EP2720817B1 - Verfahren zur herstellung von kanälen in einem werkzeug und computerprogrammprodukt zur durchführung eines solchen verfahrens - Google Patents

Verfahren zur herstellung von kanälen in einem werkzeug und computerprogrammprodukt zur durchführung eines solchen verfahrens Download PDF

Info

Publication number
EP2720817B1
EP2720817B1 EP12731553.9A EP12731553A EP2720817B1 EP 2720817 B1 EP2720817 B1 EP 2720817B1 EP 12731553 A EP12731553 A EP 12731553A EP 2720817 B1 EP2720817 B1 EP 2720817B1
Authority
EP
European Patent Office
Prior art keywords
tooling
heat transfer
temperatures
temperature
transfer fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12731553.9A
Other languages
English (en)
French (fr)
Other versions
EP2720817A2 (de
Inventor
Alban AGAZZI
Yvon Jarny
Ronan LE GOFF
David Garcia
Vincent SOBOTKA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pole Europeen De Plasturgie
Universite de Nantes
Original Assignee
Pole Europeen De Plasturgie
Universite de Nantes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pole Europeen De Plasturgie, Universite de Nantes filed Critical Pole Europeen De Plasturgie
Publication of EP2720817A2 publication Critical patent/EP2720817A2/de
Application granted granted Critical
Publication of EP2720817B1 publication Critical patent/EP2720817B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/2038Heating, cooling or lubricating the injection unit

