EP2719940B1 - Light module - Google Patents

Light module Download PDF

Info

Publication number
EP2719940B1
EP2719940B1 EP13184394.8A EP13184394A EP2719940B1 EP 2719940 B1 EP2719940 B1 EP 2719940B1 EP 13184394 A EP13184394 A EP 13184394A EP 2719940 B1 EP2719940 B1 EP 2719940B1
Authority
EP
European Patent Office
Prior art keywords
light
sections
sagittal plane
primary
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13184394.8A
Other languages
German (de)
French (fr)
Other versions
EP2719940A3 (en
EP2719940A2 (en
Inventor
Matthias Brendle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP2719940A2 publication Critical patent/EP2719940A2/en
Publication of EP2719940A3 publication Critical patent/EP2719940A3/en
Application granted granted Critical
Publication of EP2719940B1 publication Critical patent/EP2719940B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/26Elongated lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/27Thick lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/275Lens surfaces, e.g. coatings or surface structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/321Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/323Optical layout thereof the reflector having two perpendicular cross sections having regular geometrical curves of a distinct nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • F21S41/365Combinations of two or more separate reflectors successively reflecting the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings

Definitions

  • the invention relates to a light module for motor vehicle headlights according to the preamble of claim 1.
  • a light module is understood to be the light-emitting unit actually emitting the desired emission light distribution.
  • This light module can be installed in a motor vehicle headlight, for example, enclosed in a headlight housing.
  • the emission light distribution should have specific, often prescribed by law, characteristic intensity profiles.
  • a dimmed light distribution which is characterized by a sectionally substantially horizontal light-dark boundary
  • This light distribution has a vertical dark area and a vertical light area below, the bright area is separated from the dark area by the cut-off.
  • the most intense possible illumination in the area immediately below the cut-off line is desired (low beam spot light distribution) in order to achieve a sufficient range.
  • a sufficient illumination of the vehicle apron or side areas should be ensured (basic light distribution).
  • Corresponding light modules can be used as dipped beam or fog light.
  • a high beam light distribution be generated, which has a high illuminance in a range above the cut-off line (ie in the dark area of the dimmed light distribution).
  • the main beam distribution should overlap as homogeneously as possible with the basic light distribution of the dimmed light distribution. For example, a disturbing fringe pattern should be avoided at the transition of the different light distributions, in particular in the region of the cut-off line.
  • lighting functions such as daytime running lights, driving lights or flashing lights should also be provided.
  • usually a large part of the light exit surface of the light module should have a spatially constant luminance in order to achieve a homogeneous appearance as possible.
  • projection systems are known for realizing the different emission light distributions. These are usually two-stage optical systems, in which light from a light source is directed by a primary optics into the focal plane of a secondary optics, which projects light with the desired radiated light distribution. Due to the two-stage design, projection systems generally require a large amount of space along the beam path.
  • reflection systems are known in which a reflector is used for shaping and deflecting the light emitted by a light source into the radiated light distribution. In this case, usually complex shaped and large reflector surfaces are required to achieve the desired light distribution.
  • LEDs As a light source for motor vehicle headlights, the use of LEDs is often desirable because they are a comparatively have low energy consumption and a comparatively high efficiency of energy conversion.
  • LEDs usually generate lower luminous fluxes than gas discharge lamps or halogen lamps. Therefore, several LED light sources in a light module must be regularly combined to produce sufficiently high luminous flux.
  • each light guide section has on its light outcoupling surface a solid, cylindrical lens-like end piece, which extends along the respective light coupling-out surface. Due to the size of these end pieces, the light guide sections must maintain a minimum distance from one another in the region of their light output surfaces. The light module therefore has a comparatively large light exit section. In addition, there is a considerable cost of materials.
  • the DE 20 2011 103 703 U1 describes a light module having features of the preamble of claim 1.
  • the object of the invention is to remedy the mentioned disadvantages of the known light modules.
  • a compact light module with semiconductor light sources is to be provided, which has a high optical efficiency and which allows the production of different emission light distributions with a single Module allowed.
  • the light module comprises a plurality of semiconductor light sources, for example light-emitting diodes (LEDs) for emitting light, and a primary optics element for concentrating the light emitted by the semiconductor light sources within sections perpendicular to a sagittal plane of the light module.
  • the primary optic element has a plurality of surface-like, perpendicular to the sagittal plane extending, disc-like Lichtleitabitese.
  • Each light guide section has a light input surface and a light output surface and is formed for light conduction under total internal reflection from the light input surface to the light outcoupling surface.
  • Total internal reflection occurs when a light beam striking a boundary surface of the light guide portion forms an angle with the solder on the boundary surface at the reflection point exceeding the critical angle of total reflection, so that the law of refraction (Snellius law) does not provide a real solution to the refraction angle.
  • each light guide section has a convexly curved main reflection surface such that a primary focal line assigned in each case to the light guide section is defined. This is characterized by the fact that a light bundle emanating from the primary focal line and striking the light incoupling surface in a diverging manner can be transformed into a light bundle that passes through the light outcoupling surface and is parallelized within sections perpendicular to the primary burning line.
  • the primary focal lines each extend in and / or parallel to the sagittal plane.
  • a secondary optical element arranged downstream of the primary optics element in the beam path is provided for the concentration of light within sections parallel to the sagittal plane.
  • the secondary optical element is designed in such a way that the light passing through the light output surfaces of the plurality of optical waveguide sections can be concentrated within sections parallel to the sagittal plane.
  • a sagittal plane is defined for the light module.
  • the sagittal plane can be the horizontal plane of the overall system, which is spanned by a main emission direction of the light module and a horizontal axis perpendicular to the main emission direction.
  • a meridional plane of the light module This is to be understood as the plane which is perpendicular to the sagittal plane and which is spanned by the surface normal of the sagittal plane and the main emission direction of the light module.
  • the meridional plane the vertical plane in which the main emission direction of the light module runs.
  • the indication of the horizontal or vertical refers to a reference system of the light module.
  • the light module as a whole can also be tilted and used twisted or installed.
  • Concentration of light within sections parallel to a plane means in the present context that a light beam diverging at a divergence angle in the respective section is transformed into a light bundle which diverges, in particular is parallelized, within the respective section at a smaller angle (" Collimation ”) or even converged (" bundling ").
  • the light module according to the invention allows the integration of different light functions (e.g., low beam, high beam) into a single, compact light module.
  • the optical properties in particular the focal length of the respective light-conducting section, can be preset independently.
  • the position of the respective semiconductor light source relative to the associated primary focal line determines the properties of the portion of the emission light distribution generated by the respective semiconductor light source. This makes it possible to realize different emission light distributions with the different light guide sections.
  • the light module according to the invention can therefore be designed as a multifunction light module.
  • the individual semiconductor light sources are in particular independently controllable or switched on and off. This allows the different Light functions are electrically activated and deactivated (eg switchable main beam or daytime running light), without the need for moving mechanical parts.
  • the Lichtleitabitese are disc-like design insofar as each Lichtleitabites has a two-dimensional extent and has a small thickness compared to the dimensions along the planar extension.
  • the disc-like light guide sections extend substantially perpendicular to the sagittal plane.
  • the Lichtleitabitese extend side by side.
  • the said main reflection surface bulges in particular, starting from the light incoupling surface, preferably along the path in the direction of the light outcoupling surface, convexly and perpendicular to the extension surface of the Lichtleitabitess.
  • the main reflection surface is perpendicular to the meridional plane of the light module.
  • the main reflection surface of the light-conducting sections has in sections with or parallel to the meridional plane a convex course, in particular a parabolic or circular segment-like course.
  • the main reflection surface is formed as a portion of a cylindrical paraboloid, which is substantially free of curvature in sections with or parallel to the sagittal plane.
  • the primary optic element defines a primary focal line insofar as light diverging from the primary focal line and diverging in a section perpendicular to the primary focal line can be converted into a light bundle that passes through the light outcoupling surface and is parallelized at least in a plane perpendicular to the primary focal line.
  • the convexly curved main reflection surface contributes to this. This is especially so shaped such that the optical paths of the light (ie the along the light path summed up products of irradiated path length and refractive index of each irradiated space area) is constant for all light paths, starting from the primary focal line through the respective Lichtleitabites to Lichtauskoppel constitutional.
  • the light module according to the invention has a high optical efficiency.
  • Various features contribute to this. Since a common Sekundäroptikelement is provided, material can be saved in comparison to the known light module of the type mentioned and the light exit portion of the light module can be made small. This allows high luminance.
  • each semiconductor light source is assigned a light input surface. This can be adapted so that a high proportion of the light emitted by the semiconductor light source can be recorded.
  • the disk-like Lichtleitabitese with the common Sekundäroptikelement allow a compact design.
  • the plurality of Lichtleitabitese are integrally connected to one another in the region of the light outcoupling surfaces.
  • the light guide sections extend adjacent to one another and open into a common outcoupling section of the primary optics element. At the Auskoppelabites the light outcoupling surfaces are arranged.
  • the decoupling section may have a common light output surface for all Lichtleitabitese.
  • the light-guiding sections are preferably integral with each other and possibly connected to the decoupling section.
  • the Lichtleitabitese run next to each other and the light output surfaces are arranged spaced from each other.
  • the Lichtleitabitese need not be integral with each other.
  • the light outcoupling surfaces of different Lichtleitabitese lie in a common, imaginary plane.
  • the Lichtleitabitese can keep a distance from each other.
  • the semiconductor light sources can be arranged at a sufficient distance to ensure a sufficient dissipation of waste heat.
  • each light guide section is delimited by further light guide surfaces. These are in particular perpendicular to the sagittal plane and thus form the side surfaces of the Lichtleitabitess, which limit the Lichtleitabites along its areal extent.
  • the said further light guide surfaces run in particular in such a way that the light guide section has a rectangular shape in sections perpendicular to the sagittal plane and to the meridional plane.
  • the side surfaces are at an angle to the sagittal plane, light rays receive a directional component perpendicular to the sagittal plane on total reflection on such side surfaces. This may be undesirable depending on the application, as this light beams can be directed, for example, in the dark area of a dimmed light distribution.
  • the further light guide surfaces can be designed such that the cross section of the light guide section increases in the course of the light incoupling surface to the light outcoupling surface. With multiple Total reflection on the sidewalls then hits light rays at each total reflection at a small angle to the side surface, as was the case in the previous total reflection. As a result, a collimation of the light can be achieved. In principle, however, it is also conceivable that the further light guide surfaces extend in such a way that the cross section of the light guide section decreases starting from the light coupling surface to the light coupling surface. As a result, an additional Lichtauffumbletation be achieved.
  • the said further light guide surfaces of individual light guide sections can also run in a curved manner, wherein they are in particular perpendicular to the sagittal plane.
  • the curved course is in particular such that the entire light guide section is curved in sections parallel to the sagittal plane.
  • the light guide section may also have (in each case) a counter-reflection surface opposite the curved main reflection surface.
  • the counter-reflection surface is substantially flat or (compared to the main reflection surface) only slightly curved.
  • the counter-reflection surface forms, in particular, a narrow side of the disk-like light guide section.
  • the secondary optical element is shaped such that a secondary burning line is defined. This is characterized by the fact that a divergent bundle of light emanating from the secondary focal line can be transformed into a bundle of rays parallelized within sections perpendicular to the secondary focal line.
  • the secondary firing line preferably runs perpendicular to one or all of the primary firing lines.
  • secondary firing line and primary firing lines are oriented perpendicular to the main emission direction of the light module. Since the secondary firing line and the primary firing lines are perpendicular to one another, the light concentration is split functionally into two components that follow one another in the beam path.
  • the secondary optic element preferably acts only in the light concentration in sections parallel to the sagittal plane.
  • the primary optic element is designed in particular in such a way that a light concentration takes place substantially only in sections perpendicular to the sagittal plane or in sections parallel to or in the meridional plane.
  • a light beam passing through the secondary optic element remains unaffected within sections perpendicular to the sagittal plane.
  • the Lichtauskoppel vom the Lichtleitabitese lie between the Sekundärbrennline and the Sekundäroptikelement.
  • the secondary focal line lies opposite the main emission direction of the light module behind the light output surfaces.
  • a divergent light beam emanating from the light output surface does not become parallelized, but only narrowed.
  • the secondary focal line extends at least on a light output surface.
  • the main reflection surface of one or all light-conducting sections can each have one or more facets for light scattering.
  • a facet is formed, for example, by a region of the main reflection surface which is locally tilted, twisted, recessed or raised relative to the surrounding regions of the main reflection surface.
  • the facet is designed in such a way that the main reflection surface in the area of the facet has a locally discontinuous or kinked (that is, not continuously differentiable) profile.
  • a light bundle can be deflected in a direction deviating from the remaining light bundles passing through the light outcoupling surface.
  • a light beam can be targeted in the dark area above the cut-off line. With this "overhead lighting" can then be illuminated, for example, street signs. With a correspondingly small expansion of the facet, only a small proportion of the light is directed into the dark area, so that dangerous dazzling of oncoming traffic can be avoided.
  • Each semiconductor light source (in particular in each case comprising one or more LEDs) has at least one preferably plane light emission surface, which is delimited by at least one preferably straight boundary edge. This boundary edge can run on the primary focal line of the associated Lichtleitabitess. However, it is also conceivable that the primary focal line of the associated light guide section extends through the light emission surface.
  • the boundary edge may be an edge of the optically active semiconductor surface.
  • a diaphragm is provided with a diaphragm edge, wherein the diaphragm edge defines said boundary edge of the semiconductor light source.
  • the emission light distribution of the light module is significantly influenced. If the boundary edge runs along the primary focal line, the light distribution passing through the coupling-out surface of the associated light-conducting section has a light-dark boundary. This results essentially by mapping the boundary edge. Depending on the direction in which the light emission surface extends from the primary focal line, the emission light distribution has an overhead dark area (for example for a low beam distribution) or a dark area below (e.g., for a high beam spot distribution).
  • the light module according to the invention makes it possible to select different arrangements of the semiconductor light source relative to the primary focal line for different light guide sections. This can happen, on the one hand, that the primary focal line extends at different distances from the respective light coupling surface for different light-conducting sections (ie different primary focal lengths are selected). On the other hand, the respective semiconductor light sources can be arranged at different distances to the associated light coupling surfaces on the light module.
  • a first semiconductor light source or a first group of semiconductor light sources are each such arranged that the primary focal line of each associated Lichtleitabitess extends on the boundary edge of the respective Lichtabstrahl requirements.
  • a second semiconductor light source or a second group of semiconductor light sources may be arranged such that the primary focal line extends through the light emitting surfaces.
  • form the first semiconductor light source or the first group of semiconductor light sources for example, a low beam light source
  • the second semiconductor light source or the second group of semiconductor light sources form a high beam light source.
  • the various semiconductor light sources are preferably independently electronically controllable, so that, for example, high beam can be optionally switched on.
  • the light incoupling surfaces are preferably flat and are inclined with respect to the preferably likewise plane light emission surface in such a way that a clearance gap with a variable varying over the course of the light emission surface is formed between the light input surface and the light emission surface.
  • the distance gap increases continuously over the course of the light emission surface starting from the primary focal line.
  • a conical gap is formed.
  • a curved course of the light coupling surface can also be advantageous.
  • a concave profile can lead eg to the coupling of a larger amount of light.
  • a convex light coupling surface may be advantageous to reduce the divergence of the light beam after coupling and to adapt the properties of the coupled light beam to the numerical aperture of the Lichtleitabitess.
  • the light-incoupling surface and the light-emitting surface are both planar and to extend parallel to one another.
  • the gap then has constant thickness.
  • the light outcoupling surfaces of the light guide sections preferably extend perpendicular to the sagittal plane, in particular also perpendicular to the main emission direction of the light module.
  • the light output surfaces are, for example, flat and perpendicular to the main emission and the sagittal plane. It is also conceivable that the light outcoupling surfaces are curved, in particular convex. They have, for example, in sections parallel to the sagittal plane on a convex curvature and are preferably free of curvature in sections perpendicular to the sagittal plane.
  • the secondary optic element is preferably designed as a cylindrical lens for light concentration within sections parallel to the sagittal plane.
  • the cylindrical lens has in sections in or parallel to the sagittal plane e.g. a collecting lens cross section and is preferably formed without curvature in sections perpendicular to the sagittal plane.
  • the cylinder lens can be assigned a cylinder axis about which the light passage surfaces of the cylindrical lens are curved.
  • the light-transmitting surfaces here are the optically effective surfaces of the cylindrical lens through which light enters or exits the lens.
  • the cylindrical lens may have scattering structures on one or both of its light transmission surfaces. These are preferably designed like a roller, wherein the roller axes of the scattering structures are parallel to the cylinder axis of the cylindrical lens. Such scattering structures act Although contrary to a bundling effect of the cylindrical lens, but lead to a more homogeneous illumination of the light exit section.
  • a particularly simple Hehr too a compact light module is made possible by the fact that the cylindrical lens is integrally connected to the Lichtleitabroughen of the primary optic element. This is realized in particular in such a way that the light outcoupling surfaces of the light guide sections coincide with one of the light passage surfaces of the cylinder lens.
  • cylinder lens and Lichtleitabitese are integrally connected via the light outcoupling surfaces and a light passage surface. This makes it possible to design the entire optics of the light module as a single molded part.
  • the Lichtleitabitese and the cylindrical lens, and optionally the common Auskoppelabrough of the primary optic element may be formed of glass or plastic.
  • Suitable plastics are, in particular, organic glasses, polycarbonate (PC), polymethyl methacrylate (PMMA), cycloolefin polymer (COP), cycloolefin copolymer (COC), polymethacrylic imide (PMMI) or polysulfone (PSU).
  • the plastics mentioned can be processed in particular by injection molding.
  • the secondary optic element is designed as a cylindrical reflector.
  • This is in particular formed as a section or segment of a cylindrical concave mirror or a cylindrical parabolic mirror.
  • the cylindrical reflector has, for example, a (preferably parabolic) curvature in the sagittal plane and is in sections perpendicular to the sagittal plane in particular formed curvature-free. Since a cylindrical reflector light can not only concentrate or focus, but can also deflect by reflection, the main emission direction of the light module can be structurally predetermined with the construction mentioned. In addition, for example, the partial color errors occurring in the case of lenses can be avoided, which can lead to undesired color changes in the emission light distribution of the light module.
  • the cylindrical reflector may have scattering structures and / or facets in order to achieve a more homogeneous emission light distribution.
  • FIG. 1 details a light module 10, wherein the design features shown can be used in all light modules according to the invention.
  • FIG. 1 is a semiconductor light source 12, a disc-like Lichtleitabites 14 as part of a primary optics element, and designed as a cylindrical lens 19 Sekundäroptikelement 18 shown.
  • a main emission direction 20 is defined, into which the light energy is radiated in the spatial average.
  • a sagittal plane 22 is defined, which in the example illustrated is spanned by the direction of the horizontal and the main emission direction 20.
  • a meridional plane 24 is defined as the plane which extends perpendicular to the sagittal plane 22 and is spanned by the vertical and the main emission direction 20.
  • the intensity distribution of the emission light distribution 28 can be observed on a test screen 26.
  • the test screen 26 extends in the direction perpendicular to the main emission direction 20 (i.e., both perpendicular to the sagittal plane 22 and the meridional plane 24) and is spaced from the light module 10 in the direction of the main emission direction 20.
  • the spatial position of regions of the emission light distribution 28 is indicated on the test screen 26 by means of vertical and horizontal angle coordinates V, H. These angle coordinates V, H correspond to coordinates in the Cartesian coordinate system spanned by the horizontal and the vertical in the plane of the test screen 26.
  • the emission light distribution 28, a light-dark boundary HDG, which a vertical down light area 30 and a vertical overhead dark area 32 from each other.
  • a light beam distribution 28 is used in motor vehicle headlamps as dimmed light distribution use.
  • an LED chip of the semiconductor light source 12 can be seen, which may additionally comprise further LED chips.
  • the illustrated LED chip of the semiconductor light source 12 is arranged on a heat sink 36 in order to dissipate the waste heat of the LEDs can.
  • the light guide section 14 has a thickness measured perpendicular to its plane of extent, which is substantially smaller than the dimensions of the light guide section 14 in its plane of extent.
  • the light guide section 14 has a light input surface 38 facing the semiconductor light source 12, through which light can be coupled into the light guide section 14.
  • the light coupled in this way can be conducted in the light guide section 14 with total internal reflection to a light output surface 40, through which the light can exit the light guide section 14.
  • Internal total reflection takes place in particular on a main reflection surface 42.
  • the main reflection surface 42 extends from the light input surface 38 to the light output surface 40.
  • the main reflection surface 42 is curved in such a convex manner with respect to the sagittal plane 22 that the optical properties of the light guide section 14 can be characterized by a primary focal line 44.
  • a thought, diverging from the primary focal line in a section perpendicular to the primary focal line 44 light bundle is deflected after passing through the light input surface 38 and total reflection at least at the main reflection surface 42 in passing through the light outcoupling surface 40 tufts, which in a section perpendicular to the sagittal plane 22 consists essentially of parallel light rays.
  • the light-guiding section 14 acts collimating within sections perpendicular to the sagittal plane 22.
  • the Sekundäroptikelement 18 is formed as a cylindrical lens 19, the optically active light transmission surfaces 46 bulge cylindrically about a cylinder axis 48.
  • the cylindrical lens 19 in each case has a collecting lens cross section.
  • the cylindrical lens 19 preferably has a curvature-free course.
  • the optical properties of the cylindrical lens 19 are characterized, inter alia, by a secondary focal line 50.
  • Secondary optic element 18 and primary optic element 16 are arranged relative to one another in such a way that secondary filament 50 runs perpendicular to primary filament 44.
  • the focal length assigned to the cylindrical lens 19 is, for example, chosen to be so large that the secondary focal line 50 is offset from the main emission direction 20 offset from the light output surface 40 of the light-conducting section 12.
  • the secondary optic element 18 therefore does not act collimating, but only narrows light bundles within sections parallel to the sagittal plane 22.
  • the light outcoupling surface 40 is perpendicular to the sagittal plane 22 and perpendicular to the meridional plane 24.
  • the Lichtleitabites 14 is formed in the example shown mirror-symmetrical to Meridionalebene 24.
  • the cylindrical lens 19 is mirror-symmetrical with respect to the meridional plane 24.
  • the secondary focal line 50 extends in the meridional plane 24.
  • a main beam 52 is sketched, which after passing through the secondary optical element 18 along the main emission direction 20 falls on the light-dark boundary HDG.
  • the main beam 52 extends in the meridional plane 24.
  • the main beam 52 enters the light guide section 14 through the light input surface 38, is totally reflected at the convexly curved main reflection surface 42 and exits the light guide section 14 through the light output surface 40.
  • the main beam 52 extends in the meridional plane 24 parallel to Sagittal plane 22. Since the main beam 52 has no directional component perpendicular to the meridional plane 24, its course is not affected by the cylindrical lens 19 (in the example shown).
  • the main beam 52 therefore runs after the cylindrical lens 19 in the meridional plane 24 and perpendicular to the sagittal plane 22 along the main emission direction 20.
  • the for the light module 10 in FIG. 1 explained design features, in particular the Lichtleitabitess 14 and the Sekundäroptikelements 18, can be used for all light modules according to the invention.
  • the according to FIG. 1 defined sagittal plane 22, the Meridionalebene 24, the test screen 26, and the main radiation direction 20 reference.
  • the primary optic element 16 of the light module 60 comprises three light guide sections 14, 14a and 14b, and a secondary optic element 18 in the form of a cylinder lens 19 FIG. 1 explained kind.
  • Each light-conducting section 14, 14a, 14b is assigned a substrate 62, 62a, 62b (LED chip) as a semiconductor light source in such a way that the light emitted by the respective substrate 62, 62a, 62b passes into the respective light-guiding section 14, 14a through respectively assigned light-coupling surfaces. 14b can be coupled.
  • the three light-conducting sections 14, 14a, 14b extend next to one another and each extend perpendicular to the sagittal plane 22 (FIG. FIG. 1 ).
  • the middle light guide 14 in the zu FIG. 1 explained type configured.
  • the two outer light guide sections 14a and 14b extend in sections parallel to the sagittal plane 22 (FIG. FIG. 1 ), which is particularly hereafter FIG. 12 will be explained in more detail.
  • the light guide sections 14, 14a, 14b extend in such a way that they open in a common outcoupling section 64 of the primary optics element 16 ( FIG. 3 ).
  • the decoupling portion 64 has a common light output surface 66, which the light outcoupling surfaces 40 of the Lichtleitabitese 14, 14 a and 14 b in the sense of FIG. 1 includes. It is conceivable, in particular, for the coupling-out section 64 to be formed in one piece with the light-conducting sections 14, 14a, 14b.
  • each of the light guide sections 14, 14 a, 14 b has a separate light output surface 40 in the manner of FIG. 1 has, over which the Lichtleitabitese 14, 14 a, 14 b in the Auskoppelabrough 64 (eg in non-integral formation) open.
  • materials with different optical properties (eg refractive index) than the light-conducting sections 14, 14a, 14b can then be selected for the decoupling section 64.
  • the transition between Lichtleitabitesen 14, 14a, 14b and Auskoppelabites 64 is indicated by lines. However, they do not have to be separate components.
  • each Lichtleitabites 14, 14a, 14b associated with a Primärbrennline 44, 44a, 44b.
  • the primary focal lines 44, 44a, 44b each extend in the sagittal plane 22 (cf. FIG. 1 ). In their extension direction along the main emission direction 20, the light guide sections 14, 14a, 14b have different lengths. In particular, the run associated primary focal lines 44, 44a, 44b in the light module 60 not on a common, imaginary line. Instead, the primary firing line 44 is offset relative to the primary firing lines 44a, 44b in the direction of the main emission direction 20.
  • each of the light guide sections 14, 14a, 14b can be designed in such a way that a desired focal length and thus a desired course of the respective associated primary focal line 44, 44a, 44b result.
  • different focal lengths can be assigned to different light guide sections 14, 14a, 14b, so that different light functions (low beam, high beam, daytime running light) can be realized with the various light guide sections 14, 14a, 14b.
  • the substrates 62, 62a, 62b are each arranged in different positions with respect to the primary focal line 44, 44a, 44b of their respective associated light-conducting section 14, 14a, 14b.
  • the secondary optics element 18 arranged downstream of the primary optics element 16 in the beam path acts together for all the light guide sections 14, 14a, 14b in the latter FIG. 1 explained way.
  • the secondary firing line 50 extends perpendicular to all primary firing lines 44, 44a, 44b.
  • the primary optic element 16 comprising the plurality of light guide sections 14, 14a, 14b is mirror-symmetrical to the meridional plane 24 (which corresponds to those in FIG. 1 has explained, however, in FIG. 2 not shown for clarity).
  • the arrangement and configuration of the individual semiconductor light sources 62, 62a, 62b as a whole mirror-symmetrical to the meridional plane 24.
  • the cylindrical lens 19 is mirror-symmetrical to the Meridionalebene 24 (see FIG. 1 ), the meridional plane 24 represents a plane of symmetry of the entire optical system.
  • a light module 70 is shown. This differs from the light module 60 in that the three light guide sections 14, 14a, 14b open directly into the common secondary optical element 18.
  • the secondary optical element 18 is designed as a cylindrical lens element 72, which has a cylindrical lens surface 74.
  • the cylindrical lens surface 74 bulges cylindrically around a plane perpendicular to the sagittal plane 22 (FIG. Fig. 1
  • the lens element 72 furthermore has a transition section 78, into which the light guide sections 14, 14a, 14b of the primary optics element 16 open.
  • the Lichtleitabitese 14, 14a, 14b are on their light output surfaces 40, 40a, 40b (see for explanation FIG. 1 ) is connected to the transition section 78 of the lens element 72 such that the light passing through the light outcoupling surfaces 40, 40a, 40b propagates in the lens element 72 and is refracted as it passes through the cylindrical lens surface 74. Due to the cylindrical shape of the cylindrical lens surface 74, the lens element 72 can in turn be assigned a (virtual) primary focal line 50 with the properties described above.
  • the lens element 72 is integral with the light guide sections 14, 14a via the light outcoupling surfaces 40, 40a, 40b. 14b connected.
  • the connection is in particular such that light beams propagate without refraction during the transition from a light guide section 14, 14a, 14b through the (imaginary) light coupling-out surface 40, 40a, 40b into the lens element 72.
  • the unit comprising the light guide sections 14, 14a, 14b forming the primary optic element 60 and the lens element 72 forming the secondary optic element 18 can be produced, in particular, as a one-piece molded part, for example by injection molding, from a suitable plastic.
  • the properties of the emission light distribution 28 are determined essentially by the arrangement of the semiconductor light source 12 relative to the respective associated primary focal line 44, which will be described below FIG. 6 is explained.
  • LEDs are preferably light emitting diodes (LED) use, which have a flat Lichtabstrahl Structure 80, which is sharply bounded by straight boundary edges 82.
  • LEDs with square light emission surfaces 80 and corresponding boundary edges 82 are common.
  • a plurality of such LEDs are arranged on a common substrate 62 and form a semiconductor light source 12.
  • each such semiconductor light sources 12 outlined, wherein three possible gradients for the primary focal line 44 of the associated Lichtleitabitess 14 are indicated when the semiconductor light source 12 is installed in a light module of the present type.
  • the plane of the light emitting surfaces 80 is defined as a forward direction 84 (for example, substantially in the direction of the main emission direction 20) and a reverse direction 85 (for example, opposite to the main emission direction 20).
  • the semiconductor light source 12 is arranged such that the associated primary focal line 44 passes through the light emitting surfaces 80.
  • observed emission distribution 28 results in the FIG. 6a to the right of the sketch of the semiconductor light source 12 illustrated illumination image.
  • the Lichtleitabites 14 parallelizes diverging, emanating from the Primärbrennline 44 light bundles within cuts perpendicular to the primary focal line 14. Since the light emitting surface 80 extends both in the forward direction 84 and in the backward direction 85 from the Primärbrennline 44, passing through the light outcoupling surfaces and by the Sekundäroptikelement 18th both light rays having a direction component vertically upward and light rays having a direction component vertically downward. Therefore, the emission light distribution 28 has no bright-dark boundary, but has the property of a spot light distribution with a light center about the main emission direction (for example, given by the in FIG FIG. 1 explained main beam 52).
  • the light emitting surface 80 extends in the backward direction 85.
  • the light beams emanating from said boundary edges 82 are parallelized in the main emission direction 20.
  • the light rays which emanate from the light emission surfaces extending in the backward direction 85 have, after passing through the light outcoupling surface 40 or through the secondary optics element 18, a direction component vertically downwards. Therefore, the emission light distribution 28 has a bright vertical area 30 below and a vertical dark area 32 separated therefrom by the cut-off line HDG.
  • FIG. 6c extends from the primary focal line 44 in the forward direction 84.
  • the primary focal line 44 extends through a respective boundary edge 82 of the Lichtabstrahl Type 80. Accordingly, the outgoing from the primary focus line 44 boundary edges 82 outgoing light rays again lead to a sharp light-dark Limit HDG, in which case the bright area 30 is vertically above the dark area 32 (in FIG. 6c sketched on the right).
  • a boundary edge 82 which runs on the respective primary focal line 44 is imaged as a light-dark boundary of the emission light distribution 28.
  • the remaining Lichtabstrahl Type 80 is about Lichtleitabites 14 and Sekundäroptikelement 18 in a corresponding Light source image projected.
  • the light-guiding section 14 is preferably designed such that, when displaced, the directions along the vertical direction V measured size of the respective light source images does not change.
  • a multifunction light module can be implemented in a simple manner with the arrangement according to the invention.
  • a plurality of semiconductor light sources 12 may be provided, wherein semiconductor light sources 12 of a first group of the type FIG. 6b are arranged.
  • a second group may comprise semiconductor light sources 12 which are in the nature of the FIG. 6c are arranged. This is in the FIG. 7 outlined.
  • the first group of semiconductor light sources then leads to an emission light distribution with a vertical downwardly lying light area, while the second group leads to a light emission distribution with a vertical overhead light area (cf. FIG. 6 ).
  • the said first group can therefore feed a low-beam distribution of a motor vehicle headlamp, which has a horizontally running cut-off line.
  • the second group can serve as a high beam source, which leads to an illumination above the cut-off line.
  • the semiconductor light sources of the first group are electrically independent of the semiconductor light sources of the second group can be controlled, in particular switched on and off.
  • the high beam light distribution can be switched on and off as required for the low beam light distribution.
  • the light emission surfaces 80 can be displaced such that the light emission surface 80 forms the primary focal line 44 slightly overlapped.
  • FIG. 8 shows a section through an inventive light module (for example, light module 60), wherein the sectional plane extends perpendicular to the sagittal plane 22.
  • the light guide section 14 (in particular Hauptreflexions spectrum 42, Lichteinkoppel requirements 38, Lichtauskoppel requirements 40) formed such that the optical paths (in projection perpendicular to the primary focal line 44) for all, emanating from the primary focal line 44, passing through the Lichteinkoppel products 48 and on the main reflection surface 42 totally reflected light rays until they pass through the Lichtauskoppel requirements 40 (and also in the further course by the Sekundäroptikelement 18) are constant.
  • the product of the respectively associated refractive index n.sub.i and the path si covered in the respective material section is understood in a known manner.
  • a first beam starting from the primary firing line 44, defines a path s1 to the light-incoupling surface 38, a path s2 in the light-conducting section 14 to the main reflection surface 42, a total reflection of a path s3 through the light-conducting section 14 to the light-outcoupling surface 40, and further out of the light-conducting section 14 Path sections s4, s5 back (by the Sekundäroptikelement 18) and s6 back.
  • the refractive index of the light-conducting section 14 is decisive for the path sections s2 and s3, whereas the path sections s1 and s4 run through air. Accordingly, two further paths (s1 ', s2', s3 ', s4', s5 ', s6' and s1 ", s2", s3 ", s4", s5 ", s6”) are sketched, which are characterized by the position of the Distinguish point of total reflection at the main reflection surface 42. The product s i times n i summed over the individual path sections is constant for the various paths.
  • the light guide section 14 is in the manner of a pie slice formed a parabolic cylinder body, wherein the light input surface 38 converges at an acute angle with the light output surface 40.
  • the main reflection surface 42 extends from the light input surface 38 to the light output surface 40.
  • these embodiments are not mandatory. It is conceivable, in particular, that the light incoupling surface 38 and the light outcoupling surface 40 form a right angle. If the light-guiding section 14 has further boundary surfaces, light-coupling surface 38 and light-outcoupling surface 40 can also run in parallel, as described below FIG. 15 explained in more detail.
  • the light input surface 38 extends substantially parallel to a not shown light emitting surface of the semiconductor light source 12 (which, for example, in the zu FIG. 6 explained type is designed). Therefore, a clearance gap 88 is formed between the light incoupling surface 38 and the light emission surface 80, which has a constant size along the course of the light emission surface of the semiconductor light source 12.
  • Conceivable are also embodiments in which the light incoupling surface 38 extends at an angle to the light emission surface of the semiconductor light source 12 and therefore the distance gap 88 has a variable over the course of the light emission surface size.
  • the light input surface 38 may be arched, for example convex or concave, so that the size of the gap 88 varies over the course of the light emission surface of the semiconductor light source 12.
  • the light-guiding section 14 may have sections in areas between the main reflection surface 42 and the light outcoupling surface 40, or between light input surface 38 and light outcoupling surface 40 or between light input surface 38 and main reflection surface 42, which are optically inoperative, ie essentially without the optical properties of the light guide section 14 Meaning are.
  • the light-guiding section 14 may have a flange-like projection 90 at the transitions of the light output surface 40 to the main reflection surface 42 and to the light input surface 38. This can serve as a mounting portion of the Lichtleitabites 14.
  • a positionally accurate alignment can take place via the flange-like projection 90.
  • a fastening or positioning portion 92 may be provided at the transition between light input surface 38 and main reflection surface 42.
  • the attachment and positioning portions 90, 92 are preferably formed integrally therewith during an injection molding step in the manufacture of the light guide portion 14.
  • the light guide section 14 is delimited by further light guide surfaces 94 and 96 which are perpendicular to the sagittal plane 22 (FIG. FIG. 1 ) stand.
  • the further light guide surfaces 94 and 96 form insofar large side surfaces of the surface extending Lichtleitabitess 14, whereas the Lichteinkoppel requirements 38, the light output surface 40 and the Main reflection surface 42 narrow side surfaces of the disc-like Lichtleitabitess 14 represent.
  • the further light guide surfaces 94 and 96 have the function of directing light beams with direction components perpendicular to the main emission direction 20 under total internal reflection from the light input surface 38 to the light output surface 40.
  • the other light guide surfaces 94 and 96 are in particular perpendicular to the sagittal plane 22 (viewing plane in FIG. 10 ) and can be parallel to each other.
  • FIG. 11 An alternative embodiment is in FIG. 11 shown.
  • the further light guide surfaces 94 and 96 are also perpendicular to the sagittal plane 22 (viewing plane of FIG. 11 ), however, diverge in the direction of the main emission direction 20, so that the cross-sectional area of the light-conducting section 14 measured in sections perpendicular to the main emission direction 20 increases steadily as it progresses in the direction of the main emission direction 20.
  • the further light guide surfaces 94 and 96 are planar and enclose with one another an acute angle which is open in the main emission direction 20. Therefore, the light guide section 14 has in sections parallel to the sagittal plane 22 (viewing plane of the FIG. 11 ) trapezoidal shape.
  • the other light guide surfaces 94 and 96 are so far apart conically.
  • the light guide section 14 is mirror-symmetrical to the meridional plane 24.
  • the light guide section 14 is arranged offset in the direction perpendicular to the meridional plane, or that the light guide surface 94 with the main emission direction 20 another (acute) angle includes, as the further light guide 96th
  • FIG. 12 is one in sections parallel to the sagittal plane 22 (viewing plane of the FIG. 12 ) curved configuration of the Lichtleitabitess 14 shown.
  • the further light guide surfaces 94 and 96 run perpendicular to the sagittal plane 22, but are curved within sections parallel to the sagittal plane 22.
  • the light guide surfaces 94 and 96 in particular do not run parallel to one another, but have a slightly different course such that the cross-sectional area of the light guide section 14 in turn increases steadily as it progresses in the light emission direction.
  • FIG. 11 can the in FIG.
  • Lichtleitabites 14 are obtained in that instead of the meridional plane 24 as a plane of symmetry for the Lichtleitabites 14 a curved in sections with the sagittal plane 22 extending guide surface 98 is selected, so that the mirror symmetry of the other Lichtleit vom 94 and 96 to the guide surface 98 only for infinitesimal small, perpendicular to each other projected surface pieces of the light guide surfaces 94 and 96 applies to the guide surface 98.
  • the guide surface forms a neutral fiber of the Lichtleitabitess 14th
  • the Lichtleitabites is also arranged offset in the direction perpendicular to the Meridionalebene 24.
  • FIGS. 10 to 12 illustrated embodiments of the Lichtleitabitess 14 have in common that the Lichtleitabites 14 in sections perpendicular to the main emission direction 20 (or in sections, both perpendicular to the Meridionalebene 24 and on the Sagittal plane 22) has substantially rectangular shape. In total reflection at the other light guide surfaces 94 and 96, therefore, light beams receive no additional directional component perpendicular to the sagittal plane 22.
  • the in the FIG. 12 shown curved configuration of the Lichtleitabitess 14 is advantageous if several Lichtleitabitese 14 arranged side by side and in a common decoupling portion 64 (FIGS. FIG. 2 ) or a common, integrally formed secondary optical element 18 (FIG. FIG. 4 ) should result.
  • the main reflection surface 42 of the light guide section 14 has a facet 102 for targeted light scattering (FIG. FIG. 13a ).
  • the facet 102 is designed in such a way that a light beam 104 reflected by the main reflection surface 42 in the region of the facet 102 is deliberately deflected in a direction deviating from light rays reflected in the vicinity of the facet 102.
  • a light beam distribution 28 of the FIG. 13b be realized type realized.
  • This emission light distribution 28 has a light-dark boundary HDG, which delimits a bright area 30 lying vertically below (shown on a test screen in FIG. 1 explained type).
  • the facet 102 directs a portion of the light emitted by the semiconductor light source 12 in a targeted manner into the dark region above the light-dark boundary HDG, which leads to an "overhead region" 106 of the emission light distribution 28 illuminated with comparatively weak intensity (cf. FIG. 13b ). This can be used to illuminate street signs without dazzling oncoming traffic.
  • the facet 102 can be realized in that a delimited region of the main reflection surface 42 with respect to the surrounding course of the main reflection surface 42 is tilted by a facet angle ⁇ .
  • the course of the main reflection surface 42 'without the facet 102 is shown in dashed lines.
  • the light beam 104 is therefore deflected into a region above the cut-off line HDG.
  • the facet 102 is preferably arranged in the secondary optical element 18 facing edge portion of the Lichtleitabitess 14. In particular, it is conceivable to design the light guide section 14 in the region of a front edge of the main reflection surface 42 in the manner of the facet 102.
  • FIG. 15 a further embodiment for the light guide 14 is described, which allows the construction of a light module 110 as a further embodiment of the invention.
  • the FIG. 15 shows a sectional view perpendicular to the sagittal plane (see. FIG. 1 ). Visible is a Lichtleitabites 14 which extends in the meridional plane like a disk, flat.
  • the light guide section 14 differs in that a counter reflection surface 112 opposed to the main reflection surface 42 is provided. This is in its course in sections parallel to the meridional plane 24 (representation plane of the FIG. 15 ) in particular even or only slightly curved. With regard to the configuration of the other side surfaces of the Lichtleitabitess 14 is made to the explanations to the FIGS. 8 to 14 directed.
  • the counter-reflection surface 112 is arranged downstream of the main reflection surface 42 in the beam path.
  • the counter-reflection surface 112 has the function of redirecting a light beam guided in the light guide section 14 after total reflection at the main reflection surface 42 once again by total reflection in sections perpendicular to the sagittal plane.
  • the preferred direction of the light-guiding section 14 leaving the light-outcoupling surface 40 can be predetermined.
  • the light output surface 40 is oriented differently from the embodiments of the invention described above parallel to the light input surface 38. Accordingly, the light module 110 has a main emission direction 20 rotated by almost 90 °.
  • Such a construction may be advantageous, for example, if, for reasons of space, for example, the orientation of the heat sink 36 must be modified compared with the embodiments described above.
  • FIG. 16 shows a further embodiment of a designed as a cylindrical lens 19 Sekundäroptikelement 18, as can be used in all light modules according to the invention.
  • the cylindrical lens 19 has roller-like scattering structures 116 on its light passage surface 46 facing the primary optics element 16 (in particular the light-conducting sections 14), which in the detail view according to FIG FIG. 16b are illustrated in more detail.
  • the light passage surface 46 bulges in each case cylindrically about a roller axis not shown in detail, which is preferably parallel to the cylinder axis 48 of the cylindrical lens 19 (cf. FIG. 1 ) runs.
  • individual light beams are counter to the total concentrating effect in Cut scattered parallel to the sagittal plane, which can lead to a better homogeneity of the light beam distribution of the light module.
  • FIG. 17 shows an embodiment in which the secondary optic element 18 is formed by a integrally formed on the Lichtleitabites 14 light exit portion with a cylindrically curved cylindrical lens surface.
  • the common secondary optical element 18 is formed by a cylinder reflector 120.
  • the cylindrical reflector 120 is formed as a segment of a cylindrical concave mirror, which in the sagittal plane 22 (plane of the FIG. 18 ) has a partially parabolic course. Therefore, the cylinder reflector 120 can be associated with a perpendicular to the sagittal plane 22 extending secondary focal line 50, which in the FIG. 18 extends perpendicular to the plane of the drawing.
  • the cylindrical reflector deflects the light rays leaving the light guide sections 14. Therefore, by suitable orientation of the cylindrical reflector 120, the main emission direction 20 of the light module can be predetermined.
  • FIG. 19 shows a further embodiment of the Lichtleitabroughe 14, which can also be found in all light modules according to the invention application.
  • the light outcoupling surface 40 of a light-conducting section 14 can have roller-type scattering structures 124, which in the detail view of FIG FIG. 19b for the arrangement according to figure 19a are recognizable.
  • the light outcoupling surface 40 has sections parallel to the sagittal plane 22 (plane of representation of FIG FIG. 19 ) has a convexly curved, in particular cylindrical or parabolic course.
  • the light outcoupling surface 40 curves in the region of a scattering structure 124 each about a roller axis, not shown, which is oriented perpendicular to the sagittal plane 22. This leads to a scattering of light rays in sections parallel to the sagittal plane 22 and thus to a homogenization of the emission light distribution.
  • the light guide section 14 has further light guide surfaces 94 and 96 extending perpendicular to the sagittal plane 22, which diverges in the direction of the main emission direction 20. This contributes to a collimation of the light guided in the light guide section 14 in sections parallel to the sagittal plane 22.

