EP2768726B1 - Underwater vehicle having an optical beam operating system functioning as beam weapon - Google Patents

Underwater vehicle having an optical beam operating system functioning as beam weapon Download PDF

Info

Publication number
EP2768726B1
EP2768726B1 EP12813738.7A EP12813738A EP2768726B1 EP 2768726 B1 EP2768726 B1 EP 2768726B1 EP 12813738 A EP12813738 A EP 12813738A EP 2768726 B1 EP2768726 B1 EP 2768726B1
Authority
EP
European Patent Office
Prior art keywords
radiation
underwater vehicle
optical
vehicle
mast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12813738.7A
Other languages
German (de)
French (fr)
Other versions
EP2768726A1 (en
Inventor
Thomas Hagen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MBDA Deutschland GmbH
Original Assignee
MBDA Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MBDA Deutschland GmbH filed Critical MBDA Deutschland GmbH
Publication of EP2768726A1 publication Critical patent/EP2768726A1/en
Application granted granted Critical
Publication of EP2768726B1 publication Critical patent/EP2768726B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/28Arrangement of offensive or defensive equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/38Arrangement of visual or electronic watch equipment, e.g. of periscopes, of radar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • F41H13/005Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a laser beam

Definitions

  • the present invention relates to an underwater vehicle with an optical radiation system.
  • submarines The classic operational profile of submarines has been the location and combat of high-quality enemy over- and underwater targets, ie enemy ships and submarines.
  • the intended for this mission submarine armaments are primarily torpedoes, which are invariably only to combat sea targets.
  • submarines today only have missile systems in which a missile is ejected hydraulically or pneumatically from a corresponding container, then brought to the surface with boosters and started there.
  • the self-defense submarines must be equipped with weapon systems that allow the crew, even without having to emerge, rapid defenses against overwater attacks, in particular also in the zenith area of the submarine.
  • submarines it is also desirable for submarines to have such resources available in such covert operations, such as the fight against piracy, smuggling, terrorism or other asymmetric threats, that allow for appropriate deployment of weapons without the need for torpedo or small targets Missiles must be attacked from the submarine, which usually does not seem appropriate and cost reasons is not justifiable.
  • the EP 1 816 761 A2 shows and describes a laser weapon system aboard a submarine, wherein the laser beam from the submarine is directed to a previously launched by the submarine unmanned aerial vehicle (UAV), which is provided with a deflection mirror and directs this laser beam to a target object.
  • UAV unmanned aerial vehicle
  • the submarine must be at the water surface.
  • the US 4,021,661 A discloses a communication system for submarines in which an extendable from the submarine mast is provided at the upper end with an optical transmitting / receiving device, which can be brought to the water surface and by means of an optical communication upwards in the direction of the submarine flying aircraft can be done with a corresponding transmitting / receiving device of the aircraft.
  • the transmitting / receiving device on the mast of the submarine can also carry out the communication, if it remains just below the water surface.
  • the radiation generator of this communication system is provided inside the submarine, and the transmission of the low radiant energy required for the communication to the radiation emission device provided on the tower takes place via an optical cable.
  • the US 2008/0029015 A1 shows and describes a connected via an optical cable with a submarine buoy that serves to the water surface be located sensors and connect them via a data link connection through the optical cable with the submerged submarine.
  • the US 5,677,506 A shows and describes a submarine with an extendable tower, which is equipped with a remote-controlled firearm and target sensors.
  • This extendable tower is designed to allow the submarine crew to fight targets with firearms from a submerged position.
  • a LIDAR target acquisition and tracking system At the top of the extendable tower is a LIDAR target acquisition and tracking system.
  • Object of the present invention is therefore to provide an underwater vehicle with a weapon system, which is ready to use quickly in defense of the underwater vehicle and which also can be used as an offensive weapon against smaller targets on the water or on land from submerged submersible.
  • the optical radiation active system of this underwater vehicle has a radiation generator for generating high-energy radiation, a radiation emission device for the high-energy radiation and a radiation transmission device for the high-energy radiation connecting the radiation generator with the radiation emission device.
  • the radiation generator is provided on or in the underwater vehicle and the radiation emission device can be brought from the underwater vehicle to the water surface and positioned there.
  • the radiation generator generates high-energy laser radiation, preferably in the infrared range.
  • the radiation energy in submerged submerged vehicle can be emitted by the surface located on the water emission emitter without the underwater vehicle must emerge.
  • a beam weapon is low in signature, so that the weapon is not or only extremely difficult to detect before and after the emission of the radiation.
  • the emission of the radiation from the radiation emission device is noise-free, so that the radiation source is acoustically not locate.
  • an underwater vehicle equipped with such an optical radiation system thus receives completely new self-defense capabilities and new tactical deployment capabilities.
  • the optical radiation control system provided in the underwater vehicle according to the invention can be used without loss of time, ie immediately after detection of a threat.
  • takeoff preparations of a missile or its transfer to the water surface from another submersible require a certain amount of time. This can also be detected automatically by means of sensors. This quick response capability can give valuable time to assess the situation and the timing of the latest possible deployment, even against rapidly moving targets, is shifting further into the future.
  • optical radiation systems such as shooting ability as long as electrical energy is present (so-called "deep magazine”), the loss of ammunition along with the associated supply / disposal logistics, the lack of need to provide ammunition security, pinpoint, scalable and immediate verifiable effect and the minimum cost per shot are also in the underwater vehicle according to the invention to bear.
  • An advantageous embodiment of the underwater vehicle according to the invention is characterized in that the underwater vehicle is equipped with at least one extendable mast and that the radiation emission device is provided in the region of the free end of the extendable mast.
  • the radiation emission device can be brought to the water surface quickly and without great delay by means of the mast. Also, a complete emergence of the underwater vehicle for this is not required.
  • Another advantageous embodiment of the underwater vehicle according to the invention is characterized in that the underwater vehicle is equipped with a separate daughter vehicle, which is connected via a connecting device to the underwater vehicle, that the radiation emission device is provided in the subsidiary vehicle and that at least a portion of the radiation transmission device in the connecting device provided or connected to this.
  • a significant advantage is that the underwater vehicle can remain completely submerged when using the optical radiation control system and only the subsidiary vehicle has to be deposited on the water surface.
  • the mechanical and optoelectronic connection between the underwater vehicle and the subsidiary vehicle floating on the water surface can be substantially longer than is the case with the variant with the radiation emission device provided on an extendable mast.
  • the transmission of the optical Radiation by the radiation transmission device for example by optical fibers, which can be integrated into a drag cable forming the mechanical connection device, can be carried out without problems and without significant energy losses even at high power over distances of a few hundred meters.
  • the subsidiary vehicle is designed as a tow buoy. It does not require its own drive for the subsidiary vehicle, as this is pulled on the mechanical connection device, for example on trailing cable behind the underwater vehicle. It is particularly advantageous if the subsidiary vehicle is provided with a stabilization platform on which the radiation emission device is arranged. By means of this stabilized platform, the radiation emission device is stabilized against the self-movement of the floating subsidiary vehicle, so that a reliable alignment with a target is made possible.
  • This stabilization can be carried out by integrating a position-detecting orientation system into the subsidiary vehicle, it being possible to use the navigation devices which are generally present anyway for the coarse alignment of the radiation direction for the position-recognizing orientation.
  • the radiation transmission device extends at least partially inside the mast.
  • the radiation transmission device is formed by an optical conductor or has at least one optical conductor.
  • optical conductor preferably optical fibers exhibiting, optical conductor can be carried as an optical transmission cable inside the periscope during extension of the periscope to the water surface and with his other End be connected directly to the provided in the underwater radiator.
  • At least the part of the radiation transmission device running inside the mast can be formed by a free optical transmission path.
  • the radiation generator is provided in the interior of the pressure hull of the underwater vehicle. There it is protected not only against the pressure acting on the dive water pressure, but by the generally made of metal pressure body against external electromagnetic interference.
  • the radiation emission device is provided with a, preferably optical or electro-optical, sighting device.
  • a, preferably optical or electro-optical, sighting device In this way, the clearing and sighting of the target can be done directly from the location of the radiation emitter and it does not require a second periscope or Optronikmasts of which the target from a, if only a small other angle would be considered.
  • Fig. 1 shows a schematic longitudinal section through a tower section of an underwater vehicle 1.
  • This underwater vehicle 1 is a manned submarine, but it can also be an unmanned remote-controlled submarine.
  • the underwater vehicle is provided with an outer wall 10, of which in the illustration of Fig. 1
  • the outer wall 10 defines the pressure body 12 of the underwater vehicle 1, which is designed to support the pressure prevailing under water and the pressure forces acting on the wall of the pressure body 12.
  • Two intermediate decks 13, 14 are provided on the pressure body 12.
  • a tower 16 is mounted on the pressure body 12 on the upper side of the pressure body 12.
  • a mast 18 is provided in the tower 16 and extends in a manner known per se into the pressure body 12 of the underwater vehicle 1
  • the mast 18 is telescopically extendable out of the tower 16, as is common in submarine masts and symbolically represented by the arrow 18 ', Furthermore, the mast 18 is pivotable about its vertical longitudinal axis in a conventional manner the double arrow 18 "symbolizes.
  • Fig. 1 illustrated underwater vehicle 1 is provided with an optical radiation control system 2 further explained below.
  • the optical radiation active system 2 comprises a radiation generator 20, which in the example shown is formed by a solid-state laser which emits optical radiation in the infrared wavelength range.
  • This solid-state laser is designed as a high-energy laser and is able to emit a high radiation power, which is sufficient, for example, to produce a focal point of a few hundred meters to a few kilometers away, which has temperatures of a few hundred degrees Celsius, or in the case of a pulsed laser leads to material removal due to non-thermal interaction.
  • the powers that can be coupled into a single fiber today reach the range of 10 kW and more.
  • a further increase in performance is possible by means of several individual fibers / lasers.
  • the temperatures in the focal spot formed by the laser on the target object depend inter alia on the power output and the exposure time. Temperatures of a few hundred degrees Celsius (for example, 500 ° C up to 1000 ° C and even more) can be achieved after a short time, for example after a few seconds.
  • Such a solid-state laser can be designed as a diode-pumped high-power solid-state laser, for example as a fiber laser or disk laser.
  • the optical radiation control system 2 further has a radiation emission device 22, which is provided in the region of the upper free end of the mast 18.
  • a power supply 25 provides the required for the operation of the radiation generator 20 electrical power.
  • Modern underwater vehicles today already have powerful fuel cell systems for power generation, which are provided in addition to the conventional diesel-electric generators and the accumulators powered by these. These power plants provide sufficient electrical energy, for example, to be able to supply a powerful solid-state laser as a radiation generator 20 with an electrical power of a few 10 kW to 100 kW for periods of a few minutes. Also underwater vehicles with nuclear electric drives are able to provide sufficient electrical energy for the required period of operation of the radiation generator 20.
  • Such high-energy generators require a cooling device 26, which is also provided in the underwater vehicle 1 and which is able to provide the cooling power during the operation of the high-energy radiation generator 20.
  • the heat given off to the coolant of the cooling device 26 during the operation of the high-energy radiation generator 20 can be released to the surrounding seawater. This heat release can take place during the operation of the radiation generator 20 or it can be carried out with a time delay.
  • the optical radiation active system 2 has a control unit 27, which is likewise provided in the interior of the underwater vehicle 1.
  • Fig. 2 a section of the submarine submerged at Sehrohrianae 1 with extended mast 18 is shown.
  • the mast 18 is extended so far upwards that arranged at the upper free end of the mast 18 radiation emitter 22 is located above the water surface W.
  • a high-energy optical beam S for example an infrared laser beam, is emitted by a beam-directing system 22 'of the radiation-emitting device 22.
  • the radiation transmission device 24 is formed by an optical conductor 24 'which optically connects the radiation generator 20 with the radiation emission device 22.
  • the infrared laser radiation generated by the radiation generator 20 embodied as a solid-state laser is thus guided through the optical conductor 24 ', which has one or more optical waveguides, to the radiation emission device 22 and emitted there to a potential target as laser radiation S.
  • Fig. 3 a modified variant is shown, in which the radiation transmission device 24 is formed by a free optical transmission path 24 ", which is shown schematically as a dashed line of the beam path in the optical transmission path deflection mirror 23 and optical imaging elements 23 ', 23" are provided For example, are formed by lens systems.
  • the functioning of in Fig. 3 The alternative shown is basically the same as that in FIG Fig. 2 shown embodiment, only with the difference that the transmission of the high-energy laser radiation generated by the radiation generator 20 to the radiation emitter 22 on the way of the free optical transmission path 24 "takes place.
  • FIG Fig. 4 An alternative embodiment of the underwater vehicle 1 according to the invention is shown in FIG Fig. 4 shown.
  • the tower 16 designed as a towing buoy subsidiary vehicle 3, which can be discontinued from the underwater vehicle 1 and by means of a trained as a tow connecting device 30 (FIG. Fig. 5 ) Is mechanically connected to the underwater vehicle 1, so that the underwater vehicle 1 can pull the daughter vehicle 3 behind her.
  • the subsidiary vehicle 3 is provided with a floating body 32, which ensures that the subsidiary vehicle 3 ascends to the water surface W and floats there when the connection device 30 is sufficiently long.
  • the radiation emitting device 22 which is mounted on the subsidiary vehicle 3 so as to be rotatable about a vertical axis so that the optical beam S emitted from it can be aligned with a target.
  • the Strahlrichtsystem 22 ' as in the first embodiment, not only be pivoted about the vertical axis of the radiation emitter 22, but also be pivoted by suitable means about a horizontal axis.
  • the radiation emission device 22 or at least its beam directing system 22 ' is fastened to the subsidiary vehicle 3 by means of a stabilization platform 34, which is shown only schematically in the figures, and ensures that the radiation emission device 22 or at least its beam directing system 22' is stabilized around all three spatial axes even when the subsidiary vehicle 3 is moving , As a result, accurate targeting is possible even with moving water surface.
  • a radiation transmitter 28 formed by an optical conductor which is integrated into or attached to the connector 30 and thus connected thereto.
  • the radiation generator 20 is as in the in the Fig. 1 to 3 shown first embodiment inside the pressure hull 12 of the underwater vehicle 1 is provided.
  • the core of the present invention is thus an optical radiation active system, for example a laser active system based on high-power solid-state lasers, for example diode-pumped fiber lasers to install a submersible for soft and semi-hard targets against self-protection of the submersible against immediate near-range threats or against targets under covert operations control conditions.
  • the underwater vehicle may be a manned or unmanned submarine.
  • the radiation emission device of the radiation system is provided with a beam directing system, which is mounted either on an extendable Optronikmast of the underwater vehicle or on a connected to the underwater vehicle 1 subsidiary vehicle 3.
  • the radiation source formed by the radiation generator 20 and any auxiliary devices are arranged in the protected pressure body of the underwater vehicle 1, wherein the transmission of optical radiation between the radiation generator 20 and the beam directing system 22 'of the radiation emitter 22 either via an optical conductor (optical fibers ) or also directly optically in the form of an inverted periscope.
  • the radiation emitter device 22 it is not necessary that an independent Optronik mast 18 is provided for the attachment of the radiation emission device 22; Rather, it is also possible to arrange the radiation emitter device 22 on a mast carrier of an underwater vehicle serving another purpose, for example on a mast intended for receiving communication systems. Because of the nature of the optical radiation beam system 2, there are no effects on antenna or radar systems of the underwater vehicle 1 to be expected. In addition, the optical radiation active system 2 according to the invention, even in the partially submerged state, is largely resistant to electronic disruptive measures, since the sensitive, complex parts of the optical radiation control system 2, for example the control unit 27, are provided inside the underwater pressure body 12 of the underwater vehicle 1.
  • optical radiation control system 2 is also provided with suitable provisions which reliably prevent self-laser irradiation of both the hull of the underwater vehicle 1 and other exposed components such as masts or antennas.
  • the alignment of the optical beam S to a target is effected by a substantially optical sensor system assigned to the optical radiation active system 2.
  • the control of the beam direction of the optical beam S may also be supported by reconnaissance and fire control devices, some of which are already present on underwater vehicles, such as radar or Optronic masts.
  • the existing reconnaissance and Feuerleit boots are suitably connected to the controller 27 of the optical radiation system 2 for data exchange.
  • the underwater vehicle 1 can be both a manned underwater vehicle (submarine), an unmanned underwater vehicle (UUV), an underwater robot or an underwater drone.
  • manned underwater vehicle the control of that vehicle and the monitoring of its environment may be carried out in a known manner from another vessel, land or air via remote underwater communication means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Lasers (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung betrifft ein Unterwasserfahrzeug mit einem optischen Strahlenwirksystem.The present invention relates to an underwater vehicle with an optical radiation system.

