EP2756517B1 - Cold plasma treatment devices - Google Patents

Cold plasma treatment devices Download PDF

Info

Publication number
EP2756517B1
EP2756517B1 EP12832526.3A EP12832526A EP2756517B1 EP 2756517 B1 EP2756517 B1 EP 2756517B1 EP 12832526 A EP12832526 A EP 12832526A EP 2756517 B1 EP2756517 B1 EP 2756517B1
Authority
EP
European Patent Office
Prior art keywords
cold plasma
mask
gas
plasma treatment
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12832526.3A
Other languages
German (de)
French (fr)
Other versions
EP2756517A1 (en
EP2756517A4 (en
Inventor
Gregory A. WATSON
Robert M. HUMMEL
Marc C. Jacofsky
David J. Jacofsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasmology4 Inc
Original Assignee
Plasmology4 Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201161535250P priority Critical
Application filed by Plasmology4 Inc filed Critical Plasmology4 Inc
Priority to PCT/US2012/055599 priority patent/WO2013040473A1/en
Publication of EP2756517A1 publication Critical patent/EP2756517A1/en
Publication of EP2756517A4 publication Critical patent/EP2756517A4/en
Application granted granted Critical
Publication of EP2756517B1 publication Critical patent/EP2756517B1/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0082Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using chemical substances
    • A61L2/0094Gaseous substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/14Plasma, i.e. ionised gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/02Inhalators with activated or ionised fluids, e.g. electrohydrodynamic [EHD] or electrostatic devices; Ozone-inhalators with radioactive tagged particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/44Applying ionised fluids
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes, e.g. for surface treatment of objects such as coating, plating, etching, sterilising or bringing about chemical reactions
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes, e.g. for surface treatment of objects such as coating, plating, etching, sterilising or bringing about chemical reactions
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32348Dielectric barrier discharge
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes, e.g. for surface treatment of objects such as coating, plating, etching, sterilising or bringing about chemical reactions
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes, e.g. for surface treatment of objects such as coating, plating, etching, sterilising or bringing about chemical reactions
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Dielectric barrier discharges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/025Helium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Dielectric barrier discharges
    • H05H2001/2412Dielectric barrier discharges the dielectric being interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H2001/4645Radiofrequency discharges
    • H05H2001/4652Inductively coupled
    • H05H2001/466Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H2001/4645Radiofrequency discharges
    • H05H2001/4682Associated power generators, e. G. Circuits, matching networks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2240/00Test
    • H05H2240/20Non-thermal plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS test
    • H05H2245/12Applications
    • H05H2245/122Applications medical applications, e.g. plasma scalpels, blades, bistouri
    • H05H2245/1225Sterilization of objects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2277/00Applications
    • H05H2277/10Medical devices