Description

Die Erfindung betrifft ein Lichtmodul für Kfz-Scheinwerfer nach dem Oberbegriff des Anspruchs 1.The invention relates to a light module for motor vehicle headlights according to the preamble of claim 1.

Im vorliegenden Zusammenhang wird unter einem Lichtmodul die eigentlich Licht aussendende Einheit verstanden, welche die gewünschte Abstrahllichtverteilung abgibt. Dieses Lichtmodul kann ein einem Kfz-Scheinwerfer verbaut werden, z.B in einem Scheinwerfergehäuse eingefasst werden.In the present context, a light module is understood to be the light-emitting unit actually emitting the desired emission light distribution. This light module can be installed in a motor vehicle headlight, for example, enclosed in a headlight housing.

Je nach Anwendungsgebiet soll die Abstrahllichtverteilung bestimmte, oftmals gesetzlich vorgegebene, charakteristische Intensitätsverläufe aufweisen.Depending on the field of application, the emission light distribution should have specific, often prescribed by law, characteristic intensity profiles.

Von Interesse ist zum einen die Erzeugung einer abgeblendeten Lichtverteilung, welche sich durch eine abschnittsweise im Wesentlichen horizontal verlaufende Hell-Dunkel-Grenze auszeichnet. Diese Lichtverteilung weist einen vertikal oben liegenden Dunkelbereich und einen vertikal unten liegenden Hellbereich aufweist, wobei der Hellbereich von dem Dunkelbereich durch die Hell-Dunkel-Grenze getrennt ist. Dabei ist insbesondere eine möglichst intensive Ausleuchtung im Bereich unmittelbar unterhalb der Hell-Dunkel-Grenze erwünscht (Abblendlicht-Spot-Lichtverteilung), um eine ausreichende Reichweite zu erzielen. Außerdem soll eine ausreichende Ausleuchtung des Fahrzeugvorfeldes oder von Seitenbereichen gewährleistet werden (Grundlicht-Lichtverteilung). Entsprechende Lichtmodule können als Abblendlicht oder Nebellicht Verwendung finden.On the one hand, the generation of a dimmed light distribution, which is characterized by a sectionally substantially horizontal light-dark boundary, is of interest. This light distribution has a vertical dark area and a vertical light area below, the bright area is separated from the dark area by the cut-off. In particular, the most intense possible illumination in the area immediately below the cut-off line is desired (low beam spot light distribution) in order to achieve a sufficient range. In addition, a sufficient illumination of the vehicle apron or side areas should be ensured (basic light distribution). Corresponding light modules can be used as dipped beam or fog light.