Definitions

  • the present invention relates to a method for forming thermal control channels in a tool for molding plastic or metal parts.
  • the present invention relates to a method in which the shape of the thermal control channels is defined.
  • the present invention relates to a tool for molding plastic or metal parts, in which thermal control channels are formed by implementing such a method.
  • the present invention relates to a computer program product implementing an algorithm performing such a method.
  • the present invention finds particular application in the field of design and manufacture of tools for molding which include thermal control channels.
  • the present invention may find application in the fields of injection molding, rotational molding or heat blasting.
  • the present invention can be implemented to shape a plastic material or a metallic material.
  • a molding cycle of a part consists in particular possibly preheating the tool, to introduce the material in the tool, to cool the part, then to unmold the piece out of the tooling.
  • the thermal control channels have the particular function of regulating the temperature of the tool, for example by preheating it before the introduction of the material into the molding cavity of the tool.
  • the thermal control channels also have the function of cooling the part before its demolding out of the tooling. This cooling and this possible preheating affect the duration of the manufacturing cycle of each part and the manufacturing quality of each part, so the rate of defective parts.
  • the manufacturing defects observed on the defective parts are, for example, a deviation from the nominal dimension of the part, a lack of material, etc.
  • the thermal control channels are formed or designed after defining the general shape of the tool, in particular its molding cavity.
  • the dimensions of the thermal control channels and their positions in a tool of the prior art are, in whole or in part, determined empirically by a man of the art. For this purpose, one skilled in the art takes particular account of the geometry of the part, the material to be injected and the recommendations of the manufacturer of the material for molding.
  • thermal control channels may perform imperfectly because the channel dimensions and positions and the molding process parameters are not optimal. Thus, such thermal control channels may induce a relatively long cycle time to properly cool each piece and / or a relatively low manufacturing quality, so a rate of relatively large defective parts.
  • the present invention aims to solve, in whole or in part, the problems mentioned above.
  • the thermal control channels are defined, in position and in size, by simulating the temporal variation of the temperatures induced in the tooling in the vicinity of the workpiece by the amounts of heat exchanged between workpiece and tooling.
  • the position and size of a thermal control channel are then determined by the stationary zones and the isothermal surfaces.
  • the parameters of the molding process such as the temperature of a heat transfer fluid and the duration of a molding cycle, can be determined from the selected isothermal surfaces.
  • such a method of forming these channels makes it possible to optimize the thermal regulation of the tooling, thus to effectively regulate the tooling in temperature and to obtain uniform temperatures on the surface of the workpiece and in the volume of the workpiece. part during the cooling of the part and / or during a preheating of the tooling. The duration of a cycle and / or the rate of defective parts can therefore be reduced and the manufacturing quality of each part can be increased.
  • channel designates a cavity which is made in the material of the tool and which is supplied with heat transfer fluid by at least one thermoregulator circuit.
  • thermal field denotes a tensor associating a simulated temperature level with each spatial and temporal coordinate of a point of the reference volume.
  • the step of "selecting an isothermal surface to define at least a portion of a peripheral surface of a thermal control channel” does not necessarily imply that this peripheral surface portion is defined strictly coincides with the selected isothermal surface.
  • the definition of a thermal control channel also incorporates machining constraints, which vary according to the machining mode of the channel.
  • drilling does not make it possible to produce a channel of complex shape, in particular a curve; in this case, the channel will be defined or drawn roughly by “leaning" on the isothermal surface.
  • a generative process such as laser fusion, allows to build a channel of very complex shape; in this case, the channel can be defined or drawn almost identically to the selected isothermal surface.
  • coolant means a fluid whose function is to transport heat between two or more sources having different temperatures, that is to say to bring or remove a quantity of heat to a solid element.
  • heat transfer fluid is equivalent to "thermal control fluid”.
  • the reference volume comprises all or part of the part plus an intermediate volume extending between the outer surface of the workpiece and a reference surface, which is located in the tooling, therefore outside the workpiece .
  • the step of determining the thermal field comprises a calculation based on said temperature distribution on the reference surface.
  • Such an expansion makes it possible to define the reference surface.
  • Such an erosion makes it possible to define a fictitious surface delimiting the solid phase or solid sheath and the molten phase of the material introduced into the tooling.
  • the morphological erosion is carried out by means of a structuring element, for example a sphere, a dimension of which is substantially equal to a predetermined thickness of a solid sheath of the workpiece for demolding the workpiece. .
  • a structuring element for example a sphere, a dimension of which is substantially equal to a predetermined thickness of a solid sheath of the workpiece for demolding the workpiece.
  • the morphological dilation is carried out by means of a structuring element, for example a sphere, a dimension of which is greater than a predetermined distance to ensure the mechanical strength of the tooling after formation of the thermal regulation channels.
  • a structuring element for example a sphere, a dimension of which is greater than a predetermined distance to ensure the mechanical strength of the tooling after formation of the thermal regulation channels.
  • the method further comprises a subsequent step of completely forming a peripheral surface a respective thermal control channel by closing said peripheral surface portion when said peripheral surface portion is partially delimited by the reference surface.
  • a thermal regulation channel can be completely defined throughout its surface.
  • a respective heat transfer fluid temperature is associated with each thermal control channel, when the isothermal surfaces selected respectively within distinct quasi- stationary regions correspond to different temperatures.