Description

    BACKGROUND OF THE INVENTION Field of the Art
  • The present invention relates to devices for creating cold plasmas, and, more particularly, to cold plasma treatment application devices.
  • Background Art
  • Atmospheric pressure hot plasmas are known to exist in nature. For example, lightning is an example of a DC arc (hot) plasma. Many DC arc plasma applications have been achieved in various manufacturing processes, for example, for use in forming surface coatings. Atmospheric pressure cold plasma processes are also known in the art. Most of the at or near atmospheric pressure cold plasma processes are known to utilize positive to negative electrodes in different configurations, which release free electrons in a noble gas medium.
  • Devices that use a positive to negative electrode configuration to form a cold plasma from noble gases (helium, argon, etc.) have frequently exhibited electrode degradation and overheating difficulties through continuous device operation. The process conditions for enabling a dense cold plasma electron population without electrode degradation and/or overheating are difficult to achieve.
  • Different applications of cold plasma devices require different size cold plasma plumes and different dimensional devices to produce those cold plasma plumes. For example, some medical treatments require a large cold plasma plume to treat a large external wound, while other treatments require a small cold plasma device that can be coupled to an elongated medical device that can traverse a small body passageway to reach a small internal treatment site.
  • WO 00/78388 discloses a skin cleansing device for cleansing facial skin in particular.
  • US 5,381,789 discloses an ionizer for the ionization of oxygen during any type of oxygen therapy.
  • WO 2007/063186 discloses a face mask for cleansing of facial skin.
  • WO 96/00108 discloses that a galvanic current is applied to acupuncture points of a human face by electrodes that are mounted in a predetermined array on a mask-like device.
  • BRIEF SUMMARY OF THE INVENTION
  • Therefore, it is desirable to provide a cold plasma delivery system that can address a large treatment area relevant to facial ailments such as those described above.
  • A system is desired to bathe a large area of complex shape, such as the human face, in a plasma "mask". Disclosed herein is the design for such a plasma mask useful for facial treatments.
  • An embodiment is described for a cold plasma treatment mask for application to a face having contours, that has a first mask layer and a second mask layer, the first and second mask layers being configured to conform to the contours of the face. A gas inlet and a gas outlet are coupled to a gas containment region between the first and second mask layers, whereby the gas containment region communicatively couples to the gas inlet and gas outlet. An electrical input port is coupled by a plurality of metal tracks to one or more electrical nodes, whereby the one or more electrical nodes having contact with the interior of the gas containment region, wherein the electrical input port is further configured to be coupled to a unipolar high voltage power supply to thereby generate cold plasma in the gas containment region
  • Another embodiment is described of a method that forms a first layer of a cold plasma treatment mask, where the first layer is configured to conform to the contours of the face. A second layer is formed adjacent to the first layer, whereby the second layer is configured to form a gas containment region between the first layer and the second layer. A gas inlet and a gas outlet is attached to the second layer, the gas inlet and gas outlet thereby being coupled to the gas containment region, whereby gas can be received from the gas inlet and returned via the gas outlet. An electrical input port is coupled to a plurality of metal tracks to one or more electrical nodes, including the attachment of one or more electrical nodes on an exterior surface of the second layer, and having contact with the interior of the gas containment region, wherein the electrical input port is further configured to be coupled to a unipolar high voltage power supply to thereby generate cold plasma in the internal region. A third layer is formed adjacent to the second layer to provide an external layer to the cold plasma treatment mask.
  • A further method is described that receives a noble gas mix, or other suitable gas mix. Next, the gas is energized to form a cold plasma within a conformable mask, the conformable mask having a contour conforming to a face of a patient that includes a treatment area, the conformable mask avoiding one or more of an eye socket, a nose and a mouth of the patient. Finally, the cold plasma is maintained within the conformable mask to treat the treatment area.
  • BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES
    • FIGs. 1A and 1B are cutaway views of the hand-held atmospheric harmonic cold plasma device, in accordance with an example useful for understanding the present invention.
    • FIGs. 2A and 2B illustrate an embodiment of the cold plasma device without magnets, in accordance with an example useful for understanding the present invention.
    • FIG. 3 is an exemplary circuit diagram of the power supply of a cold plasma device, in accordance with an example useful for understanding the present invention.
    • FIG. 4 illustrates the generation of cold plasma resulting from a dielectric barrier device, in accordance with embodiments of the present invention.
    • FIG. 5 illustrates a three-layer approach to the formation of a cold plasma mask application device, in accordance with an embodiment of the present invention.
    • FIG. 6 illustrates an exemplary configuration of electrical pod electrodes and the resulting cold plasma active regions, in accordance with an embodiment of the present invention.
    • FIG. 7 illustrates an exemplary set of three mask layers for a cold plasma mask application device, in accordance with an embodiment of the present invention.
    • FIG. 8 illustrates an exemplary placement of the electrical grid on the intermediate mask layer, in accordance with an embodiment of the present invention.
    • FIG. 9 illustrates a prototype of a cold plasma mask application device that shows the gas inlet and gas outlet, and electrical input node, in accordance with an embodiment of the present invention.
    • FIG. 10 illustrates a cold plasma mask application device that uses gas recirculation, in accordance with an embodiment of the present invention.
    • FIG. 11 illustrates a method of forming a cold plasma using a cold plasma mask application device, in accordance with an embodiment of the present invention.
    • FIG. 12 illustrates a further method of forming a cold plasma using a cold plasma mask application device, in accordance with an embodiment of the present invention.
    • FIG. 13 provides a method of using a cold plasma mask application device, according to an embodiment of the present invention.
    DETAILED DESCRIPTION OF THE INVENTION
  • Cold temperature atmospheric pressure plasmas have attracted a great deal of enthusiasm and interest by virtue of their provision of plasmas at relatively low gas temperatures. The provision of a plasma at such a temperature is of interest to a variety of applications, including wound healing, anti-bacterial processes, various other medical applications and sterilization.
  • Cold Plasma Application Device
  • To achieve a cold plasma, a cold plasma device typically takes as input a source of appropriate gas and a source of high voltage electrical energy, and outputs a plasma plume. FIG. 1A illustrates such a cold plasma device. Previous work by the inventors in this research area has been described in U.S. Provisional Patent Application No. 60/913,369 , U.S. Non-provisional Application No. 12/038,159 (that has issued as U.S. Patent No. 7,633,231 ) and the subsequent continuation applications (collectively "the'369 application family"). The following paragraphs discuss further the subject matter from this application family further, as well as additional developments in this field, which are useful for understanding the present invention.
  • The '369 application family describes a cold plasma device that is supplied with helium gas, connected to a high voltage energy source, and which results in the output of a cold plasma. The temperature of the cold plasma is approximately 65-120 degrees F (preferably 65-99 degrees F), and details of the electrode, induction grid and magnet structures are described. The voltage waveforms in the device are illustrated at a typical operating point in '369 application family.
  • In a further example to that described in the '369 application, useful for understanding the present invention, plasma is generated using an apparatus without magnets, as illustrated in FIGs. 2A and 2B. In this magnet-free environment, the plasma generated by the action of the electrodes 61 is carried with the fluid flow downstream towards the nozzle 68. FIG. 2A illustrates a magnet-free example, useful for understanding the present invention, in which no induction grid is used. FIG. 2B illustrates a magnet-free example in which induction grid 66 is used. FIG. 1B illustrates the same example as illustrated FIG. 2B, but from a different view. Although these examples illustrate the cold plasma is generated from electrode 12, other examples do not power the cold plasma device using electrode 12, but instead power the cold plasma device using induction grid 66.
  • In both a magnet and a magnet-free example, the inductance grid 66 is optional. When inductance grid 66 is present, it provides ionization energy to the gas as the gas passes by. Thus, although the inductance grid 66 is optional, its presence enriches the resulting plasma.
  • As noted above, the inductance grid 66 is optional. When absent, the plasma will nevertheless transit the cold plasma device and exit at the nozzle 68, although in this case, there will be no additional ionization energy supplied to the gas as it transits the latter stage of the cold plasma device.
  • As noted with respect to other examples, magnetic fields can be used in conjunction with the production of cold plasmas. Where present, magnetic fields act, at least at some level, to constrain the plasma and to guide it through the device. In general, electrically charged particles tend to move along magnetic field lines in spiral trajectories. As noted elsewhere, other examples can comprise magnets configured and arranged to produce various magnetic field configurations to suit various design considerations. For example, in one example as described in the previously filed '369 application family, useful for understanding the present invention, a pair of magnets may be configured to give rise to magnetic fields with opposing directions that act to confine the plasma near the inductance grid.
  • Cold Plasma Unipolar High Voltage Power Supply
  • The '369 application family also illustrates an example of the unipolar high voltage power supply architecture and components used therein, useful for understanding the present invention. The circuit architecture is reproduced here as FIG. 3, and this universal power unit provides electrical power for a variety of embodiments described further below. The architecture of this universal power unit includes a low voltage timer, followed by a preamplifier that feeds a lower step-up voltage transformer. The lower step-up voltage transformer in turn feeds a high frequency resonant inductor-capacitor (LC) circuit that is input to an upper step-up voltage transformer. The output of the upper step-up voltage transformer provides the output from the unipolar high voltage power supply.
  • FIG. 3 also illustrates an example of the unipolar high voltage power supply 310 architecture. In this implementation, a timer integrated circuit such as a 555 timer 320 provides a low voltage pulsed source with a frequency that is tunable over a frequency range centered at approximately 1 kHz. The output of the 555 timer 320 is fed into a preamplifier that is formed from a common emitter bipolar transistor 330 whose load is the primary winding of the lower step-up voltage transformer 340. The collector voltage of the transistor forms the output voltage that is input into the lower step-up voltage transformer. The lower step-up transformer provides a magnification of the voltage to the secondary windings. In turn, the output voltage of the lower step-up voltage transformer is forwarded to a series combination of a high voltage rectifier diode 350, a quenching gap 360 and finally to a series LC resonant circuit 370. As the voltage waveform rises, the rectifier diode conducts, but the quench gap voltage will not have exceeded its breakdown voltage. Accordingly, the quench gap is an open circuit, and therefore the capacitor in the series LC resonant circuit will charge up. Eventually, as the input voltage waveform increases, the voltage across the quench gap exceeds its breakdown voltage, and it arcs over and becomes a short circuit. At this time, the capacitor stops charging and begins to discharge. The energy stored in the capacitor is discharged via the tank circuit formed by the series LC connection.
  • Continuing to refer to FIG. 3, the inductor also forms the primary winding of the upper step-up voltage transformer 340. Thus, the voltage across the inductor of the LC circuit will resonate at the resonant frequency of the LC circuit 370, and in turn will be further stepped-up at the secondary winding of the upper step-up voltage transformer. The resonant frequency of the LC circuit 370 can be set to in the high kHz - low MHz range. The voltage at the secondary winding of the upper step-up transformer is connected to the output of the power supply unit for delivery to the cold plasma device. The typical output voltage is in the 10 - 150 kV voltage range. Thus, voltage pulses having a frequency in the high kHz - low MHz range can be generated with an adjustable repetition frequency in the 1 kHz range. The output waveform is shaped similar to the acoustic waveform generated by an impulse such as a bell is struck with a hammer. Here, the impulse is provided when the spark gap (or SCR) fires and produces the voltage pulse which causes the resonant circuits in the primary and secondary sides of the transformer to resonate at their specific resonant frequencies. The resonant frequencies of the primary and the secondary windings are different. As a result, the two signals mix and produce the unique 'harmonic' waveform seen in the transformer output. The net result of the unipolar high voltage power supply is the production of a high voltage waveform with a novel "electrical signature," which when combined with a noble gas or other suitable gas, produces a unique harmonic cold plasma that provides advantageous results in wound healing, bacterial removal and other applications.
  • The quenching gap 360 is a component of the unipolar high voltage power supply 310. It modulates the push/pull of electrical energy between the capacitance banks, with the resulting generation of electrical energy that is rich in harmonic content. The quenching gap can be accomplished in a number of different ways, including a sealed spark gap and an unsealed spark gap. The sealed spark gap is not adjustable, while unsealed spark gaps can be adjustable. A sealed spark gap can be realized using, for example, a DECI-ARC 3000 V gas tube from Reynolds Industries, Inc. Adjustable spark gaps provide the opportunity to adjust the output of the unipolar high voltage power supply and the intensity of the cold plasma device to which it is connected. In a further example that incorporates a sealed (and therefore non-adjustable) spark gap, thereby ensuring a stable plasma intensity.
  • In an example of the unipolar high voltage power supply, useful for understanding the present invention, a 555 timer 320 is used to provide a pulse repetition frequency of approximately 150-600 Hz. As discussed above, the unipolar high voltage power supply produces a series of spark gap discharge pulses based on the pulse repetition frequency. The spark gap discharge pulses have a very narrow pulse width due to the extremely rapid discharge of capacitive stored energy across the spark gap. Initial assessments of the pulse width of the spark gap discharge pulses indicate that the pulse width is approximately 1 nsec. The spark gap discharge pulse train can be described or modeled as a filtered pulse train. In particular, a simple resistor-inductor-capacitor (RLC) filter can be used to model the capacitor, high voltage coil and series resistance of the unipolar high voltage power supply. In an example, the spark gap discharge pulse train can be modeled as a simple modeled RLC frequency response centered in the range of around 100 MHz. Based on the pulse repetition frequency of 192 Hz, straightforward signal analysis indicates that there would be approximately 2,000,000 individual harmonic components between DC and 400 MHz.