Ferner soll mit Kfz-Scheinwerfern oftmals eine Fernlicht-Lichtverteilung erzeugt werden, welche eine hohe Beleuchtungsstärke in einem Bereich oberhalb der Hell-Dunkel-Grenze (also im Dunkelbereich der abgeblendeten Lichtverteilung) aufweist. Die Fernlichtverteilung soll sich möglichst homogen mit der Grundlichtverteilung der abgeblendeten Lichtverteilung überlagern. Beispielsweise soll ein störendes Streifenmuster am Übergang der verschiedenen Lichtverteilungen, insbesondere im Bereich der Hell-Dunkel-Grenze vermieden werden.Furthermore, with car headlamps often a high beam light distribution be generated, which has a high illuminance in a range above the cut-off line (ie in the dark area of the dimmed light distribution). The main beam distribution should overlap as homogeneously as possible with the basic light distribution of the dimmed light distribution. For example, a disturbing fringe pattern should be avoided at the transition of the different light distributions, in particular in the region of the cut-off line.

Je nach Einsatzgebiet sollen ferner Lichtfunktionen wie Tagfahrlicht, Begrenzungslicht oder Blinklicht bereitgestellt werden. Hierbei soll meist ein großer Teil der Lichtaustrittsfläche des Lichtmoduls eine räumlich konstante Leuchtdichte aufweisen, um ein möglichst homogenes Erscheinungsbild zu erzielen.Depending on the area of use, lighting functions such as daytime running lights, driving lights or flashing lights should also be provided. In this case, usually a large part of the light exit surface of the light module should have a spatially constant luminance in order to achieve a homogeneous appearance as possible.

Zur Realisierung der verschiedenen Abstrahllichtverteilungen sind einerseits Projektionssysteme bekannt. Diese sind meist zweistufige optische Systeme, bei denen Licht einer Lichtquelle über eine Primäroptik in die Brennebene einer Sekundäroptik gelenkt wird, welche Licht mit der gewünschten abgestrahlten Lichtverteilung projiziert. Aufgrund des zweistufigen Aufbaus beanspruchen Projektionssysteme in der Regel viel Bauraum entlang des Strahlengangs. Außerdem sind Reflexionssysteme bekannt, bei welchen ein Reflektor zur Formung und Umlenkung des von einer Lichtquelle ausgestrahlten Lichts in die abgestrahlte Lichtverteilung zum Einsatz kommt. Hierbei sind meist komplex geformte und große Reflektorflächen erforderlich, um die gewünschte Lichtverteilung zu erzielen.On the one hand, projection systems are known for realizing the different emission light distributions. These are usually two-stage optical systems, in which light from a light source is directed by a primary optics into the focal plane of a secondary optics, which projects light with the desired radiated light distribution. Due to the two-stage design, projection systems generally require a large amount of space along the beam path. In addition, reflection systems are known in which a reflector is used for shaping and deflecting the light emitted by a light source into the radiated light distribution. In this case, usually complex shaped and large reflector surfaces are required to achieve the desired light distribution.

Als Lichtquelle für Kfz-Scheinwerfer ist oftmals der Einsatz von LEDs erwünscht, da diese einen vergleichsweise geringen Energieverbrauch und eine vergleichsweise hohe Effizienz der Energieumwandlung aufweisen. Hierbei besteht ein Problem darin, dass nach gegenwärtigem Stand der Technik LEDs meist geringere Lichtströme erzeugen als Gasentladungslampen oder Halogenlampen. Daher müssen regelmäßig mehrere LED-Lichtquellen in einem Lichtmodul kombiniert werden, um ausreichend hohe Lichtströme zu erzeugen.As a light source for motor vehicle headlights, the use of LEDs is often desirable because they are a comparatively have low energy consumption and a comparatively high efficiency of energy conversion. Here, there is a problem in that, according to the current state of the art, LEDs usually generate lower luminous fluxes than gas discharge lamps or halogen lamps. Therefore, several LED light sources in a light module must be regularly combined to produce sufficiently high luminous flux.

In der US 2009/0091944 A1 ist ein Lichtmodul gemäß dem Oberbegriff des Anspruchs 1 beschrieben. Dabei laufen die scheibenartigen Lichtleitabschnitte im Bereich ihrer Lichteinkoppelflächen zusammen. Dies kann zu Problemen hinsichtlich des der Abwärme der den jeweiligen Lichteinkoppelflächen zugeordneten Halbleiterlichtquellen führen, da diese nahe benachbart angeordnet werden. Bei dem beschriebenen Lichtmodul weist ferner jeder Lichtleitabschnitt an seiner Lichtauskoppelfläche ein massives, zylinderlinsenartiges Endstück auf, welches sich entlang der jeweiligen Lichtauskoppelfläche erstreckt. Aufgrund der Größe dieser Endstücke müssen die Lichtleitabschnitte im Bereich ihrer Lichtauskoppelflächen einen Mindestabstand zueinander einhalten. Das Lichtmodul hat daher einen vergleichsweise großflächigen Lichtaustrittsabschnitt. Zusätzlich ergibt sich ein erheblicher Materialaufwand. Die DE 20 2011 103 703 U1 beschreibt ein Lichtmodul, welches Merkmale des Oberbegriffs des Anspruchs 1 aufweist.In the US 2009/0091944 A1 a light module according to the preamble of claim 1 is described. The disk-like Lichtleitabschnitte run together in the region of their Lichteinkoppelflächen. This can lead to problems with regard to the waste heat of the semiconductor light sources assigned to the respective light coupling surfaces, since these are arranged close to one another. In the case of the described light module, furthermore, each light guide section has on its light outcoupling surface a solid, cylindrical lens-like end piece, which extends along the respective light coupling-out surface. Due to the size of these end pieces, the light guide sections must maintain a minimum distance from one another in the region of their light output surfaces. The light module therefore has a comparatively large light exit section. In addition, there is a considerable cost of materials. The DE 20 2011 103 703 U1 describes a light module having features of the preamble of claim 1.

Die Aufgabe der Erfindung besteht darin, die genannten Nachteile der bekannten Lichtmodule zu beheben. Insbesondere soll ein kompaktes Lichtmodul mit Halbleiterlichtquellen bereitgestellt werden, welches eine hohe optische Effizienz aufweist und welches die Erzeugung verschiedener Abstrahllichtverteilungen mit einem einzigen Modul erlaubt.The object of the invention is to remedy the mentioned disadvantages of the known light modules. In particular, a compact light module with semiconductor light sources is to be provided, which has a high optical efficiency and which allows the production of different emission light distributions with a single Module allowed.

Diese Aufgabe wird durch ein Lichtmodul mit den Merkmalen des Anspruchs 1 gelöst. Das Lichtmodul umfasst eine Mehrzahl von Halbleiterlichtquellen, beispielsweise Leuchtdioden (LED) zum Ausstrahlen von Licht, sowie ein Primäroptikelement zur Konzentration des von den Halbleiterlichtquellen ausgestrahlten Lichts innerhalb von Schnitten senkrecht zu einer Sagittalebene des Lichtmoduls. Das Primäroptikelement weist eine Mehrzahl von sich flächig senkrecht zur Sagittalebene erstreckender, scheibenartiger Lichtleitabschnitte auf. Jeder Lichtleitabschnitt hat eine Lichteinkoppelfläche und eine Lichtauskoppelfläche und ist zur Lichtleitung unter interner Totalreflexion von der Lichteinkoppelfläche zur Lichtauskoppelfläche ausgebildet. Interne Totalreflexion tritt auf, wenn ein auf eine Begrenzungsfläche des Lichtleitabschnitts treffender Lichtstrahl zum Lot auf die Begrenzungsfläche im Reflexionspunkt einen Winkel bildet, der den Grenzwinkel der Totalreflexion überschreitet, so dass das Brechungsgesetz (Snellius-Gesetz) keine reelle Lösung für den Brechungswinkel liefert.This object is achieved by a light module having the features of claim 1. The light module comprises a plurality of semiconductor light sources, for example light-emitting diodes (LEDs) for emitting light, and a primary optics element for concentrating the light emitted by the semiconductor light sources within sections perpendicular to a sagittal plane of the light module. The primary optic element has a plurality of surface-like, perpendicular to the sagittal plane extending, disc-like Lichtleitabschnitte. Each light guide section has a light input surface and a light output surface and is formed for light conduction under total internal reflection from the light input surface to the light outcoupling surface. Total internal reflection occurs when a light beam striking a boundary surface of the light guide portion forms an angle with the solder on the boundary surface at the reflection point exceeding the critical angle of total reflection, so that the law of refraction (Snellius law) does not provide a real solution to the refraction angle.

Bei dem Lichtmodul ist je ein Lichtleitabschnitt einer Halbleiterlichtquelle derart zugeordnet, dass das Licht der Halbleiterlichtquelle durch die jeweilige Lichteinkoppelfläche in den Lichtleitabschnitt eingekoppelt werden kann. Jeder Lichtleitabschnitt weist eine konvex gekrümmte Hauptreflexionsfläche derart auf, dass eine jeweils dem Lichtleitabschnitt zugeordnete Primärbrennlinie definiert ist. Diese zeichnet sich dadurch aus, dass ein von der Primärbrennlinie ausgehendes, divergierend auf die Lichteinkoppelfläche treffendes Lichtbündel in ein durch die Lichtauskoppelfläche tretendes, innerhalb Schnitten senkrecht zur Primärbrennlinie parallelisiertes Lichtbündel umgeformt werden kann. Die Primärbrennlinien erstrecken sich jeweils in der und oder parallel zu der Sagittalebene.In the light module is ever a Lichtleitabschnitt a Semiconductor light source assigned such that the light of the semiconductor light source can be coupled by the respective light input surface in the light guide. Each light guide section has a convexly curved main reflection surface such that a primary focal line assigned in each case to the light guide section is defined. This is characterized by the fact that a light bundle emanating from the primary focal line and striking the light incoupling surface in a diverging manner can be transformed into a light bundle that passes through the light outcoupling surface and is parallelized within sections perpendicular to the primary burning line. The primary focal lines each extend in and / or parallel to the sagittal plane.

Bei dem erfindungsgemäßen Lichtmodul ist ein dem Primäroptikelement im Strahlengang nachgeordnetes Sekundäroptikelement zur Konzentration von Licht innerhalb von Schnitten parallel zu der Sagittalebene vorgesehen. Das Sekundäroptikelement ist derart ausgebildet, dass das durch die Lichtauskoppelflächen der Mehrzahl von Lichtleitabschnitten tretende Licht innerhalb von Schnitten parallel zu der Sagittalebene konzentriert werden kann.In the light module according to the invention, a secondary optical element arranged downstream of the primary optics element in the beam path is provided for the concentration of light within sections parallel to the sagittal plane. The secondary optical element is designed in such a way that the light passing through the light output surfaces of the plurality of optical waveguide sections can be concentrated within sections parallel to the sagittal plane.

Zur Erläuterung der Erfindung ist für das Lichtmodul eine Sagittalebene definiert. Wird beispielsweise das Lichtmodul in einem Kfz-Scheinwerfer verbaut, so kann die Sagittalebene die Horizontalebene des Gesamtsystems sein, welche durch eine Hauptabstrahlrichtung des Lichtmoduls und eine horizontale Achse senkrecht zur Hauptabstrahlrichtung aufgespannt wird. Ferner wird im Folgenden auf eine Meridionalebene des Lichtmoduls Bezug genommen. Hierunter ist diejenige Ebene zu verstehen, welche senkrecht zur Sagittalebene ist und welche von der Flächennormalen der Sagittalebene und der Hauptabstrahlrichtung des Lichtmoduls aufgespannt wird. Beispielsweise ist die Meridionalebene diejenige Vertikalebene, in welcher die Hauptabstrahlrichtung des Lichtmoduls verläuft. Die Angabe der Horizontalen beziehungsweise Vertikalen bezieht sich dabei auf ein Bezugssystem des Lichtmoduls. Selbstverständlich kann das Lichtmodul als Ganzes auch verkippt und verdreht verwendet beziehungsweise verbaut werden.To explain the invention, a sagittal plane is defined for the light module. If, for example, the light module is installed in a motor vehicle headlight, then the sagittal plane can be the horizontal plane of the overall system, which is spanned by a main emission direction of the light module and a horizontal axis perpendicular to the main emission direction. Furthermore, in the following, reference is made to a meridional plane of the light module. This is to be understood as the plane which is perpendicular to the sagittal plane and which is spanned by the surface normal of the sagittal plane and the main emission direction of the light module. For example, the meridional plane the vertical plane in which the main emission direction of the light module runs. The indication of the horizontal or vertical refers to a reference system of the light module. Of course, the light module as a whole can also be tilted and used twisted or installed.

Unter Konzentration von Licht innerhalb von Schnitten parallel zu einer Ebene wird im vorliegenden Zusammenhang verstanden, dass ein unter einem Divergenzwinkel in dem jeweiligen Schnitt divergierendes Lichtbündel in ein Lichtbündel umgeformt wird, welches innerhalb des jeweiligen Schnittes unter einem geringeren Winkel divergiert, insbesondere parallelisiert ist ("Kollimierung") oder sogar konvergiert ("Bündelung").Concentration of light within sections parallel to a plane means in the present context that a light beam diverging at a divergence angle in the respective section is transformed into a light bundle which diverges, in particular is parallelized, within the respective section at a smaller angle (" Collimation ") or even converged (" bundling ").

Das erfindungsgemäße Lichtmodul erlaubt die Integration verschiedener Lichtfunktionen (z.B. Abblendlicht, Fernlicht) in ein einziges, kompaktes Lichtmodul. Für jeden Lichtleitabschnitt lassen sich die optischen Eigenschaften, insbesondere die Brennweite des jeweiligen Lichtleitabschnitts, unabhängig vorgeben. Die Lage der jeweiligen Halbleiterlichtquelle relativ zu der zugeordneten Primärbrennlinie bestimmt die Eigenschaften des durch die jeweilige Halbleiterlichtquelle erzeugten Anteils der Abstrahllichtverteilung. Damit lassen sich mit den unterschiedlichen Lichtleitabschnitten verschiedene Abstrahllichtverteilungen realisieren. Das erfindungsgemäße Lichtmodul kann daher als Multifunktions-Lichtmodul ausgelegt werden.The light module according to the invention allows the integration of different light functions (e.g., low beam, high beam) into a single, compact light module. For each light-guiding section, the optical properties, in particular the focal length of the respective light-conducting section, can be preset independently. The position of the respective semiconductor light source relative to the associated primary focal line determines the properties of the portion of the emission light distribution generated by the respective semiconductor light source. This makes it possible to realize different emission light distributions with the different light guide sections. The light module according to the invention can therefore be designed as a multifunction light module.

Die einzelnen Halbleiterlichtquellen sind insbesondere unabhängig voneinander elektrisch ansteuerbar oder ein- und ausschaltbar. Dadurch können die unterschiedlichen Lichtfunktionen elektrisch aktiviert und deaktiviert werden (z.B. zuschaltbares Fernlicht oder Tagfahrlicht), ohne dass hierfür bewegliche mechanische Teile erforderlich sind.The individual semiconductor light sources are in particular independently controllable or switched on and off. This allows the different Light functions are electrically activated and deactivated (eg switchable main beam or daytime running light), without the need for moving mechanical parts.

Die Lichtleitabschnitte sind scheibenartig ausgebildet insofern, als jeder Lichtleitabschnitt eine flächige Ausdehnung aufweist und eine im Vergleich zu den Abmessungen entlang der flächigen Ausdehnung geringe Dicke aufweist. Die scheibenartigen Lichtleitabschnitte erstrecken sich im Wesentlichen senkrecht zu der Sagittalebene. Vorzugsweise verlaufen die Lichtleitabschnitte nebeneinander. Die genannte Hauptreflexionsfläche wölbt sich insbesondere ausgehend von der Lichteinkoppelfläche, vorzugsweise entlang des Verlaufs in Richtung zur Lichtauskoppelfläche, konvex und steht senkrecht auf der Erstreckungsfläche des Lichtleitabschnitts. Insbesondere verläuft die Hauptreflexionsfläche senkrecht zur Meridionalebene des Lichtmoduls. Die Hauptreflexionsfläche der Lichtleitabschnitte weist in Schnitten mit oder parallel zu der Meridionalebene einen konvexen Verlauf, insbesondere einen parabolischen oder kreissegmentartigen Verlauf auf. Vorzugsweise ist die Hauptreflexionsfläche als Abschnitt eines zylindrischen Paraboloids ausgebildet, welcher in Schnitten mit der oder parallel zur Sagittalebene im Wesentlichen krümmungsfrei ist.The Lichtleitabschnitte are disc-like design insofar as each Lichtleitabschnitt has a two-dimensional extent and has a small thickness compared to the dimensions along the planar extension. The disc-like light guide sections extend substantially perpendicular to the sagittal plane. Preferably, the Lichtleitabschnitte extend side by side. The said main reflection surface bulges in particular, starting from the light incoupling surface, preferably along the path in the direction of the light outcoupling surface, convexly and perpendicular to the extension surface of the Lichtleitabschnitts. In particular, the main reflection surface is perpendicular to the meridional plane of the light module. The main reflection surface of the light-conducting sections has in sections with or parallel to the meridional plane a convex course, in particular a parabolic or circular segment-like course. Preferably, the main reflection surface is formed as a portion of a cylindrical paraboloid, which is substantially free of curvature in sections with or parallel to the sagittal plane.

Das Primäroptikelement definiert eine Primärbrennlinie insofern, als von der Primärbrennlinie ausgehendes, in einem Schnitt senkrecht zur Primärbrennlinie divergierendes Licht in ein durch die Lichtauskoppelfläche durchtretendes, zumindest in einer Ebene senkrecht zur Primärbrennlinie parallelisiertes Lichtbündel umgeformt werden kann. Dazu trägt insbesondere die konvex gekrümmte Hauptreflexionsfläche bei. Diese ist insbesondere derart geformt, dass die optischen Wege des Lichts (also die entlang des Lichtweges aufsummierten Produkte aus durchstrahlter Weglänge und Brechungsindex des jeweils durchstrahlten Raumbereiches) für sämtliche Lichtwege ausgehend von der Primärbrennlinie durch den jeweiligen Lichtleitabschnitt zur Lichtauskoppelfläche konstant ist.The primary optic element defines a primary focal line insofar as light diverging from the primary focal line and diverging in a section perpendicular to the primary focal line can be converted into a light bundle that passes through the light outcoupling surface and is parallelized at least in a plane perpendicular to the primary focal line. In particular, the convexly curved main reflection surface contributes to this. This is especially so shaped such that the optical paths of the light (ie the along the light path summed up products of irradiated path length and refractive index of each irradiated space area) is constant for all light paths, starting from the primary focal line through the respective Lichtleitabschnitt to Lichtauskoppelfläche.

Das erfindungsgemäße Lichtmodul weist insgesamt eine hohe optische Effizienz auf. Hierzu tragen verschiedene Merkmale bei. Da ein gemeinsames Sekundäroptikelement vorgesehen ist, kann im Vergleich zu dem bekannten Lichtmodul der eingangs genannten Art Material eingespart werden und der Lichtaustrittsabschnitt des Lichtmoduls klein ausgeführt werden. Dies ermöglicht hohe Leuchtdichten. Außerdem ist jeder Halbleiterlichtquelle eine Lichteinkoppelfläche zugeordnet. Diese kann angepasst ausgebildet sein, so dass ein hoher Anteil des von der Halbleiterlichtquelle abgestrahlten Lichts aufgenommen werden kann. Die scheibenartigen Lichtleitabschnitte mit dem gemeinsamen Sekundäroptikelement ermöglichen einen kompakten Aufbau.Overall, the light module according to the invention has a high optical efficiency. Various features contribute to this. Since a common Sekundäroptikelement is provided, material can be saved in comparison to the known light module of the type mentioned and the light exit portion of the light module can be made small. This allows high luminance. In addition, each semiconductor light source is assigned a light input surface. This can be adapted so that a high proportion of the light emitted by the semiconductor light source can be recorded. The disk-like Lichtleitabschnitte with the common Sekundäroptikelement allow a compact design.

Vorzugsweise sind die mehreren Lichtleitabschnitte im Bereich der Lichtauskoppelflächen einstückig miteinander verbunden. Insbesondere erstrecken sich die Lichtleitabschnitte nebeneinander verlaufend und münden in einen gemeinsamen Auskoppelabschnitt des Primäroptikelements. An dem Auskoppelabschnitt sind die Lichtauskoppelflächen angeordnet. Der Auskoppelabschnitt kann eine gemeinsame Lichtauskoppelfläche für sämtliche Lichtleitabschnitte aufweisen. Die Lichtleitabschnitte sind vorzugsweise einstückig miteinander und gegebenenfalls mit dem Auskoppelabschnitt verbunden.Preferably, the plurality of Lichtleitabschnitte are integrally connected to one another in the region of the light outcoupling surfaces. In particular, the light guide sections extend adjacent to one another and open into a common outcoupling section of the primary optics element. At the Auskoppelabschnitt the light outcoupling surfaces are arranged. The decoupling section may have a common light output surface for all Lichtleitabschnitte. The light-guiding sections are preferably integral with each other and possibly connected to the decoupling section.

Denkbar ist aber auch, dass die Lichtleitabschnitte nebeneinander verlaufen und die Lichtauskoppelflächen voneinander beabstandet angeordnet sind. Die Lichtleitabschnitte müssen nicht einstückig miteinander verbunden sein. Vorzugsweise liegen die Lichtauskoppelflächen verschiedener Lichtleitabschnitte in einer gemeinsamen, gedachten Ebene.It is also conceivable that the Lichtleitabschnitte run next to each other and the light output surfaces are arranged spaced from each other. The Lichtleitabschnitte need not be integral with each other. Preferably, the light outcoupling surfaces of different Lichtleitabschnitte lie in a common, imaginary plane.

Im Bereich der Lichteinkoppelflächen hingegen können die Lichtleitabschnitte voneinander einen Abstand einhalten. Dadurch können die Halbleiterlichtquellen in genügendem Abstand angeordnet werden, um eine ausreichende Abfuhr von Abwärme zu gewährleisten.In the area of the light coupling surfaces, however, the Lichtleitabschnitte can keep a distance from each other. As a result, the semiconductor light sources can be arranged at a sufficient distance to ensure a sufficient dissipation of waste heat.

Grundsätzlich wird jeder Lichtleitabschnitt von weiteren Lichtleitflächen begrenzt. Diese stehen insbesondere senkrecht auf der Sagittalebene und bilden insofern die Seitenflächen des Lichtleitabschnitts, welche den Lichtleitabschnitt entlang seiner flächigen Ausdehnung begrenzen.In principle, each light guide section is delimited by further light guide surfaces. These are in particular perpendicular to the sagittal plane and thus form the side surfaces of the Lichtleitabschnitts, which limit the Lichtleitabschnitt along its areal extent.

