EP2639291A1 - Verpackte partikelförmige Reinigungsmittelzusammensetzung - Google Patents
Verpackte partikelförmige Reinigungsmittelzusammensetzung Download PDFInfo
- Publication number
- EP2639291A1 EP2639291A1 EP12159247.1A EP12159247A EP2639291A1 EP 2639291 A1 EP2639291 A1 EP 2639291A1 EP 12159247 A EP12159247 A EP 12159247A EP 2639291 A1 EP2639291 A1 EP 2639291A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- packaged
- particles
- composition according
- composition
- sodium carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2086—Hydroxy carboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/83—Mixtures of non-ionic with anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/04—Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
- C11D17/041—Compositions releasably affixed on a substrate or incorporated into a dispensing means
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/046—Salts
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/36—Organic compounds containing phosphorus
- C11D3/361—Phosphonates, phosphinates or phosphonites
Definitions
- This invention relates to a packaged particulate concentrated detergent composition intended for use at low dosage levels, for example less than 40g dose per wash.
- a packaged particulate concentrated detergent composition intended for use at low dosage levels, for example less than 40g dose per wash.
- particulate detergent compositions formed by extrusion and coating.
- Particulate detergent compositions with improved environmental profiles could, in theory, be designed by eliminating all components from the composition that provide limited, or no, cleaning action. Such compact products would also reduce packaging requirements.
- To achieve this objective is difficult in practice because the manufacture of particulate detergent compositions usually requires the use of components that do not contribute significantly to detergency, but are nevertheless included to structure liquid ingredients into solids, to assist with processing and to improve the handling and stability of the particulate detergent compositions.
- the present invention provides a packaged particulate detergent composition, wherein the composition comprises:
- the ratio of the x to y is from 1:3 and 1:7 and the ratio of x to z is from 1:3 and 1:7.
- each coated particle has perpendicular dimensions x, y and z, wherein x is from 0.6 to 1.5 mm, y is from 3 to 6 mm, and z is from 3 to 6 mm.
- the composition comprises 0 wt% peroxide.
- the inorganic salt comprises sodium carbonate in the range from 10 to 100%, more preferably from 20 to 100% sodium carbonate and even more preferably 50 to 100% sodium carbonate.
- the amount of coating on each coated particle is preferably 20 to 35 % by weight of the particle.
- the number percentage of the packaged composition of particles comprising the core and coating is preferably at least 85%.
- the coated particles preferably comprise from 0.001 to 3 wt % perfume.
- the core of the coated particles preferably comprises less than 5 wt%, even more preferably less than 2.5 wt% inorganic materials.
- At least some, and preferably a minor portion by number of the particles may be coloured other than white, as this makes it easier to see them flowing and to determine that the required dose level has been reached. Multicoloured, e.g. some blue and some white, particles have been found to provide even higher visual definition for the optimum control of dose.
- the package may be any of the conventionally employed types. It may be transparent. It is preferably resealable. Most preferably, it is provided with an outlet that is significantly lower in area than the widest part of the package. Preferably less than 25% of the maximum cross sectional area parallel to the horizontal.
- the container may be formed from polyolefins including, but not limited to: polypropylene (PP), polyethylene (PE), polycarbonate (PC), polyamides (PA) and/or polyethylene terephthalate (PETE), polyvinylchloride (PVC); and polystyrene (PS).
- the container may be formed by extrusion, moulding e.g. blow moulding from a preform or by thermoforming or by injection moulding.
- the container or package may be provided with a handle and /or a dose measuring device, or scoop.
- the measuring device may be a cap. Most preferably, it is a screw cap as that provides for more reliable protection against ingress of large amounts of water due to the cap being incorrectly replaced in use.
- the package may be of any convenient size.
- coated particulate concentrated detergent compositions with large non-spherical similarly shaped and sized particles provide a slow, steady and predictable flow.
- the dosing behaviour observed during trials suggests that consumers will find this a very easy particulate format to dose to the target low level of, for example, less than 40 g, maybe even less than 30g per wash.
- this beneficial flow behaviour is due to the way the particles keep flowing even after tamping down in the package and also to the flow being slower and more predictable; which lengthens the dosing time for a unit mass of product and so reinforces the concentration message at the same time as reducing the likelihood of overdosing.