  • the number of different heat transfer fluid temperatures that are associated with the thermal control channels is limited to the number of thermoregulatory circuits for supplying heat transfer fluid heat transfer channels.
  • thermoregulatory circuits as selected isotherms.
  • the shape of a respective thermal regulation channel is defined so as to minimize the pressure drops generated during the flows of the coolant.
  • each isothermal surface is selected within a respective quasi-stationary region so as to separate the thermal regulation channels and the outer surface of the part so that the tooling withstands the thermomechanical stresses likely to practice during the manufacture of a piece.
  • each isothermal surface is selected within a respective quasi-stationary region so that, between the moment of introduction of the material into the tool and the moment of demolding of the workpiece, the temperature of a respective isothermal surface is within a predetermined range depending on the material injected.
  • the temperature distribution of at least one coolant on the reference surface is determined by means of an optimization algorithm involving the so-called conjugated gradient method, preferably coupled with the so-called multiplier technique. of Lagrange.
  • the subject of the present invention is a tool intended to manufacture at least one part by molding a material, the tooling comprising heat regulation channels, the tool being characterized in that all or part of the control channels are formed by implementing a method according to the invention.
  • such tooling has optimized thermal regulation, to achieve effective thermal control and obtain uniform temperatures on and in the room during the cooling of the room.
  • the duration of a cycle and / or the rate of defective parts can therefore be reduced and the manufacturing quality of each part can be increased.
  • the subject of the present invention is a computer program product which implements an algorithm implementing a method according to the invention.
  • Such a computer program product makes it possible to automatically and optimally design the formation of cooling channels in the tooling, in particular from the geometry of the part, the material to be injected and the recommendations of the manufacturer of the machine. material for molding purposes.
  • the figure 1 illustrates a section 4, the molding of which is carried out according to a method according to the invention and by means of a tooling 2.3 according to the invention.
  • the tooling 2.3 is essentially composed of two tooling parts 2 and 3.
  • a "T" -shaped cross-section forms the base of the profile 4.
  • the tooling 2.3 is formed of two mold parts 2 and 3, which delimit a molding cavity.
  • the profile 4 has an outer surface 4.1.
  • the process illustrated by the Figures 1 to 6 comprises a step in which the temperatures resulting from heat transfers from the section 4 to the tooling 2.3 are simulated between the instant of introduction of the material in the tooling 2.3 and the moment of demolding of the profile 4 out of the molding cavity of the tool 2.3.
  • the process illustrated by the Figures 1 to 6 comprises a step in which the thermal field of the induced temperatures is determined in a reference volume 17.4 which comprises the profile 4 and the intermediate volume 17 which extends from the profile 4 to a reference surface 11 which is located in the tooling 2.3 .
  • the intermediate volume 17 corresponds to the volume of a portion of the tooling 2.3 which is close to the molding cavity where the thermoplastic material is to be injected.
  • the molding cavity of the tooling 2.3 corresponds to the external surface 4.1 of the profile 4.
  • the temperatures are induced by the transfers of heat that occur between the thermoplastic material injected to form the profile 4 and the tooling 2.3.
  • the "thermal field” is a tensor associating a simulated temperature level with each spatial and temporal coordinate of a point of the reference volume 17.4.
  • each isothermal surface 23 is materialized by a disjoint curved line of the adjacent isothermal surfaces 23.
  • the process illustrated by the Figures 1 to 6 comprises a step in which morphological expansion of the outer surface 4.1 of the profile 4 is carried out so as to define the reference surface 11, hereinafter referred to as the expanded surface 11.
  • Channels 1 fulfill a thermal regulation function. On the one hand, they channel the flow of a heat transfer fluid which is colder than the temperature of introduction of the material in the cavity or mold cavity of the tooling 2.3. Such a flow causes heat transfer between the section 4 and the coolant, which allows to cool the profile 4. On the other hand, if necessary, they channel the flow of a heat transfer fluid to preheat the tooling 2.3, which improves the quality of the molded profiles 4.
  • the structuring element guiding the morphological dilation is a first sphere, not shown, whose diameter is for example about 4 times the thickness of the profile.
  • the diameter of the sphere is greater than a predetermined distance to ensure the mechanical strength of the tooling 2.3 after formation of the thermal control channels 1. This distance is for example greater than about 3 mm, or even about 4 mm.
  • the process illustrated by Figures 1 to 6 comprises a step in which morphological erosion of the outer surface 4.1 of the profile 4 is performed so as to define an eroded surface 12.
  • the structuring element guiding the morphological erosion is a second sphere, not shown, a dimension of which is substantially equal to a predetermined thickness of a solid sheath of the profile 4 for the demolding of the profile 4.
  • the thickness of the solid sheath is predetermined in particular depending on the molded material and the geometry of the part, here the profile 4, so that the profile 4 has a mechanical resistance allowing its demolding without geometric alteration. After demolding, the portion of the section 4 which has not yet solidified continues to cool, then solidifies too. The profile 4 then has its final mechanical strength.
  • the expression "temperature distribution” designates a tensor associating a simulated temperature level with each spatial and temporal coordinate of a point of a surface, here of the reference surface 11.
  • This temperature distribution on the expanded surface 11 is obtained by simulating the heat transfer between the section 4, the tooling 2.3 and a heat transfer fluid for cooling.
  • This temperature distribution on the expanded surface 11 is determined by calculation by means of an optimization algorithm involving the so-called conjugate gradient method, preferably coupled with the so-called Lagrange multiplier technique.
  • the process illustrated in Figures 1 to 6 includes a calculation based on this temperature distribution on the dilated surface 11.