  • In another example of the unipolar high voltage power supply described above, a 556 timer or any timer circuit can be used in place of the 555 timer 320. In comparison with the 555 timer, the 556 timer provides a wider frequency tuning range that results in greater stability and improved cadence of the unipolar high voltage power supply when used in conjunction with the cold plasma device.
  • Cold Plasma Mask Treatment Device
  • Devices, other than the cold plasma device illustrated above in FIG. 1, can also generate cold plasma. For example, cold plasma can also be generated by a dielectric barrier device, which relies on a different process to generate the cold plasma. As FIG. 4 illustrates, a dielectric barrier device (DBD) 400 contains one metal electrode 410 covered by a dielectric layer 420. The electrical return path 430 is formed by the ground 440 that can be provided by the target substrate or the subject undergoing the cold plasma treatment. Energy for the dielectric barrier device 400 can be provided by a power supply 450, such as that described above and illustrated in FIG. 3. More generally, energy is input to the dielectric barrier device in the form of pulsed electrical voltage to form the plasma discharge. By virtue of the dielectric layer, the discharge is separated from the metal electrode and electrode etching is reduced. The chopped DC electrical voltage can be varied in amplitude and frequency to achieve varying regimes of operation.
  • In exemplary embodiments, the DBD principle is used to provide devices and methods for the application of cold plasma to one or more treatment areas on the face of a patient. The cold plasma application device has a mask form, which provides a confinement dome to which a suitable gas (e.g., helium, oxygen, and the like, including gas combinations) is received, energized to form a cold plasma and provided in close proximity to the desired treatment area, but prevented from reaching unintended areas. Due to the close proximity, the energy of the cold plasma may be buffered in order to provide a lower energy cold plasma. The confinement dome does not cover the eye sockets, nose or mouth - instead, apertures are created in the cold plasma mask application device to allow the eye sockets, nose and mouth to have unimpeded access to the external air. The cold plasma mask application device has support points on the face of the patient to ensure that the confinement dome suitably mirrors the individual contours of the face of the particular patient. The confinement dome can be made using moldable material that prevents penetration by the plasma. Various embodiments of the cold plasma mask application device include an embodiment that allows direct contact of the cold plasma with the treatment area. In an alternative embodiment of the cold plasma mask application device, the cold plasma can be contained in a containment area within the mask, where the containment area is separated from the patient treatment area by a mask layer. In this embodiment, the cold plasma itself acts as a distributed DBD electrode or complex shape, with no direct contact between the cold plasma within the gas confinement area and the treatment area. Instead, it is the electromagnetic fields associated with the cold plasma rather than direct cold plasma contact, provide a therapeutic effect on the treatment area. In further embodiments of the cold plasma mask application device, individualized masks can be manufactured by obtaining a facial scan from which a custom mask can be developed for each patient. Applications to which the various embodiments of the cold plasma mask application device can be applied include the treatment of facial acne, psoriasis, rosacea, facial wounds and skin treatments that benefit from a diminution of skin bacteria.
  • FIG. 5 illustrates one approach to forming the above cold plasma mask application device 500. Cold plasma mask application device 500 is created from three mask layers, 510, 520 and 530 that are sealed together to form the cold plasma mask application device. Inner mask layer 530 is the layer closest to the face of the patient, intermediate mask layer 520 is the intermediate mask layer, and outer mask layer 510 is the outer mask layer farthest from the underlying face of the patient. A metal grid 540 that includes a number of metal electrodes 550 is formed on intermediate mask layer 520, which is described in further detail below. A dielectric covering is provided with each metal electrode 550.
  • To ensure effective sealing, the three mask layers 510, 520, 530 should fit conformally with one another to facilitate an extremely close relationship fit for the resulting cold plasma treatment mask 500. In an exemplary embodiment, the individual masks are preferably molded to the patient's face in order to ensure that the cold plasma treatment mask provides the proper treatment over a patient face. Such molding can involve the conventional use of moldable materials, together with an appropriate molding process that begins with an exact face mold of the patient and finishes with a mask that snugly fits the contours of the face of the patient while providing the means for accepting electrical and gas inputs to form the cold plasma in close proximity to the face of the patient.
  • In an exemplary molding embodiment, the molding process generates the three mask layers 510, 520, 530 from the same face mold to ensure the required close fitting relationship. Between the inner mask layer 530 and the intermediate mask layer 520, a gas containment region (not shown in FIG. 5) is formed into which helium or any other suitable gas, including gas mixtures, is introduced. By virtue of the contact of the metal grid electrodes 550 with the gas, a cold plasma is formed in the gas containment region.
  • FIG. 6 illustrates the underlying principle of metal grid 540. As already illustrated in FIG. 5, metal grid 540 consists of one or more gold-plated nickel pod electrodes that are connected by metal tracks to an input electrode 560. The input electrode receives the input high voltage power supply signal of the type that can be obtained from, for example, pulse source 450 in FIG. 4, or the source illustrated in FIG. 3. Referring to FIG. 6, each pod electrode 610 results in the creation of cold plasma active regions 620 beneath the pod electrode 610, whose intensity diminishes with increasing distance away from the pod electrode 610. By arranging the electrodes 610 in close proximity, the cold plasma active regions 620 can overlap. For example, area 630 is a doubly active region. Similarly, area 640 is a triply active region.
  • As noted above, the electrodes 610 ionize the gas (e.g., helium) contained in the gas containment region formed between the inner mask layer 530 and the intermediate mask layer 520 of the mask assembly. The ionized gas (e.g., ionized helium) then acts as an electrode similar to electrode 410 in FIG. 4. The ionized gas electrode evenly covers the distal surface (i.e., furthest from the patient face) of the inner mask layer 530. This creates a dielectric barrier device (DBD) plasma effect between the proximal surface of inner mask layer 530 and the patient face. The use of an ionized gas as the DBD electrode to achieve an even distribution that is conformal to the treatment area is a significant advancement in the field of cold plasma devices. In such an embodiment, the gas (e.g., helium) does not contact the patient face. Rather, the ionized gas acts as a "distributed electrode" and ensures a uniform application of the DBD plasma induced effects.
  • In an alternate embodiment, the ionized gas can be allowed to contact the patient face. In such an embodiment, one or more apertures in the inner mask layer 530 can be formed to allow a portion of the gas to exit and make contact with the patient's face. The position of the apertures would be located to be consistent with the treatment area(s) of interest.
  • FIG. 7 illustrates a plasma mask having a three-layer construction, with the three mask layers 710, 720, 730 shown prior to assembly. In this embodiment, the mask layers 710, 720, 730 use clear acrylic material. In a particular embodiment, the mask layers can use 1.75 mm thick clear acrylic material.
  • As noted above, inner mask layer 730 is the layer that is most proximal to the face. Inner mask layer 730 can closely match the contours of the patient's face. In one embodiment, the "close match" can be achieved with a variety of data capture and mask construction methods. To acquire the shape of a patient face, a variety of digital and mechanical methods are available including but not limited to surface laser scanning, stereophotogrammetry, and direct molding with a curable material. To create inner mask layer 730, a replica of the face may be generated by casting from a mold, vacuum or heat forming to a mold, or a myriad of rapid prototyping techniques from three-dimensional digital data. The other two mask layers, intermediate mask layer 720 and external mask layer 710, are formed using the same approach as that used for inner mask layer 730. Other approaches that yield mask layers that are conformal to the patient's face are equally applicable, and within the scope of the present invention.
  • FIG. 8 illustrates the fitting of the nickel pod electrodes 820 on the intermediate mask layer 810. Tracks 830 are used to electrically connect the nickel pod electrodes 820 to each other, and to the electrical input electrode (not shown). The nickel pod electrodes 820 use nickel contacts placed on a dielectric plug having a thickness approximately the same as that of the intermediate mask layer 810. The diameter of the dielectric plug matches the aperture diameters formed in the intermediate mask layer 810. In an embodiment of the present invention, dielectric plugs can be manufactured using clear quartz.
  • FIG. 9 illustrates an approach to providing a gas inlet and gas outlet for provision of gas to the gas containment region between inner mask layer and intermediate mask layer. FIG. 9 shows outer mask layer 910 that has already been formed over intermediate mask layer, and underlying inner mask layer. In an exemplary embodiment, helium gas, a noble gas or other suitable gas would be supplied via gas inlet 920a and returned via gas outlet 920b. In an embodiment, gas inlet 920a and gas outlet 920b can be formed using materials such as polypropylene, polyethylene, or PTFE. In an additional embodiment, the gas can be recirculated through a pump in order to improve the gas usage efficiency. FIG. 9 also shows electrical input electrode 930 is shown to which electrical energy from a pulse source would be applied, as noted above. In a still further embodiment, the gas can be recirculated by convection, and thereby improve the gas usage efficiency.
  • FIG. 10 illustrates an approach to providing recirculation of gas to a sealed gas containment region. Such an embodiment avoids the problem of overheating in the use of a sealed gas containment region. FIG. 10 shows cold plasma mask 1010 with a gas outlet 1020 from and a gas inlet 1030 from the gas containment region. Energized gas would exit from gas outlet 1020 and flow into chamber 1040 via pipe 1050. Chamber 1040 provides for the quenching of the energized gas. Following quenching, gas returns via pipe 1060 to gas inlet 1030. In another embodiment, chamber 1040 can also provide for additional gas storage. Note that although gas pipes 1050, 1060 and gas outlet 1020, gas inlet 1030 and chamber 1040 are shown as separated from cold plasma mask 1010, any one or more of these items can be integrated within the cold plasma mask 1010. In a further approach to the overheating issue, the cold plasma mask can be run for short durations using an appropriate on/off cycle.
  • Cold Plasma Mask Manufacturing and Usage Method
  • FIG. 11 provides a flowchart of an exemplary method 1100 to provide manufacture a cold plasma mask treatment device, according to an embodiment of the present invention.
  • The process begins at step 1110. In step 1110, a first mask layer of a cold plasma mask application device is formed, the first mask layer being configured to conform to the contours of the face. In an embodiment, a first mask layer 530 is formed. In some embodiments of this method, an acquisition of the face contours precedes step 1110.
  • In step 1120, a second mask layer is formed over the first mask layer, the second mask layer configured to form a gas containment region between the first layer and the second layer. In an embodiment, a second mask layer 520 is formed to form a gas containment region between second mask layer 520 and first mask layer 530.
  • In step 1130, a gas inlet and a gas outlet is attached to the second layer, the gas inlet and gas outlet thereby being coupled to the gas containment region, whereby gas can be received from the gas inlet and returned via the gas outlet. In an embodiment, gas inlet 920a and gas outlet 920b is formed to be communicatively coupled to the gas containment region.
  • In step 1140, an electrical input port is coupled by a plurality of metal tracks to one or more electrical nodes in an electrical grid, the one or more electrical nodes formed on an exterior surface of the second layer, and having contact with the interior of the internal region, wherein the electrical port is further configured to be coupled to a unipolar high voltage power supply to thereby generate cold plasma in the internal region.
  • In step 1150, a third mask layer is formed over the second mask layer to provide an external protection layer to the cold plasma mask application device.
  • At step 1160, method 1100 ends.
  • FIG. 12 provides a flowchart of an exemplary method 1200 to provide manufacture a cold plasma mask treatment device, according to an embodiment of the present invention.
  • The process begins at step 1205. In step 1205, contours of a face are received.
  • In step 1210, a first mask layer of a cold plasma mask application device is formed, the first mask layer being configured to conform to the contours of the face. In an embodiment, a first mask layer 530 is formed.
  • In step 1220, a second mask layer is formed over the first mask layer, the second mask layer configured to form a gas containment region between the first layer and the second layer. In an embodiment, a second mask layer 520 is formed to form a gas containment region between second mask layer 520 and first mask layer 530.
  • In step 1230, the gas containment region is purged, filled with suitable gas (such as a noble gas), and the gas containment region is sealed.
  • In step 1240, an electrical input port is coupled by a plurality of metal tracks to one or more electrical nodes in an electrical grid, the one or more electrical nodes formed on an exterior surface of the second layer, and having contact with the interior of the internal region, wherein the electrical port is further configured to be coupled to a unipolar high voltage power supply to thereby generate cold plasma in the internal region.
  • In step 1250, a third mask layer is formed over the second mask layer to provide an external protection layer to the cold plasma mask application device.
  • At step 1260, method 1200 ends.
  • FIG. 13 provides a flowchart of an exemplary method 1300 to use a cold plasma mask application device, according to an embodiment of the present invention.
  • The process begins at step 1310. In step 1310, a suitable gas is received.
  • In step 1320, the gas is energized to form a cold plasma within a conformable mask, the conformable mask having a contour conforming to a face of a patient that includes a treatment area, the conformable mask avoiding one or more of an eye socket, a nose and a mouth of the patient.
  • In step 1330, the cold plasma is maintained within the conformable mask to treat the treatment area.
  • At step 1340, method 1300 ends.
  • It is to be appreciated that the Detailed Description section, and not the Summary and Abstract sections, is intended to be used to interpret the claims. The Summary and Abstract sections may set forth one or more but not all exemplary embodiments of the present invention as contemplated by the inventor(s), and thus, are not intended to limit the present invention and the appended claims in any way.
  • The present invention has been described above with the aid of functional building blocks illustrating the implementation of specified functions and relationships thereof. The boundaries of these functional building bocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed.
  • The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the scope of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.
  • The breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims.

