EP2642317A1 - Device for receiving radio-navigation signals with multiple antennas - Google Patents

Device for receiving radio-navigation signals with multiple antennas Download PDF

Info

Publication number
EP2642317A1
EP2642317A1 EP13160297.1A EP13160297A EP2642317A1 EP 2642317 A1 EP2642317 A1 EP 2642317A1 EP 13160297 A EP13160297 A EP 13160297A EP 2642317 A1 EP2642317 A1 EP 2642317A1
Authority
EP
European Patent Office
Prior art keywords
loop
carrier
signal
antenna
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13160297.1A
Other languages
German (de)
French (fr)
Other versions
EP2642317B1 (en
Inventor
Nicolas Martin
Vincent Chopard
David Depraz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2642317A1 publication Critical patent/EP2642317A1/en
Application granted granted Critical
Publication of EP2642317B1 publication Critical patent/EP2642317B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/29Acquisition or tracking or demodulation of signals transmitted by the system carrier including Doppler, related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain

Definitions

  • the present invention relates to a device for receiving multi-antenna radio navigation signals.
  • GNSS Global Navigation Satellite System
  • GPS Global Navigation Satellite System
  • GALILEO Global Navigation Satellite System
  • the invention relates to receivers of radio navigation signals comprising several receiving antennas.
  • a GNSS receiver can be used on any type of vehicle to determine information on its position, its speed and generally to provide assistance with movement or navigation.
  • such a receiver can be used on a space launcher.
  • the use of a single-antenna receiver in such a case of application is problematic because the vertical position of the fuselage of the vehicle generates a masking of part of the satellites in view by the body of the launcher for the antennas. The signals transmitted by these satellites will not be received or received with high attenuation by the receiver. More generally, the positioning of an antenna on the body of a large-scale carrier poses the problem of masking all or part of the radio-navigation signals emitted by the satellites in view of the carrier by the wearer himself. .
  • the invention solves the aforementioned problem by providing a solution that improves performance over known receivers.
  • the invention consists in using a plurality of antennas disposed on the circumference of the fuselage of the vehicle and in demodulating the signals received by each antenna separately.
  • the diversity of the demodulation channels is exploited to compensate for the loss of signal on one of the channels when the corresponding antenna undergoes a loss of signal due to the masking of the satellite by the carrier.
  • the receiving antennas are positioned on the circumference of a substantially cylindrical carrier.
  • the loss of signal on an antenna due to the masking of the signal by the wearer's body is anticipated as a function of the respective positions of the carrier, the antennas and the satellites.
  • the device according to the invention further comprises, for each reception chain, a leverage corrector which consists in compensating each measurement of the moment of emission by the satellite of the signal received by the difference.
  • a leverage corrector which consists in compensating each measurement of the moment of emission by the satellite of the signal received by the difference.
  • each reception chain further comprises, for the code loop and the carrier loop, a corrector of the lever arm in speed which consists in compensating the outputs of the loop correctors by the derivative. time of optical path difference ⁇ L BL .
  • the optical path difference ⁇ L BL is determined by projecting the lever arm r on the line of sight between the center of symmetry O of the antenna array and the satellite.
  • the coordinates of the lever arm r are determined, in a fixed spatial reference with respect to the earth, from a measurement of the attitude of the wearer.
  • the figure 1a Diagrammatically, seen from above and in cross section, a carrier 101 of substantially cylindrical shape with two antennas 102, 103 receptors positioned on the circumference of the body of the wearer, for example equidistributions.
  • the axis 104 represents the line of sight between the GNSS receiver according to the invention, positioned on the carrier 101, and a radio navigation satellite.
  • the axis 104 corresponds to the direction of reception of the radio-navigation signal emitted by a satellite. According to the orientation of the line axis 104, the signal received by an antenna 102, 103 may be partially or completely masked by the body of the carrier 101.
  • the figure 1a represents an embodiment of the receiver according to the invention comprising two antennas but any number of antennas, greater than or equal to two, is also possible.
  • the antennas are preferably arranged on the circumference of the wearer equidistributively. More generally, the antennas are arranged on the wearer's body so that at each moment, at least one satellite must be in view of at least one antenna without all the signals received being masked by the body of the wearer.
  • the figure 1b illustrates a case of masking of a radionavigation signal 111 emitted by a satellite 110.
  • the signal 111 is correctly received by the antenna 103 arranged in view of the satellite but is not received by the second antenna 102 because masked by the carrier 101.
  • the figure 2 illustrates in a diagram the functional architecture of a radio-navigation signal receiver according to the invention comprising two antennas (not shown).
  • Such a receiver has several reception channels CS 1 , CS i ,..., CS N for each satellite channel, N being equal to the number of radio navigation satellites in view of the receiver.
  • a reception channel 200, 300 is applied for each signal S 1 , S 2 received by each of the two antennas.
  • the received signal S 1 , S 2 is demodulated in phase by multiplication 201, 301 with a local carrier 211, 311 and is despread by correlation 202, 302 with a local code 212, 312.
  • Local carrier 211,311 and local code 212,312 are generated locally.
  • the demodulated and despread signal is then integrated by coherent integration means 203, 303.
  • the set consisting of the code multiplier 201, 301 of the code multiplier 202, 302 and integration means 203, 303 performs a phase and code correlation of the signal. received with the local carrier and the local code.
  • the receiver uses in parallel two tracking devices which are a code loop and a carrier loop.
  • the code loop is used to position a local code in phase with the code contained in the satellite signal S 1 , S 2 received in order to perform a correlation giving the maximum energy.
  • the carrier loop serves to slave the frequency or phase of the local carrier with respectively the frequency or the phase of the received carrier, in order to maximize the result of the correlation.
  • the presence of a signal at the integration output 203, 303 with a large amplitude, that is to say much greater than what would give the ambient noise in the absence of received signal means that the local code and the carrier local are synchronized to the received signal, which makes it possible to measure at each instant the transmission time and the Doppler frequency of the received signal, via the phase of the local code and the speed of the phase of the carrier local.
  • the code loop includes a code discriminator 204, 304 which provides, from the integrated correlated signal, time offset information between the received signal code and the local code, a loop corrector filter 214, 314 which produces, from the output of the code discriminator 204, 304 a speed correction and a digital control operator 224, 324, also called NCO, which transforms the speed control into a time control which drives the generation of the local code 212 , 312. From the time-out command provided by the digital control operator 224, 324, an estimated 205, 305 of the moment of emission of the signal by the satellite is produced.
  • the carrier loop serves to slave the phase of the local carrier to the phase of the received carrier modulo 2 ⁇ close in order to improve the accuracy of the code measurement through a smoothing of the code by the phase of the carrier.
  • a carrier loop also called in English terminology PLL, meaning Phase Lock Loop or phase locked loop, uses the point correlation path and enslaves the phase of the carrier on the phase of the carrier received by a feedback on the local phase.
  • the carrier loop comprises a phase discriminator 206, 306 which measures the difference between the local phase and the received phase, a loop corrector 216, 316 which filters the output of the phase discriminator 206, 306 and produces a speed correction. , a carrier NCO digital control operator 226, 326 which transforms the speed control into a local carrier phase which drives the carrier generator 211,311.
  • the carrier loop can also be implemented by a frequency-locked loop.
  • each single-antenna demodulation channel further comprises a correction of the lever arm 207, 307 between the center of symmetry O of the antenna array and the phase center of the antenna.
  • the coordinates of the lever arm r are calculated in a fixed spatial reference with respect to the earth, such as the known reference ECEF ("Earth Centred Earth Fixed").
  • the coordinates of the antennas in an ECEF frame are obtained by means of a marker change matrix provided either by a system for determining the attitude of the wearer external to the invention or by an attitude determination processing performed directly from the measurements of the signals received on the different antennas.
  • the lever arm r obtained is then projected onto the view axis 104 to obtain the optical path difference ⁇ L BL between the center of symmetry O of the antenna array and the phase center of the antenna.
  • the correction of the lever arm 207, 307 consists in compensating the time measurement 205, 305 supplied by each reception channel 200, 300 by this optical path difference ⁇ L BL .
  • the correction of the lever arm on the measurements from each antenna makes it possible to make them comparable by correcting the time shift induced by the distance between each antenna.
  • the time estimates 205, 305 are then transmitted to a decision module 400 which selects the estimate T 1 , from those available, which corresponds to the best signal-to-noise ratio of the received signal or to the best antenna gain in reception.
  • the code loop and the carrier loop each further comprise a speed lever lever corrector 234, 236, 334, 336.
  • the correction of the lever arm in speed consists of calculating the derivative of the optical path difference ⁇ L BL with respect to time and compensating for the outputs of the code loop correctors 214, 314 and the carrier loop correctors 216, 316 by this derivative.
  • each demodulation channel is implemented independently and provides an independent measurement 205, 305 of the instant of emission of the signal by the satellite. A choice is then made by a decision module 400.
  • the invention consists in switching the reception channel affected by an open-loop signal loss and in controlling the code and carrier NCOs by the code and carrier speed corrections provided by the reception channel. another antenna.
  • the signal is received again by the antenna, it returns closed loop and thus the signal is hooked directly without inducing discontinuities in the operation of the loops.
  • the time measurement 205, 305 provided by the reception channel operating in open loop is excluded from the choice made by the decision module 400.
  • connectors 208, 308 which allow to connect the outputs of the loop correctors of a chain to the inputs of the leverage correctors in speed of another chain or directly to the inputs of the NCO code and carrier when the lever arms do not are not corrected.
  • the coordinates of the carrier in terrestrial reference as well as the positions of the satellites are supposed known, so it is possible to anticipate a loss of signal coming from a satellite on a given antenna if the axis with associated sight is masked by the carrier and thus to determine in advance the switching time of a reception channel open loop or closed loop.
  • the invention extends to receivers having more than two antennas.