HINTERGRUND DER ERFINDUNGBACKGROUND OF THE INVENTION

Das klassische Einsatzprofil von U-Booten war bisher das Orten und Bekämpfen von hochwertigen gegnerischen Über- und Unterwasserzielen, also feindlichen Schiffen und U-Booten. Die für dieses Einsatzprofil vorgesehenen U-Boot-Bewaffnungen sind in erster Linie Torpedos, die sich ausnahmslos nur zur Bekämpfung von Seezielen eignen. Für die Bekämpfung von Landzielen verfügen U-Boote heute lediglich über Flugkörpersysteme, bei denen ein Flugkörper hydraulisch oder pneumatisch aus einem entsprechenden Behälter ausgestoßen, dann mit Boostern an die Wasseroberfläche verbracht wird und dort gestartet wird.The classic operational profile of submarines has been the location and combat of high-quality enemy over- and underwater targets, ie enemy ships and submarines. The intended for this mission submarine armaments are primarily torpedoes, which are invariably only to combat sea targets. For the control of land targets, submarines today only have missile systems in which a missile is ejected hydraulically or pneumatically from a corresponding container, then brought to the surface with boosters and started there.

Alle diese bekannten U-Boot-Waffensysteme sind nicht dazu geeignet, das U-Boot gegen unmittelbare Bedrohung zu verteidigen. Einer der wesentlichen Selbstschutzmechanismen eines U-Bootes war deshalb in der Vergangenheit dessen Fähigkeit, bei Bedarf rasch tief zu tauchen und verlegen, um sich so dem Zugriff durch einen Gegner entziehen zu können. Diese Selbstschutzstrategie funktioniert aber nicht bei Operationen in flachen Gewässern. In solchen Einsatzszenarien müssen die U-Boote über eine Bewaffnung verfügen, mit der sie in der Lage sind, sich insbesondere gegen Angriffe von oben, beispielsweise durch U-Boot-Jagdhubschrauber oder U-Boot-Jagdflugzeuge zu verteidigen. Dies ist insbesondere dann schwierig, wenn sich ein angreifender Hubschrauber oder ein angreifendes Flugzeug im Zenith oberhalb des U-Boots befindet, denn dieser Bereich lässt sich mit den herkömmlichen Periskopen der U-Boote nicht aufklären, da deren Blickrichtung parallel zur Wasseroberfläche gerichtet ist, so daß diese Bedrohungen in der Regel spät erkannt werden.All these known submarine weapon systems are not suited to defend the submarine against immediate threat. One of the key self-defense mechanisms of a submarine in the past, therefore, was its ability to rapidly dive deep and relocate as needed to escape access by an enemy. However, this self-defense strategy does not work in shallow-water operations. In such deployment scenarios, the submarines must have armaments capable of defending themselves against attacks from above, for example by submarine hunting helicopters or submarine fighters. This is particularly difficult when an attacking helicopter or an attacking aircraft is located in the zenith above the submarine, because this area can not be enlightened with the conventional periscopes of the submarines, because their line of sight is directed parallel to the water surface, so that these threats are usually detected late.