  • the hot spots of the intermediate volume 17 are represented by dashed zones sparse at the figure 4 and the cold points of the intermediate volume 17 are materialized by dashed areas dense with the figure 4 .
  • the process illustrated by the Figures 1 to 6 further comprises a step in which quasi-stationary regions 21 are located in the thermal field.
  • figure 4 each quasi-stationary region 21 is globally marked by an ellipse.
  • a quasi-stationary region 21 of the intermediate volume 17 is a region in which the displacement of at least one isothermal surface 23 during a reference period remains approximately constant. In other words, this displacement has an amplitude less than a predetermined displacement limit.
  • each isothermal surface 23 varies (nt), during a molding cycle, as a function of the heat transfer between the section 4 and the tooling 2.3.
  • the reference period is between the instant of introduction of the material into the tooling 2.3 and the moment of demolding of the profile 4.
  • the reference period corresponds to a complete molding cycle of a section 4.
  • the reference period comprises at least two distinct phases.
  • the first phase extends from the moment of introduction of the material into the tooling 2.3 until the moment of release of the profile 4.
  • the second phase extends from the moment of demolding of the previous section 4 until to a new introduction of material for molding the next profile.
  • a shorter reference period can be between the instant of introduction of the material in the tooling 2.3 and the moment of release of the profile 4.
  • the reference period is chosen so that it corresponds to the first phase of a complete molding cycle.
  • the process illustrated by the Figures 1 to 6 comprises a step in which an isothermal surface 23 is selected within each quasi-stationary region 21 to define portions 23.1, 23.2 and 23.3 of peripheral surfaces for the respective channels 1.
  • each portion 23.1, 23.2 or 23.3 is generally elliptical.
  • Portions 23.1, 23.2 and 23.3 correspond to isothermal surfaces 23 whose simulated temperature level is approximately 305 K (degrees Kelvin).
  • distinct portions may correspond to isothermal surfaces whose simulated temperature levels are distinct, for example respectively about 324 K, 330 K and 335 K (degrees Kelvin).
  • the method illustrated by the Figures 1 to 6 may further comprise a subsequent step of completely forming the respective peripheral surface of each channel 1 by closing each portion 23.1, 23.2 or 23.3. This closure is formed according to the method of making the channels 1.
  • the channels are closed by following relatively simple patterns. Such channels are illustrated in dashed lines at figure 6 With the reference 10. Since the channel pattern 10 differs from the selected isothermal surfaces 23, the thermal regulation is not quite optimal.
  • the channels are closed by following relatively complex patterns, which optimizes the thermal regulation.
  • Such channels are illustrated in solid lines at the figure 6 with the reference 1. Insofar as the pattern of the channels 1 matches the selected isothermal surfaces 23, the thermal regulation can be optimal.
  • each channel 1 is drawn in a rectilinear manner and perpendicular to the plane of the figure 6 .
  • Such a layout minimizes the pressure losses generated during the flows of the heat transfer fluid.
  • each channel 1 can also be traced in particular according to the opening kinematics of the tooling 2.3, that is to say the separation of the tooling parts 2 and 3 , and the position in the tooling 2.3 of thermoplastic supply ducts, usually called "carrots".
  • channels 1 or 10 the designer can thus achieve a balanced solution between the thermal regulation constraints and the other functions that the tooling 2.3 fulfills.
  • a respective heat transfer fluid temperature for example 330 K, may be associated with a respective channel 1, in the case where the isothermal surfaces 23 selected within distinct quasi-stationary regions 21 correspond to different temperatures.
  • a coolant temperature is associated with the channels 1.
  • the number of thermoregulatory circuits not shown for supplying heat transfer fluid to the channels 1 is at least one. In the alternative where several isotherms are selected, the number of thermoregulatory circuits for supplying the heat transfer fluid to the channels may be greater than one, for example equal to three.
  • each isothermal surface 23 is selected inside a respective quasi-stationary region 21 so as to separate each channel 1 and the outer surface 4.1 of the profile 4 so that the tooling 2.3 withstands the thermomechanical stresses likely to during the molding of the profiles 4.
  • a distance between a channel 1 and the outer surface 4.1 of the section 4 may be greater than 3 mm or even 4 mm.
  • the tooling 2.3 comprises channels 1 formed by implementing a method according to the invention.
  • the shapes of the channels 1 have been defined or calculated by implementing this method, and then the tooling 2.3 has been machined from the dimensions of these shapes of the channels 1.
  • FIGS 7 to 11 illustrate a method according to a second embodiment of the invention for forming channels 101 in a tool 102.103 according to a second embodiment of the invention.
  • the description of the tooling 2.3 and the corresponding method given above in relation to the Figures 1 to 6 can be transposed to the tool 102.103 and the corresponding method, with the notable exception of the differences set out below.
  • channels 101, tool 102.103 are defined with parts of molds 102 and 103, a workpiece 104 with an outer surface 104.1, an expanded surface 111, an eroded surface 112, an intermediate volume 117, a reference volume 117.104, quasi-stationary regions 121, isothermal surfaces 123, portions 123.1 and 123.2.
  • the piece 104 differs from the profile 4, because the piece 104 has the overall shape of a quarter box.
  • the tool 102.103 differs from the tool 2.3, because its molding cavity has generally the shape of a quarter parallelepiped.
  • the figure 8 illustrates the expanded surface 111 and the eroded surface 112, which also have specific shapes in relation to the piece 104.
  • the figure 8 also illustrates a supply conduit or core 107 for the injection of the thermoplastic material.
  • the quasi-stationary regions 121 are represented at the figure 10 .
  • the channels 101 are represented at figure 11 .
  • the quasi-stationary regions 121 and therefore the channel regions 101 have more complex shapes than the channels 1. For this reason, the channels 101 are to be machined by a generative method, such as selective sintering by laser.
  • Isothermal surfaces 123.1 and 123.2 corresponding to a temperature level is selected in the quasi-stationary regions 121.
  • the tool 102.103 comprises channels 101 formed by implementing a method according to the invention.
  • a computer program product which implements an algorithm implementing such a method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Claims (13)