Die genannten weiteren Lichtleitflächen verlaufen insbesondere derart, dass der Lichtleitabschnitt in Schnitten senkrecht zur Sagittalebene und zur Meridionalebene eine rechteckige Form aufweist. Wenn die Seitenflächen hingegen schräg zur Sagittalebene stehen, dann erhalten Lichtstrahlen bei Totalreflexion an solchen Seitenflächen eine Richtungskomponente senkrecht zur Sagittalebene. Dies kann je nach Anwendung unerwünscht sein, da dadurch Lichtstrahlen beispielsweise in den Dunkelbereich einer abgeblendeten Lichtverteilung gelenkt werden können.The said further light guide surfaces run in particular in such a way that the light guide section has a rectangular shape in sections perpendicular to the sagittal plane and to the meridional plane. On the other hand, if the side surfaces are at an angle to the sagittal plane, light rays receive a directional component perpendicular to the sagittal plane on total reflection on such side surfaces. This may be undesirable depending on the application, as this light beams can be directed, for example, in the dark area of a dimmed light distribution.

Die weiteren Lichtleitflächen können derart ausgebildet sein, dass sich der Querschnitt des Lichtleitabschnitts im Verlauf von der Lichteinkoppelfläche zur Lichtauskoppelfläche vergrößert. Bei mehrfacher Totalreflexion an den Seitenwänden treffen dann Lichtstrahlen bei jeder Totalreflexion unter einem geringen Winkel auf die Seitenfläche, als dies bei der vorhergehenden Totalreflexion der Fall war. Dadurch kann eine Kollimierung des Lichts erzielt werden. Grundsätzlich ist jedoch auch denkbar, dass die weiteren Lichtleitflächen derart verlaufen, dass sich der Querschnitt des Lichtleitabschnitts ausgehend von der Lichteinkoppelfläche zur Lichtauskoppelfläche verringert. Dadurch kann eine zusätzliche Lichtauffächerung erzielt werden.The further light guide surfaces can be designed such that the cross section of the light guide section increases in the course of the light incoupling surface to the light outcoupling surface. With multiple Total reflection on the sidewalls then hits light rays at each total reflection at a small angle to the side surface, as was the case in the previous total reflection. As a result, a collimation of the light can be achieved. In principle, however, it is also conceivable that the further light guide surfaces extend in such a way that the cross section of the light guide section decreases starting from the light coupling surface to the light coupling surface. As a result, an additional Lichtauffächerung be achieved.

Die genannten weiteren Lichtleitflächen einzelner Lichtleitabschnitte können auch gekrümmt verlaufen, wobei sie insbesondere senkrecht zur Sagittalebene sind. Der gekrümmte Verlauf ist insbesondere derart, dass der gesamte Lichtleitabschnitt in Schnitten parallel zur Sagittalebene gebogen verläuft. Diese Ausgestaltung ist vorteilhaft, wenn mehrere Lichtleitabschnitte zu einer gemeinsamen Lichtauskoppelfläche oder einem gemeinsamen Auskoppelabschnitt zusammengeführt werden sollen. Dann können z.B. die randständigen Lichtleitabschnitte gebogen ausgeführt werden. So kann ein ausreichender Abstand zwischen den Halbleiterlichtquellen eingehalten werden.The said further light guide surfaces of individual light guide sections can also run in a curved manner, wherein they are in particular perpendicular to the sagittal plane. The curved course is in particular such that the entire light guide section is curved in sections parallel to the sagittal plane. This refinement is advantageous if several light-conducting sections are to be brought together to form a common light output surface or a common outcoupling section. Then, e.g. the marginal Lichtleitabschnitte be performed bent. Thus, a sufficient distance between the semiconductor light sources can be maintained.

Der Lichtleitabschnitt kann außerdem (jeweils) eine der gewölbten Hauptreflexionsfläche gegenüberliegende Gegenreflexionsfläche aufweisen. Die Gegenreflexionsfläche ist im Wesentlichen eben oder (im Vergleich zur Hauptreflexionsfläche) nur geringfügig gekrümmt ausgebildet. Die Gegenreflexionsfläche bildet insbesondere eine Schmalseite des scheibenartigen Lichtleitabschnitts. Durch Reflexion an der Gegenreflexionsfläche erhalten die im Lichtleitabschnitt geführten Lichtstrahlen nach Reflexion an der Hauptreflexionsfläche eine Richtungskomponente in Richtung zur Hauptreflexionsfläche.The light guide section may also have (in each case) a counter-reflection surface opposite the curved main reflection surface. The counter-reflection surface is substantially flat or (compared to the main reflection surface) only slightly curved. The counter-reflection surface forms, in particular, a narrow side of the disk-like light guide section. By reflection at the counter-reflection surface, the light rays guided in the light-guiding section receive, after reflection at the main reflection surface, a directional component in the direction of the main reflection surface.

Dies erlaubt es, die Hauptabstrahlrichtung des Lichtmoduls durch eine geeignete Orientierung der Gegenreflexionsfläche zu verändern.This makes it possible to change the main emission direction of the light module by a suitable orientation of the counter-reflection surface.

Das Sekundäroptikelement ist derart ausgeformt, dass eine Sekundärbrennlinie definiert ist. Diese zeichnet sich dadurch aus, dass ein gedachtes, von der Sekundärbrennlinie ausgehendes, divergierendes Lichtbündel in ein innerhalb Schnitten senkrecht zur Sekundärbrennlinie parallelisiertes Lichtbündel umgeformt werden kann. Die Sekundärbrennlinie verläuft vorzugsweise senkrecht zu einer der oder zu allen Primärbrennlinien. Vorzugsweise sind Sekundärbrennlinie und Primärbrennlinien senkrecht zur Hauptabstrahlrichtung des Lichtmoduls orientiert. Da die Sekundärbrennlinie und die Primärbrennlinien senkrecht aufeinander stehen, ist die Lichtkonzentration funktional auf zwei im Strahlengang aufeinanderfolgende Bauteile aufgeteilt. Das Sekundäroptikelement wirkt vorzugsweise nur zur Lichtkonzentration in Schnitten parallel zur Sagittalebene. Das Primäroptikelement hingegen ist insbesondere derart ausgebildet, dass eine Lichtkonzentration im Wesentlichen nur in Schnitten senkrecht zur Sagittalebene beziehungsweise in Schnitten parallel zur oder in der Meridionalebene erfolgt. Insbesondere bleibt ein das Sekundäroptikelement durchtretendes Lichtbündel innerhalb von Schnitten senkrecht zur Sagittalebene unbeeinflusst.The secondary optical element is shaped such that a secondary burning line is defined. This is characterized by the fact that a divergent bundle of light emanating from the secondary focal line can be transformed into a bundle of rays parallelized within sections perpendicular to the secondary focal line. The secondary firing line preferably runs perpendicular to one or all of the primary firing lines. Preferably, secondary firing line and primary firing lines are oriented perpendicular to the main emission direction of the light module. Since the secondary firing line and the primary firing lines are perpendicular to one another, the light concentration is split functionally into two components that follow one another in the beam path. The secondary optic element preferably acts only in the light concentration in sections parallel to the sagittal plane. By contrast, the primary optic element is designed in particular in such a way that a light concentration takes place substantially only in sections perpendicular to the sagittal plane or in sections parallel to or in the meridional plane. In particular, a light beam passing through the secondary optic element remains unaffected within sections perpendicular to the sagittal plane.

Die Lichtauskoppelflächen der Lichtleitabschnitte liegen zwischen der Sekundärbrennlinie und dem Sekundäroptikelement. Insbesondere liegt die Sekundärbrennlinie entgegen der Hauptabstrahlrichtung des Lichtmoduls hinter den Lichtauskoppelflächen. Bei dieser Ausgestaltung wird ein von der Lichtauskoppelfläche ausgehendes, divergierendes Lichtbündel nicht parallelisiert, sondern nur eingeengt. Denkbar ist jedoch auch, dass die Sekundärbrennlinie wenigstens auf einer Lichtauskoppelfläche verläuft.The Lichtauskoppelflächen the Lichtleitabschnitte lie between the Sekundärbrennlinie and the Sekundäroptikelement. In particular, the secondary focal line lies opposite the main emission direction of the light module behind the light output surfaces. In this embodiment, a divergent light beam emanating from the light output surface does not become parallelized, but only narrowed. However, it is also conceivable that the secondary focal line extends at least on a light output surface.

Die Hauptreflexionsfläche eines oder aller Lichtleitabschnitte kann jeweils eine oder mehrere Facetten zur Lichtstreuung aufweisen. Eine Facette wird beispielsweise durch einen Bereich der Hauptreflexionsfläche gebildet, welcher lokal gegenüber den umgebenden Bereichen der Hauptreflexionsfläche verkippt, verdreht, vertieft oder erhöht ist. Insbesondere ist die Facette derart ausgebildet, dass die Hauptreflexionsfläche im Bereich der Facette einen lokal unstetigen oder geknickten (also nicht stetig differenzierbaren) Verlauf aufweist. Dadurch kann ein Lichtbündel in eine von den übrigen, durch die Lichtauskoppelfläche tretenden Lichtbündeln abweichende Richtung gelenkt werden. Beispielsweise kann ein Lichtbündel gezielt in den Dunkelbereich oberhalb der Hell-Dunkel-Grenze gelenkt werden. Mit dieser "Overhead-Beleuchtung" können dann beispielsweise Straßenschilder ausgeleuchtet werden. Bei entsprechend geringer Ausdehnung der Facette wird nur ein geringer Anteil des Lichts in den Dunkelbereich gelenkt, so dass ein gefährliches Blenden von Gegenverkehr vermieden werden kann.The main reflection surface of one or all light-conducting sections can each have one or more facets for light scattering. A facet is formed, for example, by a region of the main reflection surface which is locally tilted, twisted, recessed or raised relative to the surrounding regions of the main reflection surface. In particular, the facet is designed in such a way that the main reflection surface in the area of the facet has a locally discontinuous or kinked (that is, not continuously differentiable) profile. As a result, a light bundle can be deflected in a direction deviating from the remaining light bundles passing through the light outcoupling surface. For example, a light beam can be targeted in the dark area above the cut-off line. With this "overhead lighting" can then be illuminated, for example, street signs. With a correspondingly small expansion of the facet, only a small proportion of the light is directed into the dark area, so that dangerous dazzling of oncoming traffic can be avoided.

Jede Halbleiterlichtquelle (insbesondere jeweils umfassend eine oder mehrere LEDs) weist zumindest eine vorzugsweise ebene Lichtabstrahlfläche auf, welche von wenigstens einer vorzugsweise gerade verlaufenden Begrenzungskante begrenzt ist. Diese Begrenzungskante kann auf der Primärbrennlinie des zugeordneten Lichtleitabschnitts verlaufen. Denkbar ist jedoch auch, dass die Primärbrennlinie des zugeordneten Lichtleitabschnitts durch die Lichtabstrahlfläche verläuft.Each semiconductor light source (in particular in each case comprising one or more LEDs) has at least one preferably plane light emission surface, which is delimited by at least one preferably straight boundary edge. This boundary edge can run on the primary focal line of the associated Lichtleitabschnitts. However, it is also conceivable that the primary focal line of the associated light guide section extends through the light emission surface.

Die Begrenzungskante kann eine Kante der optisch aktiven Halbleiterfläche sein. Denkbar ist jedoch auch, dass eine Blende mit einer Blendenkante vorgesehen ist, wobei die Blendenkante die genannte Begrenzungskante der Halbleiterlichtquelle definiert.The boundary edge may be an edge of the optically active semiconductor surface. However, it is also conceivable that a diaphragm is provided with a diaphragm edge, wherein the diaphragm edge defines said boundary edge of the semiconductor light source.

Durch die Lage der Lichtabstrahlfläche und der Begrenzungskante in Bezug auf die Primärbrennlinie wird die Abstrahllichtverteilung des Lichtmoduls wesentlich beeinflusst. Verläuft die Begrenzungskante auf der Primärbrennlinie, so weist die durch die Auskoppelfläche des zugeordneten Lichtleitabschnitts tretende Lichtverteilung eine Hell-Dunkel-Grenze auf. Diese ergibt sich im Wesentlichen durch Abbildung der Begrenzungskante. Je nachdem, in welche Richtung sich die Lichtabstrahlfläche ausgehend von der Primärbrennlinie erstreckt, weist die Abstrahllichtverteilung einen oben liegenden Dunkelbereich (z.B. für eine Abblendlichtverteilung) oder einen unten liegenden Dunkelbereich (z.B. für eine Fernlicht-Spot-Lichtverteilung) auf.Due to the position of the light emission surface and the boundary edge with respect to the primary focal line, the emission light distribution of the light module is significantly influenced. If the boundary edge runs along the primary focal line, the light distribution passing through the coupling-out surface of the associated light-conducting section has a light-dark boundary. This results essentially by mapping the boundary edge. Depending on the direction in which the light emission surface extends from the primary focal line, the emission light distribution has an overhead dark area (for example for a low beam distribution) or a dark area below (e.g., for a high beam spot distribution).

Das erfindungsgemäße Lichtmodul ermöglicht es, für verschiedene Lichtleitabschnitte unterschiedliche Anordnungen der Halbleiterlichtquelle relativ zur Primärbrennlinie zu wählen. Dies kann einerseits dadurch geschehen, dass für verschiedene Lichtleitabschnitte die Primärbrennlinie in unterschiedlichem Abstand zur jeweiligen Lichteinkoppelfläche verläuft (also unterschiedliche Primärbrennweiten gewählt sind). Andererseits können die jeweiligen Halbleiterlichtquellen in verschiedenen Abständen zu den zugeordneten Lichteinkoppelflächen am Lichtmodul angeordnet werden.The light module according to the invention makes it possible to select different arrangements of the semiconductor light source relative to the primary focal line for different light guide sections. This can happen, on the one hand, that the primary focal line extends at different distances from the respective light coupling surface for different light-conducting sections (ie different primary focal lengths are selected). On the other hand, the respective semiconductor light sources can be arranged at different distances to the associated light coupling surfaces on the light module.

Beispielsweise ist eine erste Halbleiterlichtquelle oder eine erste Gruppe von Halbleiterlichtquellen jeweils derart angeordnet, dass die Primärbrennlinie des jeweils zugeordneten Lichtleitabschnitts auf der Begrenzungskante der jeweiligen Lichtabstrahlfläche verläuft. Eine zweite Halbleiterlichtquelle oder eine zweite Gruppe von Halbleiterlichtquellen kann so angeordnet sein, dass die Primärbrennlinie durch die Lichtabstrahlflächen verläuft. In diesem Fall bilden die erste Halbleiterlichtquelle beziehungsweise die erste Gruppe von Halbleiterlichtquellen beispielsweise eine Abblendlicht-Lichtquelle, wogegen die zweite Halbleiterlichtquelle beziehungsweise die zweite Gruppe von Halbleiterlichtquellen eine Fernlicht-Lichtquelle bilden. Die verschiedenen Halbleiterlichtquellen sind vorzugsweise unabhängig voneinander elektronisch ansteuerbar, so dass beispielsweise Fernlicht wahlweise zugeschaltet werden kann.For example, a first semiconductor light source or a first group of semiconductor light sources are each such arranged that the primary focal line of each associated Lichtleitabschnitts extends on the boundary edge of the respective Lichtabstrahlfläche. A second semiconductor light source or a second group of semiconductor light sources may be arranged such that the primary focal line extends through the light emitting surfaces. In this case, form the first semiconductor light source or the first group of semiconductor light sources, for example, a low beam light source, whereas the second semiconductor light source or the second group of semiconductor light sources form a high beam light source. The various semiconductor light sources are preferably independently electronically controllable, so that, for example, high beam can be optionally switched on.

Die Lichteinkoppelflächen sind vorzugsweise eben ausgebildet und sind gegenüber der vorzugsweise ebenfalls ebenen Lichtabstrahlfläche derart geneigt, dass zwischen Lichteinkoppelfläche und Lichtabstrahlfläche ein Abstandsspalt mit einer über den Verlauf der Lichtabstrahlfläche variierenden Größe gebildet ist. Insbesondere vergrößert sich der Abstandsspalt über den Verlauf der Lichtabstrahlfläche ausgehend von der Primärbrennlinie stetig. Vorzugsweise wird ein konischer Abstandsspalt gebildet. Vorteilhaft kann auch ein gewölbter Verlauf der Lichteinkoppelfläche sein. Ein konkaver Verlauf kann z.B. zur Einkopplung einer größeren Lichtmenge führen. Eine konvexe Lichteinkoppelfläche kann vorteilhaft sein, um die Divergenz des Lichtbündels nach Einkopplung zu verringern und um die Eigenschaften des eingekoppelten Lichtbündels an die numerische Apertur des Lichtleitabschnitts anzupassen.The light incoupling surfaces are preferably flat and are inclined with respect to the preferably likewise plane light emission surface in such a way that a clearance gap with a variable varying over the course of the light emission surface is formed between the light input surface and the light emission surface. In particular, the distance gap increases continuously over the course of the light emission surface starting from the primary focal line. Preferably, a conical gap is formed. A curved course of the light coupling surface can also be advantageous. A concave profile can lead eg to the coupling of a larger amount of light. A convex light coupling surface may be advantageous to reduce the divergence of the light beam after coupling and to adapt the properties of the coupled light beam to the numerical aperture of the Lichtleitabschnitts.

Denkbar ist jedoch auch, dass die Lichteinkoppelfläche und die Lichtabstrahlfläche beide eben ausgestaltet sind und sich parallel zueinander erstrecken. Der Abstandsspalt hat dann konstante Dicke.It is also conceivable, however, for the light-incoupling surface and the light-emitting surface to be both planar and to extend parallel to one another. The gap then has constant thickness.

Die Lichtauskoppelflächen der Lichtleitabschnitte erstrecken sich vorzugsweise senkrecht zur Sagittalebene, insbesondere auch senkrecht zur Hauptabstrahlrichtung des Lichtmoduls. Die Lichtauskoppelflächen sind beispielsweise eben ausgebildet und stehen senkrecht auf der Hauptabstrahlrichtung und der Sagittalebene. Denkbar ist auch, dass die Lichtauskoppelflächen gewölbt ausgebildet sind, insbesondere konvex gewölbt. Dabei weisen sie beispielsweise in Schnitten parallel zur Sagittalebene eine konvexe Wölbung auf und sind in Schnitten senkrecht zur Sagittalebene vorzugsweise krümmungsfrei.The light outcoupling surfaces of the light guide sections preferably extend perpendicular to the sagittal plane, in particular also perpendicular to the main emission direction of the light module. The light output surfaces are, for example, flat and perpendicular to the main emission and the sagittal plane. It is also conceivable that the light outcoupling surfaces are curved, in particular convex. They have, for example, in sections parallel to the sagittal plane on a convex curvature and are preferably free of curvature in sections perpendicular to the sagittal plane.

Das Sekundäroptikelement ist vorzugsweise als Zylinderlinse zur Lichtkonzentration innerhalb von Schnitten parallel zur Sagittalebene ausgebildet. Die Zylinderlinse hat in Schnitten in der oder parallel zur Sagittalebene z.B. einen Sammellinsenquerschnitt und ist in Schnitten senkrecht zur Sagittalebene vorzugsweise krümmungsfrei ausgebildet. Insofern kann der Zylinderlinse eine Zylinderachse zugeordnet werden, um welche die Lichtdurchtrittsflächen der Zylinderlinse gewölbt sind. Als Lichtdurchtrittsflächen werden hier die optisch wirksamen Flächen der Zylinderlinse bezeichnet, durch welche Licht in die Linse eintritt oder aus ihr hinaustritt.The secondary optic element is preferably designed as a cylindrical lens for light concentration within sections parallel to the sagittal plane. The cylindrical lens has in sections in or parallel to the sagittal plane e.g. a collecting lens cross section and is preferably formed without curvature in sections perpendicular to the sagittal plane. In this respect, the cylinder lens can be assigned a cylinder axis about which the light passage surfaces of the cylindrical lens are curved. The light-transmitting surfaces here are the optically effective surfaces of the cylindrical lens through which light enters or exits the lens.

Die Zylinderlinse kann auf einer oder auf beiden ihrer Lichtdurchtrittsflächen Streustrukturen aufweisen. Diese sind bevorzugt walzenartig ausgestaltet, wobei die Walzenachsen der Streustrukturen parallel zur Zylinderachse der Zylinderlinse verlaufen. Solche Streustrukturen wirken zwar einer Bündelungswirkung der Zylinderlinse entgegen, führen jedoch zu einer homogeneren Ausleuchtung des Lichtaustrittsabschnitts.The cylindrical lens may have scattering structures on one or both of its light transmission surfaces. These are preferably designed like a roller, wherein the roller axes of the scattering structures are parallel to the cylinder axis of the cylindrical lens. Such scattering structures act Although contrary to a bundling effect of the cylindrical lens, but lead to a more homogeneous illumination of the light exit section.

Eine besonders einfache Hehrstellung eines kompakten Lichtmoduls wird dadurch ermöglicht, dass die Zylinderlinse einstückig mit den Lichtleitabschnitten des Primäroptikelements verbunden ist. Dies ist insbesondere derart realisiert, dass die Lichtauskoppelflächen der Lichtleitabschnitte mit einer der Lichtdurchtrittsflächen der Zylinderlinse zusammenfallen. Insofern sind Zylinderlinse und Lichtleitabschnitte über die Lichtauskoppelflächen und eine Lichtdurchtrittsfläche miteinander einstückig verbunden. Dies ermöglicht es, die gesamte Optik des Lichtmoduls als ein einziges Formteil auszugestalten.A particularly simple Hehrstellung a compact light module is made possible by the fact that the cylindrical lens is integrally connected to the Lichtleitabschnitten of the primary optic element. This is realized in particular in such a way that the light outcoupling surfaces of the light guide sections coincide with one of the light passage surfaces of the cylinder lens. In this respect, cylinder lens and Lichtleitabschnitte are integrally connected via the light outcoupling surfaces and a light passage surface. This makes it possible to design the entire optics of the light module as a single molded part.

Die Lichtleitabschnitte und die Zylinderlinse, sowie gegebenenfalls der gemeinsame Auskoppelabschnitt des Primäroptikelements können aus Glas oder aus Kunststoff ausgebildet werden. Geeignete Kunststoffe sind insbesondere organische Gläser, Polycarbonat (PC), Polymethylmetacrylat (PMMA), Cycloolefin Polymer (COP), Cycloolefin Copolymer (COC), Polymetacrylmetylimid (PMMI) oder Polysulfon (PSU). Die genannten Kunststoffe können insbesondere im Spritzgussverfahren verarbeitet werden.The Lichtleitabschnitte and the cylindrical lens, and optionally the common Auskoppelabschnitt of the primary optic element may be formed of glass or plastic. Suitable plastics are, in particular, organic glasses, polycarbonate (PC), polymethyl methacrylate (PMMA), cycloolefin polymer (COP), cycloolefin copolymer (COC), polymethacrylic imide (PMMI) or polysulfone (PSU). The plastics mentioned can be processed in particular by injection molding.

Eine weitere Ausführungsform der Erfindung besteht darin, dass das Sekundäroptikelement als Zylinderreflektor ausgebildet ist. Dieser ist insbesondere als Abschnitt oder Segment eines zylindrischen Hohlspiegels oder eines zylindrischen Parabolspiegels ausgebildet. Der Zylinderreflektor weist beispielsweise eine (vorzugsweise parabolische) Krümmung in der Sagittalebene auf und ist in Schnitten senkrecht zur Sagittalebene insbesondere krümmungsfrei ausgebildet. Da ein Zylinderreflektorlicht nicht nur konzentrieren oder bündeln kann, sondern auch durch Reflexion umlenken kann, kann mit der genannten Konstruktion die Hauptabstrahlrichtung des Lichtmoduls konstruktiv vorgegeben werden. Außerdem können beispielsweise die bei Linsen teilweise auftretenden Farbfehler vermieden werden, welche zu unerwünschten Farbrändern in der Abstrahllichtverteilung des Lichtmoduls führen können. Der Zylinderreflektor kann Streustrukturen und/oder Facetten aufweisen, um eine homogenere Abstrahllichtverteilung zu erzielen. Denkbar sind beispielsweise walzenartige Streustrukturen, deren Walzenachse parallel zur Zylinderachse des Zylinderreflektors verläuft.Another embodiment of the invention is that the secondary optic element is designed as a cylindrical reflector. This is in particular formed as a section or segment of a cylindrical concave mirror or a cylindrical parabolic mirror. The cylindrical reflector has, for example, a (preferably parabolic) curvature in the sagittal plane and is in sections perpendicular to the sagittal plane in particular formed curvature-free. Since a cylindrical reflector light can not only concentrate or focus, but can also deflect by reflection, the main emission direction of the light module can be structurally predetermined with the construction mentioned. In addition, for example, the partial color errors occurring in the case of lenses can be avoided, which can lead to undesired color changes in the emission light distribution of the light module. The cylindrical reflector may have scattering structures and / or facets in order to achieve a more homogeneous emission light distribution. Conceivable, for example, roller-like scattering structures whose roller axis is parallel to the cylinder axis of the cylinder reflector.