Claims (10)

  1. A cold plasma treatment mask (500, 1010) for application to a face having contours, comprising:
    a first mask layer (530, 730) and a second mask layer (520, 720, 810), the first (530, 730) and second (520, 720, 810) mask layers being configured to conform to the contours of the face;
    a gas containment region formed between the first (530, 730) and second (520, 720, 810) mask layers, the gas containment region communicatively coupled to a gas inlet (920a, 1030) and a gas outlet (920b, 1020); and
    an electrical input port (560, 930) coupled by a plurality of metal tracks (540, 830) to one or more electrical nodes (550, 610, 820), the one or more electrical nodes (550, 610, 820) having contact with the interior of the gas containment region, wherein the electrical input port (560, 930) is further configured to be coupled to a unipolar high voltage power supply (450) to thereby generate cold plasma in the gas containment region.
  2. The cold plasma treatment mask (500, 1010) of claim 1, further comprising:
    a third mask layer (510, 710, 910) adjacent to the second mask layer (520, 720, 810) to provide an external layer to the cold plasma treatment mask (500, 1010).
  3. The cold plasma treatment mask (500, 1010) of claims 1 or 2, further comprising:
    one or more cutouts in the mask (500, 1010) in positions associated with at least one of a mouth, a nose and an eye of the face.
  4. The cold plasma treatment mask (500, 1010) of claims 1 or 2, wherein the gas comprises helium.
  5. The cold plasma treatment mask (500, 1010) of claims 1 or 2, wherein locations of the one or more electrical nodes (550, 610, 820) are aligned with treatment areas of the face.
  6. The cold plasma treatment mask (500, 1010) of claims 1 or 2, wherein at least one of the first layer (530, 730) and the second layer (520, 720, 810) comprise acrylic.
  7. The cold plasma treatment mask of claims 1 or 2, wherein the electrical nodes (550, 610, 820) comprise gold-plated nickel formed on quartz plugs.
  8. The cold plasma treatment mask (500, 1010) of claims 1 or 2, wherein the electrical nodes (550, 610, 820) include two electrical nodes (550, 610, 820) in sufficient proximity to create double-active cold plasma regions, or wherein the electrical nodes (550, 610, 820) include three electrical nodes (550, 610, 820) in sufficient proximity to create triple-active cold plasma regions.
  9. The cold plasma treatment mask (500, 1010) of claims 1 or 2, wherein the first (530, 730) and second (520, 720, 810) mask layers are further configured to avoid one or more of an eye socket, a nose and a mouth of the patient.
  10. The cold plasma treatment mask (500, 1010) of claims 1 or 2, wherein the first mask layer (530, 730) comprises an aperture configured to allow a portion of the generated cold plasma to escape the gas containment region and make contact with a part of the face.
EP12832526.3A 2011-09-15 2012-09-14 Cold plasma treatment devices Active EP2756517B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201161535250P true 2011-09-15 2011-09-15
PCT/US2012/055599 WO2013040473A1 (en) 2011-09-15 2012-09-14 Cold plasma treatment devices and associated methods

Publications (3)

Publication Number Publication Date
EP2756517A1 EP2756517A1 (en) 2014-07-23
EP2756517A4 EP2756517A4 (en) 2015-03-11
EP2756517B1 true EP2756517B1 (en) 2018-05-02

Family

ID=47879451

Family Applications (9)

Application Number Title Priority Date Filing Date
EP12831964.7A Active EP2756516B1 (en) 2011-09-15 2012-09-14 Cold plasma treatment devices and associated methods
EP12832526.3A Active EP2756517B1 (en) 2011-09-15 2012-09-14 Cold plasma treatment devices
EP12831962.1A Active EP2756515B1 (en) 2011-09-15 2012-09-14 Cold plasma treatment device and associated method
EP14195019.6A Active EP2854268B1 (en) 2011-09-15 2012-09-14 Cold plasma treatment devices and associated methods
EP20120838901 Pending EP2758979A4 (en) 2011-09-15 2012-09-14 Harmonic cold plasma devices and associated methods
EP12830964.8A Active EP2756514B1 (en) 2011-09-15 2012-09-14 Cold plasma treatment devices and associated methods
EP12832476.1A Active EP2756740B1 (en) 2011-09-15 2012-09-14 Cold plasma treatment devices and associated methods
EP12832065.2A Active EP2756739B1 (en) 2011-09-15 2012-09-14 Cold plasma sterilization devices and associated methods
EP20120831536 Pending EP2755716A4 (en) 2011-09-15 2012-09-14 Harmonic cold plasma devices and associated methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP12831964.7A Active EP2756516B1 (en) 2011-09-15 2012-09-14 Cold plasma treatment devices and associated methods

Family Applications After (7)

Application Number Title Priority Date Filing Date
EP12831962.1A Active EP2756515B1 (en) 2011-09-15 2012-09-14 Cold plasma treatment device and associated method
EP14195019.6A Active EP2854268B1 (en) 2011-09-15 2012-09-14 Cold plasma treatment devices and associated methods
EP20120838901 Pending EP2758979A4 (en) 2011-09-15 2012-09-14 Harmonic cold plasma devices and associated methods
EP12830964.8A Active EP2756514B1 (en) 2011-09-15 2012-09-14 Cold plasma treatment devices and associated methods
EP12832476.1A Active EP2756740B1 (en) 2011-09-15 2012-09-14 Cold plasma treatment devices and associated methods
EP12832065.2A Active EP2756739B1 (en) 2011-09-15 2012-09-14 Cold plasma sterilization devices and associated methods
EP20120831536 Pending EP2755716A4 (en) 2011-09-15 2012-09-14 Harmonic cold plasma devices and associated methods

Country Status (3)

