185B2 (en) 2007-08-15 2009-07-07 Tyco Healthcare Group Lp Surgical instrument with flexible drive mechanism
US8061576B2 (en) 2007-08-31 2011-11-22 Tyco Healthcare Group Lp Surgical instrument
US8403956B1 (en) 2007-09-06 2013-03-26 Cardica, Inc. Multiple-use surgical stapler
US8070036B1 (en) 2007-09-06 2011-12-06 Cardica, Inc True multi-fire surgical stapler configured to fire staples of different sizes
US7988026B2 (en) 2007-09-06 2011-08-02 Cardica, Inc. Endocutter with staple feed
US8556151B2 (en) 2007-09-11 2013-10-15 Covidien Lp Articulating joint for surgical instruments
CA2698571C (en) 2007-09-21 2016-12-20 Power Medical Interventions, Llc Surgical device
EP2197364B1 (en) 2007-09-21 2016-07-20 Covidien LP Surgical device
US8678263B2 (en) 2007-09-24 2014-03-25 Covidien Lp Materials delivery system for stapling device
US7866524B2 (en) 2007-09-24 2011-01-11 Tyco Healthcare Group Lp Stapler powered auxiliary device for injecting material between stapler jaws
US7703653B2 (en) 2007-09-28 2010-04-27 Tyco Healthcare Group Lp Articulation mechanism for surgical instrument
US8960520B2 (en) 2007-10-05 2015-02-24 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US7909220B2 (en) 2007-10-05 2011-03-22 Tyco Healthcare Group Lp Surgical stapler having an articulation mechanism
US20090090763A1 (en) 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Powered surgical stapling device
US9113880B2 (en) 2007-10-05 2015-08-25 Covidien Lp Internal backbone structural chassis for a surgical device
EP2044892A3 (en) 2007-10-05 2012-11-21 Tyco Healthcare Group LP Surgical stapling apparatus
US8967443B2 (en) 2007-10-05 2015-03-03 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
CN201108464Y (en) * 2007-10-22 2008-09-03 周明喜 Digestive canal cutting stitching instrument
US7922063B2 (en) 2007-10-31 2011-04-12 Tyco Healthcare Group, Lp Powered surgical instrument
US7954685B2 (en) 2007-11-06 2011-06-07 Tyco Healthcare Group Lp Articulation and firing force mechanisms
US7954687B2 (en) 2007-11-06 2011-06-07 Tyco Healthcare Group Lp Coated surgical staples and an illuminated staple cartridge for a surgical stapling instrument
US20090177201A1 (en) 2007-11-14 2009-07-09 Michael Soltz Staple with Multiple Cross Sectional Shapes
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US7766209B2 (en) 2008-02-13 2010-08-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US7913891B2 (en) 2008-02-14 2011-03-29 Ethicon Endo-Surgery, Inc. Disposable loading unit with user feedback features and surgical instrument for use therewith
US7819297B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with reprocessible handle assembly
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7861906B2 (en) 2008-02-14 2011-01-04 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with articulatable components
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US7810692B2 (en) 2008-02-14 2010-10-12 Ethicon Endo-Surgery, Inc. Disposable loading unit with firing indicator
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US7819296B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with retractable firing systems
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US7857185B2 (en) 2008-02-14 2010-12-28 Ethicon Endo-Surgery, Inc. Disposable loading unit for surgical stapling apparatus
US7980443B2 (en) 2008-02-15 2011-07-19 Ethicon Endo-Surgery, Inc. End effectors for a surgical cutting and stapling instrument
US8608044B2 (en) * 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US7959051B2 (en) 2008-02-15 2011-06-14 Ethicon Endo-Surgery, Inc. Closure systems for a surgical cutting and stapling instrument
US8371491B2 (en) 2008-02-15 2013-02-12 Ethicon Endo-Surgery, Inc. Surgical end effector having buttress retention features
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US8136713B2 (en) 2008-03-25 2012-03-20 Tyco Healthcare Group Lp Surgical stapling instrument having transducer effecting vibrations
US20090242610A1 (en) 2008-03-26 2009-10-01 Shelton Iv Frederick E Disposable loading unit and surgical instruments including same
US8387849B2 (en) 2008-04-11 2013-03-05 Ryan K. Buesseler Fastener deployment system and method
US8231040B2 (en) 2008-04-14 2012-07-31 Tyco Healthcare Group Lp Variable compression surgical fastener cartridge
US20090255974A1 (en) 2008-04-14 2009-10-15 Tyco Healthcare Group Lp Single loop surgical fastener apparatus for applying variable compression
US7926691B2 (en) 2008-04-14 2011-04-19 Tyco Healthcare Group, L.P. Variable compression surgical fastener cartridge
US8100310B2 (en) 2008-04-14 2012-01-24 Tyco Healthcare Group Lp Variable compression surgical fastener apparatus