Weitere Einzelheiten und vorteilhafte Ausgestaltungen der Erfindung sind der nachfolgenden Beschreibung zu entnehmen, anhand derer die in den Figuren dargestellten Ausführungsformen der Erfindung näher beschrieben und erläutert sind.Further details and advantageous embodiments of the invention will become apparent from the following description, with reference to which the embodiments of the invention shown in the figures are described and explained in more detail.

Es zeigen:

Figur 1
ein Lichtmodul zur Erläuterung von Geometrie und Gestaltungsmerkmalen;
Figur 2
ein erfindungsgemäßes Lichtmodul in perspektivischer Darstellung;
Figur 3
das Lichtmodul aus Figur 2 in einer Draufsicht;
Figur 4
eine weitere Ausführungsform eines erfindungsgemäßen Lichtmoduls in perspektivischer Darstellung;
Figur 5
das Lichtmodul aus Figur 4 in Draufsicht;
Figur 6
erläuternde Darstellungen zur Anordnung der Halbleiterlichtquellen;
Figur 7
erläuternde Darstellungen zur Anordnung der Halbleiterlichtquellen;
Figur 8
Darstellung zur Erläuterung des Strahlengangs in den erfindungsgemäßen Lichtmodulen;
Fig. 9 - Fig. 14
Darstellungen zu Ausgestaltungen des Primäroptikelements;
Figur 15
eine weitere Ausgestaltung für ein erfindungsgemäßes Lichtmodul;
Figur 16 und 17
Darstellungen zur Ausgestaltung des Sekundärelements;
Figur 18
Darstellung zu einer alternativen Ausgestaltung des Lichtmoduls; und
Figur 19
Darstellung einer weiteren Ausgestaltung des Lichtmoduls.
Show it:
FIG. 1
a light module for explaining geometry and design features;
FIG. 2
an inventive light module in perspective view;
FIG. 3
the light module off FIG. 2 in a plan view;
FIG. 4
a further embodiment of a light module according to the invention in a perspective view;
FIG. 5
the light module off FIG. 4 in plan view;
FIG. 6
explanatory diagrams for the arrangement of the semiconductor light sources;
FIG. 7
explanatory diagrams for the arrangement of the semiconductor light sources;
FIG. 8
Representation for explaining the beam path in the light modules according to the invention;
FIGS. 9-14
Representations of embodiments of the primary optic element;
FIG. 15
a further embodiment of an inventive light module;
FIGS. 16 and 17
Illustrations for the design of the secondary element;
FIG. 18
Representation of an alternative embodiment of the light module; and
FIG. 19
Representation of a further embodiment of the light module.

In der folgenden Beschreibung sind gleiche oder einander entsprechende Bauteile mit denselben Bezugszeichen versehen.In the following description, the same or corresponding components are given the same reference numerals.

Angaben zur räumlichen Lage verschiedener Bauteile werden im Folgenden anhand von verschiedenen Ebenen im Raum gemacht. Zur Erläuterung der Ebenen zeigt Figur 1 Details eines Lichtmoduls 10, wobei die gezeigten Gestaltungsmerkmale bei sämtlichen erfindungsgemäßen Lichtmodulen Anwendung finden können.Information on the spatial position of various components is made below on the basis of different levels in space. To illustrate the levels shows FIG. 1 details a light module 10, wherein the design features shown can be used in all light modules according to the invention.

In Figur 1 ist eine Halbleiterlichtquelle 12, ein scheibenartiger Lichtleitabschnitt 14 als Teil eines Primäroptikelements, sowie ein als Zylinderlinse 19 ausgebildetes Sekundäroptikelement 18 dargestellt.In FIG. 1 is a semiconductor light source 12, a disc-like Lichtleitabschnitt 14 as part of a primary optics element, and designed as a cylindrical lens 19 Sekundäroptikelement 18 shown.

Für das Lichtmodul ist eine Hauptabstrahlrichtung 20 definiert, in welche im räumlichen Mittel die Lichtenergie abgestrahlt wird. Ferner ist eine Sagittalebene 22 definiert, welche im dargestellten Beispiel durch die Richtung der Horizontalen und die Hauptabstrahlrichtung 20 aufgespannt wird. Ferner ist eine Meridionalebene 24 definiert als diejenige Ebene, welche sich senkrecht zur Sagittalebene 22 erstreckt und von der Vertikalen sowie der Hauptabstrahlrichtung 20 aufgespannt wird.For the light module, a main emission direction 20 is defined, into which the light energy is radiated in the spatial average. Furthermore, a sagittal plane 22 is defined, which in the example illustrated is spanned by the direction of the horizontal and the main emission direction 20. Furthermore, a meridional plane 24 is defined as the plane which extends perpendicular to the sagittal plane 22 and is spanned by the vertical and the main emission direction 20.

Im Betrieb des Lichtmoduls 10 kann auf einem Testschirm 26 die Intensitätsverteilung der Abstrahllichtverteilung 28 beobachtet werden. Der Testschirm 26 erstreckt sich in Richtung senkrecht zur Hauptabstrahlrichtung 20 (d.h. sowohl senkrecht zur Sagittalebene 22 als auch zur Meridionalebene 24) und ist vom Lichtmodul 10 in großem Abstand in Richtung der Hauptabstrahlrichtung 20 angeordnet. Die räumliche Lage von Bereichen der Abstrahllichtverteilung 28 wird auf dem Testschirm 26 mit Hilfe von vertikalen und horizontalen Winkelkoordinaten V, H angegeben. Diese Winkelkoordinaten V, H korrespondieren mit Koordinaten in dem von der Horizontalen und der Vertikalen aufgespannten kartesischen Koordinatensystem in der Ebene des Testschirms 26.During operation of the light module 10, the intensity distribution of the emission light distribution 28 can be observed on a test screen 26. The test screen 26 extends in the direction perpendicular to the main emission direction 20 (i.e., both perpendicular to the sagittal plane 22 and the meridional plane 24) and is spaced from the light module 10 in the direction of the main emission direction 20. The spatial position of regions of the emission light distribution 28 is indicated on the test screen 26 by means of vertical and horizontal angle coordinates V, H. These angle coordinates V, H correspond to coordinates in the Cartesian coordinate system spanned by the horizontal and the vertical in the plane of the test screen 26.

Im dargestellten Beispiel weist die Abstrahllichtverteilung 28 eine Hell-Dunkel-Grenze HDG auf, welche einen vertikal unten liegenden Hellbereich 30 und einen vertikal oben liegenden Dunkelbereich 32 voneinander trennt. Eine solche Abstrahllichtverteilung 28 findet in Kfz-Scheinwerfern als abgeblendete Lichtverteilung Verwendung.In the example shown, the emission light distribution 28, a light-dark boundary HDG, which a vertical down light area 30 and a vertical overhead dark area 32 from each other. Such a light beam distribution 28 is used in motor vehicle headlamps as dimmed light distribution use.

In der Figur 1 ist ein LED-Chip der Halbleiterlichtquelle 12 erkennbar, welche darüber hinaus noch weitere LED-Chips umfassen kann. Der gezeigte LED-Chip der Halbleiterlichtquelle 12 ist an einem Kühlkörper 36 angeordnet, um die Abwärme der LEDs abführen zu können.In the FIG. 1 an LED chip of the semiconductor light source 12 can be seen, which may additionally comprise further LED chips. The illustrated LED chip of the semiconductor light source 12 is arranged on a heat sink 36 in order to dissipate the waste heat of the LEDs can.

Von dem Primäroptikelement ist nur der scheibenartige Lichtleitabschnitt 14 dargestellt, welcher sich flächig senkrecht zur Sagittalebene 22 erstreckt. Der Lichtleitabschnitt 14 weist eine senkrecht zu seiner Erstreckungsebene gemessene Dicke auf, welche wesentlich geringer ist, als die Abmessungen des Lichtleitabschnitts 14 in seiner Erstreckungsebene. Der Lichtleitabschnitt 14 hat eine der Halbleiterlichtquelle 12 zugewandte Lichteinkoppelfläche 38, durch welche Licht in den Lichtleitabschnitt 14 eingekoppelt werden kann. Das so eingekoppelte Licht kann in dem Lichtleitabschnitt 14 unter interner Totalreflexion zu einer Lichtauskoppelfläche 40 geleitet werden, durch welche das Licht aus dem Lichtleitabschnitt 14 austreten kann. Interne Totalreflexion findet dabei insbesondere an einer Hauptreflexionsfläche 42 statt. Im dargestellten Beispiel erstreckt sich die Hauptreflexionsfläche 42 von der Lichteinkoppelfläche 38 zur Lichtauskoppelfläche 40.Of the Primäroptikelement only the disc-like Lichtleitabschnitt 14 is shown, which extends flat perpendicular to the sagittal plane 22. The light guide section 14 has a thickness measured perpendicular to its plane of extent, which is substantially smaller than the dimensions of the light guide section 14 in its plane of extent. The light guide section 14 has a light input surface 38 facing the semiconductor light source 12, through which light can be coupled into the light guide section 14. The light coupled in this way can be conducted in the light guide section 14 with total internal reflection to a light output surface 40, through which the light can exit the light guide section 14. Internal total reflection takes place in particular on a main reflection surface 42. In the illustrated example, the main reflection surface 42 extends from the light input surface 38 to the light output surface 40.

Die Hauptreflexionsfläche 42 ist derart konvex in Bezug auf die Sagittalebene 22 gewölbt, dass die optischen Eigenschaften des Lichtleitabschnitts 14 durch eine Primärbrennlinie 44 charakterisiert werden können. Diese zeichnet sich dadurch aus, dass ein gedachtes, von der Primärbrennlinie in einem Schnitt senkrecht zur Primärbrennlinie 44 divergierendes Lichtbüschel nach Durchtritt durch die Lichteinkoppelfläche 38 und Totalreflexion zumindest an der Hauptreflexionsfläche 42 in ein durch die Lichtauskoppelfläche 40 tretendes Lichtbüschel umgelenkt wird, welches in einem Schnitt senkrecht zur Sagittalebene 22 im Wesentlichen aus parallelen Lichtstrahlen besteht. Insofern wirkt der Lichtleitabschnitt 14 kollimierend innerhalb von Schnitten senkrecht zur Sagittalebene 22.The main reflection surface 42 is curved in such a convex manner with respect to the sagittal plane 22 that the optical properties of the light guide section 14 can be characterized by a primary focal line 44. These is characterized in that a thought, diverging from the primary focal line in a section perpendicular to the primary focal line 44 light bundle is deflected after passing through the light input surface 38 and total reflection at least at the main reflection surface 42 in passing through the light outcoupling surface 40 tufts, which in a section perpendicular to the sagittal plane 22 consists essentially of parallel light rays. In this respect, the light-guiding section 14 acts collimating within sections perpendicular to the sagittal plane 22.

Das Sekundäroptikelement 18 ist als Zylinderlinse 19 ausgebildet, deren optisch wirksame Lichtdurchtrittsflächen 46 sich zylindrisch um eine Zylinderachse 48 wölben. In Schnitten parallel zur Sagittalebene 22 weist die Zylinderlinse 19 jeweils einen Sammellinsenquerschnitt auf. In Schnitten senkrecht zur Sagittalebene 22 hat die Zylinderlinse 19 vorzugsweise einen krümmungsfreien Verlauf. Die optischen Eigenschaften der Zylinderlinse 19 werden unter anderem durch eine Sekundärbrennlinie 50 charakterisiert. Diese zeichnet sich dadurch aus, dass ein gedachtes, von der Sekundärbrennlinie ausgehendes, in Schnitten senkrecht zur Sekundärbrennlinie 50 divergierendes Lichtbüschel nach Durchtritt durch die Zylinderlinse 19 in ein Lichtbüschel umgeformt wird, welches in Schnitten parallel zur Sagittalebene 22 im Wesentlichen aus parallelen Lichtstrahlen bestehen. Das Sekundäroptikelement 18 wirkt insofern kollimierend innerhalb von Schnitten parallel zur Sagittalebene 22.The Sekundäroptikelement 18 is formed as a cylindrical lens 19, the optically active light transmission surfaces 46 bulge cylindrically about a cylinder axis 48. In sections parallel to the sagittal plane 22, the cylindrical lens 19 in each case has a collecting lens cross section. In sections perpendicular to the sagittal plane 22, the cylindrical lens 19 preferably has a curvature-free course. The optical properties of the cylindrical lens 19 are characterized, inter alia, by a secondary focal line 50. This is characterized by the fact that a light bundle diverging from the secondary burning line and diverging in sections perpendicular to the secondary burning line 50, after passing through the cylindrical lens 19, is transformed into a tuft of light which, in sections parallel to the sagittal plane 22, consists essentially of parallel light rays. The secondary optic element 18 acts in a collimating manner within cuts parallel to the sagittal plane 22.

Sekundäroptikelement 18 und Primäroptikelement 16 sind derart zueinander angeordnet, dass die Sekundärbrennlinie 50 senkrecht zur Primärbrennlinie 44 verläuft. Für sämtliche erfindungsgemäßen Lichtmodule kann es vorteilhaft sein, wenn die Primärbrennlinie 44 zwischen der Sekundärbrennlinie 50 und dem Sekundäroptikelement 18 verläuft. Die der Zylinderlinse 19 zugeordnete Brennweite ist z.B. derart groß gewählt, dass die Sekundärbrennlinie 50 entgegen der Hauptabstrahlrichtung 20 versetzt zur Lichtauskoppelfläche 40 des Lichtleitabschnitts 12 liegt. Das Sekundäroptikelement 18 wirkt daher nicht kollimierend, sondern engt lediglich Lichtbündel innerhalb von Schnitten parallel zur Sagittalebene 22 ein. Denkbar ist jedoch auch, für die Zylinderlinse 19 eine kürzere Brennweite zu wählen, so dass die Sekundärbrennlinie 50 näher an der Zylinderlinse 19 verläuft, z.B. zwischen Primärbrennlinie 44 und Zylinderlinse 19, oder im Bereich oder auf der Lichtauskoppelfläche 40.Secondary optic element 18 and primary optic element 16 are arranged relative to one another in such a way that secondary filament 50 runs perpendicular to primary filament 44. For all light modules according to the invention, it may be advantageous be when the Primärbrennlinie 44 between the Sekundärbrennlinie 50 and the Sekundäroptikelement 18 runs. The focal length assigned to the cylindrical lens 19 is, for example, chosen to be so large that the secondary focal line 50 is offset from the main emission direction 20 offset from the light output surface 40 of the light-conducting section 12. The secondary optic element 18 therefore does not act collimating, but only narrows light bundles within sections parallel to the sagittal plane 22. However, it is also conceivable to choose a shorter focal length for the cylindrical lens 19 so that the secondary focal line 50 is closer to the cylindrical lens 19, for example between primary focal line 44 and cylindrical lens 19, or in the region or on the light output surface 40.

Im Falle der Figur 1 verläuft die Lichtauskoppelfläche 40 senkrecht zur Sagittalebene 22 und senkrecht zur Meridionalebene 24. Der Lichtleitabschnitt 14 ist im dargestellten Beispiel spiegelsymmetrisch zur Meridionalebene 24 ausgebildet. Ebenso ist die Zylinderlinse 19 spiegelsymmetrisch bezüglich der Meridionalebene 24. Die Sekundärbrennlinie 50 verläuft in der Meridionalebene 24.In case of FIG. 1 the light outcoupling surface 40 is perpendicular to the sagittal plane 22 and perpendicular to the meridional plane 24. The Lichtleitabschnitt 14 is formed in the example shown mirror-symmetrical to Meridionalebene 24. Likewise, the cylindrical lens 19 is mirror-symmetrical with respect to the meridional plane 24. The secondary focal line 50 extends in the meridional plane 24.

Zur Erläuterung des Strahlengangs ist in der Figur 1 ein Hauptstrahl 52 skizziert, welcher nach Durchtritt durch das Sekundäroptikelement 18 entlang der Hauptabstrahlrichtung 20 auf die Hell-Dunkel-Grenze HDG fällt. Der Hauptstrahl 52 verläuft in der Meridionalebene 24. Ausgehend von der Primärbrennlinie 44 tritt der Hauptstrahl 52 durch die Lichteinkoppelfläche 38 in den Lichtleitabschnitt 14, wird an der konvex gewölbten Hauptreflexionsfläche 42 totalreflektiert und tritt durch die Lichtauskoppelfläche 40 aus dem Lichtleitabschnitt 14 aus. Danach verläuft der Hauptstrahl 52 in der Meridionalebene 24 parallel zur Sagittalebene 22. Da der Hauptstrahl 52 keine Richtungskomponente senkrecht zur Meridionalebene 24 hat, wird sein Verlauf von der Zylinderlinse 19 nicht beeinflusst (im dargestellten Beispiel). Der Hauptstrahl 52 verläuft daher nach der Zylinderlinse 19 in der Meridionalebene 24 und senkrecht zur Sagittalebene 22 entlang der Hauptabstrahlrichtung 20.To explain the beam path is in the FIG. 1 a main beam 52 is sketched, which after passing through the secondary optical element 18 along the main emission direction 20 falls on the light-dark boundary HDG. The main beam 52 extends in the meridional plane 24. Starting from the primary focal line 44, the main beam 52 enters the light guide section 14 through the light input surface 38, is totally reflected at the convexly curved main reflection surface 42 and exits the light guide section 14 through the light output surface 40. Thereafter, the main beam 52 extends in the meridional plane 24 parallel to Sagittal plane 22. Since the main beam 52 has no directional component perpendicular to the meridional plane 24, its course is not affected by the cylindrical lens 19 (in the example shown). The main beam 52 therefore runs after the cylindrical lens 19 in the meridional plane 24 and perpendicular to the sagittal plane 22 along the main emission direction 20.

Die für das Lichtmodul 10 in Figur 1 erläuterten Gestaltungsmerkmale, insbesondere des Lichtleitabschnitts 14 und des Sekundäroptikelements 18, können für sämtliche erfindungsgemäßen Lichtmodule Verwendung finden. Ebenso wird zur Erläuterung weiterer Ausführungsformen der Erfindung auf die gemäß Figur 1 definierte Sagittalebene 22, die Meridionalebene 24, den Testschirm 26, und die Hauptabstrahlrichtung 20 Bezug genommen.The for the light module 10 in FIG. 1 explained design features, in particular the Lichtleitabschnitts 14 and the Sekundäroptikelements 18, can be used for all light modules according to the invention. Likewise, to explain further embodiments of the invention to the according to FIG. 1 defined sagittal plane 22, the Meridionalebene 24, the test screen 26, and the main radiation direction 20 reference.

In den Figuren 2 und 3 ist ein erfindungsgemäßes Lichtmodul 60 dargestellt. Das Primäroptikelement 16 des Lichtmoduls 60 umfasst drei Lichtleitabschnitte 14, 14a und 14b, sowie ein als Zylinderlinse 19 ausgebildetes Sekundäroptikelement 18 in der zu Figur 1 erläuterten Art.In the FIGS. 2 and 3 an inventive light module 60 is shown. The primary optic element 16 of the light module 60 comprises three light guide sections 14, 14a and 14b, and a secondary optic element 18 in the form of a cylinder lens 19 FIG. 1 explained kind.

Jedem Lichtleitabschnitt 14, 14a, 14b ist ein Substrat 62, 62a, 62b (LED-Chip) als Halbleiterlichtquelle derart zugeordnet, dass das von dem jeweiligen Substrat 62, 62a, 62b ausgestrahlte Licht durch jeweils zugeordnete Lichteinkoppelflächen in den jeweiligen Lichtleitabschnitt 14, 14a, 14b eingekoppelt werden kann.Each light-conducting section 14, 14a, 14b is assigned a substrate 62, 62a, 62b (LED chip) as a semiconductor light source in such a way that the light emitted by the respective substrate 62, 62a, 62b passes into the respective light-guiding section 14, 14a through respectively assigned light-coupling surfaces. 14b can be coupled.

Die drei Lichtleitabschnitte 14, 14a, 14b verlaufen nebeneinander und erstrecken sich jeweils senkrecht zu der Sagittalebene 22 (Figur 1). Dabei ist der mittlere Lichtleitabschnitt 14 in der zu Figur 1 erläuterten Art ausgestaltet. Die beiden äußeren Lichtleitabschnitte 14a und 14b verlaufen in Schnitten parallel zur Sagittalebene 22 (Figur 1) gebogen, was im Folgenden insbesondere zu Figur 12 noch näher erläutert wird.The three light-conducting sections 14, 14a, 14b extend next to one another and each extend perpendicular to the sagittal plane 22 (FIG. FIG. 1 ). In this case, the middle light guide 14 in the zu FIG. 1 explained type configured. The two outer light guide sections 14a and 14b extend in sections parallel to the sagittal plane 22 (FIG. FIG. 1 ), which is particularly hereafter FIG. 12 will be explained in more detail.

Die Lichtleitabschnitte 14, 14a, 14b verlaufen derart, dass sie in einem gemeinsamen Auskoppelabschnitt 64 des Primäroptikelements 16 münden (Figur 3). Der Auskoppelabschnitt 64 weist eine gemeinsame Lichtauskoppelfläche 66 auf, welche die Lichtauskoppelflächen 40 der Lichtleitabschnitte 14, 14a und 14b im Sinne der Figur 1 umfasst. Denkbar ist insbesondere, dass der Auskoppelabschnitt 64 einstückig mit den Lichtleitabschnitten 14, 14a, 14b ausgeformt ist.The light guide sections 14, 14a, 14b extend in such a way that they open in a common outcoupling section 64 of the primary optics element 16 ( FIG. 3 ). The decoupling portion 64 has a common light output surface 66, which the light outcoupling surfaces 40 of the Lichtleitabschnitte 14, 14 a and 14 b in the sense of FIG. 1 includes. It is conceivable, in particular, for the coupling-out section 64 to be formed in one piece with the light-conducting sections 14, 14a, 14b.

Abweichend von der vorstehend beschriebenen Ausgestaltung ist jedoch auch denkbar, dass jeder der Lichtleitabschnitte 14, 14a, 14b eine separate Lichtauskoppelfläche 40 in der Art der Figur 1 aufweist, über welche die Lichtleitabschnitte 14, 14a, 14b in den Auskoppelabschnitt 64 (z.B. in nicht einstückiger Ausformung) münden. Für den Auskoppelabschnitt 64 können dann beispielsweise Materialien mit anderen optischen Eigenschaften (z.B. Brechungsindex) als die Lichtleitabschnitte 14, 14a, 14b gewählt werden. In der Figur 3 ist der Übergang zwischen Lichtleitabschnitten 14, 14a, 14b und Auskoppelabschnitt 64 durch Linien angedeutet. Es muss sich jedoch nicht um getrennte Bauteile handeln.Deviating from the embodiment described above, however, it is also conceivable that each of the light guide sections 14, 14 a, 14 b has a separate light output surface 40 in the manner of FIG. 1 has, over which the Lichtleitabschnitte 14, 14 a, 14 b in the Auskoppelabschnitt 64 (eg in non-integral formation) open. For example, materials with different optical properties (eg refractive index) than the light-conducting sections 14, 14a, 14b can then be selected for the decoupling section 64. In the FIG. 3 the transition between Lichtleitabschnitten 14, 14a, 14b and Auskoppelabschnitt 64 is indicated by lines. However, they do not have to be separate components.