  1. Verfahren zur Herstellung von Wärmeregulierungskanälen (1; 101) in einem Werkzeug (2.3; 102.103), das bestimmt ist, mindestens ein Werkstück (4; 104) durch Formen eines Werkstoffs in dem Werkzeug (2.3; 102.103), dann durch Abkühlen des Werkstücks (4; 104) mittels mindestens eines Wärmeträgerfluids, das in Wärmeregulierungskanälen (1; 101) zirkuliert, auf eine vorbestimmte Entformungstemperatur, dann durch Entformen des Werkstücks (4; 104) aus dem Werkzeug (2.3; 102.103) herzustellen, wobei das Verfahren die Schritte umfasst:
    - Simulieren der Temperaturen, die durch Wärmeübertragungen zwischen dem Werkstück (4; 104) und dem Werkzeug (2.3; 102.103) und zwischen einem Moment des Einleitens des Werkstoffs in das Werkzeug (2.3; 102.103) und dem Moment des Entformens des Werkstücks (4; 104) induziert werden;
    - Bestimmen eines thermischen Bereichs der in einem Referenzvolumen (17.4; 117.104), welches das Werkstück (4; 104) umfasst, und einem Übergangsvolumen, das sich zwischen der Außenfläche des Werkstücks (4.1; 104.1) und einer Referenzfläche, die sich in dem Werkzeug (2.3; 102.103) befindet, induzierten Temperaturen;
    wobei das Verfahren dadurch gekennzeichnet ist, dass es ferner die Schritte umfasst:
    - Lokalisieren, in dem thermischen Bereich, der quasi stationären Regionen (21; 121), in denen in jeder von ihnen die Verlagerung mindestens einer isothermen Fläche (23, 23.1, 23.2, 23.3; 123, 123.1, 123.2) während einer Referenzperiode eine Amplitude unter einem vorbestimmten Verlagerungsgrenzwert aufweist, wobei die Referenzperiode zwischen dem Moment des Einleitens des Werkstoffs in das Werkzeug (2.3; 102.103) und dem Moment des Entformens des Werkstücks (4; 104) inbegriffen ist; und
    - Auswählen, innerhalb jeder quasi stationären Region (21; 121), einer isothermen Fläche (23, 23.1, 23.2, 23.3; 123, 123.1, 123.2), um mindestens einen Abschnitt (23.1, 23.2, 23.3; 123.1, 123.2) einer peripheren Fläche eines jeweiligen Wärmeregulierungskanals (1; 101) zu definieren.
  2. Verfahren nach Anspruch 1, wobei der Schritt zum Simulieren der von den Wärmeübertragungen induzierten Temperaturen die Schritte umfasst:
    - Durchführen einer morphologischen Ausdehnung der Außenfläche (4.1; 104.1) des Werkstücks (4; 104) derart, dass eine ausgedehnte Fläche definiert wird, welche die Referenzfläche (11; 111) bildet;
    - Durchführen einer morphologischen Erosion der Außenfläche (4.1; 104.1) des Werkstücks (4; 104) derart, dass eine erodierte Fläche (12; 112) definiert wird;
    - Bestimmen einer Temperaturverteilung mindestens eines Wärmeträgerfluids auf der Referenzfläche (11; 111) derart, dass:
    • zum einen der Mittelwert der auf der erodierten Fläche (12; 112) simulierten Temperaturen zirka gleich der vorbestimmten Entformungstemperatur am Ende der Abkühlung ist; und
    • zum anderen die an jedem Punkt der Außenfläche (4.1; 104.1) des Werkstücks (4; 104) simulierte Temperatur zirka gleich dem Mittelwert der auf der Außenfläche (4.1; 104.1) des Werkstücks (4; 104) am Ende der Abkühlung berechneten Temperaturen ist;
    und wobei der Schritt zum Bestimmen des thermischen Bereichs eine Berechnung umfasst, die auf der Temperaturverteilung auf der Referenzfläche (11; 111) basiert.
  3. Verfahren nach Anspruch 2, wobei die morphologische Erosion mittels eines strukturierenden Elements, beispielsweise einer Kugel, durchgeführt wird, von dem eine Abmessung etwa gleich einer vorbestimmten Stärke eines festen Mantels des Werkstücks (4; 104) im Hinblick auf das Entformen des Werkstücks (4; 104) ist.
  4. Verfahren nach Anspruch 1, wobei der Schritt zum Simulieren der von den Wärmeübertragungen induzierten Temperaturen die Schritte umfasst:
    - Durchführen einer morphologischen Ausdehnung der Außenfläche des Werkstücks derart, dass eine ausgedehnte Fläche definiert wird, welche die Referenzfläche bildet;
    - Bestimmen einer Temperaturverteilung mindestens eines Wärmeträgerfluids auf der Referenzfläche derart, dass die an jedem Punkt der Außenfläche des Werkstücks simulierte Temperatur zirka gleich einem auf der Außenfläche des Werkstücks am Ende der Abkühlung vorbestimmten Temperaturgrenzwert entspricht;