US8231041B2 (en) 2008-04-14 2012-07-31 Tyco Healthcare Group Lp Variable compression surgical fastener cartridge
US8028884B2 (en) 2008-04-22 2011-10-04 Tyco Healthcare Group Lp Cartridge for applying varying amounts of tissue compression
US8640940B2 (en) 2008-04-30 2014-02-04 Educational Foundation Jichi Medical University Surgical system and surgical method for natural orifice transluminal endoscopic surgery (NOTES)
US7997468B2 (en) 2008-05-05 2011-08-16 Tyco Healthcare Group Lp Surgical instrument with clamp
US8091756B2 (en) 2008-05-09 2012-01-10 Tyco Healthcare Group Lp Varying tissue compression using take-up component
US8186556B2 (en) 2008-05-09 2012-05-29 Tyco Healthcare Group Lp Variable compression surgical fastener apparatus
US9016541B2 (en) 2008-05-09 2015-04-28 Covidien Lp Varying tissue compression with an anvil configuration
US8464922B2 (en) 2008-05-09 2013-06-18 Covidien Lp Variable compression surgical fastener cartridge
US7922061B2 (en) 2008-05-21 2011-04-12 Ethicon Endo-Surgery, Inc. Surgical instrument with automatically reconfigurable articulating end effector
US8701959B2 (en) * 2008-06-06 2014-04-22 Covidien Lp Mechanically pivoting cartridge channel for surgical instrument
US7789283B2 (en) 2008-06-06 2010-09-07 Tyco Healthcare Group Lp Knife/firing rod connection for surgical instrument
US7942303B2 (en) 2008-06-06 2011-05-17 Tyco Healthcare Group Lp Knife lockout mechanisms for surgical instrument
US20090308907A1 (en) 2008-06-12 2009-12-17 Nalagatla Anil K Partially reusable surgical stapler
US7543730B1 (en) 2008-06-24 2009-06-09 Tyco Healthcare Group Lp Segmented drive member for surgical instruments
US8011551B2 (en) 2008-07-01 2011-09-06 Tyco Healthcare Group Lp Retraction mechanism with clutch-less drive for use with a surgical apparatus
US8074858B2 (en) 2008-07-17 2011-12-13 Tyco Healthcare Group Lp Surgical retraction mechanism
US8113405B2 (en) 2008-09-03 2012-02-14 Tyco Healthcare Group, Lp Surgical instrument with indicator
US20100051668A1 (en) 2008-09-03 2010-03-04 Milliman Keith L Surgical instrument with indicator
CN101669833A (en) * 2008-09-11 2010-03-17 苏州天臣国际医疗科技有限公司 Automatic purse-string device
US8083120B2 (en) 2008-09-18 2011-12-27 Ethicon Endo-Surgery, Inc. End effector for use with a surgical cutting and stapling instrument
US20100069942A1 (en) 2008-09-18 2010-03-18 Ethicon Endo-Surgery, Inc. Surgical instrument with apparatus for measuring elapsed time between actions
US8540133B2 (en) * 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
BRPI0904975A2 (en) * 2008-09-19 2011-03-15 Ethicon Endo Surgery Inc clipping arrangement for a surgical stapler
US8360298B2 (en) 2008-09-23 2013-01-29 Covidien Lp Surgical instrument and loading unit for use therewith
US9386983B2 (en) * 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US7896214B2 (en) 2008-09-23 2011-03-01 Tyco Healthcare Group Lp Tissue stop for surgical instrument
US7988028B2 (en) 2008-09-23 2011-08-02 Tyco Healthcare Group Lp Surgical instrument having an asymmetric dynamic clamping member
US8628544B2 (en) 2008-09-23 2014-01-14 Covidien Lp Knife bar for surgical instrument
US8215532B2 (en) 2008-09-23 2012-07-10 Tyco Healthcare Group Lp Tissue stop for surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8020743B2 (en) 2008-10-15 2011-09-20 Ethicon Endo-Surgery, Inc. Powered articulatable surgical cutting and fastening instrument with flexible drive member
US7934631B2 (en) 2008-11-10 2011-05-03 Barosense, Inc. Multi-fire stapling systems and methods for delivering arrays of staples
US20100147921A1 (en) 2008-12-16 2010-06-17 Lee Olson Surgical Apparatus Including Surgical Buttress
WO2010073733A1 (en) 2008-12-25 2010-07-01 泉工医科工業株式会社 Anastomotic device
US8381961B2 (en) 2009-01-14 2013-02-26 Covidien Lp Surgical stapling apparatus including staple with plate
US8469252B2 (en) 2009-01-26 2013-06-25 Ethicon Endo-Surgery, Inc. Surgical stapler fastening device with adjustable anvil
US8439244B2 (en) 2010-01-20 2013-05-14 Ethicon Endo-Surgery, Inc. Surgical stapler fastening device with movable anvil
US8453905B2 (en) 2009-01-26 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical fastener for applying a large staple through a small delivery port
US20110278343A1 (en) 2009-01-29 2011-11-17 Cardica, Inc. Clamping of Hybrid Surgical Instrument
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US20100193566A1 (en) 2009-02-05 2010-08-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8453913B2 (en) 2009-02-06 2013-06-04 Covidien Lp Anvil for surgical stapler