Es gab in der Vergangenheit bereits U-Boote, die an ihrem Oberdeck mit Plattformen zur Anbringung von Maschinengewehren oder Flugabwehrgeschützen ausgebildet waren, derartige Waffen konnten jedoch nur dann eingesetzt werden, wenn das U-Boot aufgetaucht war und es bedurfte nach dem Auftauchen des U-Bootes einer bestimmten Vorbereitungszeit, um die entsprechende Waffe in Stellung zu bringen. Auch sind solche Waffen zur Verteidigung gegen Ziele in der Nähe des Zeniths wegen des prinzipiell nach oben eingeschränkten Schußbereichs nicht geeignet.There have been U-Boats in the past that are equipped with platforms for attaching machine guns or anti-aircraft guns on their upper deck, but such weapons could only be used when the submarine had appeared and it was necessary after the appearance of the U-boat. Boat of a certain preparation time to bring the appropriate weapon in position. Also, such weapons are not suitable for defense against targets near the zenith because of the basically upwardly restricted firing range.

Insbesondere dann, wenn U-Boote in flachen Gewässern agieren, beispielsweise bei verdeckten Aufklärungsoperationen in küstennahen Gebieten, müssen die U-Boote zur Selbstverteidigung mit Waffensystemen ausgestattet sein, die es der Besatzung erlauben, auch ohne Auftauchen zu müssen, schnelle Verteidigungsmaßnahmen gegen Überwasserangriffen, insbesondere auch im Zenithbereich des U-Bootes, durchführen zu können.In particular, when submarines operate in shallow waters, such as covert reconnaissance operations in coastal areas, the self-defense submarines must be equipped with weapon systems that allow the crew, even without having to emerge, rapid defenses against overwater attacks, in particular also in the zenith area of the submarine.

Des Weiteren ist es auch wünschenswert, wenn U-Boote bei derartigen verdeckten Operationen, beispielsweise bei der Bekämpfung von Piraterie, Schmuggel, Terrorismus oder anderen asymmetrischen Bedrohungen über Einsatzmittel verfügen, die einen der Situation angemessenen Waffeneinsatz ermöglichen, ohne dass diese kleinen Ziele mit Torpedos oder Flugkörpern vom U-Boot aus angegriffen werden müssen, was in der Regel nicht angemessen erscheint und auch aus Kostengründen nicht vertretbar ist.Furthermore, it is also desirable for submarines to have such resources available in such covert operations, such as the fight against piracy, smuggling, terrorism or other asymmetric threats, that allow for appropriate deployment of weapons without the need for torpedo or small targets Missiles must be attacked from the submarine, which usually does not seem appropriate and cost reasons is not justifiable.

STAND DER TECHNIKSTATE OF THE ART

Aus der US 7,249,567 B1 ist ein Unterwasserfahrzeug bekannt, bei welchem im Turm des Unterwasserfahrzeugs ein teleskopierbares Schleusensystem vorgesehen ist, durch welches kleinere Flugkörper oder Aufklärungsdrohnen aus dem Druckkörper eines auf Sehrohrtiefe getauchten U-Bootes gegen Bedrohungen im Nahfeld zum Einsatz gebracht werden können. Dieses bekannte Waffensystem lässt sich sinnvoll aber nur präventiv vor einem gegnerischen Angriff einsetzen. Für eine Verteidigungsmaßnahme bei bereits angreifenden gegnerischen Objekten ist dieses bekannte Waffensystem aufgrund der Vorbereitungszeiten und der langsamen Reaktionszeit nicht geeignet.From the US Pat. No. 7,249,567 B1 An underwater vehicle is known in which in the tower of the underwater vehicle, a telescopic lock system is provided, through which smaller missile or reconnaissance drones the pressure hull of a submarine submerged submarine can be used against threats in the near field. This well-known weapons system can be used sensibly but only preventively against an enemy attack. For defensive action on enemy objects already attacking this known weapons system is not suitable because of the preparation times and the slow reaction time.

Es sind heute bereits Strahlenwaffensysteme bekannt, die mit der Energie von Laserstrahlen gegnerische Ziele bekämpfen können. Diese optische Strahlenwirksysteme sind jedoch bislang nur für den Einsatz an Land oder in Überwasser- und Luftfahrzeugen erprobt worden.Radiation weapon systems are already known today that can combat enemy targets with the energy of laser beams. However, these optical radiation control systems have so far been tested only for use on land or in surface vehicles and aircraft.

Die EP 1 816 761 A2 zeigt und beschreibt ein Laserwaffensystem an Bord eines U-Bootes, wobei der Laserstrahl vom U-Boot auf ein vorher vom U-Boot gestartetes unbemanntes Luftfahrzeug (UAV) gerichtet wird, das mit einem Umlenkspiegel versehen ist und das diesen Laserstrahl auf ein Zielobjekt lenkt. Dazu muss sich das U-Boot an der Wasseroberfläche befinden.The EP 1 816 761 A2 shows and describes a laser weapon system aboard a submarine, wherein the laser beam from the submarine is directed to a previously launched by the submarine unmanned aerial vehicle (UAV), which is provided with a deflection mirror and directs this laser beam to a target object. For this, the submarine must be at the water surface.

Die US 4,021,661 A offenbart ein Kommunikationssystem für U-Boote, bei welchem ein aus dem U-Boot ausfahrbarer Mast am oberen Ende mit einer optischen Sende-/Empfangseinrichtung versehen ist, die an die Wasseroberfläche verbringbar ist und mittels der eine optische Kommunikation nach oben in Richtung auf ein über dem U-Boot fliegendes Flugzeug mit einer entsprechenden Sende-/Empfangseinrichtung des Flugzeuges erfolgen kann. Die Sende-/Empfangseinrichtung am Mast des U-Boots kann die Kommunikation auch dann durchführen, wenn sie knapp unterhalb der Wasseroberfläche verbleibt. Der Strahlungserzeuger dieses zur Kommunikation dienenden Systems ist im Inneren des U-Boots vorgesehen und die Übertragung der für die Kommunikation benötigten geringen Strahlungsenergie zu der am Mast vorgesehenen Strahlungsemmisionseinrichtung erfolgt über ein optisches Kabel.The US 4,021,661 A discloses a communication system for submarines in which an extendable from the submarine mast is provided at the upper end with an optical transmitting / receiving device, which can be brought to the water surface and by means of an optical communication upwards in the direction of the submarine flying aircraft can be done with a corresponding transmitting / receiving device of the aircraft. The transmitting / receiving device on the mast of the submarine can also carry out the communication, if it remains just below the water surface. The radiation generator of this communication system is provided inside the submarine, and the transmission of the low radiant energy required for the communication to the radiation emission device provided on the tower takes place via an optical cable.

Die US 2008/0029015 A1 zeigt und beschreibt eine über ein optisches Kabel mit einem U-Boot verbundene Boje, die dazu dient, an der Wasseroberfläche befindliche Sensoren aufzunehmen und diese über eine Datenlink-Verbindung durch das optische Kabel mit dem getauchten U-Boot zu verbinden.The US 2008/0029015 A1 shows and describes a connected via an optical cable with a submarine buoy that serves to the water surface be located sensors and connect them via a data link connection through the optical cable with the submerged submarine.

Die US 5,677,506 A zeigt und beschreibt ein U-Boot mit einem ausfahrbaren Turm, der mit einer fernbedienbaren Feuerwaffe und Zielsensoren versehen ist. Dieser ausfahrbare Turm soll es der U-Boot-Mannschaft ermöglichen, aus einer getauchten Position heraus Ziele mit Feuerwaffen zu bekämpfen. Am oberen Ende des ausfahrbaren Turms ist ein LIDAR-Zielerfassungs- und -Zielverfolgungssystem vorgesehen.The US 5,677,506 A shows and describes a submarine with an extendable tower, which is equipped with a remote-controlled firearm and target sensors. This extendable tower is designed to allow the submarine crew to fight targets with firearms from a submerged position. At the top of the extendable tower is a LIDAR target acquisition and tracking system.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Aufgabe der vorliegenden Erfindung ist es daher, ein Unterwasserfahrzeug mit einem Waffensystem anzugeben, welches zur Verteidigung des Unterwasserfahrzeugs schnell einsatzbereit ist und welches außerdem als Angriffswaffe gegen kleinere Ziele auf dem Wasser oder an Land vom getauchten Unterwasserfahrzeug aus einsetzbar ist.Object of the present invention is therefore to provide an underwater vehicle with a weapon system, which is ready to use quickly in defense of the underwater vehicle and which also can be used as an offensive weapon against smaller targets on the water or on land from submerged submersible.

Diese Aufgabe wird gelöst durch ein Unterwasserfahrzeug mit den Merkmalen des Patentanspruchs 1 und durch ein Unterwasserfahrzeug mit den Merkmalen des Patentanspruchs 7.This object is achieved by an underwater vehicle having the features of patent claim 1 and by an underwater vehicle having the features of patent claim 7.

Das optische Strahlenwirksystem dieses erfindungsgemäßen Unterwasserfahrzeugs weist einen Strahlungserzeuger zur Erzeugung hochenergetischer Strahlung, eine Strahlungsemissionseinrichtung für die hochenergetische Strahlung und eine den Strahlungserzeuger mit der Strahlungsemissionseinrichtung verbindende Strahlungsübertragungseinrichtung für die hochenergetische Strahlung auf. Dabei ist der Strahlungserzeuger am oder im Unterwasserfahrzeug vorgesehen und die Strahlungsemissionseinrichtung ist vom Unterwasserfahrzeug an die Wasseroberfläche verbringbar und dort positionierbar. Vorzugsweise erzeugt der Strahlungserzeuger hochenergetische Laserstrahlung, bevorzugt im Infrarotbereich.The optical radiation active system of this underwater vehicle according to the invention has a radiation generator for generating high-energy radiation, a radiation emission device for the high-energy radiation and a radiation transmission device for the high-energy radiation connecting the radiation generator with the radiation emission device. In this case, the radiation generator is provided on or in the underwater vehicle and the radiation emission device can be brought from the underwater vehicle to the water surface and positioned there. Preferably, the radiation generator generates high-energy laser radiation, preferably in the infrared range.