Abstract

The device has receiving channels (200, 300) comprising interconnection units (208, 308) for interconnecting inputs of a digital checking operator (226) of a loop. Each receiving channel operates to open the loop when the signal transmitted by a satellite is not received by an antenna. A selecting unit (400) selects a measurement time (T1) for delivering the signal by the receiving channel operative in a closed state of the loop, which presents the signal to noise ratio resulted from a highest reception antenna gain.

Description

La présente invention a pour objet un dispositif de réception de signaux de radio-navigation multi-antennes.The present invention relates to a device for receiving multi-antenna radio navigation signals.

Le domaine de l'invention est celui des systèmes de radio-navigation par satellite connus sous l'acronyme systèmes GNSS (« Global Navigation Satellite System ») tels que les systèmes GPS ou GALILEO.The field of the invention is that of satellite radio navigation systems known by the acronym GNSS ("Global Navigation Satellite System") systems such as GPS or GALILEO systems.

Plus précisément, l'invention concerne les récepteurs de signaux de radio-navigation comportant plusieurs antennes réceptrices.More specifically, the invention relates to receivers of radio navigation signals comprising several receiving antennas.

Un récepteur GNSS peut être utilisé sur tout type de véhicule pour déterminer des informations sur sa position, sa vitesse et de façon générale fournir une aide au déplacement ou à la navigation.A GNSS receiver can be used on any type of vehicle to determine information on its position, its speed and generally to provide assistance with movement or navigation.

En particulier, un tel récepteur peut être utilisé sur un lanceur spatial. L'utilisation d'un récepteur mono-antenne dans un tel cas d'application pose problème car la position verticale du fuselage de l'engin engendre un masquage d'une partie des satellites en vue par le corps du lanceur pour les antennes. Les signaux transmis par ces satellites ne seront alors pas reçus ou reçus avec une forte atténuation par le récepteur. De façon plus générale, le positionnement d'une antenne sur le corps d'un porteur de grande envergure pose le problème du masquage de tout ou partie des signaux de radio-navigation émis par les satellites en vue du porteur par le porteur lui-même.In particular, such a receiver can be used on a space launcher. The use of a single-antenna receiver in such a case of application is problematic because the vertical position of the fuselage of the vehicle generates a masking of part of the satellites in view by the body of the launcher for the antennas. The signals transmitted by these satellites will not be received or received with high attenuation by the receiver. More generally, the positioning of an antenna on the body of a large-scale carrier poses the problem of masking all or part of the radio-navigation signals emitted by the satellites in view of the carrier by the wearer himself. .