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8245899B2 (en) 2009-02-06 2012-08-21 Ethicon Endo-Surgery, Inc. Driven surgical stapler improvements
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US20110024478A1 (en) 2009-02-06 2011-02-03 Shelton Iv Frederick E Driven Surgical Stapler Improvements
US8393516B2 (en) 2009-02-26 2013-03-12 Covidien Lp Surgical stapling apparatus with curved cartridge and anvil assemblies
US8356740B1 (en) 2009-03-09 2013-01-22 Cardica, Inc. Controlling compression applied to tissue by surgical tool
US8317071B1 (en) 2009-03-09 2012-11-27 Cardica, Inc. Endocutter with auto-feed buttress
US7918376B1 (en) 2009-03-09 2011-04-05 Cardica, Inc. Articulated surgical instrument
US20100249802A1 (en) 2009-03-27 2010-09-30 May Thomas C Soft Tissue Graft Preparation Devices and Methods
US8348126B2 (en) 2009-03-31 2013-01-08 Covidien Lp Crimp and release of suture holding buttress material
US7988027B2 (en) 2009-03-31 2011-08-02 Tyco Healthcare Group Lp Crimp and release of suture holding buttress material
US8113409B2 (en) 2009-03-31 2012-02-14 Tyco Healthcare Group Lp Surgical stapling apparatus with clamping assembly
US8016178B2 (en) 2009-03-31 2011-09-13 Tyco Healthcare Group Lp Surgical stapling apparatus
US7967179B2 (en) 2009-03-31 2011-06-28 Tyco Healthcare Group Lp Center cinch and release of buttress material
US8365972B2 (en) 2009-03-31 2013-02-05 Covidien Lp Surgical stapling apparatus
US8011550B2 (en) * 2009-03-31 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
US8292154B2 (en) 2009-04-16 2012-10-23 Tyco Healthcare Group Lp Surgical apparatus for applying tissue fasteners
US8012170B2 (en) 2009-04-27 2011-09-06 Tyco Healthcare Group Lp Device and method for controlling compression of tissue
US8127976B2 (en) 2009-05-08 2012-03-06 Tyco Healthcare Group Lp Stapler cartridge and channel interlock
US8308043B2 (en) 2009-05-19 2012-11-13 Covidien Lp Recognition of interchangeable component of a device
US8056789B1 (en) 2009-06-03 2011-11-15 Cardica, Inc. Staple and feeder belt configurations for surgical stapler
US8132706B2 (en) 2009-06-05 2012-03-13 Tyco Healthcare Group Lp Surgical stapling apparatus having articulation mechanism
US8827134B2 (en) 2009-06-19 2014-09-09 Covidien Lp Flexible surgical stapler with motor in the head
US8087562B1 (en) 2009-06-22 2012-01-03 Cardica, Inc. Anvil for surgical instrument
US8205779B2 (en) 2009-07-23 2012-06-26 Tyco Healthcare Group Lp Surgical stapler with tactile feedback system
US8360299B2 (en) 2009-08-11 2013-01-29 Covidien Lp Surgical stapling apparatus
US8955732B2 (en) 2009-08-11 2015-02-17 Covidien Lp Surgical stapling apparatus
US20110036891A1 (en) 2009-08-11 2011-02-17 Tyco Healthcare Group Lp Surgical stapler with visual positional indicator
US8459524B2 (en) 2009-08-14 2013-06-11 Covidien Lp Tissue fastening system for a medical device
US8733612B2 (en) 2009-08-17 2014-05-27 Covidien Lp Safety method for powered surgical instruments
US8342378B2 (en) 2009-08-17 2013-01-01 Covidien Lp One handed stapler
US8387848B2 (en) 2009-08-20 2013-03-05 Covidien Lp Surgical staple
US8365971B1 (en) 2009-09-23 2013-02-05 Cardica, Inc. True multi-fire linear cutter
US20110082471A1 (en) 2009-10-06 2011-04-07 Holcomb Matthew D Reloadable Laparoscopic Fastener Deploying Device
US8496154B2 (en) 2009-10-08 2013-07-30 Covidien Lp Pair of double staple pusher in triple row stapler
US20110087276A1 (en) 2009-10-09 2011-04-14 Ethicon Endo-Surgery, Inc. Method for forming a staple
US8152041B2 (en) 2009-10-14 2012-04-10 Tyco Healthcare Group Lp Varying tissue compression aided by elastic members
US8157151B2 (en) 2009-10-15 2012-04-17 Tyco Healthcare Group Lp Staple line reinforcement for anvil and cartridge
US8523042B2 (en) 2009-10-21 2013-09-03 The General Hospital Corporation Apparatus and method for preserving a tissue margin
US8225979B2 (en) 2009-10-30 2012-07-24 Tyco Healthcare Group Lp Locking shipping wedge
US8418907B2 (en) 2009-11-05 2013-04-16 Covidien Lp Surgical stapler having cartridge with adjustable cam mechanism
US8186558B2 (en) 2009-11-10 2012-05-29 Tyco Healthcare Group Lp Locking mechanism for use with loading units
US8235272B2 (en) 2009-11-20 2012-08-07 Tyco Healthcare Group Lp Surgical stapling device with captive anvil
US20110121049A1 (en) 2009-11-20 2011-05-26 Power Medical Interventions, Llc. Surgical console and hand-held surgical device
US8806973B2 (en) * 2009-12-02 2014-08-19 Covidien Lp Adapters for use between surgical handle assembly and surgical end effector
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US8960517B2 (en) 2010-01-13 2015-02-24 Chung-Yi Lee Powder-actuated fastener-driving device having sound-absorbing function