VORTEILEADVANTAGES

Auf diese Weise kann die Strahlungsenergie bei getauchtem Unterwasserfahrzeug von der an der Wasseroberfläche befindlichen Strahlungsemissionseinrichtung ausgesandt werden, ohne dass das Unterwasserfahrzeug auftauchen muss. Zudem ist eine derartige Strahlenwaffe signaturarm, so dass die Waffe vor und nach dem Aussenden der Strahlung nicht oder nur äußerst schwierig detektierbar ist. Die Aussendung der Strahlung von der Strahlungsemissionseinrichtung erfolgt geräuschfrei, so dass die Strahlungsquelle akustisch nicht zu orten ist. Ein mit einem solchen optischen Strahlenwirksystem ausgestattetes Unterwasserfahrzeug erhält somit einerseits völlig neuartige Fähigkeiten der Selbstverteidigung und neue Fähigkeiten des taktischen Einsatzes. Das im erfindungsgemäßen Unterwasserfahrzeug vorgesehene optische Strahlenwirksystem kann ohne Zeitverlust, also unmittelbar nach Erkennen einer Bedrohung eingesetzt werden. Im Gegensatz dazu benötigen beispielsweise Startvorbereitungen eines Flugkörpers oder dessen Verbringung an die Wasseroberfläche von einem anderen Unterwasserfahrzeug aus eine gewisse Zeit. Auch kann dies mittels Sensorik automatisch erfasst werden. Durch diese schnelle Reaktionsfähigkeit kann wertvolle Zeit für die Lagebeurteilung gewonnen werden und der Zeitpunkt des spätest möglichen Einsatzes auch gegen rasch bewegliche Ziele verlagert sich weiter in die Zukunft.In this way, the radiation energy in submerged submerged vehicle can be emitted by the surface located on the water emission emitter without the underwater vehicle must emerge. In addition, such a beam weapon is low in signature, so that the weapon is not or only extremely difficult to detect before and after the emission of the radiation. The emission of the radiation from the radiation emission device is noise-free, so that the radiation source is acoustically not locate. On the one hand, an underwater vehicle equipped with such an optical radiation system thus receives completely new self-defense capabilities and new tactical deployment capabilities. The optical radiation control system provided in the underwater vehicle according to the invention can be used without loss of time, ie immediately after detection of a threat. In contrast, for example, takeoff preparations of a missile or its transfer to the water surface from another submersible require a certain amount of time. This can also be detected automatically by means of sensors. This quick response capability can give valuable time to assess the situation and the timing of the latest possible deployment, even against rapidly moving targets, is shifting further into the future.

Da die Erzeugung hochenergetischer Strahlung und die Emission dieser Strahlung ohne wesentliche Bewegung mechanischer Teile erfolgt und da die hochenergetische Strahlung, insbesondere dann, wenn es sich um eine hochenergetische Infrarot-Strahlung handelt, eine geringe Strahlungsdivergenz aufweist und der ausgesandte Strahl visuell unsichtbar ist, ist die Gesamtsignatur des optischen Strahlenwirksystems äußerst gering. Dies ist insbesondere bei verdeckten Einsätzen sehr vorteilhaft, weil dadurch der verdeckte Einsatz fortgeführt werden kann, da das Unterwasserfahrzeug aufgrund der im Wesentlichen fehlenden Signatur des mit Infrarot-Strahlung arbeitenden optischen Strahlenwirksystems nicht erkannt wird.Since the generation of high-energy radiation and the emission of this radiation takes place without substantial movement of mechanical parts and because the high-energy radiation, especially when it is a high-energy infrared radiation, has a low radiation divergence and the emitted beam is visually invisible, which is Overall signature of the optical radiation system extremely low. This is particularly advantageous in covert operations, because the covert operation can thereby be continued since the underwater vehicle is not recognized due to the essentially missing signature of the optical radiation active system operating with infrared radiation.

Die üblichen Vorteile von optischen Strahlungswirksystemen, wie eine Schussfähigkeit solange elektrische Energie vorhanden ist (sogenanntes "deep magazine"), das Entfallen von Munition zusammen mit der zugehörigen Versorgungs-/Entsorgungslogistik, das fehlende Erfordernis, für Munitionssicherheit zu sorgen, die punktgenaue, skalierbare und unmittelbare verifizierbare Wirkung und die minimalen Kosten pro Schuss kommen auch bei dem erfindungsgemäßen Unterwasserfahrzeug zum Tragen.The usual advantages of optical radiation systems, such as shooting ability as long as electrical energy is present (so-called "deep magazine"), the loss of ammunition along with the associated supply / disposal logistics, the lack of need to provide ammunition security, pinpoint, scalable and immediate verifiable effect and the minimum cost per shot are also in the underwater vehicle according to the invention to bear.

Eine vorteilhafte Gestaltung des erfindungsgemäßen Unterwasserfahrzeugs zeichnet sich dadurch aus, dass das Unterwasserfahrzeug mit zumindest einem ausfahrbaren Mast ausgestattet ist und dass die Strahlungsemissionseinrichtung im Bereich des freien Endes des ausfahrbaren Masts vorgesehen ist. Bei dieser Ausführungsform der Erfindung kann die Strahlungsemissionseinrichtung schnell und ohne große Zeitverzögerung mittels des Masts an die Wasseroberfläche verbracht werden. Auch ist ein vollständiges Auftauchen des Unterwasserfahrzeugs dafür nicht erforderlich.An advantageous embodiment of the underwater vehicle according to the invention is characterized in that the underwater vehicle is equipped with at least one extendable mast and that the radiation emission device is provided in the region of the free end of the extendable mast. In this embodiment of the invention, the radiation emission device can be brought to the water surface quickly and without great delay by means of the mast. Also, a complete emergence of the underwater vehicle for this is not required.

Eine andere vorteilhafte Gestaltung des erfindungsgemäßen Unterwasserfahrzeugs zeichnet sich dadurch aus, dass das Unterwasserfahrzeug mit einem davon separierbaren Tochterfahrzeug ausgestattet ist, das über eine Verbindungsvorrichtung mit dem Unterwasserfahrzeug verbunden ist, dass die Strahlungsemissionseinrichtung im Tochterfahrzeug vorgesehen ist und dass zumindest ein Abschnitt der Strahlungsübertragungseinrichtung in der Verbindungsvorrichtung vorgesehen oder mit dieser verbunden ist. Bei dieser vorteilhaften Ausführungsform besteht ein wesentlicher Vorteil darin, dass das Unterwasserfahrzeug beim Einsatz des optischen Strahlenwirksystems vollständig getaucht bleiben kann und nur das Tochterfahrzeug an die Wasseroberfläche abgesetzt werden muss. Die mechanische und optoelektronische Verbindung zwischen dem Unterwasserfahrzeug und dem an der Wasseroberfläche schwimmenden Tochterfahrzeug kann dabei wesentlich länger sein als dies bei der Variante mit der an einem ausfahrbaren Mast vorgesehenen Strahlungsemissionseinrichtung der Fall ist. Die Übertragung der optischen Strahlung durch die Strahlungsübertragungseinrichtung, beispielsweise durch Lichtleitfasern, die in ein die mechanische Verbindungseinrichtung bildendes Schleppkabel integriert sein können, kann auch bei hoher Leistung über Strecken von einigen hundert Metern ohne Probleme und ohne wesentliche Energieverluste erfolgen.Another advantageous embodiment of the underwater vehicle according to the invention is characterized in that the underwater vehicle is equipped with a separate daughter vehicle, which is connected via a connecting device to the underwater vehicle, that the radiation emission device is provided in the subsidiary vehicle and that at least a portion of the radiation transmission device in the connecting device provided or connected to this. In this advantageous embodiment, a significant advantage is that the underwater vehicle can remain completely submerged when using the optical radiation control system and only the subsidiary vehicle has to be deposited on the water surface. The mechanical and optoelectronic connection between the underwater vehicle and the subsidiary vehicle floating on the water surface can be substantially longer than is the case with the variant with the radiation emission device provided on an extendable mast. The transmission of the optical Radiation by the radiation transmission device, for example by optical fibers, which can be integrated into a drag cable forming the mechanical connection device, can be carried out without problems and without significant energy losses even at high power over distances of a few hundred meters.

Bei dieser Variante ist es erfindungswesentlich, dass das Tochterfahrzeug als Schleppboje ausgebildet ist. Es bedarf dabei keines eigenen Antriebs für das Tochterfahrzeug, da dieses an der mechanischen Verbindungseinrichtung, beispielsweise am Schleppkabel hinter dem Unterwasserfahrzeug hergezogen wird. Besonders vorteilhaft ist es, wenn das Tochterfahrzeug mit einer Stabilisierungsplattform versehen ist, auf der die Strahlungsemissionseinrichtung angeordnet ist. Mittels dieser stabilisierten Plattform wird die Strahlungsemissionseinrichtung gegen die Eigenbewegung des schwimmenden Tochterfahrzeugs stabilisiert, so dass eine zuverlässige Ausrichtbarkeit auf ein Ziel ermöglicht wird. Diese Stabilisierung kann durch die Integration eines lageerkennenden Orientierungssystems in das Tochterfahrzeug erfolgen, wobei zur lageerkennenden Orientierung die für die Grobausrichtung der Strahlungsrichtung in der Regel ohnehin vorhandenen Navigationseinrichtungen genutzt werden können. Bei der Ausführung mit einer an einem ausfahrbaren Mast vorgesehenen Strahlungsemissionseinrichtung ist es besonders von Vorteil, wenn die Strahlungsübertragungseinrichtung zumindest abschnittsweise im Inneren des Masts verläuft.In this variant, it is essential to the invention that the subsidiary vehicle is designed as a tow buoy. It does not require its own drive for the subsidiary vehicle, as this is pulled on the mechanical connection device, for example on trailing cable behind the underwater vehicle. It is particularly advantageous if the subsidiary vehicle is provided with a stabilization platform on which the radiation emission device is arranged. By means of this stabilized platform, the radiation emission device is stabilized against the self-movement of the floating subsidiary vehicle, so that a reliable alignment with a target is made possible. This stabilization can be carried out by integrating a position-detecting orientation system into the subsidiary vehicle, it being possible to use the navigation devices which are generally present anyway for the coarse alignment of the radiation direction for the position-recognizing orientation. In the embodiment with a provided on an extendable mast radiation emitter, it is particularly advantageous if the radiation transmission device extends at least partially inside the mast.