Une solution permettant de résoudre le problème du masquage des signaux consiste à utiliser une antenne annulaire disposée sur la circonférence du fuselage du porteur. De cette façon, le signal émis par un satellite est en permanence reçu par au moins une partie de l'antenne. Cependant, ce type d'antennes ne permet pas d'atteindre des performances satisfaisantes car elle produit une seule sortie de signal qui est construite de façon non optimale et qui engendre des pertes importantes en rapport signal à bruit.One solution for solving the problem of signal masking is to use an annular antenna disposed on the circumference of the wearer's fuselage. In this way, the signal transmitted by a satellite is permanently received by at least a part of the antenna. However, this type of antenna does not achieve satisfactory performance because it produces a single signal output that is constructed of non-optimal way and which generates significant losses in signal-to-noise ratio.

L'invention permet de résoudre le problème précité en proposant une solution qui améliore les performances par rapport aux récepteurs connus. L'invention consiste à utiliser une pluralité d'antennes disposées sur la circonférence du fuselage de l'engin et à démoduler les signaux reçus par chaque antenne séparément. La diversité des chaînes de démodulation est exploitée pour compenser la perte de signal sur une des chaînes lorsque l'antenne correspondante subit une perte de signal due au masquage du satellite par le porteur.The invention solves the aforementioned problem by providing a solution that improves performance over known receivers. The invention consists in using a plurality of antennas disposed on the circumference of the fuselage of the vehicle and in demodulating the signals received by each antenna separately. The diversity of the demodulation channels is exploited to compensate for the loss of signal on one of the channels when the corresponding antenna undergoes a loss of signal due to the masking of the satellite by the carrier.

L'invention a pour objet un dispositif de réception de signaux de radio-navigation par satellite comprenant une pluralité d'antennes réceptrices formant un réseau antennaire, pour chaque antenne et pour chaque satellite en vue dudit dispositif, une chaîne de réception comprenant des moyens de démodulation des signaux reçus, une boucle de code et une boucle de porteuse, lesdits moyens de démodulation comprenant des moyens de multiplication en phase avec une porteuse locale, des moyens de corrélation en temps avec un code local et des moyens d'intégration du signal corrélé en phase et en temps, la boucle de porteuse comprenant un discriminateur de phase, un correcteur de boucle de porteuse et un opérateur de contrôle numérique NCO apte à délivrer une phase de porteuse locale, la boucle de code comprenant un discriminateur de code, un correcteur de boucle et un opérateur de contrôle numérique NCO apte à délivrer une mesure de l'instant d'émission par le satellite du signal reçu,caractérisé en ce que :

  • chaque chaîne de réception dudit dispositif comporte en outre des moyens d'interconnexion adaptés à basculer simultanément les entrées de l'opérateur de contrôle numérique NCO de la boucle de porteuse et de l'opérateur de contrôle numérique NCO de la boucle de code d'une première chaîne de réception vers les sorties du correcteur de boucle de porteuse et du correcteur de boucle de code d'une seconde chaîne de réception lorsque le signal transmis par le satellite n'est plus reçu par l'antenne de la première chaîne de réception de sorte que la première chaîne de réception opère en boucle ouverte,
  • ledit dispositif comporte en outre des moyens de sélection de la mesure, parmi celles délivrées par chaque chaîne de réception opérant en boucle fermée, qui présente le rapport signal à bruit le plus élevé ou qui est issue de la chaîne de traitement qui présente le gain d'antenne en réception le plus élevé.
The invention relates to a device for receiving satellite radio navigation signals comprising a plurality of antenna antennas forming an antenna array, for each antenna and for each satellite in view of said device, a reception channel comprising demodulation of the received signals, a code loop and a carrier loop, said demodulation means comprising means for multiplication in phase with a local carrier, means for correlation in time with a local code and means for integrating the correlated signal in phase and in time, the carrier loop comprising a phase discriminator, a carrier loop corrector and an NCO digital control operator capable of delivering a local carrier phase, the code loop comprising a code discriminator, a corrector loop and an NCO digital control operator capable of delivering a measurement of the instant of emission by the satellite of u received signal, characterized in that :
  • each receive channel of said device further comprises interconnection means adapted to simultaneously switch the inputs of the NCO digital control operator of the carrier loop and the NCO digital control operator of the code loop of a first reception channel to the outputs of the loop corrector carrier and the code loop corrector of a second reception channel when the signal transmitted by the satellite is no longer received by the antenna of the first reception channel so that the first reception channel operates in an open loop,
  • said device further comprises means for selecting the measurement, among those delivered by each reception chain operating in a closed loop, which has the highest signal-to-noise ratio or which comes from the processing chain which has the gain of receiving antenna.

Selon un aspect particulier de l'invention, les antennes réceptrices sont positionnées sur la circonférence d'un porteur de forme sensiblement cylindrique.According to a particular aspect of the invention, the receiving antennas are positioned on the circumference of a substantially cylindrical carrier.

Selon un autre aspect particulier de l'invention, la perte de signal sur une antenne due au masquage du signal par le corps du porteur est anticipée en fonction des positions respectives du porteur, des antennes et des satellites.According to another particular aspect of the invention, the loss of signal on an antenna due to the masking of the signal by the wearer's body is anticipated as a function of the respective positions of the carrier, the antennas and the satellites.

Dans une variante de réalisation, le dispositif selon l'invention comporte en outre, pour chaque chaîne de réception, un correcteur du bras de levier qui consiste à compenser chaque mesure de l'instant d'émission par le satellite du signal reçu par la différence de chemin optique ΔLBL entre le centre de phase de l'antenne et le centre de symétrie O du réseau antennaire.In an alternative embodiment, the device according to the invention further comprises, for each reception chain, a leverage corrector which consists in compensating each measurement of the moment of emission by the satellite of the signal received by the difference. optical path ΔL BL between the phase center of the antenna and the center of symmetry O of the antenna array.

Dans une variante de réalisation de l'invention, chaque chaîne de réception comporte en outre, pour la boucle de code et la boucle de porteuse, un correcteur du bras de levier en vitesse qui consiste à compenser les sorties des correcteurs de boucle par la dérivée temporelle de la différence de chemin optique ΔLBL.In an alternative embodiment of the invention, each reception chain further comprises, for the code loop and the carrier loop, a corrector of the lever arm in speed which consists in compensating the outputs of the loop correctors by the derivative. time of optical path difference ΔL BL .

Dans une variante de réalisation de l'invention, la différence de chemin optique ΔLBL est déterminée en projetant le bras de levier r sur l'axe à vue entre le centre de symétrie O du réseau antennaire et le satellite.In an alternative embodiment of the invention, the optical path difference ΔL BL is determined by projecting the lever arm r on the line of sight between the center of symmetry O of the antenna array and the satellite.