US20120193399A1 (en) 2011-01-28 2012-08-02 Holcomb Matthew D Surgical Fastener Having A Safety Feature
US20120193394A1 (en) 2011-01-28 2012-08-02 Holcomb Matthew D Surgical Stapler Having an Adjustment Feature
US8469254B2 (en) 2010-01-22 2013-06-25 Covidien Lp Surgical instrument having a drive assembly
US8245897B2 (en) 2010-01-26 2012-08-21 Zakease Surgical Inc. Stapling apparatus for performing anastomosis on hollow organs
US8328061B2 (en) 2010-02-02 2012-12-11 Covidien Lp Surgical instrument for joining tissue
US8672209B2 (en) 2010-02-25 2014-03-18 Design Standards Corporation Laproscopic stapler
US8074859B2 (en) 2010-03-31 2011-12-13 Tyco Healthcare Group Lp Surgical instrument
US8348127B2 (en) 2010-04-07 2013-01-08 Covidien Lp Surgical fastener applying apparatus
US8517241B2 (en) 2010-04-16 2013-08-27 Covidien Lp Hand-held surgical devices
US8596515B2 (en) 2010-06-18 2013-12-03 Covidien Lp Staple position sensor system
US8613383B2 (en) 2010-07-14 2013-12-24 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US8453906B2 (en) 2010-07-14 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US8439246B1 (en) 2010-07-20 2013-05-14 Cardica, Inc. Surgical stapler with cartridge-adjustable clamp gap
US20120053402A1 (en) 2010-09-01 2012-03-01 Conlon Sean P Minimally invasive surgery
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US9877720B2 (en) 2010-09-24 2018-01-30 Ethicon Llc Control features for articulating surgical device
US8840003B2 (en) 2010-09-30 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with compact articulation control arrangement
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US20120080498A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Curved end effector for a stapling instrument
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US20120248169A1 (en) 2010-09-30 2012-10-04 Ethicon Endo-Surgery, Inc. Methods for forming tissue thickness compensator arrangements for surgical staplers
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
CN102440813B (en) 2010-09-30 2013-05-08 上海创亿医疗器械技术有限公司 Endoscopic surgical cutting anastomat with chain joints
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8899461B2 (en) 2010-10-01 2014-12-02 Covidien Lp Tissue stop for surgical instrument
US8444038B2 (en) 2010-10-01 2013-05-21 Covidien Lp Tissue stop for surgical instrument
US8900616B2 (en) 2010-10-22 2014-12-02 Covidien Lp System and method for satellite drug delivery
US8292150B2 (en) 2010-11-02 2012-10-23 Tyco Healthcare Group Lp Adapter for powered surgical devices
US8308041B2 (en) 2010-11-10 2012-11-13 Tyco Healthcare Group Lp Staple formed over the wire wound closure procedure
US8523043B2 (en) 2010-12-07 2013-09-03 Immersion Corporation Surgical stapler having haptic feedback
US8715277B2 (en) 2010-12-08 2014-05-06 Ethicon Endo-Surgery, Inc. Control of jaw compression in surgical instrument having end effector with opposing jaw members
US8348130B2 (en) 2010-12-10 2013-01-08 Covidien Lp Surgical apparatus including surgical buttress
CN202122595U (en) * 2010-12-16 2012-01-25 苏州天臣国际医疗科技有限公司 Linear cutting stitching instrument
CN102068290B (en) * 2010-12-16 2013-06-05 苏州天臣国际医疗科技有限公司 Linear cutting stapler
MX338966B (en) 2011-01-14 2016-05-06 New Hope Ventures Surgical stapling device and method.
US9084602B2 (en) 2011-01-26 2015-07-21 Covidien Lp Buttress film with hemostatic action for surgical stapling apparatus
US8276801B2 (en) 2011-02-01 2012-10-02 Tyco Healthcare Group Lp Surgical stapling apparatus
US8336754B2 (en) 2011-02-04 2012-12-25 Covidien Lp Locking articulation mechanism for surgical stapler
US8348124B2 (en) 2011-02-08 2013-01-08 Covidien Lp Knife bar with geared overdrive
US20120211542A1 (en) 2011-02-23 2012-08-23 Tyco Healthcare Group I.P Controlled tissue compression systems and methods
US8479968B2 (en) 2011-03-10 2013-07-09 Covidien Lp Surgical instrument buttress attachment
US8540131B2 (en) 2011-03-15 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US8857693B2 (en) 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
US20120234895A1 (en) 2011-03-15 2012-09-20 Ethicon Endo-Surgery, Inc. Surgical staple cartridges and end effectors with vessel measurement arrangements
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
US8397972B2 (en) 2011-03-18 2013-03-19 Covidien Lp Shipping wedge with lockout
US8573463B2 (en) 2011-03-31 2013-11-05 Covidien Lp Locking articulation mechanism
US9370362B2 (en) 2011-04-07 2016-06-21 Wake Forest University Health Sciences Surgical staplers with tissue protection and related methods