- the particles are formed from a core comprising surfactant and a shell coating.
- the appearance of the coated particles in a package is very pleasing especially when the core particle is formed by extrusion.
- a preferred manufacturing process is set forth in WO 2010/122050 . It comprises blending surfactants together and then drying them to a low moisture content of less than 1 %.
- Scraped film devices may be used.
- a preferred form of scraped film device is a wiped film evaporator.
- One such suitable wiped film evaporator is the "Dryex system" based on a wiped film evaporator available from Ballestra S.p.A..
- Alternative drying equipment includes tube-type driers, such as a Chemithon Turbo Tube® drier, and soap driers. The hot material exiting the scraped film drier is subsequently cooled and broken up into suitable sized pieces to feed to the extruder.
- Simultaneous cooling and breaking into flakes may conveniently be carried out using a chill roll. If the flakes from the chill roll are not suitable for direct feed to the extruder then they can be milled in a milling apparatus and /or they can be blended with other liquid or solid ingredients in a blending and milling apparatus, such as a ribbon mill. Such milled or blended material is desirably of particle size 1 mm or less for feeding to the extruder.
- Particulate material with a mean particle size of 10 nm to 10 ⁇ m is preferred for use as a milling aid.
- materials there may be mentioned, by way of example: aerosil®, alusil®, and microsil®.
- the dried surfactant blend is extruded.
- the extruder provides further opportunities to blend in ingredients other than surfactants, or even to add further surfactants.
- all of the anionic surfactant, or other surfactant supplied in admixture with water; i.e. as paste or as solution, is added into the drier to ensure that the water content can then be reduced and the material fed to and through the extruder is sufficiently dry.
- Additional materials that can be blended into the extruder are thus mainly those that are used at very low levels in a detergent composition: such as fluorescer, shading dye, enzymes, perfume, silicone antifoams, polymeric additives and preservatives.
- Solid additives are generally preferred. Liquids, such as perfume may be added at levels up to 2.5 wt%, preferably up to 1.5 wt%. Solid particulate structuring (liquid absorbing) materials or builders, such as zeolite, carbonate, silicate are preferably not added to the blend being extruded. These materials are not needed due to the self structuring properties of the very dry LAS-based feed material. If any is used the total amount should be less than 5 wt%, preferably less than 4 wt%, most preferably less than 3 wt%. At such levels no significant structuring occurs and the inorganic particulate material is added for a different purpose, for instance as a flow aid to improve the feed of particles to the extruder.
- the output from the extruder is shaped by a die plate.
- the extruded material has a tendency to swell up in the centre relative to the periphery.
- the sliced extruded particles are then coated. Coating allows the particles to be coloured easily. Coating makes the particles more suitable for use in detergent compositions that may be exposed to high humidity for long periods.
- the extruded particles can be considered as oblate spheroids with a major radius "a" and minor radius "b".
- any known coating may be used, for instance organic, including polymer
- An aqueous spray-on of coating solution in a fluidised bed may also generate a further slight rounding of the detergent particles during the fluidisation process.
- Suitable inorganic coating solutions include sodium carbonate, possibly in admixture with sodium sulphate, and sodium chloride. Food dyes, shading dyes, fluorescer and other optical modifiers can be added to the coating by dissolving them in the spray-on solution or dispersion.
- Use of a builder salt such as sodium carbonate is particularly advantageous because it allows the detergent particle to have an even better performance by buffering the system in use at an ideal pH for maximum detergency of the anionic surfactant system. It also increases ionic strength, to improve cleaning in hard water, and it is compatible with other detergent ingredients that may be admixed with the coated extruded detergent particles.
- the amount of coating should lie in the range 10 to 45 wt% of the particle, preferably 20 to 40 wt% for the best results in terms of anti-caking properties of the detergent particles.
- the coated particles dissolve easily in water and leave very low or no residues on dissolution, due to the absence of insoluble structurant materials such as zeolite.
- the coated particles have an exceptional visual appearance, due to the smoothness of the coating coupled with the smoothness of the underlying particles, which is also believed to be a result of the lack of particulate structuring material in the extruded particles.
- compositions with up to 100 wt% of the particles are possible when basic additives are incorporated into the extruded particles, or into their coating.