    und wobei der Schritt zum Bestimmen des thermischen Bereichs eine Berechnung umfasst, die auf der Temperaturverteilung auf der Referenzfläche basiert.
  5. Verfahren nach einem der Ansprüche 2 bis 4, wobei die morphologische Ausdehnung mittels eines strukturierenden Elements, beispielsweise einer Kugel, durchgeführt wird, von dem eine Abmessung größer als ein vorbestimmter Abstand ist, um die mechanische Festigkeit des Werkzeugs (2.3; 102.103) nach Bildung der Wärmeregulierungskanäle (1; 101) zu sichern.
  6. Verfahren nach einem der vorangehenden Ansprüche, umfassend ferner einen späteren Schritt, der darin besteht, eine periphere Fläche eines jeweiligen Wärmeregulierungskanals (1; 101) durch Schließen des Abschnitts (23.1, 23.2, 23.3; 123.1, 123.2) peripherer Fläche vollständig zu bilden, wenn der Abschnitt (23.1, 23.2, 23.3; 123.1, 123.2) peripherer Fläche teilweise von der Referenzfläche (11; 111) begrenzt ist.
  7. Verfahren nach einem der vorangehenden Ansprüche, wobei eine jeweilige Wärmeträgerfluidtemperatur jedem Wärmeregulierungskanal (1; 101) zugeordnet ist, wenn die jeweils innerhalb von unterschiedlichen quasi stationären Regionen (21; 121) ausgewählten isothermen Flächen (23, 23.1, 23.2, 23.3; 123, 123.1, 123.2) unterschiedlichen Temperaturen entsprechen.
  8. Verfahren nach Anspruch 7, wobei die Anzahl unterschiedlicher Wärmeträgerfluidtemperaturen, die den Wärmeregulierungskanälen (1; 101) zugeordnet sind, auf die Anzahl thermischer Regulierungskreise begrenzt ist, die bestimmt sind, die Wärmeregulierungskanäle (1; 101) mit Wärmeträgerfluid zu versorgen.
  9. Verfahren nach einem der vorangehenden Ansprüche, wobei die jeweilige Form eines Wärmeregulierungskanals (1; 101) derart festgelegt ist, dass die beim Fließen des Wärmeträgerfluids entstehenden Lastverluste minimiert werden.
  10. Verfahren nach einem der vorangehenden Ansprüche, wobei jede isotherme Fläche (23, 23.1, 23.2, 23.3; 123, 123.1, 123.2) innerhalb einer jeweiligen quasi stationären Region (21; 121) derart ausgewählt ist, dass die Wärmeregulierungskanäle (1; 101) und die Außenfläche (4.1; 104.1) des Werkstücks (4; 104) derart beabstandet sind, dass das Werkzeug (2.3; 102.103) den thermomechanischen Spannungen widersteht, die während der Herstellung eines Werkstücks (4; 104) entstehen könnten.
  11. Verfahren nach einem der vorangehenden Ansprüche, wobei jede isotherme Fläche (23, 23.1, 23.2, 23.3; 123, 123.1, 123.2) innerhalb einer jeweiligen quasi stationären Region (21; 121) derart ausgewählt ist, dass zwischen dem Moment des Einleitens des Werkstoffs in das Werkzeug (2.3; 102.103) und dem Moment des Entformens des Werkstücks (4; 104) die Temperatur einer jeweiligen isothermen Fläche (23, 23.1, 23.2, 23.3; 123, 123.1, 123.2) in einem in Abhängigkeit von dem eingeleiteten Werkstoff vorbestimmten Intervall inbegriffen ist.
  12. Verfahren nach einem der Ansprüche 2 bis 5, wobei die Temperaturverteilung mindestens eines Wärmeträgerfluids auf der Referenzfläche (11; 111) mittels eines Optimierungsalgorithmus bestimmt wird, der die Methode des konjugierten Gradienten, vorzugsweise gekoppelt mit der Technik des Lagrange-Multiplikators, impliziert.
  13. Rechnerprogrammprodukt, dadurch gekennzeichnet, dass es einen Algorithmus umsetzt, der ein Verfahren nach einem der Ansprüche 1 bis 12 durchführt.
EP12731553.9A 2011-06-10 2012-06-08 Verfahren zur herstellung von kanälen in einem werkzeug und computerprogrammprodukt zur durchführung eines solchen verfahrens Active EP2720817B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1155099A FR2976201B1 (fr) 2011-06-10 2011-06-10 Procede, pour former des canaux dans un outillage, outillage forme avec un tel procede et produit programme d’ordinateur realisant un tel procede
PCT/FR2012/051296 WO2012168669A2 (fr) 2011-06-10 2012-06-08 Procédé, pour former des canaux dans un outillage, outillage forme avec un tel procède et produit programme d'ordinateur réalisant un tel procédé