US8511575B2 (en) 2011-04-27 2013-08-20 Intellectual Ventures Fund 83 Llc Digital image file including optical code
US8789737B2 (en) 2011-04-27 2014-07-29 Covidien Lp Circular stapler and staple line reinforcement material
US9820741B2 (en) 2011-05-12 2017-11-21 Covidien Lp Replaceable staple cartridge
US8833631B2 (en) 2011-05-16 2014-09-16 John J. Munro, III Delivery applicator for radioactive staples for brachytherapy medical treatment
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9451959B2 (en) 2011-06-09 2016-09-27 Covidien Lp Surgical fastener applying apparatus
US9289209B2 (en) 2011-06-09 2016-03-22 Covidien Lp Surgical fastener applying apparatus
US9271728B2 (en) 2011-06-09 2016-03-01 Covidien Lp Surgical fastener applying apparatus
US8763876B2 (en) 2011-06-30 2014-07-01 Covidien Lp Surgical instrument and cartridge for use therewith
US20130012983A1 (en) 2011-07-08 2013-01-10 Tyco Healthcare Group Lp Surgical Instrument with Flexible Shaft
US8960521B2 (en) 2011-07-15 2015-02-24 Covidien Lp Loose staples removal system
US8998059B2 (en) 2011-08-01 2015-04-07 Ethicon Endo-Surgery, Inc. Adjunct therapy device having driver with cavity for hemostatic agent
US9724095B2 (en) 2011-08-08 2017-08-08 Covidien Lp Surgical fastener applying apparatus
US9539007B2 (en) 2011-08-08 2017-01-10 Covidien Lp Surgical fastener applying aparatus
US9155537B2 (en) 2011-08-08 2015-10-13 Covidien Lp Surgical fastener applying apparatus
US9492170B2 (en) 2011-08-10 2016-11-15 Ethicon Endo-Surgery, Inc. Device for applying adjunct in endoscopic procedure
US20130041406A1 (en) 2011-08-10 2013-02-14 Brian W. Bear Surgical staple with localized adjunct coating
US9107663B2 (en) 2011-09-06 2015-08-18 Ethicon Endo-Surgery, Inc. Stapling instrument comprising resettable staple drivers
US9101359B2 (en) 2011-09-13 2015-08-11 Ethicon Endo-Surgery, Inc. Surgical staple cartridge with self-dispensing staple buttress
US8998060B2 (en) 2011-09-13 2015-04-07 Ethicon Endo-Surgery, Inc. Resistive heated surgical staple cartridge with phase change sealant
US9999408B2 (en) 2011-09-14 2018-06-19 Ethicon Endo-Surgery, Inc. Surgical instrument with fluid fillable buttress
US8814025B2 (en) 2011-09-15 2014-08-26 Ethicon Endo-Surgery, Inc. Fibrin pad matrix with suspended heat activated beads of adhesive
US9125649B2 (en) 2011-09-15 2015-09-08 Ethicon Endo-Surgery, Inc. Surgical instrument with filled staple
US9254180B2 (en) 2011-09-15 2016-02-09 Ethicon Endo-Surgery, Inc. Surgical instrument with staple reinforcement clip
US20130068816A1 (en) 2011-09-15 2013-03-21 Venkataramanan Mandakolathur Vasudevan Surgical instrument and buttress material
US9198644B2 (en) 2011-09-22 2015-12-01 Ethicon Endo-Surgery, Inc. Anvil cartridge for surgical fastening device
US20130075447A1 (en) 2011-09-22 2013-03-28 II William B. Weisenburgh Adjunct therapy device for applying hemostatic agent
US9393018B2 (en) 2011-09-22 2016-07-19 Ethicon Endo-Surgery, Inc. Surgical staple assembly with hemostatic feature
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US8985429B2 (en) 2011-09-23 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with adjunct material application feature
US8899464B2 (en) 2011-10-03 2014-12-02 Ethicon Endo-Surgery, Inc. Attachment of surgical staple buttress to cartridge
US9089326B2 (en) 2011-10-07 2015-07-28 Ethicon Endo-Surgery, Inc. Dual staple cartridge for surgical stapler
US20130098970A1 (en) 2011-10-25 2013-04-25 David Racenet Surgical Apparatus and Method for Endoluminal Surgery
US9016539B2 (en) 2011-10-25 2015-04-28 Covidien Lp Multi-use loading unit
US8899462B2 (en) 2011-10-25 2014-12-02 Covidien Lp Apparatus for endoscopic procedures
US8672206B2 (en) 2011-10-25 2014-03-18 Covidien Lp Apparatus for endoscopic procedures
US8657177B2 (en) 2011-10-25 2014-02-25 Covidien Lp Surgical apparatus and method for endoscopic surgery
US8418908B1 (en) 2011-10-26 2013-04-16 Covidien Lp Staple feeding and forming apparatus
US20130105552A1 (en) 2011-10-26 2013-05-02 Intuitive Surgical Operations, Inc. Cartridge Status and Presence Detection
US9675351B2 (en) 2011-10-26 2017-06-13 Covidien Lp Buttress release from surgical stapler by knife pushing
JP6210994B2 (en) 2011-10-26 2017-10-11 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Surgical instrument having an integral knife blade
US8584920B2 (en) 2011-11-04 2013-11-19 Covidien Lp Surgical stapling apparatus including releasable buttress
US9566064B2 (en) 2013-03-13 2017-02-14 Covidien Lp Surgical stapling apparatus
US9814463B2 (en) 2013-03-13 2017-11-14 Covidien Lp Surgical stapling apparatus