Besonders vorteilhaft ist es dabei, wenn die Strahlungsübertragungseinrichtung von einem optischen Leiter gebildet ist oder zumindest einen optischen Leiter aufweist. Ein derartiger, vorzugsweise Lichtleitfasern aufweisender, optischer Leiter kann als optisches Übertragungskabel im Inneren des Sehrohres beim Ausfahren des Sehrohres an die Wasseroberfläche mitgeführt werden und mit seinem anderen Ende unmittelbar an den im Unterwasserfahrzeug vorgesehenen Strahlungserzeuger angeschlossen sein.It is particularly advantageous if the radiation transmission device is formed by an optical conductor or has at least one optical conductor. Such, preferably optical fibers exhibiting, optical conductor can be carried as an optical transmission cable inside the periscope during extension of the periscope to the water surface and with his other End be connected directly to the provided in the underwater radiator.

Alternativ kann zumindest der im Inneren des Masts verlaufende Teil der Strahlungsübertragungseinrichtung von einer freien optischen Übertragungsstrecke gebildet sein.Alternatively, at least the part of the radiation transmission device running inside the mast can be formed by a free optical transmission path.

Insbesondere von Vorteil ist es, wenn der Strahlungserzeuger im Inneren des Druckkörpers des Unterwasserfahrzeugs vorgesehen ist. Dort ist er nicht nur gegen den beim Tauchen einwirkenden Wasserdruck geschützt, sondern durch den im Allgemeinen aus Metall bestehenden Druckkörper auch gegen von außen einwirkende elektromagnetische Störstrahlung.In particular, it is advantageous if the radiation generator is provided in the interior of the pressure hull of the underwater vehicle. There it is protected not only against the pressure acting on the dive water pressure, but by the generally made of metal pressure body against external electromagnetic interference.

Besonders vorteilhaft ist es ebenfalls, wenn die Strahlungsemissionseinrichtung mit einer, vorzugsweise optischen oder elektrooptischen, Visiereinrichtung versehen ist. Auf diese Weise kann das Aufklären und Anvisieren des Ziels unmittelbar vom Ort der Strahlungsemissionseinrichtung erfolgen und es bedarf keines zweiten Sehrohres oder Optronikmasts, von dem das Ziel aus einem, wenn auch nur geringen anderen Winkel betrachtet würde.It is also particularly advantageous if the radiation emission device is provided with a, preferably optical or electro-optical, sighting device. In this way, the clearing and sighting of the target can be done directly from the location of the radiation emitter and it does not require a second periscope or Optronikmasts of which the target from a, if only a small other angle would be considered.

Bevorzugte Ausführungsbeispiele der Erfindung mit zusätzlichen Ausgestaltungsdetails und weiteren Vorteilen sind nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben und erläutert.Preferred embodiments of the invention with additional design details and other advantages are described and explained in more detail below with reference to the accompanying drawings.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Es zeigt:

Fig. 1
eine schematische Längsschnittzeichnung durch den Turmabschnitt eines Unterwasserfahrzeugs, das erfindungsgemäß mit einem optischen Strahlenwirksystem ausgestattet ist;
Fig. 2
das Unterwasserfahrzeug aus Fig. 1 mit ausgefahrenem Mast in einer ersten Ausführungsform;
Fig. 3
das Unterwasserfahrzeug aus Fig. 1 mit ausgefahrenem Mast in einer zweiten Ausführungsform;
Fig. 4
eine weitere Variante des erfindungsgemäßen Unterwasserfahrzeugs mit einem Tochterfahrzeug; und
Fig. 5
das Unterwasserfahrzeug aus Fig. 4 mit ausgesetztem Tochterfahrzeug.
It shows:
Fig. 1
a schematic longitudinal section through the tower section of an underwater vehicle, which is equipped according to the invention with an optical radiation system;
Fig. 2
the underwater vehicle Fig. 1 with extended mast in a first embodiment;
Fig. 3
the underwater vehicle Fig. 1 with extended mast in a second embodiment;
Fig. 4
a further variant of the underwater vehicle according to the invention with a subsidiary vehicle; and
Fig. 5
the underwater vehicle Fig. 4 with suspended subsidiary vehicle.

DARSTELLUNG VON BEVORZUGTEN AUSFÜHRUNGSBEISPIELENPRESENTATION OF PREFERRED EMBODIMENTS

Fig. 1 zeigt einen schematischen Längsschnitt durch einen Turmabschnitt eines Unterwasserfahrzeugs 1. Dieses Unterwasserfahrzeug 1 ist ein bemanntes U-Boot, es kann sich aber auch um ein unbemanntes ferngesteuertes U-Boot handeln. Fig. 1 shows a schematic longitudinal section through a tower section of an underwater vehicle 1. This underwater vehicle 1 is a manned submarine, but it can also be an unmanned remote-controlled submarine.

Das Unterwasserfahrzeug ist mit einer äußeren Wandung 10 versehen, von der in der Darstellung der Fig. 1 die obere Wand 10' und die untere Wand 10" gezeigt sind. Die äußere Wandung 10 begrenzt den Druckkörper 12 des Unterwasserfahrzeugs 1, der ausgelegt ist, um den unter Wasser herrschenden Druck und die auf die Wandung des Druckkörpers 12 einwirkenden Druckkräfte abzustützen. Im Inneren des Druckkörpers 12 sind zwei Zwischendecks 13, 14 vorgesehen. An der Oberseite des Druckkörpers 12 ist ein Turm 16 am Druckkörper 12 angebracht. Ein Mast 18 ist im Turm 16 vorgesehen und erstreckt sich in an sich bekannter Weise in den Druckkörper 12 des Unterwasserfahrzeugs 1 hinein. Der Mast 18 ist teleskopisch aus dem Turm 16 nach oben ausfahrbar, wie dies bei U-Boot-Masten üblich ist und durch den Pfeil 18' symbolhaft dargestellt ist. Des Weiteren ist der Mast 18 in herkömmlicher Weise um seine vertikale Längsachse schwenkbar, wie der Doppelpfeil 18" symbolisiert.The underwater vehicle is provided with an outer wall 10, of which in the illustration of Fig. 1 The outer wall 10 defines the pressure body 12 of the underwater vehicle 1, which is designed to support the pressure prevailing under water and the pressure forces acting on the wall of the pressure body 12. In the interior Two intermediate decks 13, 14 are provided on the pressure body 12. A tower 16 is mounted on the pressure body 12 on the upper side of the pressure body 12. A mast 18 is provided in the tower 16 and extends in a manner known per se into the pressure body 12 of the underwater vehicle 1 The mast 18 is telescopically extendable out of the tower 16, as is common in submarine masts and symbolically represented by the arrow 18 ', Furthermore, the mast 18 is pivotable about its vertical longitudinal axis in a conventional manner the double arrow 18 "symbolizes.

Das in Fig. 1 dargestellte Unterwasserfahrzeug 1 ist mit einem nachstehend noch weiter erläuterten optischen Strahlenwirksystem 2 versehen.This in Fig. 1 illustrated underwater vehicle 1 is provided with an optical radiation control system 2 further explained below.

Das optische Strahlenwirksystem 2 umfasst einen Strahlungserzeuger 20, der im gezeigten Beispiel von einem Festkörperlaser gebildet ist, welcher optische Strahlung im Infrarot-Wellenlängenbereich aussendet. Dieser Festkörperlaser ist als Hochenergielaser ausgestaltet und in der Lage, eine hohe Strahlungsleistung abzugeben, die beispielsweise ausreichend ist, um auf einige hundert Meter bis einige Kilometer Entfernung einen Brennfleck zu erzeugen, der Temperaturen von einigen hundert Grad Celsius aufweist, oder im Falle eines gepulsten Lasers zur Materialabtragung aufgrund nichtthermischer Wechselwirkung führt.The optical radiation active system 2 comprises a radiation generator 20, which in the example shown is formed by a solid-state laser which emits optical radiation in the infrared wavelength range. This solid-state laser is designed as a high-energy laser and is able to emit a high radiation power, which is sufficient, for example, to produce a focal point of a few hundred meters to a few kilometers away, which has temperatures of a few hundred degrees Celsius, or in the case of a pulsed laser leads to material removal due to non-thermal interaction.

Die heute in eine Einzelfaser einkoppelbaren Leistungen erreichen den Bereich von 10 kW und mehr. Eine weitere Leistungssteigerung ist durch mehrere Einzelfasern/- laser möglich.The powers that can be coupled into a single fiber today reach the range of 10 kW and more. A further increase in performance is possible by means of several individual fibers / lasers.

Die Temperaturen in dem vom Laser auf dem Zielobjekt ausgebildeten Brennfleck hängen unter anderem von der abgegebenen Leistung und der Einwirkdauer ab. Temperaturen von einigen hundert Grad Celsius (zum Beispiel 500 °C bis zu 1000 °C und sogar noch mehr) können schon nach kurzer Zeit, zum Beispiel nach einigen Sekunden, erreicht werden.The temperatures in the focal spot formed by the laser on the target object depend inter alia on the power output and the exposure time. Temperatures of a few hundred degrees Celsius (for example, 500 ° C up to 1000 ° C and even more) can be achieved after a short time, for example after a few seconds.

Ein derartiger Festkörperlaser kann als diodengepumpter Hochleistungs-Festkörperlaser, beispielsweise als Faserlaser oder Scheibenlaser, ausgebildet sein.Such a solid-state laser can be designed as a diode-pumped high-power solid-state laser, for example as a fiber laser or disk laser.