Publications (2)

Publication Number Publication Date
EP2720817A2 EP2720817A2 (de) 2014-04-23
EP2720817B1 true EP2720817B1 (de) 2018-05-02

Family

ID=46456872

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12731553.9A Active EP2720817B1 (de) 2011-06-10 2012-06-08 Verfahren zur herstellung von kanälen in einem werkzeug und computerprogrammprodukt zur durchführung eines solchen verfahrens

Country Status (3)

Country Link
EP (1) EP2720817B1 (de)
FR (1) FR2976201B1 (de)
WO (1) WO2012168669A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110470476A (zh) * 2019-09-11 2019-11-19 天津浪腾科技有限公司 一种用于滚动轴承故障诊断的脉冲提取方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3501486B2 (ja) * 1993-12-27 2004-03-02 キヤノン株式会社 射出成形品の変形量予測方法及びその装置
TW311113B (de) * 1995-11-02 1997-07-21 Fujitsu Ltd
US5849238A (en) * 1997-06-26 1998-12-15 Ut Automotive Dearborn, Inc. Helical conformal channels for solid freeform fabrication and tooling applications
FR2845492B1 (fr) * 2002-10-07 2004-11-26 Cirtes Src Piece mecanique avec au moins un circuit de transport de fluide et son procede de conception par strates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2720817A2 (de) 2014-04-23
WO2012168669A2 (fr) 2012-12-13
WO2012168669A3 (fr) 2013-03-28
FR2976201A1 (fr) 2012-12-14
FR2976201B1 (fr) 2016-02-05