Cited By (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10293100B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Surgical stapling instrument having a medical substance dispenser
US10278702B2 (en) 2004-07-28 2019-05-07 Ethicon Llc Stapling system comprising a firing bar and a lockout
US10314590B2 (en) 2004-07-28 2019-06-11 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US10278697B2 (en) 2005-08-31 2019-05-07 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US10271846B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Staple cartridge for use with a surgical stapler
US10321909B2 (en) 2005-08-31 2019-06-18 Ethicon Llc Staple cartridge comprising a staple including deformable members
US10245032B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Staple cartridges for forming staples having differing formed staple heights
US10271845B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US10245035B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Stapling assembly configured to produce different formed staple heights
US10070863B2 (en) 2005-08-31 2018-09-11 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil
US9968356B2 (en) 2005-11-09 2018-05-15 Ethicon Llc Surgical instrument drive systems
US9895147B2 (en) 2005-11-09 2018-02-20 Ethicon Llc End effectors for surgical staplers
US10149679B2 (en) 2005-11-09 2018-12-11 Ethicon Llc Surgical instrument comprising drive systems
US10028742B2 (en) 2005-11-09 2018-07-24 Ethicon Llc Staple cartridge comprising staples with different unformed heights
US10004498B2 (en) 2006-01-31 2018-06-26 Ethicon Llc Surgical instrument comprising a plurality of articulation joints
US10201363B2 (en) 2006-01-31 2019-02-12 Ethicon Llc Motor-driven surgical instrument
US10058963B2 (en) 2006-01-31 2018-08-28 Ethicon Llc Automated end effector component reloading system for use with a robotic system
US10278722B2 (en) 2006-01-31 2019-05-07 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US10098636B2 (en) 2006-01-31 2018-10-16 Ethicon Llc Surgical instrument having force feedback capabilities
US10052100B2 (en) 2006-01-31 2018-08-21 Ethicon Llc Surgical instrument system configured to detect resistive forces experienced by a tissue cutting implement
US10052099B2 (en) 2006-01-31 2018-08-21 Ethicon Llc Surgical instrument system comprising a firing system including a rotatable shaft and first and second actuation ramps
US10299817B2 (en) 2006-01-31 2019-05-28 Ethicon Llc Motor-driven fastening assembly
US10213262B2 (en) 2006-03-23 2019-02-26 Ethicon Llc Manipulatable surgical systems with selectively articulatable fastening device
US10064688B2 (en) 2006-03-23 2018-09-04 Ethicon Llc Surgical system with selectively articulatable end effector
US10070861B2 (en) 2006-03-23 2018-09-11 Ethicon Llc Articulatable surgical device
US10314589B2 (en) 2006-06-27 2019-06-11 Ethicon Llc Surgical instrument including a shifting assembly
US10172616B2 (en) 2006-09-29 2019-01-08 Ethicon Llc Surgical staple cartridge
US10342541B2 (en) 2006-10-03 2019-07-09 Ethicon Llc Surgical instruments with E-beam driver and rotary drive arrangements
US10206678B2 (en) 2006-10-03 2019-02-19 Ethicon Llc Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
US9987003B2 (en) 2007-06-04 2018-06-05 Ethicon Llc Robotic actuator assembly
US10327765B2 (en) 2007-06-04 2019-06-25 Ethicon Llc Drive systems for surgical instruments
US10299787B2 (en) 2007-06-04 2019-05-28 Ethicon Llc Stapling system comprising rotary inputs
US9872682B2 (en) 2007-06-29 2018-01-23 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US9962158B2 (en) 2008-02-14 2018-05-08 Ethicon Llc Surgical stapling apparatuses with lockable end effector positioning systems
US9980729B2 (en) 2008-02-14 2018-05-29 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US10238385B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument system for evaluating tissue impedance
US10307163B2 (en) 2008-02-14 2019-06-04 Ethicon Llc Detachable motor powered surgical instrument
US9901345B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US9999426B2 (en) 2008-02-14 2018-06-19 Ethicon Llc Detachable motor powered surgical instrument
US9901344B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US9877723B2 (en) 2008-02-14 2018-01-30 Ethicon Llc Surgical stapling assembly comprising a selector arrangement
US9901346B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US10004505B2 (en) 2008-02-14 2018-06-26 Ethicon Llc Detachable motor powered surgical instrument
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US10265067B2 (en) 2008-02-14 2019-04-23 Ethicon Llc Surgical instrument including a regulator and a control system
US9872684B2 (en) 2008-02-14 2018-01-23 Ethicon Llc Surgical stapling apparatus including firing force regulation
US9867618B2 (en) 2008-02-14 2018-01-16 Ethicon Llc Surgical stapling apparatus including firing force regulation
US10238387B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument comprising a control system
US10105136B2 (en) 2008-09-23 2018-10-23 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10238389B2 (en) 2008-09-23 2019-03-26 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10045778B2 (en) 2008-09-23 2018-08-14 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10130361B2 (en) 2008-09-23 2018-11-20 Ethicon Llc Robotically-controller motorized surgical tool with an end effector