Dans une variante de réalisation de l'invention, les coordonnées du bras de levier r sont déterminées, dans un repère spatial fixe par rapport à la terre, à partir d'une mesure de l'attitude du porteur.In an alternative embodiment of the invention, the coordinates of the lever arm r are determined, in a fixed spatial reference with respect to the earth, from a measurement of the attitude of the wearer.

D'autres caractéristiques et avantages de la présente invention apparaîtront mieux à la lecture de la description qui suit en relation avec les dessins annexés qui représentent:

  • La figure 1a, un schéma en vue de dessus et en coupe transversale de la disposition des antennes d'un récepteur selon l'invention sur le corps d'un porteur de type lanceur spatial, dans un mode de réalisation comprenant deux antennes uniquement,
  • La figure 1b, une illustration du problème du masquage d'un satellite par le corps du porteur,
  • La figure 2, un schéma de l'architecture fonctionnelle d'un récepteur selon l'invention comprenant deux antennes.
Other features and advantages of the present invention will appear better on reading the description which follows in relation to the appended drawings which represent:
  • The figure 1a a diagram in top view and in cross section of the arrangement of the antennas of a receiver according to the invention on the body of a carrier of the space launcher type, in an embodiment comprising only two antennas,
  • The figure 1b , an illustration of the problem of the masking of a satellite by the body of the wearer,
  • The figure 2 , a diagram of the functional architecture of a receiver according to the invention comprising two antennas.

La figure 1a, schématise, en vue de dessus et en coupe transversale, un porteur 101 de forme sensiblement cylindrique avec deux antennes 102, 103 réceptrices positionnées sur la circonférence du corps du porteur, par exemple de façon équiréparties. L'axe 104 représente l'axe à vue entre le récepteur GNSS selon l'invention, positionné sur le porteur 101, et un satellite de radio-navigation. L'axe 104 correspond à la direction de réception du signal de radio-navigation émis par un satellite. Selon l'orientation de l'axe à vue 104, le signal reçu par une antenne 102, 103 peut être partiellement ou totalement masqué par le corps du porteur 101.The figure 1a , Diagrammatically, seen from above and in cross section, a carrier 101 of substantially cylindrical shape with two antennas 102, 103 receptors positioned on the circumference of the body of the wearer, for example equidistributions. The axis 104 represents the line of sight between the GNSS receiver according to the invention, positioned on the carrier 101, and a radio navigation satellite. The axis 104 corresponds to the direction of reception of the radio-navigation signal emitted by a satellite. According to the orientation of the line axis 104, the signal received by an antenna 102, 103 may be partially or completely masked by the body of the carrier 101.

La figure 1a représente un exemple de réalisation du récepteur selon l'invention comprenant deux antennes mais un nombre d'antennes quelconque, supérieur ou égal à deux, est également envisageable. Les antennes sont disposées préférentiellement sur la circonférence du porteur de façon équirépartie. Plus généralement les antennes sont agencées sur le corps du porteur de sorte qu'à chaque instant, au moins un satellite doit être en vue d'au moins une antenne sans que la totalité des signaux reçus soient masqués par le corps du porteur.The figure 1a represents an embodiment of the receiver according to the invention comprising two antennas but any number of antennas, greater than or equal to two, is also possible. The antennas are preferably arranged on the circumference of the wearer equidistributively. More generally, the antennas are arranged on the wearer's body so that at each moment, at least one satellite must be in view of at least one antenna without all the signals received being masked by the body of the wearer.

La figure 1b illustre un cas de masquage d'un signal de radionavigation 111 émis par un satellite 110. Le signal 111 est correctement reçu par l'antenne 103 disposée en vue du satellite mais n'est pas reçu par la seconde antenne 102 car masqué par le porteur 101.The figure 1b illustrates a case of masking of a radionavigation signal 111 emitted by a satellite 110. The signal 111 is correctly received by the antenna 103 arranged in view of the satellite but is not received by the second antenna 102 because masked by the carrier 101.

La figure 2 illustre sur un schéma l'architecture fonctionnelle d'un récepteur de signaux de radio-navigation selon l'invention comportant deux antennes (non représentées).The figure 2 illustrates in a diagram the functional architecture of a radio-navigation signal receiver according to the invention comprising two antennas (not shown).

Un tel récepteur comporte plusieurs voies de réception CS1, CSi, ..., CSN pour chaque canal satellite, N étant égal au nombre de satellites de radio-navigation en vue du récepteur.Such a receiver has several reception channels CS 1 , CS i ,..., CS N for each satellite channel, N being equal to the number of radio navigation satellites in view of the receiver.

On décrit à présent les traitements mis en oeuvre pour une voie de réception CS1, ces traitements sont dupliqués pour chacune des autres voies de réception.We now describe the processing implemented for a reception channel CS 1 , these processes are duplicated for each of the other reception channels.

Une voie de réception 200, 300 est appliquée pour chaque signal S1, S2 reçu par chacune des deux antennes. Le signal reçu S1, S2 est démodulé en phase par multiplication 201, 301 avec une porteuse locale 211, 311 et est désétalé par corrélation 202, 302 avec un code local 212, 312.A reception channel 200, 300 is applied for each signal S 1 , S 2 received by each of the two antennas. The received signal S 1 , S 2 is demodulated in phase by multiplication 201, 301 with a local carrier 211, 311 and is despread by correlation 202, 302 with a local code 212, 312.

La porteuse locale 211,311 et le code local 212,312 sont générés localement.Local carrier 211,311 and local code 212,312 are generated locally.

Le signal démodulé et désétalé est ensuite intégré par des moyens d'intégration cohérente 203, 303. L'ensemble constitué du multiplieur en phase 201,301.du multiplieur en code 202,302 et des moyens d'intégration 203,303 réalise une corrélation en phase et code du signal reçu avec la porteuse locale et le code local.The demodulated and despread signal is then integrated by coherent integration means 203, 303. The set consisting of the code multiplier 201, 301 of the code multiplier 202, 302 and integration means 203, 303 performs a phase and code correlation of the signal. received with the local carrier and the local code.

Pour synchroniser le code local et la porteuse locale sur le signal de radio-navigation émis par le satellite et reçu par l'antenne, le récepteur utilise en parallèle deux dispositifs de poursuite qui sont une boucle de code et une boucle de porteuse.To synchronize the local code and the local carrier on the radio-navigation signal transmitted by the satellite and received by the antenna, the receiver uses in parallel two tracking devices which are a code loop and a carrier loop.