Wie in Figur 3 erkennbar, ist jedem Lichtleitabschnitt 14, 14a, 14b eine Primärbrennlinie 44, 44a, 44b zugeordnet. Die Primärbrennlinien 44, 44a, 44b verlaufen jeweils in der Sagittalebene 22 (vergleiche Figur 1). In ihrer Erstreckungsrichtung entlang der Hauptabstrahlrichtung 20 weisen die Lichtleitabschnitte 14, 14a, 14b unterschiedliche Längen auf. Insbesondere verlaufen die zugeordneten Primärbrennlinien 44, 44a, 44b bei dem Lichtmodul 60 nicht auf einer gemeinsamen, gedachten Linie. Vielmehr ist die Primärbrennlinie 44 gegenüber den Primärbrennlinien 44a, 44b in Richtung der Hauptabstrahlrichtung 20 versetzt. Grundsätzlich kann jeder der Lichtleitabschnitte 14, 14a, 14b derart ausgestaltet werden, dass sich eine gewünschte Brennweite und damit ein gewünschter Verlauf der jeweils zugeordneten Primärbrennlinie 44, 44a, 44b ergibt. Insbesondere können unterschiedlichen Lichtleitabschnitten 14, 14a, 14b unterschiedliche Brennweiten zugeordnet werden, so dass mit den verschiedenen Lichtleitabschnitten 14, 14a, 14b verschiedene Lichtfunktionen (Abblendlicht, Fernlicht, Tagfahrlicht) realisiert werden können.As in FIG. 3 can be seen, each Lichtleitabschnitt 14, 14a, 14b associated with a Primärbrennlinie 44, 44a, 44b. The primary focal lines 44, 44a, 44b each extend in the sagittal plane 22 (cf. FIG. 1 ). In their extension direction along the main emission direction 20, the light guide sections 14, 14a, 14b have different lengths. In particular, the run associated primary focal lines 44, 44a, 44b in the light module 60 not on a common, imaginary line. Instead, the primary firing line 44 is offset relative to the primary firing lines 44a, 44b in the direction of the main emission direction 20. In principle, each of the light guide sections 14, 14a, 14b can be designed in such a way that a desired focal length and thus a desired course of the respective associated primary focal line 44, 44a, 44b result. In particular, different focal lengths can be assigned to different light guide sections 14, 14a, 14b, so that different light functions (low beam, high beam, daytime running light) can be realized with the various light guide sections 14, 14a, 14b.

Ebenso ist es denkbar, dass die Substrate 62, 62a, 62b jeweils in unterschiedlichen Positionen bezüglich der Primärbrennlinie 44, 44a, 44b ihres jeweils zugeordneten Lichtleitabschnitts 14, 14a, 14b angeordnet werden.Likewise, it is conceivable that the substrates 62, 62a, 62b are each arranged in different positions with respect to the primary focal line 44, 44a, 44b of their respective associated light-conducting section 14, 14a, 14b.

Bei dem Lichtmodul 60 wirkt das dem Primäroptikelement 16 im Strahlengang nachgeordnete Sekundäroptikelement 18 gemeinsam für sämtliche Lichtleitabschnitte 14, 14a, 14b in der zu Figur 1 erläuterten Weise. Die Sekundärbrennlinie 50 erstreckt sich senkrecht zu sämtlichen Primärbrennlinien 44, 44a, 44b.In the case of the light module 60, the secondary optics element 18 arranged downstream of the primary optics element 16 in the beam path acts together for all the light guide sections 14, 14a, 14b in the latter FIG. 1 explained way. The secondary firing line 50 extends perpendicular to all primary firing lines 44, 44a, 44b.

Im Falle der Figuren 2 und 3 ist das die Mehrzahl an Lichtleitabschnitten 14, 14a, 14b umfassende Primäroptikelement 16 spiegelsymmetrisch zu der Meridionalebene 24 ausgebildet (welche die in Figur 1 erläuterte Lage hat, jedoch in Figur 2 zur besseren Übersichtlichkeit nicht eingezeichnet ist). Vorzugsweise ist auch die Anordnung und Ausgestaltung der einzelnen Halbleiterlichtquellen 62, 62a, 62b als Ganzes spiegelsymmetrisch zu der Meridionalebene 24. Da auch die Zylinderlinse 19 spiegelsymmetrisch zur Meridionalebene 24 ausgebildet ist (vergleiche Figur 1), stellt die Meridionalebene 24 eine Symmetrieebene des gesamten optischen Systems dar.In case of FIGS. 2 and 3 For example, the primary optic element 16 comprising the plurality of light guide sections 14, 14a, 14b is mirror-symmetrical to the meridional plane 24 (which corresponds to those in FIG FIG. 1 has explained, however, in FIG. 2 not shown for clarity). Preferably, the arrangement and configuration of the individual semiconductor light sources 62, 62a, 62b as a whole mirror-symmetrical to the meridional plane 24. Since the cylindrical lens 19 is mirror-symmetrical to the Meridionalebene 24 (see FIG. 1 ), the meridional plane 24 represents a plane of symmetry of the entire optical system.

In den Figuren 4 und 5 ist ein Lichtmodul 70 dargestellt. Dieses unterscheidet sich von dem Lichtmodul 60 dadurch, dass die drei Lichtleitabschnitte 14, 14a, 14b unmittelbar in das gemeinsame Sekundäroptikelement 18 münden.In the FIGS. 4 and 5 a light module 70 is shown. This differs from the light module 60 in that the three light guide sections 14, 14a, 14b open directly into the common secondary optical element 18.

Das Sekundäroptikelement 18 ist als Zylinderlinsenelement 72 ausgebildet, welches eine Zylinderlinsenfläche 74 aufweist. Die Zylinderlinsenfläche 74 wölbt sich zylindrisch um eine senkrecht zur Sagittalebene 22 (Fig. 1) und der Hauptabstrahlrichtung 20 verlaufende Zylinderachse 76. Das Linsenelement 72 weist ferner einen Übergangsabschnitt 78 auf, in welchen die Lichtleitabschnitte 14, 14a, 14b des Primäroptikelements 16 münden.The secondary optical element 18 is designed as a cylindrical lens element 72, which has a cylindrical lens surface 74. The cylindrical lens surface 74 bulges cylindrically around a plane perpendicular to the sagittal plane 22 (FIG. Fig. 1 The lens element 72 furthermore has a transition section 78, into which the light guide sections 14, 14a, 14b of the primary optics element 16 open.

Die Lichtleitabschnitte 14, 14a, 14b sind über ihre Lichtauskoppelflächen 40, 40a, 40b (zur Erläuterung siehe Figur 1) mit dem Übergangsabschnitt 78 des Linsenelements 72 derart verbunden, dass das durch die Lichtauskoppelflächen 40, 40a, 40b hindurch tretende Licht sich in dem Linsenelement 72 fortpflanzt und beim Durchtritt durch die Zylinderlinsenfläche 74 gebrochen wird. Aufgrund der zylindrischen Form der Zylinderlinsenfläche 74 kann dem Linsenelement 72 wiederum eine (virtuelle) Primärbrennlinie 50 mit den vorstehend beschriebenen Eigenschaften zugeordnet werden.The Lichtleitabschnitte 14, 14a, 14b are on their light output surfaces 40, 40a, 40b (see for explanation FIG. 1 ) is connected to the transition section 78 of the lens element 72 such that the light passing through the light outcoupling surfaces 40, 40a, 40b propagates in the lens element 72 and is refracted as it passes through the cylindrical lens surface 74. Due to the cylindrical shape of the cylindrical lens surface 74, the lens element 72 can in turn be assigned a (virtual) primary focal line 50 with the properties described above.

Das Linsenelement 72 ist über die Lichtauskoppelflächen 40, 40a, 40b einstückig mit den Lichtleitabschnitten 14, 14a, 14b verbunden. Die Verbindung ist insbesondere derart, dass sich Lichtstrahlen beim Übergang aus einem Lichtleitabschnitt 14, 14a, 14b durch die (gedachte) Lichtauskoppelfläche 40, 40a, 40b in das Linsenelement 72 brechungsfrei fortpflanzen. Die Einheit aus den das Primäroptikelement 60 bildenden Lichtleitabschnitten 14, 14a, 14b und dem das Sekundäroptikelement 18 bildende Linsenelement 72 kann insbesondere als einstückiges Formteil, beispielsweise im Spritzgussverfahren, aus einem geeigneten Kunststoff hergestellt werden.The lens element 72 is integral with the light guide sections 14, 14a via the light outcoupling surfaces 40, 40a, 40b. 14b connected. The connection is in particular such that light beams propagate without refraction during the transition from a light guide section 14, 14a, 14b through the (imaginary) light coupling-out surface 40, 40a, 40b into the lens element 72. The unit comprising the light guide sections 14, 14a, 14b forming the primary optic element 60 and the lens element 72 forming the secondary optic element 18 can be produced, in particular, as a one-piece molded part, for example by injection molding, from a suitable plastic.

Denkbar ist auch, ausgehend von dem in den Figuren 2 und 3 dargestellten Lichtmodul 60 eine einstückige Ausführung dadurch zu erzeugen, dass der Auskoppelabschnitt 64 über seine Lichtauskoppelfläche 66 einstückig mit einer Lichtdurchtrittsfläche 46 der Zylinderlinse 19 gemäß den Figuren 2 und 3 verbunden wird.It is also conceivable, starting from the in the FIGS. 2 and 3 illustrated light module 60 to produce a one-piece design in that the decoupling portion 64 via its light output surface 66 integral with a light passage surface 46 of the cylindrical lens 19 according to the FIGS. 2 and 3 is connected.

Bei den erfindungsgemäßen Lichtmodulen werden die Eigenschaften der Abstrahllichtverteilung 28 wesentlich durch die Anordnung der Halbleiterlichtquelle 12 relativ zur jeweils zugeordneten Primärbrennlinie 44 bestimmt, was im Folgenden anhand Figur 6 erläutert wird.In the case of the light modules according to the invention, the properties of the emission light distribution 28 are determined essentially by the arrangement of the semiconductor light source 12 relative to the respective associated primary focal line 44, which will be described below FIG. 6 is explained.

Als Halbleiterlichtquellen 12, 62 finden vorzugsweise Leuchtdioden (LED) Verwendung, welche eine ebene Lichtabstrahlfläche 80 aufweisen, die von gerade verlaufenden Begrenzungskanten 82 scharf begrenzt wird. Üblich sind beispielsweise LED mit quadratischen Lichtabstrahlflächen 80 und entsprechenden Begrenzungskanten 82. Vorzugsweise sind mehrere solche LEDs auf einem gemeinsamen Substrat 62 angeordnet und bilden eine Halbleiterlichtquelle 12.As semiconductor light sources 12, 62 are preferably light emitting diodes (LED) use, which have a flat Lichtabstrahlfläche 80, which is sharply bounded by straight boundary edges 82. For example, LEDs with square light emission surfaces 80 and corresponding boundary edges 82 are common. Preferably, a plurality of such LEDs are arranged on a common substrate 62 and form a semiconductor light source 12.

In der Figur 6 sind jeweils solche Halbleiterlichtquellen 12 skizziert, wobei drei mögliche Verläufe für die Primärbrennlinie 44 des zugeordneten Lichtleitabschnitts 14 angedeutet sind, wenn die Halbleiterlichtquelle 12 in einem Lichtmodul der vorliegenden Art verbaut ist. Dabei ist der Ebene der Lichtabstrahlflächen 80 eine Vorwärtsrichtung 84 (beispielsweise im Wesentlichen in Richtung der Hauptabstrahlrichtung 20) und eine Rückwärtsrichtung 85 (beispielsweise entgegengesetzt der Hauptabstrahlrichtung 20) definiert.In the FIG. 6 are each such semiconductor light sources 12 outlined, wherein three possible gradients for the primary focal line 44 of the associated Lichtleitabschnitts 14 are indicated when the semiconductor light source 12 is installed in a light module of the present type. Here, the plane of the light emitting surfaces 80 is defined as a forward direction 84 (for example, substantially in the direction of the main emission direction 20) and a reverse direction 85 (for example, opposite to the main emission direction 20).

Im Falle der Figur 6a ist die Halbleiterlichtquelle 12 derart angeordnet, dass die zugeordnete Primärbrennlinie 44 durch die Lichtabstrahlflächen 80 verläuft. Für die auf einem Testschirm 26 (vgl. Figur 1) beobachtete Abstrahllichtverteilung 28 ergibt sich das in der Figur 6a rechts neben der Skizze der Halbleiterlichtquelle 12 dargestellte Beleuchtungsbild.In case of FIG. 6a For example, the semiconductor light source 12 is arranged such that the associated primary focal line 44 passes through the light emitting surfaces 80. For on a test screen 26 (see. FIG. 1 ) observed emission distribution 28 results in the FIG. 6a to the right of the sketch of the semiconductor light source 12 illustrated illumination image.

Der Lichtleitabschnitt 14 parallelisiert divergierende, von der Primärbrennlinie 44 ausgehende Lichtbündel innerhalb von Schnitten senkrecht zur Primärbrennlinie 14. Da sich die Lichtabstrahlfläche 80 sowohl in Vorwärtsrichtung 84 als auch in Rückwärtsrichtung 85 ausgehend von der Primärbrennlinie 44 erstreckt, treten durch die Lichtauskoppelflächen und durch das Sekundäroptikelement 18 sowohl Lichtstrahlen, welche eine Richtungskomponente nach vertikal oben aufweist, als auch Lichtstrahlen mit einer Richtungskomponente nach vertikal unten. Daher weist die Abstrahllichtverteilung 28 keine Hell-Dunkel-Grenze auf, sondern hat die Eigenschaft einer Spot-Lichtverteilung mit Lichtschwerpunkt um die Hauptabstrahlrichtung (beispielsweise gegeben durch den in Figur 1 erläuterten Hauptstrahl 52).The Lichtleitabschnitt 14 parallelizes diverging, emanating from the Primärbrennlinie 44 light bundles within cuts perpendicular to the primary focal line 14. Since the light emitting surface 80 extends both in the forward direction 84 and in the backward direction 85 from the Primärbrennlinie 44, passing through the light outcoupling surfaces and by the Sekundäroptikelement 18th both light rays having a direction component vertically upward and light rays having a direction component vertically downward. Therefore, the emission light distribution 28 has no bright-dark boundary, but has the property of a spot light distribution with a light center about the main emission direction (for example, given by the in FIG FIG. 1 explained main beam 52).

Im Falle der Figur 6b verläuft je eine Begrenzungskante 82 einer Lichtabstrahlfläche 80 auf der Primärbrennlinie 44. Ausgehend von der Primärbrennlinie 44 erstreckt sich die Lichtabstrahlfläche 80 in Rückwärtsrichtung 85. Die von den genannten Begrenzungskanten 82 ausgehenden Lichtstrahlen werden in Hauptabstrahlrichtung 20 parallelisiert. Dies führt zu einer Hell-Dunkel-Grenze HDG auf dem Testschirm 26, wie in der Skizze der Abstrahllichtverteilung 28 rechts neben der Darstellung des Chips 62 in Figur 6b angedeutet. Die Lichtstrahlen, welche von den sich in Rückwärtsrichtung 85 erstreckenden Lichtabstrahlflächen ausgehen, weisen nach Durchtritt durch die Lichtauskoppelfläche 40 bzw. durch das Sekundäroptikelement 18 eine Richtungskomponente nach vertikal unten auf. Daher hat die Abstrahllichtverteilung 28 einen vertikal unten liegenden Hellbereich 30 und einen hiervon durch die Hell-Dunkel-Grenze HDG getrennten, vertikal oben liegenden Dunkelbereich 32.In case of FIG. 6b Starting from the primary focal line 44, the light emitting surface 80 extends in the backward direction 85. The light beams emanating from said boundary edges 82 are parallelized in the main emission direction 20. This leads to a light-dark boundary HDG on the test screen 26, as shown in the sketch of the emission light distribution 28 to the right of the representation of the chip 62 in FIG FIG. 6b indicated. The light rays which emanate from the light emission surfaces extending in the backward direction 85 have, after passing through the light outcoupling surface 40 or through the secondary optics element 18, a direction component vertically downwards. Therefore, the emission light distribution 28 has a bright vertical area 30 below and a vertical dark area 32 separated therefrom by the cut-off line HDG.

Im Beispiel der Figur 6c erstreckt sich die Lichtabstrahlfläche 80 ausgehend von der Primärbrennlinie 44 in Vorwärtsrichtung 84. Dabei verläuft die Primärbrennlinie 44 durch je eine Begrenzungskante 82 der Lichtabstrahlfläche 80. Dementsprechend führen die von den auf der Primärbrennlinie 44 liegenden Begrenzungskanten 82 ausgehenden Lichtstrahlen wiederum zu einer scharfen Hell-Dunkel-Grenze HDG, wobei in diesem Fall der Hellbereich 30 vertikal über dem Dunkelbereich 32 liegt (in Figur 6c rechts skizziert).In the example of FIG. 6c extends from the primary focal line 44 in the forward direction 84. Here, the primary focal line 44 extends through a respective boundary edge 82 of the Lichtabstrahlfläche 80. Accordingly, the outgoing from the primary focus line 44 boundary edges 82 outgoing light rays again lead to a sharp light-dark Limit HDG, in which case the bright area 30 is vertically above the dark area 32 (in FIG. 6c sketched on the right).

In den Fällen gemäß Figur 6b und Figur 6c wird jeweils eine Begrenzungskante 82, welche auf der jeweiligen Primärbrennlinie 44 verläuft, als Hell-Dunkel-Grenze der Abstrahllichtverteilung 28 abgebildet. Die übrige Lichtabstrahlfläche 80 wird über Lichtleitabschnitt 14 und Sekundäroptikelement 18 in ein entsprechendes Lichtquellenbild projiziert. Wird die Lichtabstrahlfläche 80 gegenüber der Primärbrennlinie 44 in Vorwärtsrichtung 84 oder Rückwärtsrichtung 85 verschoben, so ändert sich die Lage der genannten Lichtquellenbilder in vertikaler Richtung auf dem Testschirm 26. Dabei ist der Lichtleitabschnitt 14 vorzugsweise derart ausgebildet, dass sich bei Verschiebung die entlang der vertikalen Richtung V gemessene Größe der jeweiligen Lichtquellenbilder nicht ändert.In the cases according to FIG. 6b and FIG. 6c In each case, a boundary edge 82 which runs on the respective primary focal line 44 is imaged as a light-dark boundary of the emission light distribution 28. The remaining Lichtabstrahlfläche 80 is about Lichtleitabschnitt 14 and Sekundäroptikelement 18 in a corresponding Light source image projected. When the light-emitting surface 80 is displaced in the forward direction 84 or in the rearward direction 85 with respect to the primary focal line 44, the position of said light source images in the vertical direction on the test screen 26 changes. The light-guiding section 14 is preferably designed such that, when displaced, the directions along the vertical direction V measured size of the respective light source images does not change.

Da die Eigenschaften der Abstrahllichtverteilung 28 wie erläutert von der Lage der Halbleiterlichtquelle 12 in Bezug auf die Primärbrennlinie 44 abhängen, kann mit der erfindungsgemäßen Anordnung auf einfache Weise ein Multifunktions-Lichtmodul realisiert werden. Hierzu können beispielsweise eine Mehrzahl von Halbleiterlichtquellen 12 vorgesehen sein, wobei Halbleiterlichtquellen 12 einer erste Gruppe der in der Art der Figur 6b angeordnet sind. Eine zweite Gruppe kann Halbleiterlichtquellen 12 aufweisen, welche in der Art der Figur 6c angeordnet sind. Dies ist in der Figur 7 skizziert. Die erste Gruppe von Halbleiterlichtquellen führt dann zu einer Abstrahllichtverteilung mit einem vertikal unten liegenden Hellbereich, wogegen die zweite Gruppe zu einer Abstrahllichtverteilung mit einem vertikal oben liegenden Hellbereich führt (vgl. Figur 6). Die genannte erste Gruppe kann daher eine Abblendlichtverteilung eines Kfz-Scheinwerfers speisen, welche eine horizontal verlaufende Hell-Dunkel-Grenze aufweist. Die zweite Gruppe kann als Fernlichtquelle dienen, welche zu einer Ausleuchtung oberhalb der Hell-Dunkel-Grenze führt.Since the properties of the emission light distribution 28 depend, as explained, on the position of the semiconductor light source 12 with respect to the primary focal line 44, a multifunction light module can be implemented in a simple manner with the arrangement according to the invention. For this purpose, for example, a plurality of semiconductor light sources 12 may be provided, wherein semiconductor light sources 12 of a first group of the type FIG. 6b are arranged. A second group may comprise semiconductor light sources 12 which are in the nature of the FIG. 6c are arranged. This is in the FIG. 7 outlined. The first group of semiconductor light sources then leads to an emission light distribution with a vertical downwardly lying light area, while the second group leads to a light emission distribution with a vertical overhead light area (cf. FIG. 6 ). The said first group can therefore feed a low-beam distribution of a motor vehicle headlamp, which has a horizontally running cut-off line. The second group can serve as a high beam source, which leads to an illumination above the cut-off line.

Vorzugsweise sind in dem genannten Beispiel die Halbleiterlichtquellen der ersten Gruppe unabhängig von den Halbleiterlichtquellen der zweiten Gruppe elektrisch ansteuerbar, insbesondere an- und ausschaltbar. Dadurch kann beispielsweise die Fernlicht-Lichtverteilung bei Bedarf zur Abblendlicht-Lichtverteilung zugeschaltet und ausgeblendet werden.Preferably, in the mentioned example, the semiconductor light sources of the first group are electrically independent of the semiconductor light sources of the second group can be controlled, in particular switched on and off. As a result, for example, the high beam light distribution can be switched on and off as required for the low beam light distribution.

Um einen möglichst homogenen Übergang zwischen der Fernlicht-Ausleuchtung oberhalb der Hell-Dunkel-Grenze und der Grundlicht-Lichtverteilung unterhalb der Hell-Dunkel-Grenze zu erzielen, können die Lichtabstrahlflächen 80 beispielsweise der zweiten Gruppe derart verschoben werden, dass die Lichtabstrahlfläche 80 die Primärbrennlinie 44 geringfügig überlappt.In order to achieve as homogeneous a transition as possible between the high-beam illumination above the light-dark boundary and the basic light distribution below the light-dark boundary, the light emission surfaces 80, for example of the second group, can be displaced such that the light emission surface 80 forms the primary focal line 44 slightly overlapped.