Country Link
US (13) US8928230B2 (en)
EP (9) EP2756516B1 (en)
WO (8) WO2013040476A1 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9656095B2 (en) 2007-04-23 2017-05-23 Plasmology4, Inc. Harmonic cold plasma devices and associated methods
US8928230B2 (en) * 2008-02-27 2015-01-06 Cold Plasma Medical Technologies, Inc. Cold plasma treatment devices and associated methods
US9521736B2 (en) * 2007-04-23 2016-12-13 Plasmology4, Inc. Cold plasma electroporation of medication and associated methods
US10039927B2 (en) 2007-04-23 2018-08-07 Plasmology4, Inc. Cold plasma treatment devices and associated methods
US7633231B2 (en) 2007-04-23 2009-12-15 Cold Plasma Medical Technologies, Inc. Harmonic cold plasma device and associated methods
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
DE102009028462A1 (en) * 2009-08-11 2011-03-24 Leibniz-Institut für Plasmaforschung und Technologie e.V. Apparatus and method for the treatment of living cells by means of a plasma
US9782852B2 (en) * 2010-07-16 2017-10-10 Hypertherm, Inc. Plasma torch with LCD display with settings adjustment and fault diagnosis
US9220162B2 (en) * 2011-03-09 2015-12-22 Samsung Electronics Co., Ltd. Plasma generating apparatus and plasma generating method
US9078665B2 (en) 2011-09-28 2015-07-14 Angiodynamics, Inc. Multiple treatment zone ablation probe
US9395715B2 (en) 2012-04-04 2016-07-19 Hypertherm, Inc. Identifying components in a material processing system
US9672460B2 (en) 2012-04-04 2017-06-06 Hypertherm, Inc. Configuring signal devices in thermal processing systems
US20150332071A1 (en) 2012-04-04 2015-11-19 Hypertherm, Inc. Configuring Signal Devices in Thermal Processing Systems
US20140069895A1 (en) * 2012-04-04 2014-03-13 Hypertherm, Inc. Automated cartridge detection for a plasma arc cutting system
US9737954B2 (en) 2012-04-04 2017-08-22 Hypertherm, Inc. Automatically sensing consumable components in thermal processing systems
US10455682B2 (en) 2012-04-04 2019-10-22 Hypertherm, Inc. Optimization and control of material processing using a thermal processing torch
RU2015109276A (en) 2012-09-14 2016-11-10 Колд Плазма Медикал Текнолоджиз, Инк. Therapeutic application of cold plasma
US9295280B2 (en) * 2012-12-11 2016-03-29 Plasmology4, Inc. Method and apparatus for cold plasma food contact surface sanitation
US8896211B2 (en) * 2013-01-16 2014-11-25 Orteron (T.O) Ltd Physical means and methods for inducing regenerative effects on living tissues and fluids
US10266802B2 (en) * 2013-01-16 2019-04-23 Orteron (T.O) Ltd. Method for controlling biological processes in microorganisms
DE102013100617B4 (en) * 2013-01-22 2016-08-25 Epcos Ag Device for generating a plasma and handheld device with the device
FR3007273B1 (en) * 2013-06-21 2015-07-31 Oreal Cosmetic use of cold plasma
US9481050B2 (en) 2013-07-24 2016-11-01 Hypertherm, Inc. Plasma arc cutting system and persona selection process
US9643273B2 (en) 2013-10-14 2017-05-09 Hypertherm, Inc. Systems and methods for configuring a cutting or welding delivery device
WO2015059702A1 (en) * 2013-10-24 2015-04-30 Ionmed Ltd. Cold plasma treatment
TWI486996B (en) * 2013-12-04 2015-06-01 Ind Tech Res Inst Plasma device and operation method of plasma device
DE102013113941B4 (en) * 2013-12-12 2015-07-23 Reinhausen Plasma Gmbh Arrangement for the treatment of wounds
US9437401B2 (en) 2013-12-20 2016-09-06 Plasmology4, Inc. System and method for plasma treatment using directional dielectric barrier discharge energy system
US20150209595A1 (en) * 2014-01-30 2015-07-30 EP Technologies LLC Method and apparatus for intracellular and intercellular delivery of molecules, drugs, vaccines and the like
WO2015134966A1 (en) 2014-03-07 2015-09-11 Hypertherm, Inc. Liquid pressurization pump and systems with data storage
JP2015186568A (en) * 2014-03-13 2015-10-29 パナソニックIpマネジメント株式会社 massage device and massage method
CN103917035B (en) * 2014-04-03 2017-04-19 华中科技大学 Device for handling particles and gaseous material using non equilibrium plasma
CN103920237B (en) * 2014-04-29 2016-11-16 方墨希 Means for repairing oxidative damage of dna
US9498637B2 (en) * 2014-05-30 2016-11-22 Plasmology4, Inc. Wearable cold plasma system
US20170304601A1 (en) * 2014-09-23 2017-10-26 Avidas Pharmaceuticals Llc Delivery and Induction of therapeutic agents and Uses Thereof
ES2579979B1 (en) * 2014-12-09 2017-07-07 Fermoinvers, S.L. Procedure for obtaining implants with a personalized surface
US9666415B2 (en) * 2015-02-11 2017-05-30 Ford Global Technologies, Llc Heated air plasma treatment
JP2018511158A (en) 2015-03-11 2018-04-19 プラスモロジー4,インコーポレイティド Container processing system
US10199202B2 (en) * 2015-04-09 2019-02-05 Oral 28 Inc. Plasma irradiation apparatus and plasma irradiation method
JP2017004930A (en) * 2015-06-05 2017-01-05 パナソニックIpマネジメント株式会社 Plasma generator
US9685306B2 (en) 2015-06-24 2017-06-20 The Boeing Company Ventilation systems for use with a plasma treatment system
WO2017004080A1 (en) * 2015-07-01 2017-01-05 The George Washington University System and method for magnetically mediated plasma treatment of cancer with enhanced selectivity
US20170181923A1 (en) * 2015-12-29 2017-06-29 HCT Group Holdings Limited Facial massaging mask
US20180050120A1 (en) 2016-06-06 2018-02-22 Plasmology4, Inc. Synthesis of nanoparticle in liquid, semi-solid media and in cells and tissues using cold plasma technology
US20180366298A1 (en) * 2016-08-02 2018-12-20 Feagle Co., Ltd Plasma enhancement member, and plasma supplying apparatus and medical instrument including the same
RU2638797C1 (en) * 2016-12-19 2017-12-15 Александр Михайлович Астафьев Gas-discharge device for processing heat-sensitive surfaces
KR20190109734A (en) * 2017-01-27 2019-09-26 아피스 메디컬 코퍼레이션 Apparatus and method for cold plasma skin regeneration
DE102017201441A1 (en) 2017-01-30 2018-08-02 Fresenius Medical Care Deutschland Gmbh Disinfection machine for disinfecting the skin and procedures
NL2020126B1 (en) * 2017-12-19 2019-06-26 Plasmacure B V EMC control for pulsed high voltage source of a plasma device for medical treatment
CN109103801A (en) * 2018-10-17 2018-12-28 国网重庆市电力公司检修分公司 SF6 gas insulation power device leakage plugging device and its control method