Similar Documents

Publication Publication Date Title
Park et al. Design of conformal cooling channels for an automotive part
Armillotta et al. SLM tooling for die casting with conformal cooling channels
JP2006082096A (ja) 射出成形用積層金型、射出成形方法及びダイカスト用積層金型
FR2991613A1 (fr) Procede de fabrication de piece par fusion selective ou frittage selectif de lits de poudre(s) au moyen d'un faisceau de haute energie
JP2017515710A (ja) 迅速加熱モールド用冷却システム成形方法
EP2895285B1 (de) Gusskörpermodell
WO2015076013A1 (ja) 樹脂成形品及びその製造方法とそれを実施するための射出成形装置、射出成形金型及び射出成形方法
EP2720817B1 (de) Verfahren zur herstellung von kanälen in einem werkzeug und computerprogrammprodukt zur durchführung eines solchen verfahrens
JP5941946B2 (ja) 射出成形金型及び射出成形方法
EP3448599B1 (de) Vorrichtung zur schalenformung einer metalllegierung
Norwood et al. Analysis of cooling channels performance
EP3455045B1 (de) Verfahren und vorrichtung zum erwärmen einer form
JP2008142764A (ja) 筒状部を有する鋳造成形品の鋳造成形方法およびその鋳造成形装置
Reis et al. Conformal cooling by SLM to improve injection moulding
JPWO2011125121A1 (ja) 樹脂の射出成形方法
JP2003112246A (ja) 金属合金射出成形用金型
Rahman et al. Optimizing the Die Design Parameters for FRP Components Produced in Injection Molding using Mold Flow Analysis
FR3070297A1 (fr) Partie de moule et moule comprenant une telle partie de moule
JP2007055267A (ja) 成形品の製造方法、温度調節装置、成形品
JP7182345B1 (ja) モールド金型部品およびモールド金型部品の製造方法
EP3911460B1 (de) Verfahren und vorrichtung zum entfernen von warmrissbildung
JP5424083B2 (ja) 成形用金型
JP5012454B2 (ja) 成形装置のパーティング面の加工方法
JP5356452B2 (ja) 溶融微細転写成形方法及び溶融微細転写成形装置
US10220553B2 (en) Method of making an item and item

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131218

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 994661

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012045906

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180502

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180803

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 994661

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012045906

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180608

26N No opposition filed

Effective date: 20190205

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180608

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180502

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602012045906

Country of ref document: DE

Owner name: POLE EUROPEEN DE PLASTURGIE, FR

Free format text: FORMER OWNERS: POLE EUROPEEN DE PLASTURGIE, BELLIGNAT, FR; UNIVERSITE DE NANTES, NANTES CEDEX 1, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602012045906

Country of ref document: DE

Owner name: NANTES UNIVERSITE, FR

Free format text: FORMER OWNERS: POLE EUROPEEN DE PLASTURGIE, BELLIGNAT, FR; UNIVERSITE DE NANTES, NANTES CEDEX 1, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602012045906

Country of ref document: DE

Owner name: CENTRE TECHNIQUE INDUSTRIEL DE LA PLASTURGIE E, FR

Free format text: FORMER OWNERS: POLE EUROPEEN DE PLASTURGIE, BELLIGNAT, FR; UNIVERSITE DE NANTES, NANTES CEDEX 1, FR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230608

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602012045906

Country of ref document: DE

Owner name: CENTRE TECHNIQUE INDUSTRIEL DE LA PLASTURGIE E, FR

Free format text: FORMER OWNERS: NANTES UNIVERSITE, NANTES, FR; POLE EUROPEEN DE PLASTURGIE, BELLIGNAT, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240429

Year of fee payment: 13