Für verschiedene Lichtleitabschnitte 14 können bei den erfindungsgemäßen Lichtmodulen unterschiedliche Anordnungen der zugeordneten Halbleiterlichtquelle 12 in Bezug auf die jeweilige Primärbrennlinie 44 gewählt werden. Mit verschiedenen Lichtleitabschnitten 14 können daher verschiedene Beiträge zur Abstrahllichtverteilung realisiert werden. Denkbar ist jedoch auch, einem Lichtleitabschnitt 14 ein Substrat 62 mit einer Mehrzahl von LEDs mit Lichtabstrahlflächen 80 zuzuordnen, wobei unterschiedliche LEDs unterschiedliche Positionen bezüglich der Primärbrennlinie 44 ein und desselben Lichtleitabschnitts 14 einnehmen.For different Lichtleitabschnitte 14 different arrangements of the associated semiconductor light source 12 can be selected in relation to the respective primary focal line 44 in the light modules according to the invention. With different Lichtleitabschnitten 14 therefore different contributions to the Abstrahllichtverteilung can be realized. However, it is also conceivable to associate a light-conducting section 14 with a substrate 62 having a plurality of LEDs with light-emitting surfaces 80, wherein different LEDs occupy different positions relative to the primary focal line 44 of the same light-guiding section 14.

Die optischen Eigenschaften der Lichtleitabschnitte 14 der erfindungsgemäßen Lichtmodule werden im Folgenden anhand der Figur 8 weiter erläutert. Die Figur 8 zeigt einen Schnitt durch ein erfindungsgemäßes Lichtmodul (beispielsweise Lichtmodul 60), wobei die Schnittebene sich senkrecht zur Sagittalebene 22 erstreckt.The optical properties of the light-conducting sections 14 of the light modules according to the invention are described below with reference to FIGS FIG. 8 further explained. The FIG. 8 shows a section through an inventive light module (for example, light module 60), wherein the sectional plane extends perpendicular to the sagittal plane 22.

Um die genannten optischen Eigenschaften zu erzielen, ist der Lichtleitabschnitt 14 (insbesondere Hauptreflexionsfläche 42, Lichteinkoppelfläche 38, Lichtauskoppelfläche 40) derart ausgebildet, dass die optischen Wege (in Projektion senkrecht zur Primärbrennlinie 44) für sämtliche, von der Primärbrennlinie 44 ausgehende, durch die Lichteinkoppelfläche 48 tretende und an der Hauptreflexionsfläche 42 totalreflektierte Lichtstrahlen bis zum Durchtritt durch die Lichtauskoppelfläche 40 (und auch im weiteren Verlauf durch das Sekundäroptikelement 18) konstant sind. Unter dem optischen Weg durch einen Materialabschnitt wird dabei in bekannter Weise das Produkt aus dem jeweils zugeordneten Brechungsindex ni und dem in dem jeweiligen Materialabschnitt zurückgelegten Weg si verstanden. In der Figur 8 sind exemplarisch die optischen Wege für drei verschiedene Strahlen in Ebenen senkrecht zur Primärbrennlinie 44 dargestellt. Ein erster Strahl legt ausgehend von der Primärbrennlinie 44 einen Weg s1 bis zur Lichteinkoppelfläche 38, einen Weg s2 in dem Lichtleitabschnitt 14 bis zur Hauptreflexionsfläche 42, nach Totalreflexion einen Weg s3 durch den Lichtleitabschnitt 14 bis zur Lichtauskoppelfläche 40, nach Austritt aus dem Lichtleitabschnitt 14 weitere Wegabschnitte s4, s5 (durch das Sekundäroptikelement 18) und s6 zurück. Hierbei ist für die Wegabschnitte s2 und s3 der Brechungsindex des Lichtleitabschnitts 14 maßgeblich, wogegen die Wegabschnitte s1 und s4 durch Luft verlaufen. Entsprechend sind zwei weitere Wege (s1', s2', s3', s4', s5', s6' und s1", s2", s3", s4", s5", s6") skizziert, welche sich durch die Lage des Punktes der Totalreflexion an der Hauptreflexionsfläche 42 unterscheiden. Das über die einzelnen Wegabschnitte aufsummierte Produkt si mal ni ist für die verschiedenen Wege konstant.In order to achieve the stated optical properties, the light guide section 14 (in particular Hauptreflexionsfläche 42, Lichteinkoppelfläche 38, Lichtauskoppelfläche 40) formed such that the optical paths (in projection perpendicular to the primary focal line 44) for all, emanating from the primary focal line 44, passing through the Lichteinkoppelfläche 48 and on the main reflection surface 42 totally reflected light rays until they pass through the Lichtauskoppelfläche 40 (and also in the further course by the Sekundäroptikelement 18) are constant. Under the optical path through a material section, the product of the respectively associated refractive index n.sub.i and the path si covered in the respective material section is understood in a known manner. In the FIG. 8 For example, the optical paths for three different beams in planes perpendicular to the primary firing line 44 are shown. A first beam, starting from the primary firing line 44, defines a path s1 to the light-incoupling surface 38, a path s2 in the light-conducting section 14 to the main reflection surface 42, a total reflection of a path s3 through the light-conducting section 14 to the light-outcoupling surface 40, and further out of the light-conducting section 14 Path sections s4, s5 back (by the Sekundäroptikelement 18) and s6 back. In this case, the refractive index of the light-conducting section 14 is decisive for the path sections s2 and s3, whereas the path sections s1 and s4 run through air. Accordingly, two further paths (s1 ', s2', s3 ', s4', s5 ', s6' and s1 ", s2", s3 ", s4", s5 ", s6") are sketched, which are characterized by the position of the Distinguish point of total reflection at the main reflection surface 42. The product s i times n i summed over the individual path sections is constant for the various paths.

In dem in der Figur 8 dargestellten Beispiel ist der Lichtleitabschnitt 14 in der Art eines Tortenstückes aus einem parabolischen Zylinderkörper ausgebildet, wobei die Lichteinkoppelfläche 38 in einem spitzen Winkel mit der Lichtauskoppelfläche 40 zusammenläuft. Im dargestellten Beispiel erstreckt sich die Hauptreflexionsfläche 42 von der Lichteinkoppelfläche 38 bis zur Lichtauskoppelfläche 40. Diese Ausgestaltungen sind jedoch nicht zwingend. Denkbar ist insbesondere, dass die Lichteinkoppelfläche 38 und die Lichtauskoppelfläche 40 einen rechten Winkel einschließen. Weist der Lichtleitabschnitt 14 weitere Begrenzungsflächen auf, so können Lichteinkoppelfläche 38 und Lichtauskoppelfläche 40 auch parallel verlaufen, wie weiter unten zu Figur 15 näher erläutert.In the in the FIG. 8 As shown, the light guide section 14 is in the manner of a pie slice formed a parabolic cylinder body, wherein the light input surface 38 converges at an acute angle with the light output surface 40. In the illustrated example, the main reflection surface 42 extends from the light input surface 38 to the light output surface 40. However, these embodiments are not mandatory. It is conceivable, in particular, that the light incoupling surface 38 and the light outcoupling surface 40 form a right angle. If the light-guiding section 14 has further boundary surfaces, light-coupling surface 38 and light-outcoupling surface 40 can also run in parallel, as described below FIG. 15 explained in more detail.

Im Beispiel der Figur 8 erstreckt sich die Lichteinkoppelfläche 38 im Wesentlichen parallel zu einer nicht näher dargestellten Lichtabstrahlfläche der Halbleiterlichtquelle 12 (welche beispielsweise in der zu Figur 6 erläuterten Art ausgestaltet ist). Daher wird zwischen der Lichteinkoppelfläche 38 und der Lichtabstrahlfläche 80 ein Abstandsspalt 88 gebildet, welcher entlang des Verlaufs der Lichtabstrahlfläche der Halbleiterlichtquelle 12 eine konstante Größe aufweist. Denkbar sind jedoch auch Ausgestaltungen, bei welchen die Lichteinkoppelfläche 38 unter einem Winkel zur Lichtabstrahlfläche der Halbleiterlichtquelle 12 verläuft und daher der Abstandsspalt 88 eine über den Verlauf der Lichtabstrahlfläche veränderliche Größe aufweist. Ebenso kann die Lichteinkoppelfläche 38 gewölbt, beispielsweise konvex oder konkav gekrümmt ausgebildet sein, so dass sich die Größe des Abstandsspaltes 88 über den Verlauf der Lichtabstrahlfläche der Halbleiterlichtquelle 12 verändert.In the example of FIG. 8 the light input surface 38 extends substantially parallel to a not shown light emitting surface of the semiconductor light source 12 (which, for example, in the zu FIG. 6 explained type is designed). Therefore, a clearance gap 88 is formed between the light incoupling surface 38 and the light emission surface 80, which has a constant size along the course of the light emission surface of the semiconductor light source 12. Conceivable, however, are also embodiments in which the light incoupling surface 38 extends at an angle to the light emission surface of the semiconductor light source 12 and therefore the distance gap 88 has a variable over the course of the light emission surface size. Likewise, the light input surface 38 may be arched, for example convex or concave, so that the size of the gap 88 varies over the course of the light emission surface of the semiconductor light source 12.

In den Figuren 9 bis 14 werden im Folgenden Ausgestaltungen der Lichtleitabschnitte 14 erläutert. Diese können bei sämtlichen Lichtleitabschnitten der erfindungsgemäßen Lichtmodule Anwendung finden, wobei in den Figuren 9 bis 14 jeweils nur ein einzelner Lichtleitabschnitt 14 dargestellt ist.In the FIGS. 9 to 14 In the following embodiments of the Lichtleitabschnitte 14 are explained. These can in all Lichtleitabschnitten the inventive Light modules find application, wherein in the FIGS. 9 to 14 in each case only a single light guide 14 is shown.

Wie in Figur 9 verdeutlicht, müssen nicht alle Begrenzungsflächen eines Lichtleitabschnitts 14 optisch wirksam sein. Insbesondere kann der Lichtleitabschnitt 14 in Bereichen zwischen der Hauptreflexionsfläche 42 und der Lichtauskoppelfläche 40, oder zwischen Lichteinkoppelfläche 38 und Lichtauskoppelfläche 40 oder zwischen Lichteinkoppelfläche 38 und Hauptreflexionsfläche 42 Abschnitte aufweisen, welche optisch funktionslos sind, das heißt für die optischen Eigenschaften des Lichtleitabschnitts 14 im Wesentlichen ohne Bedeutung sind. so kann der Lichtleitabschnitt 14 beispielsweise an den Übergängen der Lichtauskoppelfläche 40 zur Hauptreflexionsfläche 42 und zur Lichteinkoppelfläche 38 einen flanschartigen Überstand 90 aufweisen. Dieser kann als Befestigungsabschnitt des Lichtleitabschnitts 14 dienen. Ebenso kann eine positionsgenaue Ausrichtung über den flanschartigen Überstand 90 erfolgen. Entsprechend kann ein Befestigungs- oder Positionierungsabschnitt 92 am Übergang zwischen Lichteinkoppelfläche 38 und Hauptreflexionsfläche 42 vorgesehen sein. Die Befestigungs- und Positionierungsabschnitte 90, 92 werden vorzugsweise während eines Spritzgussschrittes bei der Herstellung des Lichtleitabschnitts 14 einstückig mit diesem ausgeformt.As in FIG. 9 clarified, not all boundary surfaces of a Lichtleitabschnitts 14 must be optically effective. In particular, the light-guiding section 14 may have sections in areas between the main reflection surface 42 and the light outcoupling surface 40, or between light input surface 38 and light outcoupling surface 40 or between light input surface 38 and main reflection surface 42, which are optically inoperative, ie essentially without the optical properties of the light guide section 14 Meaning are. For example, the light-guiding section 14 may have a flange-like projection 90 at the transitions of the light output surface 40 to the main reflection surface 42 and to the light input surface 38. This can serve as a mounting portion of the Lichtleitabschnitts 14. Likewise, a positionally accurate alignment can take place via the flange-like projection 90. Accordingly, a fastening or positioning portion 92 may be provided at the transition between light input surface 38 and main reflection surface 42. The attachment and positioning portions 90, 92 are preferably formed integrally therewith during an injection molding step in the manufacture of the light guide portion 14.

Der Lichtleitabschnitt 14 wird von weiteren Lichtleitflächen 94 und 96 begrenzt, welche senkrecht auf der Sagittalebene 22 (Figur 1) stehen. Die weiteren Lichtleitflächen 94 und 96 bilden insofern große Seitenflächen des sich flächig erstreckenden Lichtleitabschnitts 14, wogegen die Lichteinkoppelfläche 38, die Lichtauskoppelfläche 40 und die Hauptreflexionsfläche 42 schmale Seitenflächen des scheibenartigen Lichtleitabschnitts 14 darstellen. Hinsichtlich des Lichttransports durch den Lichtleitabschnitt 14 haben die weiteren Lichtleitflächen 94 und 96 die Funktion, Lichtstrahlen mit Richtungskomponenten senkrecht zur Hauptabstrahlrichtung 20 unter interner Totalreflexion von der Lichteinkoppelfläche 38 zur Lichtauskoppelfläche 40 zu leiten.The light guide section 14 is delimited by further light guide surfaces 94 and 96 which are perpendicular to the sagittal plane 22 (FIG. FIG. 1 ) stand. The further light guide surfaces 94 and 96 form insofar large side surfaces of the surface extending Lichtleitabschnitts 14, whereas the Lichteinkoppelfläche 38, the light output surface 40 and the Main reflection surface 42 narrow side surfaces of the disc-like Lichtleitabschnitts 14 represent. With regard to the light transport through the light guide section 14, the further light guide surfaces 94 and 96 have the function of directing light beams with direction components perpendicular to the main emission direction 20 under total internal reflection from the light input surface 38 to the light output surface 40.

Wie in Figur 10 dargestellt, stehen die weiteren Lichtleitflächen 94 und 96 insbesondere senkrecht auf der Sagittalebene 22 (Sichtebene in Figur 10) und können zueinander parallel verlaufen.As in FIG. 10 represented, the other light guide surfaces 94 and 96 are in particular perpendicular to the sagittal plane 22 (viewing plane in FIG. 10 ) and can be parallel to each other.

Eine alternative Ausgestaltung ist in Figur 11 gezeigt. Dabei stehen die weiteren Lichtleitflächen 94 und 96 ebenfalls senkrecht zur Sagittalebene 22 (Sichtebene der Figur 11), laufen jedoch in Richtung der Hauptabstrahlrichtung 20 auseinander, so dass sich die in Schnitten senkrecht zur Hauptabstrahlrichtung 20 bemessene Querschnittsfläche des Lichtleitabschnitts 14 bei Fortschreiten in Richtung der Hauptabstrahlrichtung 20 stetig vergrößert. Insbesondere sind die weiteren Lichtleitflächen 94 und 96 eben ausgebildet und schließen miteinander einen in Hauptabstrahlrichtung 20 offenen, spitzen Winkel ein. Daher hat der Lichtleitabschnitt 14 in Schnitten parallel zur Sagittalebene 22 (Sichtebene der Figur 11) trapezartige Form. Die weiteren Lichtleitflächen 94 und 96 laufen insofern konisch auseinander. Im Beispiel der Figur 11 ist der Lichtleitabschnitt 14 spiegelsymmetrisch zur Meridionalebene 24 ausgebildet. Denkbar ist jedoch auch, dass der Lichtleitabschnitt 14 in Richtung senkrecht zur Meridionalebene versetzt angeordnet ist, oder dass die Lichtleitfläche 94 mit der Hauptabstrahlrichtung 20 einen anderen (spitzen) Winkel einschließt, als die weitere Lichtleitfläche 96.An alternative embodiment is in FIG. 11 shown. The further light guide surfaces 94 and 96 are also perpendicular to the sagittal plane 22 (viewing plane of FIG FIG. 11 ), however, diverge in the direction of the main emission direction 20, so that the cross-sectional area of the light-conducting section 14 measured in sections perpendicular to the main emission direction 20 increases steadily as it progresses in the direction of the main emission direction 20. In particular, the further light guide surfaces 94 and 96 are planar and enclose with one another an acute angle which is open in the main emission direction 20. Therefore, the light guide section 14 has in sections parallel to the sagittal plane 22 (viewing plane of the FIG. 11 ) trapezoidal shape. The other light guide surfaces 94 and 96 are so far apart conically. In the example of FIG. 11 the light guide section 14 is mirror-symmetrical to the meridional plane 24. However, it is also conceivable that the light guide section 14 is arranged offset in the direction perpendicular to the meridional plane, or that the light guide surface 94 with the main emission direction 20 another (acute) angle includes, as the further light guide 96th

In Figur 12 ist eine in Schnitten parallel zur Sagittalebene 22 (Sichtebene der Figur 12) gebogene Ausgestaltung des Lichtleitabschnitts 14 dargestellt. Dabei verlaufen die weiteren Lichtleitflächen 94 und 96 senkrecht auf der Sagittalebene 22, sind jedoch innerhalb Schnitten parallel zur Sagittalebene 22 gekrümmt. Dabei verlaufen die Lichtleitflächen 94 und 96 insbesondere nicht parallel zueinander, sondern haben einen geringfügig abweichenden Verlauf derart, dass sich die Querschnittsfläche des Lichtleitabschnitts 14 wiederum bei Fortschreiten in Lichtabstrahlrichtung stetig vergrößert. Ausgehend von der Darstellung in Figur 11 kann der in Figur 12 gezeigte Lichtleitabschnitt 14 dadurch gewonnen werden, dass anstelle der Meridionalebene 24 als Symmetrieebene für den Lichtleitabschnitt 14 eine in Schnitten mit der Sagittalebene 22 gekrümmt verlaufende Führungsfläche 98 gewählt wird, so dass die Spiegelsymmetrie der weiteren Lichtleitflächen 94 und 96 zu der Führungsfläche 98 nur noch für infinitesimal kleine, senkrecht aufeinander projizierte Flächenstücke der Lichtleitflächen 94 und 96 auf die Führungsfläche 98 gilt. Insofern bildet die Führungsfläche eine neutrale Faser des Lichtleitabschnitts 14.In FIG. 12 is one in sections parallel to the sagittal plane 22 (viewing plane of the FIG. 12 ) curved configuration of the Lichtleitabschnitts 14 shown. The further light guide surfaces 94 and 96 run perpendicular to the sagittal plane 22, but are curved within sections parallel to the sagittal plane 22. In this case, the light guide surfaces 94 and 96 in particular do not run parallel to one another, but have a slightly different course such that the cross-sectional area of the light guide section 14 in turn increases steadily as it progresses in the light emission direction. Starting from the illustration in FIG. 11 can the in FIG. 12 shown Lichtleitabschnitt 14 are obtained in that instead of the meridional plane 24 as a plane of symmetry for the Lichtleitabschnitt 14 a curved in sections with the sagittal plane 22 extending guide surface 98 is selected, so that the mirror symmetry of the other Lichtleitflächen 94 and 96 to the guide surface 98 only for infinitesimal small, perpendicular to each other projected surface pieces of the light guide surfaces 94 and 96 applies to the guide surface 98. In this respect, the guide surface forms a neutral fiber of the Lichtleitabschnitts 14th

Im Beispiel der Figur 12 ist der Lichtleitabschnitt außerdem in Richtung senkrecht zur Meridionalebene 24 versetzt angeordnet.In the example of FIG. 12 the Lichtleitabschnitt is also arranged offset in the direction perpendicular to the Meridionalebene 24.

Die in den Figuren 10 bis 12 dargestellten Ausgestaltungen des Lichtleitabschnitts 14 haben gemeinsam, dass der Lichtleitabschnitt 14 in Schnitten senkrecht zur Hauptabstrahlrichtung 20 (bzw. in Schnitten, welche sowohl senkrecht auf der Meridionalebene 24 als auch auf der Sagittalebene 22 stehen) im Wesentlichen rechteckige Form aufweist. Bei Totalreflexion an den weiteren Lichtleitflächen 94 und 96 erhalten Lichtstrahlen daher keine zusätzliche Richtungskomponente senkrecht zur Sagittalebene 22.The in the FIGS. 10 to 12 illustrated embodiments of the Lichtleitabschnitts 14 have in common that the Lichtleitabschnitt 14 in sections perpendicular to the main emission direction 20 (or in sections, both perpendicular to the Meridionalebene 24 and on the Sagittal plane 22) has substantially rectangular shape. In total reflection at the other light guide surfaces 94 and 96, therefore, light beams receive no additional directional component perpendicular to the sagittal plane 22.

Die in der Figur 12 dargestellte gebogene Ausgestaltung des Lichtleitabschnitts 14 ist vorteilhaft, wenn mehrere Lichtleitabschnitte 14 nebeneinander angeordnet und in einem gemeinsamen Auskoppelabschnitt 64 (Figur 2) oder einem gemeinsamen, einstückig angeformten Sekundäroptikelement 18 (Figur 4) münden sollen.The in the FIG. 12 shown curved configuration of the Lichtleitabschnitts 14 is advantageous if several Lichtleitabschnitte 14 arranged side by side and in a common decoupling portion 64 (FIGS. FIG. 2 ) or a common, integrally formed secondary optical element 18 (FIG. FIG. 4 ) should result.

Bei den in den Figuren 13 und 14 dargestellten Ausgestaltungen für die Lichtleitabschnitte 14 weist die Hauptreflexionsfläche 42 des Lichtleitabschnitts 14 eine Facette 102 zur gezielten Lichtstreuung auf (Figur 13a). Die Facette 102 ist derart ausgebildet, dass ein von der Hauptreflexionsfläche 42 im Bereich der Facette 102 reflektierter Lichtstrahl 104 gezielt in eine von im Umfeld der Facette 102 reflektierten Lichtstrahlen abweichende Richtung abgelenkt wird. Dadurch kann beispielsweise eine Abstrahllichtverteilung 28 der in Figur 13b gezeigten Art realisiert werden. Diese Abstrahllichtverteilung 28 weist eine Hell-Dunkel-Grenze HDG auf, welche einen vertikal unten liegenden Hellbereich 30 begrenzt (in Darstellung auf einem Testschirm in der zu Figur 1 erläuterten Art). Die Facette 102 lenkt einen Anteil des von der Halbleiterlichtquelle 12 ausgestrahlten Lichts gezielt in den dunklen Bereich oberhalb der Hell-Dunkel-Grenze HDG, was zu einem mit vergleichsweise schwacher Intensität ausgeleuchteten "Overhead-Bereich" 106 der Abstrahllichtverteilung 28 führt (vergleiche Figur 13b). Diese kann dazu dienen, Straßenschilder ohne Blendung des Gegenverkehrs auszuleuchten.In the in the Figures 13 and 14 For the light guide sections 14, the main reflection surface 42 of the light guide section 14 has a facet 102 for targeted light scattering (FIG. FIG. 13a ). The facet 102 is designed in such a way that a light beam 104 reflected by the main reflection surface 42 in the region of the facet 102 is deliberately deflected in a direction deviating from light rays reflected in the vicinity of the facet 102. As a result, for example, a light beam distribution 28 of the FIG. 13b be realized type realized. This emission light distribution 28 has a light-dark boundary HDG, which delimits a bright area 30 lying vertically below (shown on a test screen in FIG FIG. 1 explained type). The facet 102 directs a portion of the light emitted by the semiconductor light source 12 in a targeted manner into the dark region above the light-dark boundary HDG, which leads to an "overhead region" 106 of the emission light distribution 28 illuminated with comparatively weak intensity (cf. FIG. 13b ). This can be used to illuminate street signs without dazzling oncoming traffic.