Das optische Strahlenwirksystem 2 verfügt weiterhin über eine Strahlungsemissionseinrichtung 22, die im Bereich des oberen freien Endes des Masts 18 vorgesehen ist. Eine Strahlungsübertragungseinrichtung 24, die in Verbindung mit den Figuren 2 bis 5 näher beschrieben werden wird, verbindet den Strahlungserzeuger 20 mit der Strahlungsemissionseinrichtung 22, so dass die im Strahlungserzeuger 20 erzeugte optische Strahlung mittels der Strahlungsübertragungseinrichtung 24 zur Strahlungsemissionseinrichtung 22 übertragen und von dort nach außen abgegeben werden kann.The optical radiation control system 2 further has a radiation emission device 22, which is provided in the region of the upper free end of the mast 18. A radiation transmission device 24, which in conjunction with the FIGS. 2 to 5 will be described in more detail, connects the radiation generator 20 with the radiation emitter 22, so that the in Radiation generator 20 generated optical radiation can be transmitted by means of the radiation transmission device 24 to the radiation emitter 22 and discharged from there to the outside.

Eine Stromversorgung 25 liefert die für den Betrieb des Strahlungserzeugers 20 erforderliche elektrische Leistung. Moderne Unterwasserfahrzeuge verfügen heute schon über leistungsfähige Brennstoffzellenanlagen zur Stromerzeugung, die zusätzlich zu den herkömmlichen diesel-elektrischen Generatoren und den von diesen gespeisten Akkumulatoren vorgesehen sind. Diese Stromerzeugungsanlagen liefern ausreichend elektrische Energie, um beispielsweise einen leistungsfähigen Festkörperlaser als Strahlungserzeuger 20 mit einer elektrischen Leistung von einigen 10 kW bis 100 kW für Zeiträume von einigen Minuten versorgen zu können. Auch Unterwasserfahrzeuge mit nuklearelektrischen Antrieben sind in der Lage, ausreichend elektrische Energie für den erforderlichen Betriebszeitraum des Strahlungserzeugers 20 bereitzustellen.A power supply 25 provides the required for the operation of the radiation generator 20 electrical power. Modern underwater vehicles today already have powerful fuel cell systems for power generation, which are provided in addition to the conventional diesel-electric generators and the accumulators powered by these. These power plants provide sufficient electrical energy, for example, to be able to supply a powerful solid-state laser as a radiation generator 20 with an electrical power of a few 10 kW to 100 kW for periods of a few minutes. Also underwater vehicles with nuclear electric drives are able to provide sufficient electrical energy for the required period of operation of the radiation generator 20.

Derartige Hochenergie-Strahlungserzeuger benötigen eine Kühleinrichtung 26, die ebenfalls im Unterwasserfahrzeug 1 vorgesehen ist und die in der Lage ist, die Kühlleistung während des Betriebs des Hochenergie-Strahlungserzeugers 20 zu liefern. Die während des Betriebs des Hochenergie-Strahlungserzeugers 20 an das Kühlmittel der Kühleinrichtung 26 abgegebene Wärme kann an das umgebende Seewasser abgegeben werden. Diese Wärmeabgabe kann während des Betriebs des Strahlungserzeugers 20 erfolgen oder sie kann zeitversetzt dazu durchführt werden.Such high-energy generators require a cooling device 26, which is also provided in the underwater vehicle 1 and which is able to provide the cooling power during the operation of the high-energy radiation generator 20. The heat given off to the coolant of the cooling device 26 during the operation of the high-energy radiation generator 20 can be released to the surrounding seawater. This heat release can take place during the operation of the radiation generator 20 or it can be carried out with a time delay.

Des Weiteren weist das optische Strahlenwirksystem 2 eine Steuerungseinheit 27 auf, die ebenfalls im Inneren des Unterwasserfahrzeugs 1 vorgesehen ist.Furthermore, the optical radiation active system 2 has a control unit 27, which is likewise provided in the interior of the underwater vehicle 1.

In Fig. 2 ist ein Ausschnitt des auf Sehrohrtiefe getauchten Unterwasserfahrzeugs 1 mit ausgefahrenem Mast 18 gezeigt. Der Mast 18 ist so weit nach oben ausgefahren, dass sich die am oberen freien Ende des Masts 18 angeordnete Strahlungsemissionseinrichtung 22 oberhalb der Wasseroberfläche W befindet. In Fig. 2 ist auch zu erkennen, wie ein hochenergetischer optischer Strahl S, beispielsweise ein Infrarot-Laserstrahl, von einem Strahlrichtsystem 22' der Strahlungsemissionseinrichtung 22 abgegeben wird.In Fig. 2 a section of the submarine submerged at Sehrohrtiefe 1 with extended mast 18 is shown. The mast 18 is extended so far upwards that arranged at the upper free end of the mast 18 radiation emitter 22 is located above the water surface W. In Fig. 2 It can also be seen how a high-energy optical beam S, for example an infrared laser beam, is emitted by a beam-directing system 22 'of the radiation-emitting device 22.

Im Beispiel der Fig. 2 ist die Strahlungsübertragungseinrichtung 24 von einem optischen Leiter 24' gebildet, der den Strahlungserzeuger 20 mit der Strahlungsemissionseinrichtung 22 optisch verbindet. Die von dem als Festkörperlaser ausgebildeten Strahlungserzeuger 20 erzeugte Infrarot-Laserstrahlung wird somit durch den optischen Leiter 24', der einen oder mehrere Lichtwellenleiter aufweist, an die Strahlungsemissionseinrichtung 22 geleitet und dort auf ein potentielles Ziel gerichtet als Laserstrahlung S abgegeben.In the example of Fig. 2 the radiation transmission device 24 is formed by an optical conductor 24 'which optically connects the radiation generator 20 with the radiation emission device 22. The infrared laser radiation generated by the radiation generator 20 embodied as a solid-state laser is thus guided through the optical conductor 24 ', which has one or more optical waveguides, to the radiation emission device 22 and emitted there to a potential target as laser radiation S.

In Fig. 3 ist eine abgewandelte Variante gezeigt, bei der die Strahlungsübertragungseinrichtung 24 von einer freien optischen Übertragungsstrecke 24" gebildet ist, die hier als gestrichelte Linie des Strahlenverlaufs schematisch dargestellt ist. In der optischen Übertragungsstrecke sind Umlenkspiegel 23 sowie optische Abbildungselemente 23', 23" vorgesehen, die beispielsweise von Linsensystemen gebildet sind. Die Funktionsweise der in Fig. 3 gezeigte Alternative ist grundsätzlich dieselbe wie bei der in Fig. 2 gezeigten Ausführungsform, nur mit dem Unterschied, dass die Übertragung der vom Strahlungserzeuger 20 erzeugten hochenergetischen Laserstrahlung an die Strahlungsemissionseinrichtung 22 auf dem Weg der freien optischen Übertragungsstrecke 24" erfolgt.In Fig. 3 a modified variant is shown, in which the radiation transmission device 24 is formed by a free optical transmission path 24 ", which is shown schematically as a dashed line of the beam path in the optical transmission path deflection mirror 23 and optical imaging elements 23 ', 23" are provided For example, are formed by lens systems. The functioning of in Fig. 3 The alternative shown is basically the same as that in FIG Fig. 2 shown embodiment, only with the difference that the transmission of the high-energy laser radiation generated by the radiation generator 20 to the radiation emitter 22 on the way of the free optical transmission path 24 "takes place.

Eine alternative Ausführungsform des erfindungsgemäßen Unterwasserfahrzeugs 1 ist in Fig. 4 dargestellt. Dort ist im Turm 16 ein als Schleppboje ausgebildetes Tochterfahrzeug 3 vorgesehen, das vom Unterwasserfahrzeug 1 abgesetzt werden kann und mittels einer als Schleppseil ausgebildeten Verbindungsvorrichtung 30 (Fig. 5) mit dem Unterwasserfahrzeug 1 mechanisch verbunden ist, so dass das Unterwasserfahrzeug 1 das Tochterfahrzeug 3 hinter sich her ziehen kann.An alternative embodiment of the underwater vehicle 1 according to the invention is shown in FIG Fig. 4 shown. There is provided in the tower 16 designed as a towing buoy subsidiary vehicle 3, which can be discontinued from the underwater vehicle 1 and by means of a trained as a tow connecting device 30 (FIG. Fig. 5 ) Is mechanically connected to the underwater vehicle 1, so that the underwater vehicle 1 can pull the daughter vehicle 3 behind her.

Das Tochterfahrzeug 3 ist mit einem Schwimmkörper 32 versehen, der dafür sorgt, dass das Tochterfahrzeug 3 bei ausreichend langer Verbindungsvorrichtung 30 bis zur Wasseroberfläche W aufsteigt und dort schwimmt. Oberhalb des Schwimmkörpers 32 ist die Strahlungsemissionseinrichtung 22 vorgesehen, die derart am Tochterfahrzeug 3 angebracht ist, dass sie um eine vertikale Achse drehbar ist, damit der von ihr ausgesandte optische Strahl S auf ein Ziel ausgerichtet werden kann. Selbstverständlich kann das Strahlrichtsystem 22', wie auch bei der ersten Ausführung, nicht nur um die vertikale Achse der Strahlungsemissionseinrichtung 22 verschwenkt werden, sondern durch geeignete Mittel auch um eine horizontale Achse verschwenkt werden.The subsidiary vehicle 3 is provided with a floating body 32, which ensures that the subsidiary vehicle 3 ascends to the water surface W and floats there when the connection device 30 is sufficiently long. Above the floating body 32 is provided the radiation emitting device 22 which is mounted on the subsidiary vehicle 3 so as to be rotatable about a vertical axis so that the optical beam S emitted from it can be aligned with a target. Of course, the Strahlrichtsystem 22 ', as in the first embodiment, not only be pivoted about the vertical axis of the radiation emitter 22, but also be pivoted by suitable means about a horizontal axis.