Family Cites Families (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1925553A (en) 1931-01-21 1933-09-05 Eastman Kodak Co Cuide means for alpha photographic roll holder
FR1081196A (en) 1953-04-24 1954-12-16 Csf Air for short electromagnetic waves
US3432722A (en) 1966-01-17 1969-03-11 Gen Electric Electromagnetic wave generating and translating apparatus
US3487414A (en) 1967-07-19 1969-12-30 Aylwin R Booker Omnidirectional antenna
US3735591A (en) 1971-08-30 1973-05-29 Usa Magneto-plasma-dynamic arc thruster
US4088926A (en) 1976-05-10 1978-05-09 Nasa Plasma cleaning device
US4365622A (en) 1980-09-11 1982-12-28 Donald L. Morton & Associates Multiple plate resonant electrode
US4380320A (en) 1981-02-25 1983-04-19 Nordson Corporation Electrostatic powder spray gun nozzle
US4422013A (en) 1981-07-21 1983-12-20 The United States Of America As Represented By The Secretary Of The Navy MPD Intense beam pulser
US4473875A (en) * 1982-01-21 1984-09-25 The United States Of America As Represented By The United States Department Of Energy Inductive storage pulse circuit device
US4781175A (en) * 1986-04-08 1988-11-01 C. R. Bard, Inc. Electrosurgical conductive gas stream technique of achieving improved eschar for coagulation
US4954320A (en) * 1988-04-22 1990-09-04 The United States Of America As Represented By The Secretary Of The Army Reactive bed plasma air purification
US4866240A (en) * 1988-09-08 1989-09-12 Stoody Deloro Stellite, Inc. Nozzle for plasma torch and method for introducing powder into the plasma plume of a plasma torch
DE4022393C2 (en) 1990-07-13 1993-06-24 Marquardt, Klaus, 7522 Philippsburg, De
DE69221923D1 (en) 1991-04-08 1997-10-09 Nec Corp Common intermediate format converter with reduced Multipliziereranzahl
US5079482A (en) 1991-02-25 1992-01-07 Villecco Roger A Directed electric discharge generator
US5208436A (en) * 1991-04-12 1993-05-04 The Lincoln Electric Company Plasma torch with identification circuit
US5216330A (en) 1992-01-14 1993-06-01 Honeywell Inc. Ion beam gun
US5304888A (en) 1992-01-24 1994-04-19 Etec Systems, Inc. Mechanically stable field emission gun
US5225740A (en) 1992-03-26 1993-07-06 General Atomics Method and apparatus for producing high density plasma using whistler mode excitation
US5765556A (en) * 1992-12-16 1998-06-16 Tecnol Medical Products, Inc. Disposable aerosol mask with face shield
US6055982A (en) * 1993-12-15 2000-05-02 Kimberly-Clark Worldwide, Inc. Disposable face mask with enhanced fluid barrier
US5724964A (en) * 1993-12-15 1998-03-10 Tecnol Medical Products, Inc. Disposable face mask with enhanced fluid barrier
US5527357A (en) 1994-06-24 1996-06-18 Springer, Jr.; George E. Apparatus for toning facial tissue
DE19532105C2 (en) * 1994-08-30 2002-11-14 Fraunhofer Ges Forschung Method and apparatus for the treatment of three-dimensional workpieces with a direct barrier discharge as well as methods for producing a barrier provided with an electrode for this barrier discharge
JP3015268B2 (en) 1994-12-27 2000-03-06 オーニット株式会社 Low-temperature plasma generator
US5643336A (en) * 1995-01-09 1997-07-01 Lopez-Claros; Marcelo Enrique Heating and cooling pad
US6213999B1 (en) 1995-03-07 2001-04-10 Sherwood Services Ag Surgical gas plasma ignition apparatus and method
US5669904A (en) 1995-03-07 1997-09-23 Valleylab Inc. Surgical gas plasma ignition apparatus and method
US7006874B2 (en) 1996-01-05 2006-02-28 Thermage, Inc. Treatment apparatus with electromagnetic energy delivery device and non-volatile memory
US6099523A (en) 1995-06-27 2000-08-08 Jump Technologies Limited Cold plasma coagulator
US5876663A (en) 1995-11-14 1999-03-02 The University Of Tennessee Research Corporation Sterilization of liquids using plasma glow discharge
US5977715A (en) * 1995-12-14 1999-11-02 The Boeing Company Handheld atmospheric pressure glow discharge plasma source
JP3107512B2 (en) 1996-01-31 2000-11-13 東光株式会社 High-frequency tuning circuit
JP3328498B2 (en) 1996-02-16 2002-09-24 株式会社荏原製作所 Fast atom beam source
US6113851A (en) 1996-03-01 2000-09-05 Phygen Apparatus and process for dry sterilization of medical and dental devices and materials
DE19706269A1 (en) * 1996-03-21 1997-09-25 Valleylab Inc Instrument for gas-enriched electrosurgery
US5909086A (en) 1996-09-24 1999-06-01 Jump Technologies Limited Plasma generator for generating unipolar plasma
US5961772A (en) * 1997-01-23 1999-10-05 The Regents Of The University Of California Atmospheric-pressure plasma jet
GB9703159D0 (en) 1997-02-15 1997-04-02 Helica Instr Limited Medical apparatus
US7658891B1 (en) * 1997-11-21 2010-02-09 Barnes Ronald L Air purification and decontamination for hazmat suits
US6029269A (en) * 1997-12-22 2000-02-29 Boeing North American, Inc. Ballistic-resistant helmet and method for producing the same
US6060027A (en) * 1998-05-14 2000-05-09 Fantom Technologies Inc. Ozone generator
DE19823748C2 (en) * 1998-05-27 2000-05-18 Siemens Ag Method and apparatus for plasma-chemical production of nitric oxide
US7494488B2 (en) * 1998-05-28 2009-02-24 Pearl Technology Holdings, Llc Facial tissue strengthening and tightening device and methods
US6204605B1 (en) 1999-03-24 2001-03-20 The University Of Tennessee Research Corporation Electrodeless discharge at atmospheric pressure
US6262523B1 (en) 1999-04-21 2001-07-17 The Regents Of The University Of California Large area atmospheric-pressure plasma jet
US6958063B1 (en) 1999-04-22 2005-10-25 Soring Gmbh Medizintechnik Plasma generator for radio frequency surgery
US6969487B1 (en) * 1999-05-06 2005-11-29 Intecon Systems, Inc. Denaturing of a biochemical agent using an activated cleaning fluid mist
US6455014B1 (en) 1999-05-14 2002-09-24 Mesosystems Technology, Inc. Decontamination of fluids or objects contaminated with chemical or biological agents using a distributed plasma reactor
US20020129902A1 (en) * 1999-05-14 2002-09-19 Babayan Steven E. Low-temperature compatible wide-pressure-range plasma flow device
US6096564A (en) 1999-05-25 2000-08-01 Wisconsin Alumni Research Foundation Plasma-aided treatment of surfaces against bacterial attachment and biofilm deposition
US6228330B1 (en) 1999-06-08 2001-05-08 The Regents Of The University Of California Atmospheric-pressure plasma decontamination/sterilization chamber
FI106364B (en) 1999-06-21 2001-01-31 Lehtoluoto Eeva Liisa Skin Cleansing Device
US7215697B2 (en) 1999-08-27 2007-05-08 Hill Alan E Matched impedance controlled avalanche driver
US6474060B2 (en) * 1999-11-17 2002-11-05 Southwest Research Institute Exhaust gas recirculation filtration system
US7192553B2 (en) * 1999-12-15 2007-03-20 Plasmasol Corporation In situ sterilization and decontamination system using a non-thermal plasma discharge
US6403029B1 (en) 2000-01-12 2002-06-11 The Trustees Of Princeton University System and method of applying energetic ions for sterilization
FR2803978A1 (en) 2000-01-17 2001-07-20 Air Liquide Plasma torch with the identification system of the head, of the electrode or nozzle
US7300436B2 (en) 2000-02-22 2007-11-27 Rhytec Limited Tissue resurfacing
US7785322B2 (en) 2000-02-22 2010-08-31 Plasmogen Inc. Tissue treatment system
US7335199B2 (en) 2000-02-22 2008-02-26 Rhytec Limited Tissue resurfacing
WO2002032335A1 (en) * 2000-07-25 2002-04-25 Rita Medical Systems Inc. Apparatus for detecting and treating tumors using localized impedance measurement
US6417625B1 (en) 2000-08-04 2002-07-09 General Atomics Apparatus and method for forming a high pressure plasma discharge column
EP1182272A1 (en) * 2000-08-23 2002-02-27 Cold Plasma Applications C.P.A. Process and apparatus for continuous cold plasma deposition of metallic layers
US6441554B1 (en) 2000-11-28 2002-08-27 Se Plasma Inc. Apparatus for generating low temperature plasma at atmospheric pressure
US6611106B2 (en) 2001-03-19 2003-08-26 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US7288293B2 (en) 2001-03-27 2007-10-30 Apit Corp. S.A. Process for plasma surface treatment and device for realizing the process
US7011790B2 (en) 2001-05-07 2006-03-14 Regents Of The University Of Minnesota Non-thermal disinfection of biological fluids using non-thermal plasma
US20020187066A1 (en) * 2001-06-07 2002-12-12 Skion Corporation Apparatus and method using capillary discharge plasma shower for sterilizing and disinfecting articles
US7078000B2 (en) * 2001-06-14 2006-07-18 Delphi Technologies, Inc. Apparatus and method for mat protection of non-thermal plasma reactor
US20030030374A1 (en) 2001-08-03 2003-02-13 Deepak Pai Dielectric barrier discharge plasma reactor cell
US7258899B1 (en) 2001-12-13 2007-08-21 Amt Holdings, Inc. Process for preparing metal coatings from liquid solutions utilizing cold plasma
US6764658B2 (en) * 2002-01-08 2004-07-20 Wisconsin Alumni Research Foundation Plasma generator
US7681572B2 (en) * 2002-08-20 2010-03-23 Aga Ab Method and devices for administration of therapeutic gases
US7316682B2 (en) 2002-12-17 2008-01-08 Aaron Medical Industries, Inc. Electrosurgical device to generate a plasma stream
US6932125B2 (en) * 2003-05-08 2005-08-23 Virgil E. Stanley Helium balloon kit
AU2004251649A1 (en) 2003-06-16 2005-01-06 Cerionx, Inc. Atmospheric pressure non-thermal plasma device to clean and sterilize the surface of probes, cannulas, pin tools, pipettes and spray heads
JP2005048259A (en) * 2003-07-31 2005-02-24 Matsushita Electric Ind Co Ltd Plasma processing apparatus
US7081711B2 (en) 2003-10-28 2006-07-25 Applied Pulsed Power, Inc. Inductively generated streaming plasma ion source
US7156131B2 (en) 2003-12-01 2007-01-02 Societe Bic Method and apparatus for filling a fuel container
US7572255B2 (en) * 2004-02-03 2009-08-11 Covidien Ag Gas-enhanced surgical instrument
US8502108B2 (en) * 2004-05-28 2013-08-06 Old Dominion University Research Foundation Method and device for creating a micro plasma jet
US8471171B2 (en) * 2004-05-28 2013-06-25 Robert O. Price Cold air atmospheric pressure micro plasma jet application method and device
US7271363B2 (en) 2004-09-01 2007-09-18 Noritsu Koki Co., Ltd. Portable microwave plasma systems including a supply line for gas and microwaves
US20060122560A1 (en) * 2004-12-07 2006-06-08 Robert Burgmeier Medical devices and processes for preparing same
US7183515B2 (en) * 2004-12-20 2007-02-27 Lockhead-Martin Corporation Systems and methods for plasma jets
US9215788B2 (en) 2005-01-18 2015-12-15 Alma Lasers Ltd. System and method for treating biological tissue with a plasma gas discharge
US20060156983A1 (en) * 2005-01-19 2006-07-20 Surfx Technologies Llc Low temperature, atmospheric pressure plasma generation and applications
US20060162741A1 (en) * 2005-01-26 2006-07-27 Cerionx, Inc. Method and apparatus for cleaning and surface conditioning objects with plasma
US20060182704A1 (en) * 2005-02-15 2006-08-17 Gianelli Penelope M Disposable Whole Face Mask for Topical Delivery of Cosmetic, Nutritional or Medicinal Preparations and for use with Facial Massage, Acupressure and Aroma Therapies and the Method of Applying Topical Cosmetic, Nutritional or Medicinal Preparations thereby