Wie in der Detailansicht der Figur 14 erkennbar, kann die Facette 102 dadurch realisiert werden, dass ein abgegrenzter Bereich der Hauptreflexionsfläche 42 gegenüber dem umgebenden Verlauf der Hauptreflexionsfläche 42 um einen Facettenwinkel α verkippt ausgebildet ist. In der Figur 14 ist der Verlauf der Hauptreflexionsfläche 42' ohne die Facette 102 gestrichelt dargestellt. Der Lichtstrahl 104 wird daher in einen Bereich oberhalb der Hell-Dunkel-Grenze HDG abgelenkt. Die Facette 102 ist vorzugsweise in dem Sekundäroptikelement 18 zugewandten Randabschnitt des Lichtleitabschnitts 14 angeordnet. Insbesondere ist denkbar, den Lichtleitabschnitt 14 im Bereich einer Vorderkante der Hauptreflexionsfläche 42 in der Art der Facette 102 auszugestalten.As in the detail view of the FIG. 14 recognizable, the facet 102 can be realized in that a delimited region of the main reflection surface 42 with respect to the surrounding course of the main reflection surface 42 is tilted by a facet angle α. In the FIG. 14 the course of the main reflection surface 42 'without the facet 102 is shown in dashed lines. The light beam 104 is therefore deflected into a region above the cut-off line HDG. The facet 102 is preferably arranged in the secondary optical element 18 facing edge portion of the Lichtleitabschnitts 14. In particular, it is conceivable to design the light guide section 14 in the region of a front edge of the main reflection surface 42 in the manner of the facet 102.

In der Figur 15 ist eine weitere Ausgestaltung für den Lichtleitabschnitt 14 beschrieben, welche die Konstruktion eines Lichtmoduls 110 als weitere Ausführungsform der Erfindung ermöglicht. Die Figur 15 zeigt eine Schnittdarstellung senkrecht zur Sagittalebene (vgl. Figur 1). Erkennbar ist ein Lichtleitabschnitt 14, welcher sich in der Meridionalebene scheibenartig, flächig erstreckt.In the FIG. 15 a further embodiment for the light guide 14 is described, which allows the construction of a light module 110 as a further embodiment of the invention. The FIG. 15 shows a sectional view perpendicular to the sagittal plane (see. FIG. 1 ). Visible is a Lichtleitabschnitt 14 which extends in the meridional plane like a disk, flat.

Von den vorstehend beschriebenen Ausgestaltungen unterscheidet sich der Lichtleitabschnitt 14 dadurch, dass eine der Hauptreflexionsfläche 42 gegenüberliegende Gegenreflexionsfläche 112 vorgesehen ist. Diese ist in ihrem Verlauf in Schnitten parallel zur Meridionalebene 24 (Darstellungsebene der Figur 15) insbesondere eben oder nur geringfügig gekrümmt ausgebildet. Hinsichtlich der Ausgestaltung der weiteren Seitenflächen des Lichtleitabschnitts 14 wird auf die Erläuterungen zu den Figuren 8 bis 14 verwiesen.Of the above-described embodiments, the light guide section 14 differs in that a counter reflection surface 112 opposed to the main reflection surface 42 is provided. This is in its course in sections parallel to the meridional plane 24 (representation plane of the FIG. 15 ) in particular even or only slightly curved. With regard to the configuration of the other side surfaces of the Lichtleitabschnitts 14 is made to the explanations to the FIGS. 8 to 14 directed.

Die Gegenreflexionsfläche 112 ist der Hauptreflexionsfläche 42 im Strahlengang nachgeordnet. Die Gegenreflexionsfläche 112 hat die Funktion, einen in dem Lichtleitabschnitt 14 geführten Lichtstrahl nach Totalreflexion an der Hauptreflexionsfläche 42 ein weiteres Mal durch Totalreflexion in Schnitten senkrecht zur Sagittalebene umzulenken. Durch Vorgabe der Orientierung der Gegenreflexionsfläche 112 kann daher die Vorzugsrichtung der den Lichtleitabschnitt 14 durch die Lichtauskoppelfläche 40 verlassenden Lichtstrahlen vorgegeben werden. Im dargestellten Beispiel ist die Lichtauskoppelfläche 40 abweichend von den vorstehend beschriebenen Ausführungsformen der Erfindung parallel zur Lichteinkoppelfläche 38 orientiert. Dementsprechend hat das Lichtmodul 110 eine um nahezu 90° gedrehte Hauptabstrahlrichtung 20. Eine solche Konstruktion kann beispielsweise vorteilhaft sein, wenn zum Beispiel aus Platzgründen die Orientierung des Kühlkörpers 36 gegenüber den vorstehend erläuterten Ausführungsformen abgeändert werden muss.The counter-reflection surface 112 is arranged downstream of the main reflection surface 42 in the beam path. The counter-reflection surface 112 has the function of redirecting a light beam guided in the light guide section 14 after total reflection at the main reflection surface 42 once again by total reflection in sections perpendicular to the sagittal plane. By specifying the orientation of the counter-reflection surface 112, therefore, the preferred direction of the light-guiding section 14 leaving the light-outcoupling surface 40 can be predetermined. In the illustrated example, the light output surface 40 is oriented differently from the embodiments of the invention described above parallel to the light input surface 38. Accordingly, the light module 110 has a main emission direction 20 rotated by almost 90 °. Such a construction may be advantageous, for example, if, for reasons of space, for example, the orientation of the heat sink 36 must be modified compared with the embodiments described above.

Die Figur 16 zeigt eine weitere Ausgestaltung für ein als Zylinderlinse 19 ausgebildetes Sekundäroptikelement 18, wie es bei sämtlichen erfindungsgemäßen Lichtmodulen zum Einsatz kommen kann. Die Zylinderlinse 19 weist an ihrer dem Primäroptikelement 16 (insbesondere den Lichtleitabschnitten 14) zugewandten Lichtdurchtrittsfläche 46 walzenartige Streustrukturen 116 auf, welche in der Detailansicht gemäß Figur 16b näher veranschaulicht sind. Im Bereich der walzenartigen Streustrukturen 116 wölbt sich die Lichtdurchtrittsfläche 46 jeweils zylindrisch um eine nicht näher dargestellte Walzenachse, welche vorzugsweise parallel zu der Zylinderachse 48 der Zylinderlinse 19 (vgl. Figur 1) verläuft. Dadurch werden einzelne Lichtstrahlen entgegen der insgesamt konzentrierenden Wirkung in Schnitten parallel zur Sagittalebene gestreut, was zu einer besseren Homogenität der Abstrahllichtverteilung des Lichtmoduls führen kann.The FIG. 16 shows a further embodiment of a designed as a cylindrical lens 19 Sekundäroptikelement 18, as can be used in all light modules according to the invention. The cylindrical lens 19 has roller-like scattering structures 116 on its light passage surface 46 facing the primary optics element 16 (in particular the light-conducting sections 14), which in the detail view according to FIG FIG. 16b are illustrated in more detail. In the area of the roller-type scattering structures 116, the light passage surface 46 bulges in each case cylindrically about a roller axis not shown in detail, which is preferably parallel to the cylinder axis 48 of the cylindrical lens 19 (cf. FIG. 1 ) runs. As a result, individual light beams are counter to the total concentrating effect in Cut scattered parallel to the sagittal plane, which can lead to a better homogeneity of the light beam distribution of the light module.

Figur 17 zeigt eine Ausgestaltung, bei der das Sekundäroptikelement 18 von einem an den Lichtleitabschnitt 14 einstückig angeformten Lichtaustrittsabschnitt mit einer sich zylindrisch wölbenden Zylinderlinsenfläche gebildet wird. FIG. 17 shows an embodiment in which the secondary optic element 18 is formed by a integrally formed on the Lichtleitabschnitt 14 light exit portion with a cylindrically curved cylindrical lens surface.

Bei den erfindungsgemäßen Lichtmodulen ist es grundsätzlich möglich, dass das gemeinsame Sekundäroptikelement 18 von einem Zylinderreflektor 120 gebildet wird. Dies ist in Figur 18 dargestellt. Der Zylinderreflektor 120 ist als Segment eines zylindrischen Hohlspiegels ausgebildet, welcher in der Sagittalebene 22 (Darstellungsebene der Figur 18) einen abschnittsweise parabolischen Verlauf aufweist. Daher kann dem Zylinderreflektor 120 eine senkrecht zur Sagittalebene 22 verlaufende Sekundärbrennlinie 50 zugeordnet werden, welche sich in der Figur 18 senkrecht zur Zeichenebene erstreckt. Zusätzlich zur kollimierenden Wirkung für von der Sekundärbrennlinie 50 ausgehende, divergierende Lichtbüschel innerhalb von Schnitten parallel zur Sagittalebene lenkt der Zylinderreflektor die die Lichtleitabschnitte 14 verlassenden Lichtstrahlen um. Daher kann durch geeignete Orientierung des Zylinderreflektors 120 die Hauptabstrahlrichtung 20 des Lichtmoduls vorgegeben werden.In the case of the light modules according to the invention, it is fundamentally possible that the common secondary optical element 18 is formed by a cylinder reflector 120. This is in FIG. 18 shown. The cylindrical reflector 120 is formed as a segment of a cylindrical concave mirror, which in the sagittal plane 22 (plane of the FIG. 18 ) has a partially parabolic course. Therefore, the cylinder reflector 120 can be associated with a perpendicular to the sagittal plane 22 extending secondary focal line 50, which in the FIG. 18 extends perpendicular to the plane of the drawing. In addition to the collimating effect for diverging tufts of light originating from the secondary focal line 50 within sections parallel to the sagittal plane, the cylindrical reflector deflects the light rays leaving the light guide sections 14. Therefore, by suitable orientation of the cylindrical reflector 120, the main emission direction 20 of the light module can be predetermined.

Figur 19 zeigt eine weitere Ausgestaltung für die Lichtleitabschnitte 14, welche ebenfalls bei sämtlichen erfindungsgemäßen Lichtmodulen Anwendung finden kann. Die Lichtauskoppelfläche 40 eines Lichtleitabschnitts 14 kann walzenartige Streustrukturen 124 aufweisen, welche in der Detailansicht der Figur 19b für die Anordnung gemäß Figur 19a erkennbar sind. Im Bereich einer Streustruktur 124 weist die Lichtauskoppelfläche 40 in Schnitten parallel zur Sagittalebene 22 (Darstellungsebene der Figur 19) einen konvex gekrümmten, insbesondere zylindrischen oder parabolischen Verlauf auf. Insofern krümmt sich die Lichtauskoppelfläche 40 im Bereich einer Streustruktur 124 jeweils um eine nicht näher dargestellte Walzenachse, welche senkrecht zur Sagittalebene 22 orientiert ist. Dies führt zu einer Streuung von Lichtstrahlen in Schnitten parallel zur Sagittalebene 22 und damit zu einer Homogenisierung der Abstrahllichtverteilung. Im Beispiel der Figur 19 weist der Lichtleitabschnitt 14 sich senkrecht zur Sagittalebene 22 erstreckende weitere Lichtleitflächen 94 und 96 auf, welche in Richtung der Hauptabstrahlrichtung 20 auseinanderlaufen. Dies trägt zu einer Kollimierung des in dem Lichtleitabschnitt 14 geführten Lichts in Schnitten parallel zur Sagittalebene 22 bei. FIG. 19 shows a further embodiment of the Lichtleitabschnitte 14, which can also be found in all light modules according to the invention application. The light outcoupling surface 40 of a light-conducting section 14 can have roller-type scattering structures 124, which in the detail view of FIG FIG. 19b for the arrangement according to figure 19a are recognizable. In the region of a scattering structure 124, the light outcoupling surface 40 has sections parallel to the sagittal plane 22 (plane of representation of FIG FIG. 19 ) has a convexly curved, in particular cylindrical or parabolic course. In this respect, the light outcoupling surface 40 curves in the region of a scattering structure 124 each about a roller axis, not shown, which is oriented perpendicular to the sagittal plane 22. This leads to a scattering of light rays in sections parallel to the sagittal plane 22 and thus to a homogenization of the emission light distribution. In the example of FIG. 19 the light guide section 14 has further light guide surfaces 94 and 96 extending perpendicular to the sagittal plane 22, which diverges in the direction of the main emission direction 20. This contributes to a collimation of the light guided in the light guide section 14 in sections parallel to the sagittal plane 22.

Claims (8)

  1. A light module (60, 70, 110) for a lighting system of a motor vehicle, comprising: a plurality of semiconductor light sources (12, 62, 62a, 62b) for emitting light; a primary lens element (16) for concentrating the light emitted from the semiconductor light sources (12, 62, 62a, 62b) in sections perpendicular to a sagittal plane (22) of the light module (60, 70, 110), wherein the primary lens element (16) includes a plurality of disk-like light conducting sections (14, 14a, 14b) extending in a plane perpendicular to the sagittal plane (22), wherein each light conducting section (14, 14a, 14b) includes a light coupling surface (38) and a light decoupling surface (40), and is designed to conduct light by internal total reflection, from the light coupling surface (38) to the light decoupling surface (40), wherein each light conducting section (14, 14a, 14b) is allocated to a semiconductor light source (12, 62, 62a, 62b) such that light from the semiconductor light source (12, 62, 62a, 62b) can be coupled in through the respective light coupling surface (38) into the light conducting section (14, 14a, 14b), wherein each light conducting section (14, 14a, 14b) includes a convex curved main reflection surface (42), such that a primary focal line (44) allocated in each case to the light conducting section (14, 14a, 14b) is defined, wherein the primary focal line (44) extends in, or parallel to, the sagittal plane (22), characterized in that a common secondary lens element (18, 19, 120) is provided downstream of the primary lens element (16) in the beam path, which secondary lens element is configured in such a way that the light passing through the light decoupling surfaces (40) can be concentrated in sections parallel to the sagittal plane (22),
    wherein the secondary lens element (18, 19, 120) is configured to define a secondary focal line (50) that runs perpendicular to the sagittal plane (22),
    and wherein the light decoupling surfaces (40, 66) lie between the secondary focal line (50) and the secondary lens element (18, 19, 120).
  2. The light module (60) according to claim 1, wherein the light conducting sections extend running adjacently to one another, and open into a shared decoupling section (64) of the primary lens element (16), on which the light decoupling surfaces (66, 40) are disposed.
  3. The light module according to any of the preceding claims, wherein the main reflection surface (42) includes a facet (102) for light scattering.
  4. The light module according to any of the preceding claims, wherein each semiconductor light source (12, 62) includes a in particular flat light emitting surface (80) bordered by at least one, in particular straight, boundary edge (82), wherein the boundary edge (82) runs on the primary focal line (44) of the light conducting section allocated thereto, or the primary focal line (44) of the allocated light conducting section (14, 14a, 14b) runs through the light emitting surface (80).
  5. The light module according the preceding claim, wherein the light coupling surface (38) is flat and is tilted in relation to the light emitting surface (80) such that a spacing gap (88) is formed, having a size that varies over the course of the light emitting surface (80).
  6. The light module (60, 70) according to any of the preceding claims, wherein the light decoupling surfaces (40) extend perpendicular to the sagittal plane (22) and perpendicular to the main beam direction (20) of the light module (60, 70).
  7. The light module (60, 70, 110) according to any of the preceding claims, wherein the secondary lens element (18) is a cylindrical lens (19) for concentrating light in sections in or parallel to the sagittal plane (22).
  8. The light module (70) according to the preceding claim, wherein the cylindrical lens (19) is a single unit and includes the light conducting sections (14, 14a, 14b).
EP13184394.8A 2012-10-12 2013-09-13 Light module Active EP2719940B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012218684.0A DE102012218684B9 (en) 2012-10-12 2012-10-12 light module

Publications (3)

Publication Number Publication Date
EP2719940A2 EP2719940A2 (en) 2014-04-16
EP2719940A3 EP2719940A3 (en) 2016-04-20
EP2719940B1 true EP2719940B1 (en) 2017-06-14

Family

ID=49212606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13184394.8A Active EP2719940B1 (en) 2012-10-12 2013-09-13 Light module

Country Status (4)

Country Link
US (1) US9599301B2 (en)
EP (1) EP2719940B1 (en)
CN (1) CN103727474B (en)
DE (1) DE102012218684B9 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013214697B4 (en) * 2013-07-26 2022-07-14 tooz technologies GmbH Display device with an optical element comprising a Fresnel structure and method for manufacturing such an optical element
FR3032514B1 (en) * 2015-02-05 2018-08-10 Valeo Vision LUMINOUS MODULE OF A VEHICLE COMPATIBLE TO LEFT TRAFFIC AND RIGHT TRAFFIC
FR3036162B1 (en) * 2015-05-13 2017-06-16 Valeo Vision LIGHTING MODULE BIFUNCTION CODE - ROAD FOR MOTOR VEHICLE
FR3039629B1 (en) 2015-07-28 2020-08-14 Valeo Vision LIGHTING DEVICE FOR AUTOMOTIVE VEHICLE PROJECTOR
FR3039883B1 (en) 2015-08-06 2020-10-02 Valeo Vision LUMINOUS MODULE IN TRANSPARENT MATERIAL WITH TWO SIDES OF REFLECTION
FR3042845B1 (en) 2015-10-23 2019-11-29 Valeo Vision LIGHT DEVICE WITH OPTICAL GUIDES
FR3042846B1 (en) * 2015-10-23 2017-12-01 Valeo Vision LIGHT DEVICE WITH OPTICAL GUIDES
WO2017122629A1 (en) * 2016-01-13 2017-07-20 三菱電機株式会社 Headlight module and headlight device
DE102016109132A1 (en) * 2016-05-18 2017-11-23 Hella Kgaa Hueck & Co. Headlight, in particular headlight of a motor vehicle
EP3527876A1 (en) * 2018-02-19 2019-08-21 ZKW Group GmbH Motor vehicle headlamp with light guides arranged in matrix form
DE102018206709A1 (en) * 2018-05-02 2019-11-07 Osram Gmbh LIGHTING SYSTEM AND HEADLIGHTS
DE102018127689A1 (en) * 2018-11-06 2020-05-07 HELLA GmbH & Co. KGaA Imaging unit and headlights
DE102019106934A1 (en) * 2019-03-19 2020-09-24 Automotive Lighting Reutlingen Gmbh Light module for a lighting device of a motor vehicle

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824284B2 (en) * 2002-06-25 2004-11-30 Visteon Global Technologies, Inc. Edge-lit optical element having a manifold and lamp assembly utilizing such element
DE102004032797B4 (en) * 2004-07-07 2012-12-27 Automotive Lighting Reutlingen Gmbh Headlight of a motor vehicle with adaptive light distribution
DE102005017528A1 (en) * 2004-08-27 2006-03-09 Osram Opto Semiconductors Gmbh Illuminant with predetermined emission characteristic and primary optic element for a light source
US7618171B2 (en) 2004-10-21 2009-11-17 Osram Sylvania Inc. Light emitting diode module for automotive headlamp
EP1815287A1 (en) * 2004-11-18 2007-08-08 Koninklijke Philips Electronics N.V. Illumination system and vehicular headlamp
KR100619070B1 (en) * 2005-03-08 2006-08-31 삼성전자주식회사 Illuminating unit and projection type image display apparatus employing the same
DE102005019093B4 (en) * 2005-03-29 2007-02-08 Fer Fahrzeugelektrik Gmbh Vehicle lamp with a multi-membered light guide
DE102005054955A1 (en) * 2005-08-31 2007-04-26 Osram Opto Semiconductors Gmbh Light-emitting module, in particular for use in a projection optical device and optical projection device
JP4937649B2 (en) * 2006-06-28 2012-05-23 株式会社小糸製作所 Vehicle lighting
DE102006044640A1 (en) 2006-09-19 2008-03-27 Schefenacker Vision Systems Germany Gmbh Lighting unit for high and low beam generation
DE102006044641A1 (en) * 2006-09-19 2008-03-27 Schefenacker Vision Systems Germany Gmbh Light unit with LED, light guide and secondary lens
JP2009026462A (en) * 2007-07-17 2009-02-05 Toyoda Gosei Co Ltd Lighting fixture for vehicle
FR2921999B1 (en) 2007-10-04 2011-05-06 Valeo Vision LIGHTING OR SIGNALING DEVICE FOR MOTOR VEHICLE.
DE102009008631B4 (en) * 2009-02-12 2016-11-03 Automotive Lighting Reutlingen Gmbh Projection module for a motor vehicle headlight
JP5445923B2 (en) * 2009-09-04 2014-03-19 スタンレー電気株式会社 Vehicle lighting
JP2011081967A (en) * 2009-10-05 2011-04-21 Koito Mfg Co Ltd Vehicle headlamp
DE102010041096A1 (en) * 2010-09-21 2012-03-22 Osram Ag lighting device
CN103238024B (en) * 2010-12-03 2016-03-23 博士光学欧洲股份公司 Front lamp of vehicle
AT510931B1 (en) * 2010-12-22 2013-09-15 Zizala Lichtsysteme Gmbh VEHICLE HEADLIGHTS WITH LED LIGHT MODULE
DE102011077636A1 (en) * 2011-04-27 2011-11-03 Automotive Lighting Reutlingen Gmbh Light module for head lamp system of motor vehicle i.e. motor car, has sub modules separately controlled to generate set of strip-shaped segments of spot distribution, where strip-shaped segments are complement to spot distribution
JP2013026008A (en) * 2011-07-20 2013-02-04 Koito Mfg Co Ltd Vehicular lamp

Also Published As

Publication number Publication date
CN103727474B (en) 2017-09-12
EP2719940A3 (en) 2016-04-20
EP2719940A2 (en) 2014-04-16
CN103727474A (en) 2014-04-16
DE102012218684B4 (en) 2016-03-31
DE102012218684B9 (en) 2016-05-25
DE102012218684A1 (en) 2014-04-17
US9599301B2 (en) 2017-03-21
US20140104864A1 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
EP2719940B1 (en) Light module
DE102010056313C5 (en) Lighting device of a motor vehicle
EP2587125B1 (en) Headlamp projection module for a motor vehicle
EP2880476B1 (en) Light guiding element and light module
DE102011018508C5 (en) Optical fiber element arrangement and motor vehicle lighting device with such a light guide element arrangement
WO2017198516A1 (en) Headlight, in particular headlight a motor vehicle
EP2607774B1 (en) Motor vehicle lighting device with a long and flat luminescent area
DE102011076621B4 (en) Lighting device for a motor vehicle
EP2799761A2 (en) Light module for a motor vehicle headlamp
DE10231326A1 (en) Light unit for automobile e.g. automobile headlamp, has spaced light source elements associated with light conduction elements positioned behind light disc
DE102008045032A1 (en) Vehicle lamp unit
DE102007040760A1 (en) Projection module for vehicle headlight, has secondary optical arrangement, which is formed as one-piece or multi-part complex lens and has multiple lens segments
DE202015010030U1 (en) Light module for lighting and/or signalling a motor vehicle
DE102011085314B3 (en) Light module for illumination device e.g. headlight of motor car, has primary optics having one lens element that is formed by translation of ellipse portion and light exit surface of another lens element in sectional plane
EP2523022A1 (en) Lighting module of a motor vehicle headlamp for creating a variable light distribution and motor vehicle headlamp with such a lighting module
DE102014205994A1 (en) Light module with semiconductor light source and attachment optics and motor vehicle headlights with such a light module
EP2789901A2 (en) Light module of a motor vehicle lighting device
DE102012220507A1 (en) Light module for a headlight of a motor vehicle
DE102017115899B4 (en) Motor vehicle light and motor vehicle headlight with such a light
DE102012214138A1 (en) light module
EP2500630A2 (en) Transparent lens of a motor vehicle lighting device
WO2011012727A1 (en) Headlight in a motor vehicle having a semiconductor light source
DE102012215124B4 (en) Lighting device with multiple light sources and light guide bodies and a reflector
EP3412963B1 (en) Transparent component arrangement of a light module and light module comprising such a transparent component arrangement
DE102015207960A1 (en) Plate-shaped light guide element for use in a lighting device of a motor vehicle and lighting device with such a light guide element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/10 20060101AFI20160314BHEP

17P Request for examination filed

Effective date: 20161006

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 901336

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013007481

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170614

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170914

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013007481

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0043000000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170914

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171014

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013007481

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20180315

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170913

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170914

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230823

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230822

Year of fee payment: 11

Ref country code: DE

Payment date: 20230822

Year of fee payment: 11