La boucle de code sert à positionner un code local en phase avec le code contenu dans le signal satellite S1, S2 reçu de manière à réaliser une corrélation donnant le maximum d'énergie.The code loop is used to position a local code in phase with the code contained in the satellite signal S 1 , S 2 received in order to perform a correlation giving the maximum energy.

La boucle de porteuse sert à asservir la fréquence ou la phase de la porteuse locale avec respectivement la fréquence ou la phase de la porteuse reçue, afin de maximiser le résultat de la corrélation.The carrier loop serves to slave the frequency or phase of the local carrier with respectively the frequency or the phase of the received carrier, in order to maximize the result of the correlation.

La présence d'un signal en sortie d'intégration 203, 303 avec une amplitude importante, c'est-à-dire nettement supérieure à ce que donnerait le bruit ambiant en l'absence de signal reçu signifie que le code local et la porteuse locale sont synchronisés sur le signal reçu, ce qui permet de mesurer à chaque instant l'instant d'émission et la fréquence Doppler du signal reçu, par l'intermédiaire de la phase du code local et de la vitesse de la phase de la porteuse locale.The presence of a signal at the integration output 203, 303 with a large amplitude, that is to say much greater than what would give the ambient noise in the absence of received signal means that the local code and the carrier local are synchronized to the received signal, which makes it possible to measure at each instant the transmission time and the Doppler frequency of the received signal, via the phase of the local code and the speed of the phase of the carrier local.

La boucle de code comprend un discriminateur de code 204, 304 qui délivre, à partir du signal corrélé intégré, une information sur le décalage temporel entre le code du signal reçu et le code local, un filtre correcteur de boucle 214, 314 qui produit, à partir de la sortie du discriminateur de code 204, 304 une correction en vitesse et un opérateur de contrôle numérique 224, 324, encore appelé NCO, qui transforme la commande en vitesse en une commande en temps qui vient piloter la génération du code local 212, 312. A partir de la commande en temps fournie en sortie de l'opérateur de contrôle numérique 224, 324, une estimée 205, 305 de l'instant d'émission du signal par le satellite est produite.The code loop includes a code discriminator 204, 304 which provides, from the integrated correlated signal, time offset information between the received signal code and the local code, a loop corrector filter 214, 314 which produces, from the output of the code discriminator 204, 304 a speed correction and a digital control operator 224, 324, also called NCO, which transforms the speed control into a time control which drives the generation of the local code 212 , 312. From the time-out command provided by the digital control operator 224, 324, an estimated 205, 305 of the moment of emission of the signal by the satellite is produced.

La boucle de porteuse sert à asservir la phase de la porteuse locale sur la phase de la porteuse reçue à modulo 2π près dans le but d'améliorer la précision de la mesure de code grâce à un lissage du code par la phase de la porteuse.The carrier loop serves to slave the phase of the local carrier to the phase of the received carrier modulo 2π close in order to improve the accuracy of the code measurement through a smoothing of the code by the phase of the carrier.

Une boucle de porteuse, encore appelée en terminologie anglo-saxonne PLL, signifiant Phase Lock Loop ou boucle à verrouillage de phase, utilise la voie de corrélation ponctuelle et asservit la phase de la porteuse locale sur la phase de la porteuse reçue par une rétro-action sur la phase locale. La boucle de porteuse comprend un discriminateur de phase 206, 306 qui mesure l'écart entre la phase locale et la phase reçue, un correcteur de boucle 216, 316 qui filtre la sortie du discriminateur de phase 206, 306 et produit une correction en vitesse, un opérateur de contrôle numérique NCO porteuse 226, 326 qui transforme la commande en vitesse en une phase de porteuse locale qui vient piloter le générateur de porteuse 211,311.A carrier loop, also called in English terminology PLL, meaning Phase Lock Loop or phase locked loop, uses the point correlation path and enslaves the phase of the carrier on the phase of the carrier received by a feedback on the local phase. The carrier loop comprises a phase discriminator 206, 306 which measures the difference between the local phase and the received phase, a loop corrector 216, 316 which filters the output of the phase discriminator 206, 306 and produces a speed correction. , a carrier NCO digital control operator 226, 326 which transforms the speed control into a local carrier phase which drives the carrier generator 211,311.

Sans sortir du cadre de l'invention, la boucle de porteuse peut également être réalisée par une boucle à verrouillage de fréquence.Without departing from the scope of the invention, the carrier loop can also be implemented by a frequency-locked loop.

Dans une variante de réalisation de l'invention, chaque voie de démodulation mono-antenne comprend en outre une correction du bras de levier 207, 307 entre le centre de symétrie O du réseau antennaire et le centre de phase de l'antenne. Les coordonnées du bras de levier r sont calculées dans un repère spatial fixe par rapport à la terre, tel le repère connu ECEF (« Earth Centred Earth Fixed »). Les coordonnées des antennes dans un repère ECEF sont obtenues grâce à une matrice de changement de repère fournie soit par un système de détermination de l'attitude du porteur externe à l'invention soit par un traitement de détermination d'attitude réalisé directement à partir des mesures des signaux reçus sur les différentes antennes.In an alternative embodiment of the invention, each single-antenna demodulation channel further comprises a correction of the lever arm 207, 307 between the center of symmetry O of the antenna array and the phase center of the antenna. The coordinates of the lever arm r are calculated in a fixed spatial reference with respect to the earth, such as the known reference ECEF ("Earth Centred Earth Fixed"). The coordinates of the antennas in an ECEF frame are obtained by means of a marker change matrix provided either by a system for determining the attitude of the wearer external to the invention or by an attitude determination processing performed directly from the measurements of the signals received on the different antennas.

Le bras de levier r obtenu est ensuite projeté sur l'axe à vue 104 pour obtenir la différence de chemin optique ΔLBL entre le centre de symétrie O du réseau antennaire et le centre de phase de l'antenne. La correction du bras de levier 207, 307 consiste à compenser la mesure temporelle 205, 305 fournie par chaque chaîne de réception 200, 300 par cette différence de chemin optique ΔLBL.The lever arm r obtained is then projected onto the view axis 104 to obtain the optical path difference ΔL BL between the center of symmetry O of the antenna array and the phase center of the antenna. The correction of the lever arm 207, 307 consists in compensating the time measurement 205, 305 supplied by each reception channel 200, 300 by this optical path difference ΔL BL .