JP4817407B2 (en) * 2005-03-07 2011-11-16 学校法人東海大学 Plasma generating apparatus and plasma generating method
AU2006220583B2 (en) 2005-03-07 2011-01-20 Old Dominion University Plasma generator
US8521274B2 (en) 2005-04-25 2013-08-27 Drexel University Methods for non-thermal application of gas plasma to living tissue
US7615931B2 (en) 2005-05-02 2009-11-10 International Technology Center Pulsed dielectric barrier discharge
CA2547043C (en) * 2005-08-05 2014-07-29 Mcgill University A plasma source and applications thereof
EP1765044A1 (en) 2005-09-16 2007-03-21 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Plasma source
US20070062510A1 (en) * 2005-09-22 2007-03-22 Lester Broersma Multiple cannister supply paintball marker
US8267884B1 (en) * 2005-10-07 2012-09-18 Surfx Technologies Llc Wound treatment apparatus and method
FI119870B (en) 2005-11-30 2009-04-30 Lehtoluoto Sinikka Anneleena Face mask
US8876746B2 (en) * 2006-01-06 2014-11-04 Arthrocare Corporation Electrosurgical system and method for treating chronic wound tissue
US7691101B2 (en) 2006-01-06 2010-04-06 Arthrocare Corporation Electrosurgical method and system for treating foot ulcer
DE102006019664B4 (en) 2006-04-27 2017-01-05 Leibniz-Institut für Plasmaforschung und Technologie e.V. Cold plasma hand-held device for the plasma treatment of surfaces
JP5260515B2 (en) 2006-07-31 2013-08-14 テクナ・プラズマ・システムズ・インコーポレーテッド Plasma surface treatment using dielectric barrier discharge
DE102006046763A1 (en) 2006-09-29 2008-04-03 Heribert Artmann Device e.g. for air ionization, has ionizations device which has ionization chamber and ionization electrode and chamber has filter to collect ionized air outlet such as inhalation mask
DE102006051043B4 (en) * 2006-10-30 2008-11-27 Aute AG Gesellschaft für autogene Technik Method and apparatus for oxygen cutting of steel castings and workpieces in or after continuous steel casting plants
JP2008143669A (en) 2006-12-11 2008-06-26 Brother Ind Ltd Article managing system, radio tag, and radio tag information reading device
US20080159925A1 (en) 2006-12-27 2008-07-03 Ngk Insulators, Ltd. Plasma processing apparatus
US20080179286A1 (en) 2007-01-29 2008-07-31 Igor Murokh Dielectric plasma chamber apparatus and method with exterior electrodes
US7930772B2 (en) * 2007-02-05 2011-04-26 Pedro Javier Fontanez Blind head cooling helmet
KR101087445B1 (en) 2007-03-27 2011-11-25 세키스이가가쿠 고교가부시키가이샤 Plasma processing apparatus
US7633231B2 (en) 2007-04-23 2009-12-15 Cold Plasma Medical Technologies, Inc. Harmonic cold plasma device and associated methods
US8928230B2 (en) * 2008-02-27 2015-01-06 Cold Plasma Medical Technologies, Inc. Cold plasma treatment devices and associated methods
DE102007030915A1 (en) 2007-07-03 2009-01-22 Cinogy Gmbh Device for the treatment of surfaces with a plasma generated by means of an electrode via a solid dielectric by a dielectrically impeded gas discharge
DE102007037406A1 (en) 2007-08-08 2009-06-04 Neoplas Gmbh Method and device for plasma assisted surface treatment
US20090061200A1 (en) 2007-08-31 2009-03-05 Tristar Plastics Corporation Hydrophobic Insulation Material
KR100898813B1 (en) * 2007-10-11 2009-05-22 문 기 조 Plasma decomposition apparatus and method for carbon dioxide
WO2009050240A1 (en) * 2007-10-16 2009-04-23 Centre National De La Recherche Scientifique (Cnrs) Transient plasma ball generation system at long distance
CN101897240A (en) 2007-12-10 2010-11-24 建筑研究和技术有限公司 Method and device for the treatment of surfaces
CN101227790B (en) 2008-01-25 2011-01-26 华中科技大学 Plasma jet apparatus
US8361276B2 (en) 2008-02-11 2013-01-29 Apjet, Inc. Large area, atmospheric pressure plasma for downstream processing
US8519354B2 (en) * 2008-02-12 2013-08-27 Purdue Research Foundation Low temperature plasma probe and methods of use thereof
US7777151B2 (en) 2008-02-14 2010-08-17 Adventix Technologies Inc. Portable plasma sterilizer
US8372238B2 (en) * 2008-05-20 2013-02-12 Nordson Corporation Multiple-electrode plasma processing systems with confined process chambers and interior-bussed electrical connections with the electrodes
EP2145978A1 (en) 2008-07-16 2010-01-20 AGC Flat Glass Europe SA Method and installation for depositing layers on a substrate
EP2145701A1 (en) * 2008-07-16 2010-01-20 AGC Flat Glass Europe SA Method and installation for surface preparation by dielectric barrier discharge
US8222622B2 (en) * 2008-08-04 2012-07-17 Cambwick Healthcare K.K. Electron irradiation apparatus of DC-type dielectric barrier discharge and electrical therapeutic apparatus
EP2170022A1 (en) * 2008-09-25 2010-03-31 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Plasma applicator and corresponding method
US8372068B2 (en) 2008-10-21 2013-02-12 Hermes Innovations, LLC Tissue ablation systems
WO2010056414A1 (en) * 2008-11-14 2010-05-20 Cardiac Pacemakers, Inc. Cold plasma bonding of polymeric tubing in implantable medical devices
CN101426327B (en) 2008-12-02 2012-01-25 华中科技大学 Plasma jet device
US8372130B2 (en) * 2009-01-23 2013-02-12 Forever Young International, Inc. Temperature controlled facial mask with area-specific treatments
US8906659B2 (en) * 2009-03-16 2014-12-09 Drexel University Plasma treatment for growth factor release from cells and tissues
WO2010107744A1 (en) * 2009-03-16 2010-09-23 Drexel University Apparatus for atmospheric pressure pin-to-hole spark discharge and uses thereof
US20120100524A1 (en) 2009-03-16 2012-04-26 Drexel University Tubular floating electrode dielectric barrier discharge for applications in sterilization and tissue bonding
US8460283B1 (en) * 2009-04-03 2013-06-11 Old Dominion University Low temperature plasma generator
US8294369B1 (en) 2009-05-04 2012-10-23 Old Dominion University Low temperature plasma generator having an elongate discharge tube
EP2462785B1 (en) 2009-08-03 2014-10-29 Leibniz-Institut für Plasmaforschung und Technologie e.V. Device for generating a non-thermal atmospheric pressure plasma
US20110040239A1 (en) * 2009-08-11 2011-02-17 Hans-Georg Schneider Apparatus for the production of ionized oxygen and ozone from pure oxygen and methods for using same in medical applications
US8083737B2 (en) * 2009-08-26 2011-12-27 Tyco Healthcare Group Lp Gas-enhanced surgical instrument with mechanism for cylinder puncture
US20110105952A1 (en) * 2009-10-30 2011-05-05 Seventh Sense Biosystems, Inc. Relatively small devices applied to the skin, modular systems, and methods of use thereof
JP2013509979A (en) 2009-11-09 2013-03-21 イオンメド リミテッド Plasma head for welding tissue
US20120289954A1 (en) 2009-11-09 2012-11-15 Amnon Lam Micro plasma head for medical applications
GB0920112D0 (en) * 2009-11-17 2009-12-30 Linde Ag Treatment device
GB0920124D0 (en) * 2009-11-17 2009-12-30 Linde Ag Device for generating gaseous species
US20110126828A1 (en) * 2009-11-27 2011-06-02 Fu-Chi Wu Personal air purifier
DE102009060627B4 (en) 2009-12-24 2014-06-05 Cinogy Gmbh Electrode arrangement for a dielectrically impeded plasma treatment
US20110180149A1 (en) * 2010-01-28 2011-07-28 Fine Neal E SINGLE DIELECTRIC BARRIER DISCHARGE PLASMA ACTUATORS WITH IN-PLASMA catalysts AND METHOD OF FABRICATING THE SAME
WO2011110343A1 (en) 2010-03-10 2011-09-15 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V Appliance, particularly kitchen appliance or laboratory table and deodorant device
US20130064726A1 (en) * 2010-05-19 2013-03-14 Adtec Europe Ltd. Appliance for at least partially sterilizing a contaminated surface
DE102010011643A1 (en) 2010-03-16 2011-09-22 Christian Buske Apparatus and method for the plasma treatment of living tissue
EP2670477B1 (en) 2011-02-01 2015-11-25 Moe Medical Devices LLC Plasma-assisted skin treatment
JP6317927B2 (en) * 2012-01-09 2018-04-25 ムー・メディカル・デバイスズ・エルエルシーMoe Medical Devices Llc Plasma assisted skin treatment
US20130064710A1 (en) * 2011-03-04 2013-03-14 Jamey D. Jacob Plasma apparatus for biological decontamination and sterilization and method for use
US10130800B2 (en) * 2012-01-27 2018-11-20 Invisiderm, Llc Method of producing substances with supersaturated gas, transdermal delivery device thereof, and uses thereof
US20140074090A1 (en) 2011-05-09 2014-03-13 Ionmed Ltd Tissue welding using plasma
GB201107870D0 (en) 2011-05-11 2011-06-22 Johnson Matthey Plc Tracers and method of marking hydrocarbon liquids
US20130015766A1 (en) * 2011-05-12 2013-01-17 The George Washington University Apparatus for generating mini and micro plasmas and methods of use
TWI461113B (en) * 2011-08-24 2014-11-11 Nat Univ Tsing Hua Atmospheric pressure plasma jet device
US20130053762A1 (en) 2011-08-25 2013-02-28 Michael Rontal Method and apparatus for cold plasma treatment of internal organs
WO2013101673A1 (en) 2011-12-30 2013-07-04 Franklin Mark A Plasma sterilization systems
US20140000810A1 (en) 2011-12-29 2014-01-02 Mark A. Franklin Plasma Activation System
US20140178604A1 (en) * 2012-12-21 2014-06-26 Gary S. Selwyn Dual-Zone, Atmospheric-Pressure Plasma Reactor for Materials Processing
US10251776B2 (en) * 2014-01-10 2019-04-09 Geelux Holding, Ltd. Devices configured to monitor biological parameters, and to provide treatment, at an Abreu brain thermal tunnel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2756515A4 (en) 2015-02-25
EP2756514A1 (en) 2014-07-23
EP2756515B1 (en) 2018-04-11
US20130072858A1 (en) 2013-03-21
EP2854268A1 (en) 2015-04-01
WO2013052261A2 (en) 2013-04-11
US20130072861A1 (en) 2013-03-21
US20170136253A1 (en) 2017-05-18
EP2756516B1 (en) 2018-06-13
WO2013040473A1 (en) 2013-03-21
EP2756740A4 (en) 2015-01-21
EP2756739B1 (en) 2018-11-28
US20130068732A1 (en) 2013-03-21
US20130072859A1 (en) 2013-03-21
US9006976B2 (en) 2015-04-14
WO2013040481A1 (en) 2013-03-21
EP2756516A1 (en) 2014-07-23
EP2758979A4 (en) 2015-02-11
US8928230B2 (en) 2015-01-06
EP2756740B1 (en) 2018-04-11
US20130068226A1 (en) 2013-03-21
US20130069530A1 (en) 2013-03-21
US9384947B2 (en) 2016-07-05
WO2013040454A1 (en) 2013-03-21
US20130072860A1 (en) 2013-03-21
EP2756514B1 (en) 2018-05-30
WO2013052261A3 (en) 2013-06-27
US9418820B2 (en) 2016-08-16
US9192776B2 (en) 2015-11-24
EP2756515A1 (en) 2014-07-23
US9236227B2 (en) 2016-01-12
US9570273B2 (en) 2017-02-14
EP2756517A1 (en) 2014-07-23
EP2756739A4 (en) 2015-03-25
EP2755716A1 (en) 2014-07-23
US20150127079A1 (en) 2015-05-07
EP2756517A4 (en) 2015-03-11
WO2013040486A1 (en) 2013-03-21
WO2013040477A1 (en) 2013-03-21
EP2756514A4 (en) 2015-02-25
EP2756740A1 (en) 2014-07-23
EP2758979A2 (en) 2014-07-30
WO2013040469A1 (en) 2013-03-21
US20170156200A1 (en) 2017-06-01
US9558918B2 (en) 2017-01-31
US9257264B2 (en) 2016-02-09
US20150221476A1 (en) 2015-08-06
EP2755716A4 (en) 2015-03-25
US20190254154A1 (en) 2019-08-15
EP2854268B1 (en) 2018-11-07
WO2013040476A1 (en) 2013-03-21
US20130071286A1 (en) 2013-03-21
EP2756739A1 (en) 2014-07-23
EP2756516A4 (en) 2015-03-04
US10064263B2 (en) 2018-08-28