Die Strahlungsemissionseinrichtung 22 oder zumindest deren Strahlrichtsystem 22' ist am Tochterfahrzeug 3 mittels einer in den Figuren nur schematisch dargestellten Stabilisierungsplattform 34 befestigt, die dafür sorgt, dass die Strahlungsemissionseinrichtung 22 oder zumindest deren Strahlrichtsystem 22' auch bei bewegtem Tochterfahrzeug 3 um alle drei Raumachsen stabilisiert wird. Dadurch ist eine genaue Zielausrichtung auch bei bewegter Wasseroberfläche möglich.The radiation emission device 22 or at least its beam directing system 22 'is fastened to the subsidiary vehicle 3 by means of a stabilization platform 34, which is shown only schematically in the figures, and ensures that the radiation emission device 22 or at least its beam directing system 22' is stabilized around all three spatial axes even when the subsidiary vehicle 3 is moving , As a result, accurate targeting is possible even with moving water surface.

Die Übertragung der optischen Strahlung vom Strahlungserzeuger 20 zur über Wasser befindlichen Strahlungsemissionseinrichtung 22 erfolgt durch eine von einem optischen Leiter gebildete Strahlungsübertragungseinrichtung 28, die in die Verbindungsvorrichtung 30 integriert oder an ihr angebracht und so mit ihr verbunden ist.Transmission of the optical radiation from the radiation generator 20 to the over-water radiation emitter 22 is by a radiation transmitter 28 formed by an optical conductor which is integrated into or attached to the connector 30 and thus connected thereto.

Der Strahlungserzeuger 20 ist wie bei der in den Fig. 1 bis 3 gezeigten ersten Ausführungsform im Inneren des Druckkörpers 12 des Unterwasserfahrzeugs 1 vorgesehen.The radiation generator 20 is as in the in the Fig. 1 to 3 shown first embodiment inside the pressure hull 12 of the underwater vehicle 1 is provided.

Der Kern der vorliegenden Erfindung liegt somit darin, ein optisches Strahlenwirksystem, beispielsweise ein Laserwirksystem auf der Grundlage von Hochleistungs-Festkörperlasern, zum Beispiel diodengepumpten Faserlasern, auf einem Unterwasserfahrzeug zur Wirkung gegen weiche und halbharte Ziele zu installieren, welches dem Selbstschutz des Unterwasserfahrzeugs gegen unmittelbare Bedrohungen im Nahbereich oder der Bekämpfung von Zielen unter Bedingungen der verdeckten Operationsführung dient. Das Unterwasserfahrzeug kann ein bemanntes oder unbemanntes U-Boot sein. Die Strahlungsemissionseinrichtung des Strahlenwirksystems ist dabei versehen mit einem Strahlrichtsystem, das entweder auf einem ausfahrbaren Optronikmast des Unterwasserfahrzeugs oder auf einem mit dem Unterwasserfahrzeug 1 verbundenen Tochterfahrzeug 3 angebracht ist. Die vom Strahlungserzeuger 20 gebildete Strahlquelle sowie etwaige Hilfseinrichtungen (Kühlung, Stromversorgung, Steuerung) sind im geschützten Druckkörper des Unterwasserfahrzeugs 1 angeordnet, wobei die Übertragung der optischen Strahlung zwischen dem Strahlungserzeuger 20 und dem Strahlrichtsystem 22' der Strahlungsemissionseinrichtung 22 entweder über einen optischen Leiter (Lichtleitfasern) oder auch direktoptisch in Form eines umgekehrten Periskops erfolgt.The core of the present invention is thus an optical radiation active system, for example a laser active system based on high-power solid-state lasers, for example diode-pumped fiber lasers to install a submersible for soft and semi-hard targets against self-protection of the submersible against immediate near-range threats or against targets under covert operations control conditions. The underwater vehicle may be a manned or unmanned submarine. The radiation emission device of the radiation system is provided with a beam directing system, which is mounted either on an extendable Optronikmast of the underwater vehicle or on a connected to the underwater vehicle 1 subsidiary vehicle 3. The radiation source formed by the radiation generator 20 and any auxiliary devices (cooling, power supply, control) are arranged in the protected pressure body of the underwater vehicle 1, wherein the transmission of optical radiation between the radiation generator 20 and the beam directing system 22 'of the radiation emitter 22 either via an optical conductor (optical fibers ) or also directly optically in the form of an inverted periscope.

Durch diese erfindungsgemäße Ausführung des Unterwasserfahrzeugs kann eine Bekämpfungswirkung gegen Überwasserziele, Luftziele und ufernahe Landziele auch dann ausgeübt werden, wenn das Unterwasserfahrzeug lediglich auf Seerohrtiefe getaucht ist. Aber auch im aufgetauchten Zustand des Unterwasserfahrzeugs kann das optische Strahlenwirksystem 2 eingesetzt werden, wobei dann die Vorteile eines aufgrund der größeren Elevationshöhe besseren Sichtwinkels zum Tragen kommen.By means of this embodiment of the underwater vehicle according to the invention, a control effect against overwater targets, air targets and shore targets close to the shore can also be exerted if the underwater vehicle has only been submerged at sea depth. But even in the surfaced state of the underwater vehicle, the optical radiation system 2 can be used, in which case the benefits of a better due to the higher elevation elevation view angle come into play.

Grundsätzlich ist es nicht erforderlich, dass für die Anbringung der Strahlungsemissionseinrichtung 22 ein eigenständiger Optronikmast 18 vorgesehen ist; es ist vielmehr auch möglich, die Strahlungsemissionseinrichtung 22 an einem anderen Zwecken dienenden Mastträger eines Unterwasserfahrzeugs anzuordnen, beispielsweise an einem Mast, der für die Aufnahme von Kommunikationssystemen vorgesehen ist. Wegen der Natur des mit optischer Strahlung arbeitenden Strahlenwirksystems 2 sind keine davon ausgehenden Auswirkungen auf Antennen- oder Radarsysteme des Unterwasserfahrzeugs 1 zu erwarten. Außerdem ist das erfindungsgemäße optische Strahlenwirksystem 2, auch im teilgetauchten Zustand, weitgehend widerstandsfähig gegen elektronische Störmaßnahmen, da die empfindlichen, komplexen Teile des optischen Strahlenwirksystems 2, zum Beispiel die Steuerungseinheit 27, im Inneren des unter Wasser befindlichen Druckkörpers 12 des Unterwasserfahrzeugs 1 vorgesehen sind.In principle, it is not necessary that an independent Optronik mast 18 is provided for the attachment of the radiation emission device 22; Rather, it is also possible to arrange the radiation emitter device 22 on a mast carrier of an underwater vehicle serving another purpose, for example on a mast intended for receiving communication systems. Because of the nature of the optical radiation beam system 2, there are no effects on antenna or radar systems of the underwater vehicle 1 to be expected. In addition, the optical radiation active system 2 according to the invention, even in the partially submerged state, is largely resistant to electronic disruptive measures, since the sensitive, complex parts of the optical radiation control system 2, for example the control unit 27, are provided inside the underwater pressure body 12 of the underwater vehicle 1.

Es ist selbstverständlich, dass das optische Strahlenwirksystem 2 auch mit geeigneten Vorkehrungen versehen ist, die eine Eigen-Laserbestrahlung sowohl des Bootskörpers des Unterwasserfahrzeugs 1 als auch anderer exponierter Komponenten wie Masten oder Antennen zuverlässig verhindern.It goes without saying that the optical radiation control system 2 is also provided with suitable provisions which reliably prevent self-laser irradiation of both the hull of the underwater vehicle 1 and other exposed components such as masts or antennas.

Die Ausrichtung des optischen Strahls S auf ein Ziel erfolgt durch eine dem optischen Strahlenwirksystem 2 fest zugeordnete, im Wesentlichen optische Sensorik. Alternativ oder zusätzlich kann die Steuerung der Strahlrichtung des optischen Strahls S auch durch zum Teil gegenwärtig auf Unterwasserfahrzeugen bereits befindliche Aufklärungs- und Feuerleiteinrichtungen, wie beispielsweise Radar oder Optronikmasten, gestützt sein. Dazu sind dann die vorhandenen Aufklärungs- und Feuerleiteinrichtungen in geeigneter Weise mit der Steuerung 27 des optischen Strahlenwirksystems 2 zum Datenaustausch verbunden.The alignment of the optical beam S to a target is effected by a substantially optical sensor system assigned to the optical radiation active system 2. Alternatively or additionally, the control of the beam direction of the optical beam S may also be supported by reconnaissance and fire control devices, some of which are already present on underwater vehicles, such as radar or Optronic masts. For this purpose, then the existing reconnaissance and Feuerleiteinrichtungen are suitably connected to the controller 27 of the optical radiation system 2 for data exchange.

Wie bereits ausgeführt kann das Unterwasserfahrzeug 1 sowohl ein bemanntes Unterwasserfahrzeug (U-Boot), ein unbemanntes Unterwasserfahrzeug (UUV, unmanned under-sea vehicle), ein Unterwasser-Roboter oder eine Unterwasserdrohne sein. Im Fall eines unbemannten Unterwasserfahrzeugs können die Steuerung dieses Fahrzeugs und die Überwachung von dessen Umfeld in bekannter Weise von einem anderen Seefahrzeug, von Land oder aus der Luft über fernwirkende Unterwasser-Kommunikationsmittel erfolgen.As already stated, the underwater vehicle 1 can be both a manned underwater vehicle (submarine), an unmanned underwater vehicle (UUV), an underwater robot or an underwater drone. In the case of an unmanned underwater vehicle, the control of that vehicle and the monitoring of its environment may be carried out in a known manner from another vessel, land or air via remote underwater communication means.