US10149683B2 (en) 2008-10-10 2018-12-11 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US10258332B2 (en) 2010-09-30 2019-04-16 Ethicon Llc Stapling system comprising an adjunct and a flowable adhesive
US10028743B2 (en) 2010-09-30 2018-07-24 Ethicon Llc Staple cartridge assembly comprising an implantable layer
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US10335150B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge comprising an implantable layer
US10064624B2 (en) 2010-09-30 2018-09-04 Ethicon Llc End effector with implantable layer
US9924947B2 (en) 2010-09-30 2018-03-27 Ethicon Llc Staple cartridge comprising a compressible portion
US10335148B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge including a tissue thickness compensator for a surgical stapler
US10182819B2 (en) 2010-09-30 2019-01-22 Ethicon Llc Implantable layer assemblies
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US10265074B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Implantable layers for surgical stapling devices
US10194910B2 (en) 2010-09-30 2019-02-05 Ethicon Llc Stapling assemblies comprising a layer
US9833238B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Retainer assembly including a tissue thickness compensator
US9833242B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Tissue thickness compensators
US10265072B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Surgical stapling system comprising an end effector including an implantable layer
US10149682B2 (en) 2010-09-30 2018-12-11 Ethicon Llc Stapling system including an actuation system
US10117652B2 (en) 2011-04-29 2018-11-06 Ethicon Llc End effector comprising a tissue thickness compensator and progressively released attachment members
US10130366B2 (en) 2011-05-27 2018-11-20 Ethicon Llc Automated reloading devices for replacing used end effectors on robotic surgical systems
US10071452B2 (en) 2011-05-27 2018-09-11 Ethicon Llc Automated end effector component reloading system for use with a robotic system
US10004506B2 (en) 2011-05-27 2018-06-26 Ethicon Llc Surgical system
US10231794B2 (en) 2011-05-27 2019-03-19 Ethicon Llc Surgical stapling instruments with rotatable staple deployment arrangements
US10335151B2 (en) 2011-05-27 2019-07-02 Ethicon Llc Robotically-driven surgical instrument
US9918716B2 (en) 2012-03-28 2018-03-20 Ethicon Llc Staple cartridge comprising implantable layers
US9974538B2 (en) 2012-03-28 2018-05-22 Ethicon Llc Staple cartridge comprising a compressible layer
US10064621B2 (en) 2012-06-15 2018-09-04 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US10258333B2 (en) 2012-06-28 2019-04-16 Ethicon Llc Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US10285695B2 (en) 2013-03-01 2019-05-14 Ethicon Llc Articulatable surgical instruments with conductive pathways
US10238391B2 (en) 2013-03-14 2019-03-26 Ethicon Llc Drive train control arrangements for modular surgical instruments
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US10149680B2 (en) 2013-04-16 2018-12-11 Ethicon Llc Surgical instrument comprising a gap setting system
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US10201349B2 (en) 2013-08-23 2019-02-12 Ethicon Llc End effector detection and firing rate modulation systems for surgical instruments
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US10136889B2 (en) 2014-03-26 2018-11-27 Ethicon Llc Systems and methods for controlling a segmented circuit
US10117653B2 (en) 2014-03-26 2018-11-06 Ethicon Llc Systems and methods for controlling a segmented circuit
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US9877721B2 (en) 2014-04-16 2018-01-30 Ethicon Llc Fastener cartridge comprising tissue control features
US10010324B2 (en) 2014-04-16 2018-07-03 Ethicon Llc Fastener cartridge compromising fastener cavities including fastener control features
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US10206677B2 (en) 2014-09-26 2019-02-19 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10052104B2 (en) 2014-10-16 2018-08-21 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9968355B2 (en) 2014-12-18 2018-05-15 Ethicon Llc Surgical instruments with articulatable end effectors and improved firing beam support arrangements
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10182816B2 (en) 2015-02-27 2019-01-22 Ethicon Llc Charging system that enables emergency resolutions for charging a battery
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10045779B2 (en) 2015-02-27 2018-08-14 Ethicon Llc Surgical instrument system comprising an inspection station
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10206605B2 (en) 2015-03-06 2019-02-19 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10052102B2 (en) 2015-06-18 2018-08-21 Ethicon Llc Surgical end effectors with dual cam actuated jaw closing features
US10098642B2 (en) 2015-08-26 2018-10-16 Ethicon Llc Surgical staples comprising features for improved fastening of tissue
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10307160B2 (en) 2015-09-30 2019-06-04 Ethicon Llc Compressible adjunct assemblies with attachment layers
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10363031B2 (en) 2016-06-13 2019-07-30 Ethicon Llc Tissue thickness compensators for surgical staplers
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10363033B2 (en) 2018-06-01 2019-07-30 Ethicon Llc Robotically-controlled surgical instruments