Similar Documents

Publication Publication Date Title
ES2361524T3 (en) Treatment instrument of a gas plasma tissue.
DE60110379T2 (en) Plasma device for the treatment of tissue surfaces
EP0698953B1 (en) Corona source for producing corona discharge and fluid waste treatment with corona discharge
ES2267844T3 (en) Apparatus for skin restructuring through plasma.
ES2197161T3 (en) Discharge apparatus corona.
EP2435206B1 (en) Electrode surface materials and structures for plasma chemistry
US20080237484A1 (en) Plasma Source
Lu et al. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets
CN101490407B (en) Ignition system
KR20120135534A (en) Atmospheric pressure plasma jet
US6432260B1 (en) Inductively coupled ring-plasma source apparatus for processing gases and materials and method thereof
US8773020B2 (en) Apparatus for forming a magnetic field and methods of use thereof
US20060006153A1 (en) Microwave plasma nozzle with enhanced plume stability and heating efficiency
US7030398B2 (en) Laser driven ion accelerator
Lu et al. An $ RC $ plasma device for sterilization of root canal of teeth
US6465964B1 (en) Plasma treatment apparatus and plasma generation method using the apparatus
US20090018384A1 (en) Portable, Modular Transcranial Magnetic Stimulation Device
US20030234355A1 (en) Neutron tubes
US5490973A (en) Pulsed corona reactor system for abatement of pollution by hazardous agents
US20030164285A1 (en) Mobile radiant energy sterilizer
EP2398507A1 (en) Treating device for treating a body part of a patient with a non-thermal plasma
WO2008131407A1 (en) Harmonic cold plasma device and associated methods
AU2063800A (en) An electrosurgery system and instrument
EP1863611A2 (en) Plasma generator
EP1993329A1 (en) Plasma source

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20140411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WATSON, GREGORY, A.

Inventor name: HUMMEL, ROBERT, M.

Inventor name: JACOFSKY, DAVID, J.

Inventor name: JACOFSKY, MARC, C.

DAX Request for extension of the european patent (to any country) (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: H05H 1/46 20060101AFI20150130BHEP

Ipc: A61N 1/00 20060101ALI20150130BHEP

Ipc: A61M 35/00 20060101ALI20150130BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20150205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012046029

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01J0007240000

Ipc: H05H0001240000

RIC1 Information provided on ipc code assigned before grant

Ipc: H05H 1/24 20060101AFI20171012BHEP

INTG Intention to grant announced

Effective date: 20171107

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 996618

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012046029

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012046029

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180502

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced from national office to epo]

Ref country code: FR

Payment date: 20180925

Year of fee payment: 7

Ref country code: IE

Payment date: 20180925

Year of fee payment: 7

Ref country code: DE

Payment date: 20180920

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180803

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PGFP Annual fee paid to national office [announced from national office to epo]

Ref country code: GB

Payment date: 20180919

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 996618

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012046029

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

26N No opposition filed

Effective date: 20190205

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930