La correction du bras de levier sur les mesures issues de chaque antenne permet de les rendre comparables en corrigeant le décalage temporel induit par la distance entre chaque antenne. Les estimées temporelles 205, 305 sont ensuite transmises à un module de décision 400 qui sélectionne l'estimée T1, parmi celles disponibles, qui correspond au meilleur rapport signal à bruit du signal reçu ou au meilleur gain d'antenne en réception.The correction of the lever arm on the measurements from each antenna makes it possible to make them comparable by correcting the time shift induced by the distance between each antenna. The time estimates 205, 305 are then transmitted to a decision module 400 which selects the estimate T 1 , from those available, which corresponds to the best signal-to-noise ratio of the received signal or to the best antenna gain in reception.

Dans une autre variante de réalisation de l'invention, la boucle de code et la boucle de porteuse comprennent en outre chacune un correcteur de bras de levier en vitesse 234, 236, 334, 336. La correction du bras de levier en vitesse consiste à calculer la dérivée de la différence de chemin optique ΔLBL par rapport au temps et à compenser les sorties des correcteurs de boucle de code 214, 314 et des correcteurs de boucle de porteuse 216, 316 par cette dérivée.In another embodiment of the invention, the code loop and the carrier loop each further comprise a speed lever lever corrector 234, 236, 334, 336. The correction of the lever arm in speed consists of calculating the derivative of the optical path difference ΔL BL with respect to time and compensating for the outputs of the code loop correctors 214, 314 and the carrier loop correctors 216, 316 by this derivative.

On décrit à présent plus en détail le fonctionnement du récepteur selon l'invention.The operation of the receiver according to the invention will now be described in more detail.

Lorsque le signal satellite S1, S2 est reçu par les deux antennes, chaque voie de démodulation est mise en oeuvre indépendamment et fournit une mesure indépendante 205, 305 de l'instant d'émission du signal par le satellite. Un choix est ensuite fait par un module de décision 400.When the satellite signal S 1 , S 2 is received by the two antennas, each demodulation channel is implemented independently and provides an independent measurement 205, 305 of the instant of emission of the signal by the satellite. A choice is then made by a decision module 400.

Lorsqu'une antenne ne reçoit plus de signal en provenance d'un satellite, car l'axe à vue entre cette antenne et le satellite est masqué par le corps du porteur 101, le fonctionnement des boucles de code et de porteuse s'en trouve affecté car il y a risque de décrochage des boucles. Pour éviter ce problème, l'invention consiste à basculer la voie de réception affectée d'une perte de signal en boucle ouverte et à piloter les NCO code et porteuse par les corrections en vitesse de code et de porteuse fournies par la voie de réception d'une autre antenne. Lorsque le signal est à nouveau reçu par l'antenne, on repasse en boucle fermée et ainsi le signal est raccroché directement sans induire de discontinuités dans le fonctionnement des boucles. La mesure temporelle 205, 305 fournie par la voie de réception fonctionnant en boucle ouverte est exclue du choix opéré par le module de décision 400.When an antenna no longer receives a signal from a satellite, because the line of sight between this antenna and the satellite is masked by the body of the carrier 101, the operation of the code and carrier loops is found affected because there is a risk of stall loops. To avoid this problem, the invention consists in switching the reception channel affected by an open-loop signal loss and in controlling the code and carrier NCOs by the code and carrier speed corrections provided by the reception channel. another antenna. When the signal is received again by the antenna, it returns closed loop and thus the signal is hooked directly without inducing discontinuities in the operation of the loops. The time measurement 205, 305 provided by the reception channel operating in open loop is excluded from the choice made by the decision module 400.

Le principe décrit ci-dessus est illustré sur la figure 2 par les connecteurs 208, 308 qui permettent de relier les sorties des correcteurs de boucle d'une chaîne aux entrées des correcteurs de bras de levier en vitesse d'une autre chaîne ou directement aux entrées des NCO code et porteuse lorsque les bras de levier ne sont pas corrigés.The principle described above is illustrated on the figure 2 by the connectors 208, 308 which allow to connect the outputs of the loop correctors of a chain to the inputs of the leverage correctors in speed of another chain or directly to the inputs of the NCO code and carrier when the lever arms do not are not corrected.

Les coordonnées du porteur en repère terrestre ainsi que les positions des satellites sont supposées connues, ainsi il est possible d'anticiper une perte de signal en provenance d'un satellite sur une antenne donnée si l'axe à vue associé est masqué par le porteur et ainsi déterminer au préalable l'instant de basculement d'une voie de réception en boucle ouverte ou en boucle fermée.The coordinates of the carrier in terrestrial reference as well as the positions of the satellites are supposed known, so it is possible to anticipate a loss of signal coming from a satellite on a given antenna if the axis with associated sight is masked by the carrier and thus to determine in advance the switching time of a reception channel open loop or closed loop.

L'invention s'étend aux récepteurs comportant plus de deux antennes.The invention extends to receivers having more than two antennas.

Claims (7)

Dispositif de réception de signaux de radio-navigation par satellite comprenant une pluralité d'antennes réceptrices formant un réseau antennaire, pour chaque antenne et pour chaque satellite en vue dudit dispositif, une chaîne de réception (200,300) comprenant des moyens de démodulation des signaux reçus (S1,S2), une boucle de code et une boucle de porteuse, lesdits moyens de démodulation comprenant des moyens de multiplication (201,301) en phase avec une porteuse locale (211,311), des moyens de corrélation en temps (202,302) avec un code local (212,312) et des moyens d'intégration (203,303) du signal corrélé en phase et en temps, la boucle de porteuse comprenant un discriminateur de phase (206,306), un correcteur de boucle (216,316) de porteuse et un opérateur de contrôle numérique NCO (226,326) apte à délivrer une phase de porteuse locale, la boucle de code comprenant un discriminateur de code (204,304), un correcteur de boucle (214,314) et un opérateur de contrôle numérique NCO (224,324) apte à délivrer une mesure (205,305) de l'instant d'émission par le satellite du signal reçu (S1,S2),
caractérisé en ce que : - chaque chaîne de réception (200,300) dudit dispositif comporte en outre des moyens d'interconnexion (208,308) adaptés à basculer simultanément les entrées de l'opérateur de contrôle numérique NCO (226) de la boucle de porteuse et de l'opérateur de contrôle numérique NCO (224) de la boucle de code d'une première chaîne de réception (200) vers les sorties du correcteur de boucle de porteuse (316) et du correcteur de boucle de code (314) d'une seconde chaîne de réception (300) lorsque le signal (S1) transmis par le satellite n'est plus reçu par l'antenne de la première chaîne de réception (200) de sorte que la première chaîne de réception (200) opère en boucle ouverte, - ledit dispositif comporte en outre des moyens (400) de sélection de la mesure (T1), parmi celles (205,305) délivrées par chaque chaîne de réception (200,300) opérant en boucle fermée, qui présente le rapport signal à bruit le plus élevé ou qui est issue de la chaîne de traitement qui présente le gain d'antenne en réception le plus élevé.
Satellite radio navigation signal receiving device comprising a plurality of antenna antennas forming an antenna array, for each antenna and for each satellite in view of said device, a reception channel (200,300) including means for demodulating the received signals (S 1 , S 2 ), a code loop and a carrier loop, said demodulation means comprising multiplication means (201, 301) in phase with a local carrier (211, 31), time correlation means (202, 302) with a local code (212,312) and means of integration (203,303) of the signal correlated in phase and in time, the carrier loop comprising a phase discriminator (206,306), a carrier loop corrector (216,316) and an operator of NCO digital control (226,326) adapted to output a local carrier phase, the code loop comprising a code discriminator (204,304), a loop corrector (214,314) and a con NCO digital trol (224.324) adapted to deliver a measurement (205.305) of the transmission time from the satellite received signal (S 1, S 2),
characterized in that each reception channel (200, 300) of said device further comprises interconnection means (208, 308) adapted to simultaneously switch the inputs of the NCO digital control operator (226) of the carrier loop and of the control operator NCO digital signal (224) of the code loop of a first receive channel (200) to the outputs of the carrier loop corrector (316) and the code loop corrector (314) of a second receive channel ( 300) when the signal (S 1 ) transmitted by the satellite is no longer received by the antenna of the first reception channel (200) so that the first reception channel (200) operates in an open loop, said device further comprises means (400) for selecting the measurement (T 1 ), among those (205, 305) delivered by each reception chain (200, 300) operating in a closed loop, which has the highest signal-to-noise ratio or which comes from the processing chain which has the highest receive antenna gain.
Dispositif de réception de signaux de radio-navigation selon la revendication 1 caractérisé en ce que les antennes réceptrices sont positionnées sur la circonférence d'un porteur de forme sensiblement cylindrique.Device for receiving radio navigation signals according to claim 1, characterized in that the receiving antennas are positioned on the circumference of a substantially cylindrical carrier. Dispositif de réception de signaux de radio-navigation selon l'une des revendications précédentes caractérisé en ce que la perte de signal sur une antenne due au masquage du signal par le corps du porteur est anticipée en fonction des positions respectives du porteur, des antennes et des satellites.Device for receiving radio navigation signals according to one of the preceding claims, characterized in that the loss of signal on an antenna due to the masking of the signal by the body of the carrier is anticipated as a function of the respective positions of the carrier, the antennas and satellites. Dispositif de réception de signaux de radio-navigation selon l'une des revendications 1 à 3 comportant en outre, pour chaque chaîne de réception (200,300), un correcteur du bras de levier (207,307) qui consiste à compenser chaque mesure (205,305) de l'instant d'émission par le satellite du signal reçu (S1,S2) par la différence de chemin optique ΔLBL entre le centre de phase de l'antenne et le centre de symétrie O du réseau antennaire.Radio-navigation signal receiving device according to one of claims 1 to 3, further comprising, for each receiving chain (200,300), a lever arm corrector (207,307) which consists of compensating each measurement (205,305) of the instant of emission by the satellite of the received signal (S 1 , S 2 ) by the optical path difference ΔL BL between the phase center of the antenna and the center of symmetry O of the antenna array. Dispositif de réception de signaux de radio-navigation selon l'une des revendications 1 à 4 caractérisé en ce que chaque chaîne de réception comporte en outre, pour la boucle de code et la boucle de porteuse, un correcteur du bras de levier en vitesse (234,236,334,336) qui consiste à compenser les sorties des correcteurs de boucle (214,216,314,316) par la dérivée temporelle de la différence de chemin optique ΔLBL.Device for receiving radio navigation signals according to one of Claims 1 to 4, characterized in that each reception chain further comprises, for the code loop and the carrier loop, a corrector of the lever arm in speed ( 234,236,334,336) which consists in compensating the outputs of the loop correctors (214,216,314,316) by the time derivative of the optical path difference ΔL BL . Dispositif de réception de signaux de radio-navigation selon l'une des revendications 4 ou 5 caractérisé en ce que la différence de chemin optique ΔLBL est déterminée en projetant le bras de levier r sur l'axe à vue (104) entre le centre de symétrie O du réseau antennaire et le satellite.Radio-navigation signal receiving device according to one of Claims 4 or 5, characterized in that the optical path difference ΔL BL is determined by projecting the lever arm r on the visual axis (104) between the center of symmetry O of the antennal network and the satellite. Dispositif de réception de signaux de radio-navigation selon la revendication 6 caractérisé en ce que les coordonnées du bras de levier r sont déterminées, dans un repère spatial fixe par rapport à la terre, à partir d'une mesure de l'attitude du porteur.Device for receiving radio navigation signals according to claim 6, characterized in that the coordinates of the lever arm r are determined, in a fixed spatial reference with respect to the earth, from a measurement of the attitude of the wearer .
EP13160297.1A 2012-03-22 2013-03-21 Device for receiving radio-navigation signals with multiple antennas Active EP2642317B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1200854A FR2988483B1 (en) 2012-03-22 2012-03-22 DEVICE FOR RECEIVING MULTI-ANTENNA RADIO NAVIGATION SIGNALS

Publications (2)

Publication Number Publication Date
EP2642317A1 true EP2642317A1 (en) 2013-09-25
EP2642317B1 EP2642317B1 (en) 2020-05-06

Family

ID=46785475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13160297.1A Active EP2642317B1 (en) 2012-03-22 2013-03-21 Device for receiving radio-navigation signals with multiple antennas

Country Status (4)

Country Link
US (1) US9720097B2 (en)
EP (1) EP2642317B1 (en)
CA (1) CA2810144A1 (en)
FR (1) FR2988483B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3017213B1 (en) * 2014-01-31 2016-02-05 Thales Sa RADIOFREQUENCY METHOD AND SYSTEM FOR DETERMINING, BY TORQUE OF SPACE ENGINES, THE RELATIVE ANGULAR POSITION BETWEEN SEVERAL REMOTE SPACE DEVICES
US10690777B2 (en) 2014-07-31 2020-06-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Multi-antenna-GNSS receiver-system to raise the probability of line of sight
US11634214B1 (en) 2015-01-23 2023-04-25 Liberty Mutual Insurance Company Drones with sensors used in insurance applications
US11041962B2 (en) * 2017-05-17 2021-06-22 Sony Corporation Adaptive multi-rate navigation
CN109001764A (en) * 2018-09-30 2018-12-14 中国气象局气象探测中心 LEO occultation system and method based on aerostatics
CN113391330B (en) * 2021-05-10 2023-06-09 中国科学院国家授时中心 Satellite navigation signal rapid tracking method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020044085A1 (en) * 2000-05-23 2002-04-18 Howell Robert M. GPS antenna array
GB2367199B (en) * 2000-09-20 2005-01-26 Parthus Apparatus for receiving ranging signals
US20090135060A1 (en) * 2007-11-27 2009-05-28 Sirf Technology, Inc. GPS System Utilizing Multiple Antennas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919652B2 (en) * 1979-06-02 1984-05-08 郵政省電波研究所長 Coherent frequency diversity reception method
US5923287A (en) * 1997-04-01 1999-07-13 Trimble Navigation Limited Combined GPS/GLONASS satellite positioning system receiver
US8686900B2 (en) * 2003-03-20 2014-04-01 Hemisphere GNSS, Inc. Multi-antenna GNSS positioning method and system
US8305265B2 (en) * 2007-05-29 2012-11-06 Toyon Research Corporation Radio-based direction-finding navigation system using small antenna
US7868819B2 (en) * 2007-09-07 2011-01-11 The Board Of Trustees Of The Leland Stanford Junior University Arrangements for satellite-based navigation and methods therefor
CN102474006B (en) * 2009-07-01 2014-10-01 洛克达股份有限公司 Method and apparatus for forming a beam
FR2962812B1 (en) * 2010-07-19 2012-10-12 Thales Sa SYNTHETIC OPENING ANTENNA DEVICE FOR RECEIVING SIGNALS OF A SYSTEM COMPRISING A CARRIER AND MEANS FOR DETERMINING ITS TRACK

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020044085A1 (en) * 2000-05-23 2002-04-18 Howell Robert M. GPS antenna array
GB2367199B (en) * 2000-09-20 2005-01-26 Parthus Apparatus for receiving ranging signals
US20090135060A1 (en) * 2007-11-27 2009-05-28 Sirf Technology, Inc. GPS System Utilizing Multiple Antennas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATRICK C. FENTON ET AL: "Using GPS For Position& Attitude Determination Of The Canadian Space Agency's Active Rocket Mission", PROC. OF ION GPS 98, 15 September 1998 (1998-09-15), Nashville, TN, USA, pages 1791 - 1800, XP055054247 *

Also Published As

Publication number Publication date
FR2988483A1 (en) 2013-09-27
US9720097B2 (en) 2017-08-01
FR2988483B1 (en) 2014-03-07
US20140091966A1 (en) 2014-04-03
CA2810144A1 (en) 2013-09-22
EP2642317B1 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
EP2642317B1 (en) Device for receiving radio-navigation signals with multiple antennas
EP3230766B1 (en) Method and system to validate geopositioning by satellite
FR3076354B1 (en) METHOD FOR VERIFYING THE ENTIRE POSITION ESTIMATION OF A MOBILE CARRIER IN A SATELLITE POSITIONING MEASUREMENT SYSTEM
EP2902797B1 (en) Radio-frequency method and system for determining, using spacecraft torque, the relative angular position between a plurality of remote spacecraft
EP2674783B1 (en) Satellite signal receiver used for location
FR3018121A1 (en) METHOD FOR TRACKING A TRANSFER ORBIT OR A PHASE FOR ORKING A SPATIAL VEHICLE, IN PARTICULAR AN ELECTRICAL PROPULSION, AND APPARATUS FOR IMPLEMENTING SUCH A METHOD
EP2784547B1 (en) Method of detecting signals designed for deceiving a signal receiver of a satellite navigation system receiver and corresponding receiver
CA3161114A1 (en) Method for tracking a space object using on-board radar and lidar systems
EP3488540A1 (en) Combined imaging and laser communication system
EP2500750A1 (en) Method and device for calibrating a receiver.
WO2006067058A1 (en) Device for autonomously determining absolute geographic coordinates of a mobile changing with regard to immersion
EP2530022B1 (en) System for geographical positioning of a radio-frequency signal transmitter located on the surface of the earth, and associated distributed interferometry method.
EP2642319B1 (en) Device for receiving radio-navigation signals with multiple antennas and common synchronisation control
WO2020128386A1 (en) Communication system comprising a matrix image communication receiver
FR2815792A1 (en) Satellite moving object tracking system includes transponder object mounted with demodulator spread spectrum error recovery loop and second loop measuring total Doppler offset following bias correction
FR2942325A1 (en) AMBIGUITE LIFT METHOD, RADIONAVIGATION RECEIVER LOCATION METHOD COMPRISING AMBIGUE LIFT STEP AND LOCATION RECEIVER
FR3061380A1 (en) OPTICAL TRANSMISSION FROM A SATELLITE TO A RECEPTION TERMINAL
EP1373923B1 (en) Receiver for determining a mobile object orientation
FR2881581A1 (en) Radio navigation architecture for e.g. vehicle, has switching units to connect radiolocation receiver to controlled or secured fixed reception pattern antennas respectively in scrambled military environment or unscrambled civil environment
FR3003961A1 (en) METHOD FOR SIGNAL BEAM FORMATION OF A SIGNAL RECEIVER OF A SATELLITE NAVIGATION SYSTEM FOR IMPROVING INTERFERENCE RESISTANCE.
EP2388646A1 (en) Method for capturing an image
EP1691214A1 (en) System for determining the absolute position of a towed or self-propelled submarine engine
Charbonnieras Exploitation of the GNSS signals for integrity measurement.
FR3119272A1 (en) Method and system for controlling an antenna in a satellite communications system
EP4119971A1 (en) Method for calibrating an airborne goniometry for low frequencies

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140203

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170221

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200108

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1267667

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013068645

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1267667

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013068645

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013068645

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210321

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210321

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230221

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130321

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230216

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506