Also Published As

Publication number Publication date
CN104042270A (en) 2014-09-17
EP2777526B1 (en) 2017-07-19
US20190150919A1 (en) 2019-05-23
EP2777525A1 (en) 2014-09-17
CA2844973A1 (en) 2014-09-13
JP2014176675A (en) 2014-09-25
AU2014201121A1 (en) 2014-10-02
US9289211B2 (en) 2016-03-22
EP2777525B1 (en) 2017-05-03
CA2844385A1 (en) 2014-09-13
CN104042273B (en) 2018-07-06
EP2777533A1 (en) 2014-09-17
CN104042274A (en) 2014-09-17
JP2014176673A (en) 2014-09-25
CA2845048A1 (en) 2014-09-13
US20140263569A1 (en) 2014-09-18
JP2014176677A (en) 2014-09-25
US20160157863A1 (en) 2016-06-09
US9888921B2 (en) 2018-02-13
US10182815B2 (en) 2019-01-22
AU2014200919A1 (en) 2014-10-02
EP2777535A1 (en) 2014-09-17
CA2844976A1 (en) 2014-09-13
CN104042275A (en) 2014-09-17
US9566064B2 (en) 2017-02-14
EP2777526A1 (en) 2014-09-17
AU2014200872A1 (en) 2014-10-02
CN104042275B (en) 2018-03-06
US20140263545A1 (en) 2014-09-18
CN104068902A (en) 2014-10-01
US9668728B2 (en) 2017-06-06
US20140263568A1 (en) 2014-09-18
CN104042270B (en) 2018-05-04
CN104042273A (en) 2014-09-17
US9668729B2 (en) 2017-06-06
US20140263566A1 (en) 2014-09-18
JP2014176676A (en) 2014-09-25
JP6381935B2 (en) 2018-08-29
CN104068902B (en) 2018-08-28
AU2014201121B2 (en) 2018-07-19
EP2777530B1 (en) 2016-07-27
JP2014176672A (en) 2014-09-25
EP2777530A1 (en) 2014-09-17
CA2844628A1 (en) 2014-09-13
AU2014200691A1 (en) 2014-10-02
US20140263559A1 (en) 2014-09-18
EP2777535B1 (en) 2017-05-03

Similar Documents

Publication Publication Date Title
EP0178940B1 (en) Surgical stapling instrument
US7934628B2 (en) Surgical stapling device
US7147140B2 (en) Cartridge retainer for a curved cutter stapler
ES2367590T3 (en) surgical instrument including a locking assembly.
CA2679222C (en) Surgical stapling instrument with cutting member arrangement
EP1563791B1 (en) Surgical stapling apparatus with locking mechanism
AU2014200494B2 (en) Staple cartridge with shipping wedge
US4633874A (en) Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
ES2384601T3 (en) The endoscopic surgical clip applier with clip retention
EP2532312B1 (en) Surgical fastener applying apparatus
US8360294B2 (en) Surgical instrument with replaceable loading unit
US4471780A (en) Multiple ligating clip applier instrument
EP1550409B1 (en) Replaceable cartridge module for a surgical stapling and cutting instrument
US8267302B2 (en) Surgical instrument and loading unit for use therewith
ES2396594T3 (en) surgical instrument having a plastic surface
US9848873B2 (en) Fastener cartridge assembly comprising a driver and staple cavity arrangement
JP3835836B2 (en) Surgical stapler car Toritsuji with Rotsukuauto mechanism
JP4959209B2 (en) Loading unit having a drive assembly locking mechanism
ES2312476T3 (en) Apparatus for applying surgical clips.
EP1769755B1 (en) Surgical stapling instrument having preloaded firing assistance mechanism
AU2004242528B2 (en) Slotted pins guiding knife in a curved cutter stapler
EP2741686B1 (en) Surgical fastener applying apparatus
AU661104B2 (en) Apparatus and method for subcuticular stapling of body tissue
US8328061B2 (en) Surgical instrument for joining tissue
AU2009201814B8 (en) Knife lockout mechanisms for surgical instrument

Legal Events

Date Code Title Description
AX Request for extension of the european patent to:

Extension state: BA ME

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17P Request for examination filed

Effective date: 20140312

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

R17P Request for examination filed (corrected)

Effective date: 20141203

17Q First examination report despatched

Effective date: 20150521

RIN1 Information on inventor provided before grant (corrected)

Inventor name: OLSON, LEE ANN

Inventor name: ARANYI, ERNEST

Inventor name: PENNA, CHRISTOPHER

Inventor name: HESSLER, THOMAS R.

Inventor name: CAPPOLA, KENNETH M.

Inventor name: KOSTRZEWSKI, STANISLAW

Inventor name: WILLIAMS, JUSTIN

Inventor name: MARCZYK, STANISLAW

INTG Intention to grant announced

Effective date: 20160502

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 835719

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014004147

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161012

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2603268

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 835719

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170213

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014004147

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170112

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

26N No opposition filed

Effective date: 20170713

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PGFP Annual fee paid to national office [announced from national office to epo]

Ref country code: IE

Payment date: 20180221

Year of fee payment: 5

Ref country code: IT

Payment date: 20180219

Year of fee payment: 5

PGFP Annual fee paid to national office [announced from national office to epo]

Ref country code: ES

Payment date: 20180403

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

PGFP Annual fee paid to national office [announced from national office to epo]

Ref country code: DE

Payment date: 20190219

Year of fee payment: 6

Ref country code: GB

Payment date: 20190222

Year of fee payment: 6

PGFP Annual fee paid to national office [announced from national office to epo]

Ref country code: FR

Payment date: 20190220

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECA