EP2761147B1 - Verbrennungsanordnung mit einer brennkraftmaschine und einem abgaskanal sowie verfahren zur abgasnachbehandlung einer brennkraftmaschine - Google Patents

Verbrennungsanordnung mit einer brennkraftmaschine und einem abgaskanal sowie verfahren zur abgasnachbehandlung einer brennkraftmaschine Download PDF

Info

Publication number
EP2761147B1
EP2761147B1 EP12746083.0A EP12746083A EP2761147B1 EP 2761147 B1 EP2761147 B1 EP 2761147B1 EP 12746083 A EP12746083 A EP 12746083A EP 2761147 B1 EP2761147 B1 EP 2761147B1
Authority
EP
European Patent Office
Prior art keywords
crankcase
exhaust
gas
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12746083.0A
Other languages
English (en)
French (fr)
Other versions
EP2761147A1 (de
Inventor
Stefan Loesch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2761147A1 publication Critical patent/EP2761147A1/de
Application granted granted Critical
Publication of EP2761147B1 publication Critical patent/EP2761147B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • F01N3/32Arrangements for supply of additional air using air pump
    • F01N3/326Engine-driven air pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/04Engines with reciprocating-piston pumps; Engines with crankcase pumps with simple crankcase pumps, i.e. with the rear face of a non-stepped working piston acting as sole pumping member in co-operation with the crankcase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2270/00Mixing air with exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases

Definitions

  • the invention relates to a combustion arrangement with an internal combustion engine and an exhaust system and a method for exhaust aftertreatment of an internal combustion engine according to the preamble of the independent claims.
  • the combustion arrangement according to the invention and the inventive method for exhaust aftertreatment of an internal combustion engine having the features of the independent claims have the advantage that the movement of the piston is used to compress a gas, in particular air in the crankcase and supply this compressed gas to the exhaust system, by the compression of the gas in the crankcase by the piston of the internal combustion engine to an external supply device for the gas, such as a pressure accumulator or an additional compressed air generator, can be dispensed with.
  • the piston is movably arranged in a cylinder, the piston, the combustion chamber and the crankcase, apart from leakage losses between the piston and the cylinder, fluid-tight from each other.
  • a fluid-tight separation of combustion chamber and crankcase of the combustion chamber side acting pressure on the piston can be used to drive the piston in its movement towards the crankcase and to achieve effective compression of the gas in the crankcase, so that there is a pressure increase in the crankcase comes.
  • a gas exchange between the crankcase and the combustion chamber and thus a pressure reduction in the crankcase is largely prevented here.
  • crankcase is connected via a bypass line to the exhaust passage of the exhaust system, whereby the compressed gas from the Crankcase for exhaust aftertreatment in the exhaust duct or for conditioning the exhaust duct can be used.
  • a combination of conveying means and metering means is provided, which convey the fluid from a reservoir and meter it into the exhaust passage of the internal combustion engine.
  • the gas can be used from the crankcase to atomize the fluid supplied by the conveyor or to promote combustion of the fluid in the exhaust passage.
  • the conveying means are driven by the compressed gas from the crankcase.
  • the drive of the conveyor by the pressurized fluid in the crankcase has the advantage to dispense with an additional, mechanical or electrical, drive for the funding.
  • pressure fluctuations are generated by the piston of the internal combustion engine in the crankcase, whereby pulses of pressure arise, which can be used either directly, for conveying the fluid, or indirectly, for driving a conveying means for the fluid. Also in this embodiment can be dispensed with further electrical or mechanical energy for the funding, which reduces the assembly effort, since no additional lines, especially not in hard to reach places, must be installed or connected.
  • a further advantageous development consists in that the conveying means comprise a diaphragm pump, which is driven by the pressure fluctuations in the crankcase.
  • the gas in the crankcase of the reciprocating engine is cyclically compressed and expanded by the oscillating movement of a piston of the reciprocating engine, whereby pressure fluctuations in the crankcase arise.
  • These pressure fluctuations can be used in a simple manner to drive a diaphragm pump.
  • a membrane pump driven by the gas in the crankcase conveys a fluid other than the gas into the exhaust gas duct.
  • the diaphragm pump for conveying a liquid fluid such as aqueous urea solution or fuel can be dispensed with an additional, different from the diaphragm pump, delivery unit for the fluid.
  • the number of components can be reduced, whereby the cost of material and assembly is reduced.
  • the dosing means are arranged on the bypass line.
  • the fluid can be metered into the bypass line.
  • the bypass line can be easily conditioned, whereby a more uniform distribution of the fluid can be achieved as in a direct metering into the exhaust passage.
  • the dosing means are less thermally stressed in an arrangement on the bypass line as in an arrangement on the exhaust duct, where the dosing may be damaged by the hot exhaust gas in the exhaust duct.
  • the dosing at least partially, are sheathed by the bypass line, wherein the dosing means are cooled by the compressed in the crankcase and flowing through the bypass gas.
  • cooling with the gas from the crankcase can be realized in a simple and cost-effective manner cooling the dosing or the fluid, whereby thermal damage to the dosing and decomposition, aging or crystallization of the fluid can be prevented or at least slowed down.
  • the dosing means comprise a metering valve, in particular a pressure-controlled metering valve, or a carburettor.
  • a metering valve Via a metering valve, the amount of the metered fluid can be controlled, so that according to the exhaust gas amount, the exhaust gas composition and / or the exhaust gas temperature can be metered in each case a need-based amount of fluid through the metering valve.
  • the metering valve is designed as a pressure-controlled metering valve which opens depending on the pressure in the crankcase and / or in a supply line for the fluid.
  • the dosing comprise a carburetor for the fluid.
  • a carburetor is another favorable alternative to the introduction of a fluid to support the exhaust aftertreatment in the exhaust passage, which is particularly suitable for a easily volatilizing fluid, with a boiling point well below the usual in the operation of the internal combustion engine temperatures in the exhaust passage to this fluid in to transfer the gaseous state and metered into the exhaust passage of the internal combustion engine.
  • the internal combustion engine 10 comprises a crankcase 30, in which a crankshaft 40 is arranged.
  • the crankshaft 40 is connected via a connecting rod 34 with a piston 20 of the internal combustion engine 10.
  • the piston 20 of the internal combustion engine 10 is arranged displaceably in a cylinder 18.
  • the internal combustion engine 10 has a combustion chamber 15 which is connected via an inlet 12 to an intake passage 14 and via an outlet 13 to an exhaust passage 51 of an exhaust system 50.
  • the inlet 12 can be closed by a valve 17 and the outlet 13 by a valve 19.
  • the combustion chamber 15 of the internal combustion engine 10 is limited in the cylinder 18 by the piston 20, wherein a sealing of the combustion chamber 15 between the piston 20 and the cylinder 18 via piston rings 35 on the piston 20 takes place.
  • the crankcase 30 connects to the cylinder 18, the crankcase 30 connects.
  • the piston 20 is connected via a connecting rod 34 with the crankshaft 40.
  • the crankcase 30 of the internal combustion engine 10 is connected via a line 16 to the intake passage 14, wherein on the crankcase 30, an inlet valve 38 is arranged, via which a connection between the crankcase 30 and the conduit 16 can be closed.
  • the crankcase 30 is connected via a bypass line 33 to the exhaust passage 51 of the internal combustion engine 10, wherein on the crankcase 30, an exhaust valve 39 is arranged, via which the connection of the crankcase 30 and bypass line 33 can be closed.
  • At least one device 52, 54, 56 for exhaust gas aftertreatment is arranged to clean the exhaust gas of the internal combustion engine 10.
  • Fig. 1 are shown in the exhaust passage three apparatus for exhaust aftertreatment, wherein for the purification of the exhaust gas of the internal combustion engine 10 in the exhaust gas flow direction, an oxidation catalyst 52, a particulate filter 54 and a catalyst 56 for the selective reduction of nitrogen oxides are connected in series.
  • the Bypass line 33 opens into the exhaust passage 50 between the outlet 13 of the internal combustion engine 10 and the oxidation catalyst 52.
  • the internal combustion engine 10 sucks in a known manner air through the intake passage 14, which is compressed in the combustion chamber 15 by the piston 20.
  • a fuel is injected into the combustion chamber 15, which mixes with the air in the combustion chamber 15 to form a fuel-air mixture. Compression of the fuel-air mixture by the piston 20 leads to an increase of pressure and temperature in the combustion chamber 15, wherein the released during combustion of the fuel-air mixture energy through the piston 20 and the connecting rod 34, the crankshaft 40 in a Set rotation.
  • an exhaust gas is produced, which is expelled by the piston 20 in a next step via the outlet 13 into the exhaust passage 51.
  • crankcase 30 By a translational movement of the piston 20 in the cylinder 18, not only the air in the combustion chamber 15 is compressed, but parallel to the compression of the combustion chamber 15 in this cylinder 18 a connected to the crankcase 30 fluid volume is increased, whereby the pressure in the crankcase 30 decreases.
  • This physical effect is used to use the crankcase 30 as an "air pump” for introducing so-called “secondary air” into the exhaust passage 51 of the internal combustion engine 10.
  • the piston 20 moves away from the crankshaft 40, whereby a volume in the crankcase 30 is increased.
  • the pressure in the crankcase 30 drops below a pressure in the intake passage 14, so that air can flow via the inlet valve 38 from the intake passage 14 via the line 16 into the crankcase 30.
  • the inlet valve 38 is designed as a pressure-controlled valve, which opens at a, in particular by a spring force of a valve spring, set pressure difference between the pressure in the crankcase 30 and the pressure in the intake passage 14.
  • the air which has flowed into the crankcase 30 via the inlet valve 38 is compressed by a downward movement of the piston 20, the pressure in the crankcase 30 rising above the pressure in the intake passage 14 and the inlet valve 38 closing.
  • the pressure in the crankcase 30 continues to rise, gas exchange between the combustion chamber 25 and the crankcase being largely prevented by the piston 20 and the piston rings 35, except for leakage losses.
  • the outlet valve 39 opens on the crankcase 30, so that the air flows from the crankcase 30 via the bypass line 33 into the exhaust passage 51 of the internal combustion engine 10.
  • the introduction of the air into the exhaust passage 51 takes place between the outlet 13 of the internal combustion engine 10 and the oxidation catalyst 52, by an exothermic reaction of the air with unburned hydrocarbons in the exhaust passage 51, the temperature of an exhaust gas of the internal combustion engine 10 before entering the oxidation catalyst 52 increase, for example, to bring the oxidation catalyst 52 in a cold start phase faster to operating temperature.
  • the exhaust aftertreatment devices 52, 54, 56 may also be arranged in a different order.
  • bypass line 33 opens at a different location, in particular in front of the particle filter 54, into the exhaust duct 51 in order to introduce an additional temperature of the exhaust gas via the introduction of the secondary air into the particle filter 54, in particular for the regeneration of the particulate filter 54. to increase. It is also provided that the bypass line 33 forks and opens at several points in the exhaust passage 51.
  • the internal combustion engine 10 is designed as a single-cylinder reciprocating engine.
  • the exhaust system 50 includes dosing means 70, wherein the dosing means 70 are arranged on the bypass line 33 and connected via a metering valve 72 to the bypass line 33.
  • the dosing means 70 are connected via a line 82 with conveying means 60, wherein the conveying means 60 are connected via a further line 81 with a reservoir 80 for the fluid to support the exhaust aftertreatment of the internal combustion engine 10.
  • a further output 32 is formed, wherein the output 32, an outlet channel 36 connects.
  • a turbine 66 is arranged, which is connected via a shaft 24 with a conveying element 26 of the conveying means 60.
  • the fluid is supplied to the dosing means 70 from the storage container 80 in order to support the exhaust gas aftertreatment and metered into the bypass line 33 via the dosing valve 72.
  • the bypass line 33 mixing of the fluid and the gas takes place from the crankcase 30, which leads to a more uniform distribution of the fluid over the cross section of the bypass line 33.
  • the conveying means 60 are driven by the compressed gas from the crankcase 30.
  • the gas exiting the crankcase 30 drives the turbine 66, which in turn drives the conveying element 26 in the conveying means 60 via the shaft 24.
  • the dosing means 70 may also be arranged on the exhaust gas channel 51. It is possible to supply the fluid in the metering means 70 instead of through a metering valve 72 via a carburetor 74 of the bypass line 33 or the exhaust passage 51. Alternatively, it is possible for the conveying means 60 to be driven via an external drive, for example a drive belt or an electric motor.
  • Fig. 3 an inventive embodiment of a combustion arrangement with an internal combustion engine 10 is shown.
  • Conveyor 60 is arranged, which in this embodiment comprise a diaphragm pump 62.
  • the diaphragm pump 62 has a housing 68 to which a diaphragm 63 is attached.
  • a delivery chamber 66 is formed, which is closed by a suction valve 64 and a pressure valve 65.
  • the diaphragm pump 62 is fluidically connected to the crankcase 30 via an opening 69 in the housing 68.
  • the diaphragm pump 62 is connected via a first line 81 to a reservoir 80 for an aid for assisting the exhaust aftertreatment and via a further line 82 to the dosing means 70, which comprise a metering valve 72.
  • the dosing means 70 are arranged on the exhaust duct 51 between a particulate filter 54 and a catalyst 56 for the selective reduction of nitrogen oxides.
  • the gas in the crankcase 30 cyclically, in synchronism with the engine speed or speed of the Crankshaft 40 compresses and expands, wherein a volume of a gas in the crankcase 30 in a running as a single-cylinder engine reciprocating engine during a stroke to the total displacement of the reciprocating engine changes.
  • the fluid flows to support the exhaust aftertreatment from the reservoir 80 via line 81 through the suction valve 64 into the delivery chamber 66 of the diaphragm pump 62, wherein the fluid is conveyed at overpressure in the delivery chamber 66 via the line 82 to the dosing 70.
  • An air supply of the crankcase 30 can be omitted in this embodiment.
  • the crankcase 30 analogous to the comments on Fig. 1 is supplied with air and serves to generate pressure, wherein the pressurized air in the crankcase 30 can be used to cool the dosing 70. By cooling the dosing agent 70, aging, crystallization, decomposition or vapor bubble formation of the fluid is prevented or at least slowed down.
  • the risk of thermal damage to the dosing means 70 is reduced, in particular if an arrangement of the dosing means 70 directly on the exhaust duct 51 can not be avoided due to spatial restrictions.
  • the fluid in the dosing means 70 is atomized by the pressurized air in the crankcase 30.
  • a bypass line 33 is guided from the crankcase 30 to the dosing means 70.
  • the fluid can also be metered in via a carburettor 74, which is positioned on the exhaust gas channel 51 or on the bypass line 33 instead of the metering valve 72.
  • fuels in particular for raising an exhaust gas temperature, regeneration means for a particle filter or fluids which cause a reduction of pollutants in the exhaust gas, for example an aqueous urea solution for the reduction of nitrogen oxides, can be used as the fluid.
  • Fig. 4 shows a non-inventive another example of a combustion arrangement, wherein the dosing means 70 are arranged in the bypass line 33.
  • the dosing means 70 are fixed by webs 84, which position the dosing means 70 in the middle of the bypass line 70.
  • the dosing 70 are connected via a line 82 with conveying means 60, wherein the conveying means 60 are connected via a further line 81 to a reservoir 80 for the fluid.
  • the drive of the conveyor 60 takes place in this embodiment via an additional drive source, for example, electrically, hydraulically, pneumatically or mechanically, in particular via a not shown belt drive, which is connected to the internal combustion engine 10.
  • the fluid is conveyed by the conveying means 60 to the dosing means 70 and metered from there via the metering valve 72 into the bypass line 33.
  • the dosing means 70 are cooled by the compressed gas from the crankcase 30, which flows past the outlet valve 39 into the bypass line 33 and there to the dosing means 70.
  • the dosing means 70 may also be arranged on or in a wall of the bypass line 33, so that the dosing means 70 are only partially encased by the bypass line.
  • a fixation via a clamping body or a different type of fixation of the dosing 70 in the bypass channel 33 is possible.
  • the metering means 70 are arranged in the mouth region of the bypass line 33 in the exhaust passage 51, wherein the metering valve 72 meters the fluid directly into the exhaust passage 51.
  • Fig. 5 an inventive embodiment of a combustion arrangement is shown, wherein the internal combustion engine 10 is designed as a two-cylinder boxer engine.
  • the pistons 20 of the two cylinders 18 are both fixed to the crankshaft 40, the crankshaft 40 being disposed in a common crankcase 30 for both cylinders 18.
  • the opposing movement of the pistons of the boxer engine results in correspondingly high pressure fluctuations in the crankcase, so that these pressure fluctuations or the pressure due to the compression of the gas in the crankcase can be used efficiently.
  • crankcase 30 On the crankcase 30 conveying means 60 are arranged, wherein the conveying means 60 are connected via a line 81 to a reservoir 80 and via a further line 82 to a bypass line 33, which leads from the crankcase 30 to the exhaust passage 51.
  • the pressure in the crankcase 30 can also be used directly to drive the conveyor 60, for example by the expansion of the compressed air drives a turbine 66, which in turn drives the conveyor 60, in particular a pump.
  • the fluid is promoted to support the exhaust aftertreatment to the dosing 70, which include, for example, a carburetor 74 or a metering valve 72.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft einen Verbrennungsanordnung mit einer Brennkraftmaschine und einer Abgasanlage sowie ein Verfahren zur Abgasnachbehandlung einer Brennkraftmaschine gemäß dem Oberbegriff der unabhängigen Ansprüche.
  • Bei Verbrennungsmotoren muss aufgrund der immer strenger werdenden Abgasnormen der Ausstoß von schädlichen Abgaskomponenten wie Rußpartikeln, unverbrannter Kohlenwasserstoffverbindungen oder Stickoxiden immer weiter reduziert werden. Zur Entfernung von Stickstoffoxiden kommen, insbesondere bei Dieselmotoren, sogenannte SCR-Katalysatoren zur selektiven katalytischen Reduktion von Stickoxiden zum Einsatz. Aus der DE 199 61 947 ist bereits ein Abgasnachbehandlungssystem für einen Verbrennungsmotor bekannt, bei dem ein flüssiges Reduktionsmittel von einer Förderpumpe in eine Mischkammer gefördert wird. In der Mischkammer wird mittels Druckluft aus dem flüssigen Reduktionsmittel ein Aerosol erzeugt wird und dieses Aerosol über eine Aerosolleitung in den Abgaskanal des Verbrennungsmotors eindosiert. Ferner ist aus der DE 10 2005 034 704 bekannt, zur Regeneration eines Partikelfilters ein Regenerationsmittel in den Abgaskanal einzubringen.
  • Aus der DE 69522311 ist bekannt, ein Kurbelgehäuse eines Verbrennungsmotors zum Komprimieren von Luft zu nutzen und diese komprimierten Luft zur Leistungssteigerung einem Ansaugkanal des Verbrennungsmotors zuzuführen.
    Aus dem Stand der Technik ist die Druckschrift EP 0 354 097 A1 bekannt. Diese betrifft eine Vorrichtung zur Verarbeitung von Abgas eines 2-Takt-Verbrennungsmotors, die einen Nachverbrennungsreaktor sowie eine Einrichtung zum Zuführen von Luft in den Reaktor aufweist. Die Vorrichtung verfügt weiterhin über eine Hilfsverbrennungskammer, deren Auslass direkt in den Nachverbrennungsreaktor einmündet.
  • Offenbarung
  • Die erfindungsgemäße Verbrennungsanordnung sowie das erfindungsgemäße Verfahren zur Abgasnachbehandlung einer Brennkraftmaschine mit den Merkmalen der unabhängigen Ansprüche haben demgegenüber den Vorteil, dass die Bewegung des Kolbens genutzt wird, um ein Gas, insbesondere Luft im Kurbelgehäuse zu verdichten und dieses verdichtete Gas der Abgasanlage zuzuführen, wobei durch die Verdichtung des Gases im Kurbelgehäuse durch den Kolben der Brennkraftmaschine auf eine externe Versorgungseinrichtung für das Gas, beispielsweise einen Druckspeicher oder einen zusätzlichen Drucklufterzeuger, verzichtet werden kann. Somit kann eine Zufuhr des verdichteten Gases zur Abgasanlage ohne zusätzliche Komponenten und somit sehr preisgünstig realisiert werden.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der angegebenen Verbrennungsanordnung sowie des angegebenen Verfahrens möglich. Erfindungsgemäß ist der Kolben beweglich in einem Zylinder angeordnet, wobei der Kolben den Brennraum und das Kurbelgehäuse, bis auf Leckageverluste zwischen dem Kolben und dem Zylinder, fluiddicht voneinander trennt. Durch eine fluiddichte Trennung von Brennraum und Kurbelgehäuse kann der von der Brennraumseite wirkende Druck auf den Kolben genutzt werden, um den Kolben bei seiner Bewegung in Richtung Kurbelgehäuse anzutreiben und im Kurbelgehäuse eine effektive Verdichtung des Gas zu erzielen, so dass es zu einem Druckanstieg im Kurbelgehäuse kommt. Durch die Abdichtung des Kurbelgehäuses gegenüber dem Brennraum wird hier ein Gasaustausch zwischen Kurbelgehäuse und Brennraum und somit ein Druckabbau im Kurbelgehäuse weitestgehend unterbunden.
  • Eine weitere vorteilhafte Weiterbildung der Verbrennungsanordnung besteht darin, dass das Kurbelgehäuse über eine Bypassleitung mit dem Abgaskanal der Abgasanlage verbunden ist, wodurch das verdichtete Gas aus dem Kurbelgehäuse zur Abgasnachbehandlung im Abgaskanal oder zur Konditionierung des Abgaskanals genutzt werden kann. Erfindungsgemäß eine Kombination aus Fördermitteln und Dosiermittel vorgesehen, welche das Fluid aus einem Vorratsbehälter fördern und in den Abgaskanal der Brennkraftmaschine eindosieren. Insbesondere kann aber auch das Gas aus dem Kurbelgehäuse genutzt werden, um das durch die Fördermittel zugeführte Fluid zu zerstäuben oder um eine Verbrennung des Fluides im Abgaskanal zu fördern. Erfindungsgemäß werden die Fördermittel durch das verdichtete Gas aus dem Kurbelgehäuse angetrieben. Der Antrieb der Fördermittel durch das unter Druck stehende Fluid im Kurbelgehäuse bietet den Vorteil, auf einen zusätzlichen, mechanischen oder elektrischen, Antrieb für die Fördermittel zu verzichten. Dieser Verzicht erhöht nicht nur den Wirkungsgrad des Hubkolbenmotors, sondern reduziert parallel auch die Kosten. Alternativ ist mit Vorteil vorgesehen, dass durch den Kolben der Brennkraftmaschine in dem Kurbelgehäuse Druckschwankungen erzeugt werden, wobei durch die Druckschwankungen Impulse entstehen, welche entweder direkt, zur Förderung des Fluides, oder indirekt, zum Antrieb eines Fördermittels für das Fluid, genutzt werden können. Auch in dieser Ausführungsvariante kann auf weitere elektrische oder mechanische Energie für die Fördermittel verzichtet werden, wodurch sich der Montageaufwand reduziert, da keine zusätzlichen Leitungen, insbesondere nicht an schwer zugänglichen Stellen, verlegt beziehungsweise angeschlossen werden müssen.
  • Eine weitere vorteilhafte Weiterbildung besteht darin, dass die Fördermittel eine Membranpumpe umfassen, welche durch die Druckschwankungen in dem Kurbelgehäuse angetrieben wird. Ist die Brennkraftmaschine ein Hubkolbenmotor, so wird durch die oszillierende Bewegung eines Kolbens des Hubkolbenmotors das Gas im Kurbelgehäuse des Hubkolbenmotors zyklisch verdichtet und expandiert, wodurch Druckschwankungen in dem Kurbelgehäuse entstehen. Diese Druckschwankungen lassen sich in einfacher Art und Weise nutzen, um eine Membranpumpe anzutreiben. Insbesondere ist es vorteilhaft, wenn eine, durch das Gas im Kurbelgehäuse angetriebene, Membranpumpe ein von dem Gas verschiedenes Fluid in den Abgaskanal fördert. Durch die Verwendung der Membranpumpe zur Förderung eines flüssigen Fluids wie wässriger Harnstofflösung oder Kraftstoff kann auf ein zusätzliches, von der Membranpumpe verschiedenes, Förderaggregat für das Fluid verzichtet werden. Dadurch kann die Anzahl der Bauteile reduziert werden, wodurch der Aufwand für Material und Montage reduziert wird.
  • Eine vorteilhafte Weiterbildung besteht darin, dass die Dosiermittel an der Bypassleitung angeordnet sind. Durch die Anordnung der Dosiermittel an der Bypassleitung kann eine Eindosierung des Fluides in die Bypassleitung erfolgen. Durch eine entsprechende geometrische Gestaltung der Bypassleitung sowie einer gezielten Einleitung des verdichteten Gases aus dem Kurbelgehäuse in die Bypassleitung kann die Bypassleitung einfacher konditioniert werden, wodurch eine gleichmäßigere Verteilung des Fluids erreicht werden kann als bei einer direkten Eindosierung in den Abgaskanal. Zudem sind die Dosiermittel bei einer Anordnung an der Bypassleitung weniger thermisch belastet als bei einer Anordnung am Abgaskanal, wo die Dosiermittel durch das heiße Abgas im Abgaskanal beschädigt werden können.
  • Besonders vorteilhaft ist es dabei, wenn die Dosiermittel, zumindest teilweise, von der Bypassleitung ummantelt sind, wobei die Dosiermittel durch das in dem Kurbelgehäuse verdichtete und durch die Bypassleitung strömende Gas gekühlt werden. Durch eine Kühlung mit dem Gas aus dem Kurbelgehäuse kann auf einfache und kostengünstige Weise eine Kühlung der Dosiermittel bzw. des Fluides realisiert werden, wodurch eine thermische Schädigung der Dosiermittel sowie eine Zersetzung, Alterung oder Kristallisation des Fluides verhindert oder zumindest verlangsamt werden können.
  • Als weitere vorteilhafte Weiterbildung ist vorgesehen, dass die Dosiermittel ein Dosierventil, insbesondere ein druckgesteuertes Dosierventil, oder einen Vergaser umfassen. Über ein Dosierventil kann die Menge des eindosierten Fluides gesteuert werden, so dass entsprechend der Abgasmenge, der Abgaszusammensetzung und/oder der Abgastemperatur jeweils eine bedarfsgerechte Menge an Fluid über das Dosierventil eindosiert werden kann. Insbesondere ist es vorteilhaft, wenn das Dosierventil als ein druckgesteuertes Dosierventil ausgeführt ist, welches in Abhängigkeit vom Druck in dem Kurbelgehäuse und/oder in einer Zufuhrleitung für das Fluid öffnet. Durch ein solches druckgesteuertes Dosierventil kann auf eine aufwendige elektrische oder pneumatische Ansteuerung des Dosierventils verzichtet werden, wodurch die thermische Belastbarkeit des Dosierventils steigt. Alternativ besteht eine vorteilhafte Weiterbildung darin, dass die Dosiermittel einen Vergaser für das Fluid umfassen. Ein Vergaser stellt eine weitere günstige Alternative zur Einbringung eines Fluides zur Unterstützung der Abgasnachbehandlung in den Abgaskanal dar, welche sich insbesondere für ein leicht verflüchtigendes Fluid, mit einem Siedepunkt deutlich unterhalb der im Betrieb der Brennkraftmaschine üblichen Temperaturen im Abgaskanal, eignet, um dieses Fluid in den gasförmigen Zustand zu überführen und in den Abgaskanal der Brennkraftmaschine einzudosieren.
  • Zeichnungen
  • Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.
    • Fig. 1 zeigt ein nicht erfindungsgemäßes erstes Beispiel einer Verbrennungsanordnung.
    • Fig. 2 zeigt ein erfindungsgemäßes Ausführungsbeispiel einer Verbrennungsanordnung, mit Dosiermitteln an einer Bypassleitung, die das Kurbelgehäuse mit dem Abgaskanal verbindet.
    • Fig. 3 zeigt ein erfindungsgemäßes weiteres Ausführungsbeispiel einer Verbrennungsanordnung, mit einer Membranpumpe, welche durch Druckschwingungen im Kurbelgehäuse angetrieben wird.
    • Fig. 4 zeigt ein nicht erfindungsgemäßes weiteres Beispiel einer Verbrennungsanordnung, bei der Dosiermittel durch das Gas aus dem Kurbelgehäuse gekühlt werden.
    • Fig. 5 zeigt eine erfindungsgemäße Verbrennungsanordnung mit einem ZweiZylinder-Boxer-Motor.
    Kurze Beschreibung der Zeichnungen
  • Die Erfindung sowie vorteilhafte Ausgestaltungen gemäß den Merkmalen der weiteren Ansprüche werden im Folgenden anhand der in den Zeichnungen dargestellten Ausführungsbeispiele näher erläutert. In den Figuren sind gleiche Bauteile oder Bauteile mit gleicher Funktion mit den gleichen Bezugszeichen gekennzeichnet.
  • In der Fig.1 ist eine nicht erfindungsgemäße Verbrennungsanordnung mit einer Brennkraftmaschine 10 dargestellt. Die Brennkraftmaschine 10 umfasst ein Kurbelgehäuse 30, in welchem eine Kurbelwelle 40 angeordnet ist. Die Kurbelwelle 40 ist über ein Pleuel 34 mit einem Kolben 20 der Brennkraftmaschine 10 verbunden. Der Kolben 20 der Brennkraftmaschine 10 ist in einem Zylinder 18 verschiebbar angeordnet. Die Brennkraftmaschine 10 weist einen Brennraum 15 auf, welcher über einen Einlass 12 mit einem Ansaugkanal 14 und über einen Auslass 13 mit einem Abgaskanal 51 einer Abgasanlage 50 verbunden ist. Dabei sind der Einlass 12 durch ein Ventil 17 und der Auslass 13 durch ein Ventil 19 verschließbar. Der Brennraum 15 der Brennkraftmaschine 10 wird im Zylinder 18 durch den Kolben 20 begrenzt, wobei eine Abdichtung des Brennraums 15 zwischen dem Kolben 20 und dem Zylinder 18 über Kolbenringe 35 am Kolben 20 erfolgt. An den Zylinder 18 schließt sich das Kurbelgehäuse 30 an. Der Kolben 20 ist über ein Pleuel 34 mit der Kurbelwelle 40 verbunden. Das Kurbelgehäuse 30 der Brennkraftmaschine 10 ist über eine Leitung 16 mit dem Ansaugkanal 14 verbunden, wobei an dem Kurbelgehäuse 30 ein Einlassventil 38 angeordnet ist, über welches eine Verbindung zwischen Kurbelgehäuse 30 und der Leitung 16 verschließbar ist. Ferner ist das Kurbelgehäuse 30 über eine Bypassleitung 33 mit dem Abgaskanal 51 der Brennkraftmaschine 10 verbunden, wobei an dem Kurbelgehäuse 30 ein Auslassventil 39 angeordnet ist, über welches die Verbindung von Kurbelgehäuse 30 und Bypassleitung 33 verschließbar ist.
  • In der Abgasanlage 50 ist zur Reinigung des Abgases der Brennkraftmaschine 10 mindestens eine Vorrichtung 52, 54, 56 zur Abgasnachbehandlung angeordnet. In dem Ausführungsbeispiel gemäß Fig. 1 sind in dem Abgaskanal drei Vorrichtung zur Abgasnachbehandlung dargestellt, wobei zur Reinigung des Abgases der Brennkraftmaschine 10 in Abgasstromrichtung ein Oxidationskatalysator 52, ein Partikelfilter 54 und ein Katalysator 56 zur selektiven Reduktion von Stickstoffoxiden hintereinander geschaltet sind. Die Bypassleitung 33 mündet zwischen dem Auslass 13 der Brennkraftmaschine 10 und dem Oxidationskatalysator 52 in den Abgaskanal 50.
  • Die Brennkraftmaschine 10 saugt in bekannter Weise Luft durch die Ansaugkanal 14 an, welche in dem Brennraum 15 durch den Kolben 20 verdichtet wird. Ein Brennstoff wird in den Brennraum 15 eingespritzt, welcher sich mit der Luft im Brennraum 15 unter Bildung eines Kraftstoff-Luft-Gemisches vermischt. Eine Kompression des Kraftstoff-Luft-Gemisches durch den Kolben 20 führt zu einem Anstieg von Druck und Temperatur im Brennraum 15, wobei die bei einer Verbrennung des Kraftstoff-Luft-Gemisches freiwerdende Energie über den Kolben 20 und das Pleuel 34 die Kurbelwelle 40 in eine Rotation versetzen. Bei der Verbrennung des Kraftstoff-Luft-Gemisches entsteht ein Abgas, welches durch den Kolben 20 in einem nächsten Arbeitsschritt über den Auslass 13 in den Abgaskanal 51 ausgeschoben wird. Durch eine translatorische Bewegung des Kolbens 20 im Zylinder 18 wird nicht nur die Luft im Brennraum 15 verdichtet, sondern parallel zu der Verdichtung des Brennraums 15 wird in diesem Zylinder 18 ein mit dem Kurbelgehäuse 30 verbundenes Fluidvolumen vergrößert, wodurch der Druck im Kurbelgehäuse 30 abnimmt. Dieser physikalische Effekt wird dazu genutzt, das Kurbelgehäuse 30 als "Luftpumpe" zur Einbringung von sogenannter "Sekundärluft" in den Abgaskanal 51 der Brennkraftmaschine 10 zu nutzen. In einer Kompressionsphase der Brennkraftmaschine 10 bewegt sich der Kolben 20 weg von der Kurbelwelle 40, wodurch ein Volumen im Kurbelgehäuse 30 vergrößert wird. Dabei sinkt der Druck im Kurbelgehäuse 30 unter einen Druck im Ansaugkanal 14, so dass Luft über das Einlassventil 38 aus dem Ansaugkanal 14 über die Leitung 16 in das Kurbelgehäuse 30 einströmen kann. Das Einlassventil 38 ist als druckgesteuertes Ventil ausgeführt, welches bei einer, insbesondere durch eine Federkraft einer Ventilfeder, festgelegten Druckdifferenz zwischen dem Druck im Kurbelgehäuse 30 und dem Druck in dem Ansaugkanal 14 öffnet. Die über das Einlassventil 38 in das Kurbelgehäuse 30 eingeströmte Luft wird durch eine Abwärtsbewegung des Kolbens 20 verdichtet, wobei der Druck im Kurbelgehäuse 30 über den Druck im Ansaugkanal 14 ansteigt und sich das Einlassventil 38 schließt. Durch die weitere Abwärtsbewegung des Kolbens 20 steigt der Druck im Kurbelgehäuse 30 weiter an, wobei ein Gasaustausch zwischen dem Brennraum 25 und dem Kurbelgehäuse durch den Kolben 20 und die Kolbenringe 35 bis auf Leckageverluste weitestgehend unterbunden wird. Bei Überschreitung eines festen Druckschwellenwertes öffnet das Auslassventil 39 am Kurbelgehäuse 30, so dass die Luft aus dem Kurbelgehäuse 30 über die Bypassleitung 33 in den Abgaskanal 51 der Brennkraftmaschine 10 strömt. Die Einleitung der Luft in den Abgaskanal 51 erfolgt dabei zwischen dem Auslass 13 der Brennkraftmaschine 10 und dem Oxidationskatalysator 52, um durch eine exotherme Reaktion von der Luft mit unverbrannten Kohlenwasserstoffen im Abgaskanal 51 die Temperatur eines Abgases der Brennkraftmaschine 10 vor Eintritt in den Oxidationskatalysator 52 zu erhöhen, beispielsweise um den Oxidationskatalysator 52 in einer Kaltstartphase schneller auf Betriebstemperatur zu bringen.
    Alternativ können die Vorrichtungen 52, 54, 56 zur Abgasnachbehandlung auch in einer anderen Reihenfolge angeordnet sein. Ebenfalls alternativ können eine oder zwei der drei beschriebenen Vorrichtungen zur Abgasnachbehandlung entfallen, ferner ist die Verwendung eines sogenannten "Drei-Wege-Katalysators" anstelle eines Oxidationskatalysators möglich, insbesondere wenn die Brennkraftmaschine 10 als Ottomotor oder Gasmotor ausgeführt ist. Ebenfalls alternativ ist vorgesehen, dass die Bypassleitung 33 an einer anderen Stelle, insbesondere vor dem Partikelfilter 54, in den Abgaskanal 51 mündet, um über die Einbringung der Sekundärluft eine Eintrittstemperatur des Abgases bei Eintritt in den Partikelfilter 54, insbesondere zur Regeneration des Partikelfilters 54, zu erhöhen. Ebenfalls ist vorgesehen, dass die Bypassleitung 33 sich gabelt und an mehreren Stellen in den Abgaskanal 51 mündet.
  • In Fig. 2 ist ein erfindungsgemäßes Ausführungsbeispiel einer Verbrennungsanordnung dargestellt. Die Brennkraftmaschine 10 ist als Einzylinder-Hubkolbenmotor ausgeführt. Die Abgasanlage 50 umfasst Dosiermittel 70, wobei die Dosiermittel 70 an der Bypassleitung 33 angeordnet und über ein Dosierventil 72 mit der Bypassleitung 33 verbunden sind. Die Dosiermittel 70 sind über eine Leitung 82 mit Fördermitteln 60 verbunden, wobei die Fördermittel 60 über eine weitere Leitung 81 mit einem Vorratsbehälter 80 für das Fluid zur Unterstützung der Abgasnachbehandlung der Brennkraftmaschine 10 verbunden sind. An dem Kurbelgehäuse 30 ist ein weiterer Ausgang 32 ausgebildet, wobei sich an den Ausgang 32 ein Auslasskanal 36 anschließt. In dem Auslasskanal 36 ist eine Turbine 66 angeordnet, welche über eine Welle 24 mit einen Förderelement 26 der Fördermittel 60 verbunden ist.
  • Über die Fördermittel 60 wird das Fluid zur Unterstützung der Abgasnachbehandlung aus dem Vorratsbehälter 80 den Dosiermitteln 70 zugeführt und über das Dosierventil 72 in die Bypassleitung 33 eindosiert. In der Bypassleitung 33 erfolgt eine Vermischung von dem Fluid und dem Gas aus dem Kurbelgehäuse 30, was zu einer gleichmäßigeren Verteilung des Fluides über den Querschnitt der Bypassleitung 33 führt. Die Fördermittel 60 werden durch das verdichtete Gas aus dem Kurbelgehäuse 30 angetrieben. Dabei erfolgt der Antrieb der Fördermittel 60 über die Turbine 66 im Auslasskanal 36 des Kurbelgehäuses 30. Das aus dem Kurbelgehäuse 30 austretende Gas treibt die Turbine 66 an, welche ihrerseits über die Welle 24 das Förderelement 26 in dem Fördermittel 60 antreibt.
  • Alternativ können die Dosiermittel 70 auch an dem Abgaskanal 51 angeordnet sein. Es ist möglich, das Fluid in den Dosiermitteln 70 anstelle durch ein Dosierventil 72 über einen Vergaser 74 der Bypassleitung 33 oder dem Abgaskanal 51 zuzuführen. Alternativ ist es möglich, dass die Fördermittel 60 über einen externen Antrieb, beispielsweise einen Antriebsriemen oder einen Elektromotor angetrieben werden.
  • In Fig. 3 ist ein erfindungsgemäßes weiteres Ausführungsbeispiel einer Verbrennungsanordnung mit einer Brennkraftmaschine 10 dargestellt. An dem Kurbelgehäuse 30 sind zusätzlich zu dem Ausführungsbeispiel gemäß Fig. 1 Fördermittel 60 angeordnet, welche in diesem Ausführungsbeispiel eine Membranpumpe 62 umfassen. Die Membranpumpe 62 weist ein Gehäuse 68 auf, an welchem eine Membran 63 befestigt ist. In dem Gehäuse 68 ist ein Förderraum 66 ausgebildet, welcher über ein Saugventil 64 und ein Druckventil 65 verschließbar ist. Die Membranpumpe 62 ist über eine Öffnung 69 im Gehäuse 68 fluidisch mit dem Kurbelgehäuse 30 verbunden. Ferner ist die Membranpumpe 62 über eine erste Leitung 81 mit einem Vorratsbehälter 80 für ein Hilfsmittel zur Unterstützung des Abgasnachbehandlung und über eine weitere Leitung 82 mit den Dosiermitteln 70, welche ein Dosierventil 72 umfassen, verbunden. Die Dosiermittel 70 sind am Abgaskanal 51 zwischen einem Partikelfilter 54 und einem Katalysator 56 zur selektiven Reduktion von Stickstoffoxiden angeordnet.
  • Durch die oszillierende Bewegung des Kolbens 20 im Zylinder 18 wird das Gas im Kurbelgehäuse 30 zyklisch, synchron zur Motordrehzahl bzw. Drehzahl der Kurbelwelle 40 verdichtet und expandiert, wobei sich ein Volumen eines Gases im Kurbelgehäuses 30 bei einem als Einzylinder-Motor ausgeführten Hubkolbenmotor während eines Hubes um das gesamte Hubvolumen des Hubkolbenmotors ändert. Dabei entstehen in dem Kurbelgehäuse 30 Druckschwankungen, welche auf die Membran 63 der Membranpumpe 62 wirken und somit in einem Förderraum 66 der Membranpumpe 62 zyklisch einen Unterdruck bzw. Überdruck erzeugen. Bei Unterdruck strömt das Fluid zur Unterstützung der Abgasnachbehandlung aus dem Vorratsbehälter 80 über die Leitung 81 durch das Saugventil 64 in den Förderraum 66 der Membranpumpe 62, wobei das Fluid bei Überdruck im Förderraum 66 über die Leitung 82 zu den Dosiermitteln 70 gefördert wird. Eine Luftversorgung des Kurbelgehäuses 30 kann bei diesem Ausführungsbeispiel entfallen. Alternativ ist vorgesehen, dass das Kurbelgehäuse 30 analog den Ausführungen zu Fig. 1 mit Luft versorgt wird und zur Druckerzeugung dient, wobei die unter Druck stehende Luft im Kurbelgehäuse 30 dazu genutzt werden kann, die Dosiermittel 70 zu kühlen. Durch die Kühlung der Dosiermittel 70 wird ein Altern, Auskristallisieren, Zersetzen oder eine Dampfblasenbildung des Fluides verhindert oder zumindest verlangsamt. Ferner wird die Gefahr einer thermischen Schädigung der Dosiermittel 70 reduziert, insbesondere falls sich eine Anordnung der Dosiermittel 70 direkt am Abgaskanal 51 aus räumlichen Restriktionen nicht vermeiden lässt. Zusätzlich ist alternativ vorgesehen, dass das Fluid in den Dosiermitteln 70 durch die im Kurbelgehäuse 30 unter Druck gesetzte Luft zerstäubt wird. Zum Zwecke einer Kühlung beziehungsweise einer Zerstäubung wird eine Bypassleitung 33 vom Kurbelgehäuse 30 zu den Dosiermittel 70 geführt. Alternativ kann für einige Fluide eine Eindosierung des Fluides auch über einen Vergaser 74 erfolgen, welcher anstelle des Dosierventils 72 am Abgaskanal 51 oder an der Bypassleitung 33 positioniert wird. Als Fluid können beispielsweise Kraftstoffe, insbesondere zur Anhebung einer Abgastemperatur, Regenerationsmittel für einen Partikelfilter oder Fluide, welche eine Reduktion von Schadstoffen im Abgas bewirken, beispielsweise eine wässrige Harnstofflösung zur Reduktion von Stickstoffoxiden, verwendet werden.
  • Fig. 4 zeigt ein nicht erfindungsgemäßes weiteres Beispiel einer Verbrennungsanordnung, wobei die Dosiermittel 70 in der Bypassleitung 33 angeordnet sind. Die Dosiermittel 70 sind durch Stege 84, welche die Dosiermittel 70 in der Mitte der Bypassleitung 70 positionieren, fixiert. Die Dosiermittel 70 sind über eine Leitung 82 mit Fördermitteln 60 verbunden, wobei die Fördermittel 60 über eine weitere Leitung 81 mit einem Vorratsbehälter 80 für das Fluid verbunden sind. Der Antrieb der Fördermittel 60 erfolgt in diesem Ausführungsbeispiel über eine zusätzliche Antriebsquelle, beispielsweise elektrisch, hydraulisch, pneumatisch oder mechanisch, insbesondere über einen nichtdargestellten Riemenantrieb, der mit der Brennkraftmaschine 10 verbunden ist. Das Fluid wird durch die Fördermittel 60 zu den Dosiermitteln 70 gefördert und von dort aus über das Dosierventil 72 in die Bypassleitung 33 eindosiert. Dabei werden die Dosiermittel 70 durch das verdichtete Gas aus dem Kurbelgehäuse 30, welches über das Auslassventil 39 in die Bypassleitung 33 und dort an den Dosiermittel 70 vorbeiströmt, gekühlt.
  • Alternativ können die Dosiermittel 70 auch an oder in einer Wand der Bypassleitung 33 angeordnet sein, so dass die Dosiermittel 70 nur teilweise von der Bypassleitung ummantelt sind. Neben der dargestellten Fixierung über die Stege 84 ist auch eine Fixierung über einen Klemmkörper oder eine andersartige Fixierung der Dosiermittel 70 im Bypasskanal 33 möglich. Ferner ist es möglich, dass die Dosiermittel 70 im Mündungsbereich der Bypassleitung 33 in den Abgaskanal 51 angeordnet sind, wobei das Dosierventil 72 das Fluid direkt in den Abgaskanal 51 dosiert.
  • In Fig. 5 ist ein erfindungsgemäßes weiteres Ausführungsbeispiel einer Verbrennungsanordnung dargestellt, wobei die Brennkraftmaschine 10 als Zweizylinder-Boxer-Motor ausgeführt ist. Die Kolben 20 der zwei Zylinder 18 sind beide an der Kurbelwelle 40 fixiert, wobei die Kurbelwelle 40 in einem gemeinsamen Kurbelgehäuse 30 für beide Zylinder 18 angeordnet ist. Es erfolgt eine Kraftübertragung der beiden Kolben 20 des Zweizylinder-Motors auf eine Kurbelwelle 40, welche in einem gemeinsamen Kurbelgehäuse 30 angeordnet ist. Bei 2 Zylinder-Boxer-Motoren kommt es durch die gegenläufige Bewegung der Kolben 20 des Boxermotors zu entsprechend starken Druckschwankungen im Kurbelgehäuse 30, so dass diese Druckschwankungen bzw. der Druck durch die Verdichtung des Gases im Kurbelgehäuse 30 effizient genutzt werden können. An dem Kurbelgehäuse 30 sind Fördermittel 60 angeordnet, wobei die Fördermittel 60 über eine Leitung 81 mit einem Vorratsbehälter 80 und über eine weitere Leitung 82 mit einer Bypassleitung 33 verbunden sind, welcher vom Kurbelgehäuse 30 zum Abgaskanal 51 führt.
    Durch eine gegenläufige Bewegung der Zylinder 11 des Boxermotors wird das Volumen des Kurbelgehäuses 30 jeweils um das Hubvolumen beider Zylinder 11 vergrößert, bzw. reduziert. Dadurch kann eine gegenüber einem Einzylinder-Motor nochmals deutlich erhöhte Pumpleitung erzielt werden. Der Druck im Kurbelgehäuse 30 kann auch direkt zum Antrieb der Fördermittel 60 genutzt werden, beispielsweise indem die Expansion der verdichteten Luft eine Turbine 66 antriebt, welche ihrerseits die Fördermittel 60, insbesondere eine Pumpe, antreibt. Über die Fördermittel 60 wird das Fluid zur Unterstützung der Abgasnachbehandlung zu den Dosiermitteln 70 gefördert, welche beispielsweise eine Vergaser 74 oder ein Dosierventil 72 umfassen.

Claims (8)

  1. Verbrennungsanordnung mit einer Brennkraftmaschine (10) und einer mit der Brennkraftmaschine (10) verbundenen Abgasanlage (50), wobei die Abgasanlage (50) einen Abgaskanal (51) zum Abführen eines Abgases der Brennkraftmaschine (10) und eine Vorrichtung zur Nachbehandlung des Abgases aufweist, wobei die Vorrichtung zur Nachbehandlung des Abgases am Abgaskanal (51) angeordnet ist, und wobei die Brennkraftmaschine (10) einen Brennraum (15) aufweist, der durch einen Kolben (20) begrenzt ist, wobei der Kolben (20) auf einer dem Brennraum (15) abgewandten Seite ein Kurbelgehäuse (30) begrenzt, und wobei das Kurbelgehäuse (30) derart eingerichtet ist, dass infolge einer Bewegung des Kolbens (20) ein Gas, insbesondere Luft, im Kurbelgehäuse (30) verdichtet wird, wobei das Kurbelgehäuse (30) derart mit der Abgasanlage (50) verbunden ist, dass das im Kurbelgehäuse (30) verdichtete Gas der Abgasanlage (50) zugeführt werden kann, und wobei die Abgasanlage (50) Fördermittel (60) und Dosiermittel (70) umfasst, welche ein Fluid aus einem Vorratsbehälter (80) fördern und in den Abgaskanal (51) eindosieren, dadurch gekennzeichnet, dass die Fördermittel (60) durch das verdichtete Gas aus dem Kurbelgehäuse (30) angetrieben werden.
  2. Verbrennungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Kolben (20) beweglich in einem Zylinder (18) angeordnet ist, wobei der Kolben (20) den Brennraum (15) und das Kurbelgehäuse (30) bis auf Leckageverluste zwischen dem Kolben (20) und dem Zylinder (18), fluiddicht voneinander trennt.
  3. Verbrennungsanordnung nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass das Kurbelgehäuse (30) über eine Bypassleitung (33) mit dem Abgaskanal (51) der Abgasanlage (50) verbunden ist.
  4. Verbrennungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kolben (20) in dem im Kurbelgehäuse (30) verdichteten Gas Druckschwankungen erzeugt, wobei die Druckschwankungen die Fördermittel (60) der Abgasanlage (50) zur Förderung des Fluides in den Abgaskanal (51) der Brennkraftmaschine (10) antreiben.
  5. Verbrennungsanordnung nach einem der Ansprüche 1 oder 4, dadurch gekennzeichnet, dass die Fördermittel (60) eine Membranpumpe (62) umfassen.
  6. Verbrennungsanordnung nach Anspruch 3, dadurch gekennzeichnet, dass die Abgasanlage (50) zumindest Dosiermittel (70) aufweist, wobei die Dosiermittel (70) an der Bypassleitung (33) angeordnet sind.
  7. Verbrennungsariordnung nach Anspruch 3, dadurch gekennzeichnet, dass die Dosiermittel (70), zumindest teilweise, von der Bypassleitung (33) ummantelt sind, wobei die Dosiermittel (70) durch das im Kurbelgehäuse (30) verdichtete und durch die Bypassleitung (33) strömende Gas gekühlt werden.
  8. Verfahren zum Betreiben einer Verbrennungsanordnung mit einer Brennkraftmaschine (10) und einer mit der Brennkraftmaschine (10) verbundenen Abgasanlage (50), wobei ein Abgas der Brennkraftmaschine (10) der Abgasanlage (50), welche einen Abgaskanal (51) und ein Vorrichtung zur Nachbehandlung des Abgases aufweist, zugeführt wird, wobei die Vorrichtung zur Nachbehandlung des Abgases am Abgaskanal (51) angeordnet wird, wobei ein Brennraum (15) der Brennkraftmaschine (10) durch einen Kolben (20) begrenzt wird, und wobei ein Kurbelgehäuse (30) durch eine dem Brennraum (15) abgewandte Seite des Kolbens (20) begrenzt wird, wobei ein Gas, insbesondere Luft, durch eine Bewegung des Kolbens (20) im Kurbelgehäuse (30) verdichtet wird, wobei das Kurbelgehäuse (30) derart mit der Abgasanlage (50) verbunden wird, dass das im Kurbelgehäuse (30) verdichtete Gas der Abgasanlage (50) zugeführt wird, und wobei die Abgasanlage (50) Fördermittel (60) und Dosiermittel (70) umfasst, welche ein Fluid aus einem Vorratsbehälter (80) fördern und in den Abgaskanal (51) eindosieren, dadurch gekennzeichnet, dass die Fördermittel (60) durch das verdichtete Gas aus dem Kurbelgehäuse (30) angetrieben werden.
EP12746083.0A 2011-09-30 2012-08-07 Verbrennungsanordnung mit einer brennkraftmaschine und einem abgaskanal sowie verfahren zur abgasnachbehandlung einer brennkraftmaschine Not-in-force EP2761147B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011083904A DE102011083904A1 (de) 2011-09-30 2011-09-30 Verbrennungsanordnung mit einer Brennkraftmaschine und einem Abgaskanal sowie Verfahren zur Abgasnachbehandlung einer Brennkraftmaschine
PCT/EP2012/065422 WO2013045157A1 (de) 2011-09-30 2012-08-07 Verbrennungsanordnung mit einer brennkraftmaschine und einem abgaskanal sowie verfahren zur abgasnachbehandlung einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP2761147A1 EP2761147A1 (de) 2014-08-06
EP2761147B1 true EP2761147B1 (de) 2017-10-11

Family

ID=46650539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12746083.0A Not-in-force EP2761147B1 (de) 2011-09-30 2012-08-07 Verbrennungsanordnung mit einer brennkraftmaschine und einem abgaskanal sowie verfahren zur abgasnachbehandlung einer brennkraftmaschine

Country Status (4)

Country Link
EP (1) EP2761147B1 (de)
CN (1) CN103857888B (de)
DE (1) DE102011083904A1 (de)
WO (1) WO2013045157A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016120846B4 (de) 2016-11-02 2023-04-20 Volkswagen Aktiengesellschaft Verfahren zum Aufheizen eines Abgasnachbehandlungselements sowie Kraftfahrzeug mit einem solchen Abgasnachbehandlungselement
DE102017201716A1 (de) * 2017-02-02 2018-08-02 Volkswagen Aktiengesellschaft Brennkraftmaschine mit einer Sekundärluftpumpe und Verfahren zum Betreiben einer Brennkraftmaschine mit einer Sekundärluftpumpe
DE102019215449A1 (de) * 2019-10-09 2021-04-15 Robert Bosch Gmbh Brennkraftmaschine mit Sekundärluftsystem
US11519317B1 (en) * 2022-02-03 2022-12-06 GM Global Technology Operations LLC Engine systems with exhaust air injection after three-way catalytic converters for non stoichiometric rich operation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3672172A (en) * 1971-03-15 1972-06-27 Gary L Hammond Simplified supercharged internal combustion engine with emissions control
DE2413848A1 (de) * 1974-03-22 1975-10-02 Erwin Wirsing Vorrichtung zur nachverbrennung von abgasen von verbrennungskraftmaschinen
JPS52139825A (en) * 1976-05-18 1977-11-22 Mitsubishi Motors Corp Internal combustion engine
EP0339969B1 (de) * 1988-04-27 1993-09-29 Ricardo Group Plc Zweitakt-Ottomotor
FR2635143B1 (fr) * 1988-08-05 1993-11-05 Peugeot Automobiles Dispositif de traitement des gaz d'echappement d'un moteur a combustion interne a deux temps
CN2101115U (zh) * 1991-09-18 1992-04-08 高云照 自增压四冲程发动机
FR2725475B1 (fr) * 1994-10-11 1996-12-20 Inst Francais Du Petrole Moteur deux temps a injection pneumatique de melange carbure
DE69522311T2 (de) 1995-03-20 2002-05-02 Kanebo, Ltd. Verwendung von Phosphorylverbindungen für das flammhemmende Veredeln von synthetischen Fasermaterialen auf der Basis von Polyestern
JP3035774B2 (ja) * 1997-11-18 2000-04-24 敏二 木下 空気調節2サイクルエンジン
DE19961947A1 (de) 1999-12-22 2001-06-28 Bosch Gmbh Robert Vorrichtung und Verfahren zur Erzeugung eines Reduktionsmittel-Luftgemisches
DE102005034704A1 (de) 2005-07-26 2007-02-01 Robert Bosch Gmbh Vorrichtung und Verfahren zur Regeneration eines Partikelfilters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN103857888A (zh) 2014-06-11
WO2013045157A1 (de) 2013-04-04
CN103857888B (zh) 2017-05-03
DE102011083904A1 (de) 2013-04-04
EP2761147A1 (de) 2014-08-06

Similar Documents

Publication Publication Date Title
DE60030241T2 (de) Abgasreinigungsanlage einer mit Luftüberschuss arbeitenden Brennkraftmaschine
EP0852512B1 (de) Verfahren und einrichtung zum abbau von stickoxiden in einem abgas eines verbrennungsmotors
EP2504540B1 (de) Verfahren zum betrieb einer fördervorrichtung für ein reduktionsmittel
EP2761147B1 (de) Verbrennungsanordnung mit einer brennkraftmaschine und einem abgaskanal sowie verfahren zur abgasnachbehandlung einer brennkraftmaschine
DE10129592A1 (de) Bord-Reduktionsmittel-Abgabeanordnung
EP1380733A2 (de) Einrichtung zur Abgasnachbehandlung von Kraftfahrzeugen, insbesondere Dieselkraftfahrzeugen
DE102018220715A1 (de) Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
WO2014114443A1 (de) Verfahren zum betreiben einer antriebseinrichtung sowie entsprechende antriebseinrichtung
DE112011100873T5 (de) Brennstoffliefersystem zum selektiven Liefern von Brennstoff zu verschiedenen Motorkomponenten
DE102018004913A1 (de) Reduktionsmittel-Dosieranordnung und Abgassystem
DE102016114862A1 (de) Reduktionsmittelzufuhrsystem
DE102007016004B4 (de) Dosiervorrichtung zum dosierten Einspritzen von Abgasnachbehandlungsmittel in eine Abgasanlage eines Verbrennungsmotors
EP2864602B1 (de) Dosiersystem zur eindüsung eines reduktionsmittels in eine abgasleitung einer brennkraftmaschine
WO2013079509A1 (de) Abgasnachbehandlungssystem und verfahren zum einbringen eines reduktionsmittels in einen abgaskanal einer brennkraftmaschine
DE102018130799A1 (de) Verbrennungsmotor und Verfahren zum Betreiben eines Verbrennungsmotors
EP0313922B1 (de) Verfahren zur Beeinflussung der Temperatur von Abgasen und Abgasanlage zur Durchführung des Verfahrens
DE102017211998A1 (de) Einspritzeinrichtung für ein Abgasnachbehandlungssystem, Abgasnachbehandlungssystem
DE112008001111T5 (de) Regenerationsvorrichtung, die eine luftunterstützte Treibstoffdüse aufweist
DE102019113736A1 (de) Brennkraftmaschine mit variabler Auslassventilbetätigung und mit elektrischer Heizvorrichtung im Abgasstrang
WO1995006815A1 (de) Verfahren und vorrichtung zur reinigung eines russfilters im abgassystem einer mit dieselkraftstoff betriebenen verbrennungskraftmaschine
EP2573340B1 (de) Abgasanlage für eine Brennkraftmaschine
EP3561262B1 (de) Brennkraftmaschine und verfahren zum betreiben einer brennkraftmaschine
DE102015214067B4 (de) Verfahren zur Eindosierung eines Reaktionsmittels in einen Abgaspfad einer Brennkraftmaschine und Brennkraftmaschine
DE19528680C2 (de) Abgasrückführung
DE102014209373A1 (de) Reduktionsmittel-Katalysesystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161028

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 936256

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012011443

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171011

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180112

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180211

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180111

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012011443

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

26N No opposition filed

Effective date: 20180712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181024

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180807

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 936256

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190822

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012011443

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120807

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171011

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831