Bezugszeichen in den Ansprüchen, der Beschreibung und den Zeichnungen dienen lediglich dem besseren Verständnis der Erfindung und sollen den Schutzumfang nicht einschränken.Reference signs in the claims, the description and the drawings are only for the better understanding of the invention and are not intended to limit the scope.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

Es bezeichnen:

1
Unterwasserfahrzeug
2
Strahlenwirksystem
3
Tochterfahrzeug
10
äußere Wandung
10'
obere Wand
10"
untere Wand
12
Druckkörper
13
Zwischendeck
14
Zwischendeck
16
Turm
18
Mast
18'
Pfeil
18"
Doppelpfeil
20
Hochenergie-Strahlungserzeuger
22
Strahlungsemissionseinrichtung
22'
Strahlrichtsystem
23
Umlenkspiegel
23'
optisches Verstärkungselement
23"
optisches Verstärkungselement
24
Strahlungsübertragungseinrichtung
24'
optischer Leiter
24"
freie optische Übertragungsstrecke
25
Stromversorgung
26
Kühleinrichtung
27
Steuerungseinheit
28
Strahlungsübertragungseinrichtung
30
Verbindungsvorrichtung
32
Schwimmkörper
34
Stabilisierungsplattform
S
optischer Strahl
W
Wasseroberfläche
They denote:
1
Underwater vehicle
2
Radiation-control system
3
daughter vehicle
10
outer wall
10 '
upper wall
10 "
bottom wall
12
pressure vessels
13
steerage
14
steerage
16
tower
18
mast
18 '
arrow
18 "
double arrow
20
High-energy radiation generator
22
Radiation emitting device
22 '
Beam direction system
23
deflecting
23 '
optical reinforcement element
23 "
optical reinforcement element
24
Radiation transfer device
24 '
optical conductor
24 "
free optical transmission path
25
power supply
26
cooling device
27
control unit
28
Radiation transfer device
30
connecting device
32
float
34
stabilization platform
S
optical beam
W
water surface

Claims (8)

  1. Underwater vehicle (1) with an optical beam operating system (2) comprising a radiation weapon
    - wherein the optical beam operating system (2) has a radiation generator (20) for producing a high-energy beam, a radiation emitter (22) for producing the high-energy beam and a radiation transmitter (24; 28) linking the radiation generator (20) with the radiation emitter (22) for producing the high-energy beam; and
    - wherein the radiation generator (20) is provided on or in the underwater vehicle (1),
    characterised in that the underwater vehicle (1) is equipped with at least one extendible mast (18) and the radiation emitter (22) is provided in the region of the free end of the extendible mast (18), wherein the radiation emitter (22) is displaceable from the immersed underwater vehicle (1) to the water surface (W) and can be positioned there above the water surface (W).
  2. Underwater vehicle according to claim 1, characterised in that at least portions of the radiation transmitter (24) are aligned along the inside of the mast (18).
  3. Underwater vehicle according to claim 2, characterised in that the radiation transmitter (24) comprises an optical conductor (24') or has at least an optical conductor (24').
  4. Underwater vehicle according to claim 2 or 3, characterised in that at least the portion of the radiation transmitter (24) aligned along the inside of the mast (18) comprises a free optical transmission path (24") .
  5. Underwater vehicle according to any one of the previous claims, characterised in that the radiation generator (20) is provided on the inside of the pressure body (12) of the underwater vehicle (1).
  6. Underwater vehicle according to any one of the previous claims, characterised in that the radiation emitter (22) is provided with a sighting device, preferably optical or electro-optical.
  7. Underwater vehicle (1) with an optical beam operating system (2) comprising a radiation weapon
    - wherein the optical beam operating system (2) has a radiation generator (20) for producing a high-energy beam, a radiation emitter (22) for producing the high-energy beam and a radiation transmitter (24; 28) linking the radiation generator (20) with the radiation emitter (22) for producing the high-energy beam; and
    - wherein the radiation generator (20) is provided on or in the underwater vehicle (1),
    characterised in that
    - the underwater vehicle (1) is equipped with a daughter vehicle (3) separable therefrom, connected by means of a connecting device (30) to the underwater vehicle (1), and in that the daughter vehicle (3) is provided as a towing buoy,
    - the radiation emitter (22) is provided in the daughter vehicle (3) and
    - at least one portion of the radiation transmitter (28) is provided in the connecting device or is connected thereto, wherein the radiation emitter (22) is displaceable from the immersed underwater vehicle (1) to the water surface (W) and can be positioned there above the water surface (W).
  8. Underwater vehicle according to claim 7, characterised in that the daughter vehicle (3) is provided with a stabilisation platform (34) on which the radiation emitter (22) is arranged.
EP12813738.7A 2011-10-19 2012-10-18 Underwater vehicle having an optical beam operating system functioning as beam weapon Active EP2768726B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011116288A DE102011116288B4 (en) 2011-10-19 2011-10-19 Underwater vehicle with an optical radiation system
PCT/DE2012/001011 WO2013056693A1 (en) 2011-10-19 2012-10-18 Underwater vehicle having an optical beam operating system

Publications (2)

Publication Number Publication Date
EP2768726A1 EP2768726A1 (en) 2014-08-27
EP2768726B1 true EP2768726B1 (en) 2018-09-19

Family

ID=47556987

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12813738.7A Active EP2768726B1 (en) 2011-10-19 2012-10-18 Underwater vehicle having an optical beam operating system functioning as beam weapon

Country Status (7)

Country Link
US (1) US9045210B2 (en)
EP (1) EP2768726B1 (en)
DE (1) DE102011116288B4 (en)
ES (1) ES2698270T3 (en)
IL (1) IL232121B (en)
SG (1) SG11201401105RA (en)
WO (1) WO2013056693A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013008407B3 (en) * 2013-05-16 2014-07-17 Mbda Deutschland Gmbh Supply module for supplying an active system and active system with storage module

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2288671A1 (en) 1974-06-18 1976-05-21 Thomson Csf SUBMARINE RADAR
US4021661A (en) * 1975-05-01 1977-05-03 International Telephone And Telegraph Corporation Submarine optical communication system with fiber optic depth compensator
GB8828680D0 (en) 1988-12-08 2000-10-04 British Aerospace Underwater detection system
US5677506A (en) * 1996-12-30 1997-10-14 The United States Of America As Represented By The Secretary Of The Navy Submarine extendible turret system
DE10151597C1 (en) * 2001-10-18 2003-05-15 Howaldtswerke Deutsche Werft System and method for detection and defense against laser threats and underwater objects for underwater vehicles
DE10330174B3 (en) * 2003-07-04 2004-11-04 Howaldtswerke-Deutsche Werft Ag Submarine for military purposes comprises a retractable unit with a container resistant to immersion pressure on its free end and containing a tubular weapon which is free from recoil
US7249567B1 (en) * 2004-12-20 2007-07-31 The United States Of America As Represented By The Secretary Of The Navy Submarine short-range defense system
US7953326B2 (en) * 2006-02-06 2011-05-31 Woods Hole Oceanographic Institution Systems and methods for underwater optical communication
US20070183783A1 (en) 2006-02-07 2007-08-09 Raytheon Company Netted communication and weapons system for littoral warfare
US7559288B2 (en) * 2007-07-30 2009-07-14 The United States Of America As Represented By The Secretary Of The Navy Recoverable optical fiber tethered buoy assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2698270T3 (en) 2019-02-01
EP2768726A1 (en) 2014-08-27
IL232121B (en) 2018-02-28
DE102011116288B4 (en) 2013-09-19
US9045210B2 (en) 2015-06-02
SG11201401105RA (en) 2014-09-26
IL232121A0 (en) 2014-05-28
DE102011116288A1 (en) 2013-04-25
WO2013056693A1 (en) 2013-04-25
US20140245942A1 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
O'Rourke Navy shipboard lasers for surface, air, and missile defense: Background and issues for Congress
DE69503915T2 (en) METHOD AND DEVICE FOR THE DESTRUCTION OF UNDERWATER OBJECTS, ESPECIALLY SEA MINES
EP3341674B1 (en) System for defence against threats
US5677506A (en) Submarine extendible turret system
DE3100794A1 (en) "UNDERWATER ARM"
EP3538835B1 (en) Method and defence system for combating threats
DE977574C (en) Interception antenna
EP2768726B1 (en) Underwater vehicle having an optical beam operating system functioning as beam weapon
DE102015015938A1 (en) Autonomous, unmanned aerial vehicles to escort, escort and secure lulled vehicles such as fixed wing and rotorcraft
DE2634462C1 (en) Submarine weapon system
EP2321612A1 (en) Device and method for warding off objects approaching a ship under or on water
EP3376154B1 (en) Method for protecting a cruise missile
WO2009046799A1 (en) Explosive projectile for artillery or mortar
DE102005062109A1 (en) Person e.g. diver, protecting method for use in underwater prohibited area, involves operating unmanned underwater craft equipped with defense unit to expectation area when detecting person entering into prohibited area
DE2922592C2 (en) Missile defense method
EP1674818B1 (en) Missile
Williamson U-boat Tactics in World War II
CN102806984A (en) Separation type defensive armor for naval vessel and ship
DE69102429T2 (en) METHOD FOR COMBATING TORPEDOS.
DE3917111A1 (en) REMOTE-CONTROLLED AIRCRAFT
DE2815206C2 (en) Procedure, guided missile and weapon system for combating ground targets
Stille US Standard-type Battleships 1941–45 (1): Nevada, Pennsylvania and New Mexico Classes
DE1928794C1 (en) Defense weapon for a submarine to fight against surface, land or air targets
DE4417484A1 (en) Stealth high-speed boat for use in the navy, with air-refuelling system, streamlined radome and armament
DE102017002262B4 (en) Method of defending a submarine against attack by a submerged explosive device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140513

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170817

RIC1 Information provided on ipc code assigned before grant

Ipc: F41H 13/00 20060101ALI20180223BHEP

Ipc: B63G 8/28 20060101AFI20180223BHEP

Ipc: B63G 8/38 20060101ALI20180223BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180412

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Ref document number: 502012013481

Country of ref document: DE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1042944

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 502012013481

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2698270

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190201

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181018

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

26N No opposition filed

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181018

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1042944

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181018

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121018

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180919

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231227

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231026

Year of fee payment: 12

Ref country code: FR

Payment date: 20231025

Year of fee payment: 12