- the composition may also comprise, for example, an antifoam granule.
- the coated detergent particle is preferably curved.
- the coated detergent particle is most preferably lenticular (shaped like a whole dried lentil), an oblate ellipsoid.
- the coated laundry detergent particle may be shaped as a disc.
- the oblate spheroid is formed by a malleable circular exudate being cut as it exits a conduit.
- the inner section of the exudate travels a greater speed than the edge of the exudate as it is cut forming the oblate spheroid shape.
- the coating process also serves to further round the edges of the oblate spheroid.
- detergent manufacture will appreciate that there will be some deviation in the exactness of the oblate spheroids.
- the core is primarily surfactant. It may also include detergency additives, such as perfume, shading dye, enzymes, cleaning polymers and soil release polymers.
- nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described " Surface Active Agents” Vol. 1, by Schwartz & Perry, Interscience 1949 , Vol. 2 by Schwartz, Perry & Berch, Interscience 1958 , in the current edition of " McCutcheon's Emulsifiers and Detergents” published by Manufacturing Confectioners Company or in " Tenside Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 .
- the surfactants used are saturated.
- Suitable anionic detergent compounds that may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals.
- suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C8 to C18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C9 to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
- anionic surfactants are sodium lauryl ether sulphate (SLES), particularly preferred with 1 to 3 ethoxy groups, sodium C10 to C15 alkyl benzene sulphonates and sodium C12 to C18 alkyl sulphates. Also applicable are surfactants such as those described in EP-A-328 177 (Unilever), which show resistance to salting out, the alkyl polyglycoside surfactants described in EP-A-070 074 , and alkyl monoglycosides. The chains of the surfactants may be branched or linear.
- the fatty acid soap used preferably contains from about 16 to about 22 carbon atoms, preferably in a straight chain configuration.
- the anionic contribution from soap may be from 0 to 30 wt% of the total anionic. Use of more than 10 wt% soap is not preferred.
- At least 50 wt % of the anionic surfactant is selected from: sodium C11 to C15 alkyl benzene sulphonates; and, sodium C12 to C18 alkyl sulphates.
- the anionic surfactant is present in the coated laundry detergent particle at levels between 15 to 85 wt%, more preferably 50 to 80wt%.
- Suitable non-ionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
- Preferred nonionic detergent compounds are C6 to C22 alkyl phenol-ethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic C8 to C18 primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 50 EO.
- the non-ionic is 10 to 50 EO, more preferably 20 to 35 EO. Alkyl ethoxylates are particularly preferred.
- the non-ionic surfactant is present in the coated laundry detergent particle at levels between 5 to 75 wt%, more preferably 10 to 40 wt%.
- Cationic surfactant may be present as minor ingredients at levels preferably between 0 to 5 wt%.
- surfactants are mixed together before being dried. Conventional mixing equipment may be used.
- the surfactant core of the laundry detergent particle may be formed by roller compaction and subsequently coated preferably with an inorganic salt.
- the core is calcium tolerant and this is a preferred aspect because this reduces the need for a builder.
- Surfactant blends that do not require builders to be present for effective detergency in hard water are preferred. Such blends are called calcium tolerant surfactant blends if they pass the test set out hereinafter. However, the invention may also be of use for washing with soft water, either naturally occurring or made using a water softener. In this case, calcium tolerance is no longer important and blends other than calcium tolerant ones may be used.
- the surfactant blend in question is prepared at a concentration of 0.7 g surfactant solids per litre of water containing sufficient calcium ions to give a French hardness of 40 (4 x 10-3 Molar Ca2+).
- Other hardness ion free electrolytes such as sodium chloride, sodium sulphate, and sodium hydroxide are added to the solution to adjust the ionic strength to 0.05M and the pH to 10.
- the adsorption of light of wavelength 540 nm through 4 mm of sample is measured 15 minutes after sample preparation. Ten measurements are made and an average value is calculated. Samples that give an absorption value of less than 0.08 are deemed to be calcium tolerant.
- Suitable calcium tolerant co-surfactants include SLES 1-7EO, and alkyl ethoxylate non-ionic surfactants, particularly those with melting points less than 40°C.
- a LAS/SLES surfactant blend has a superior foam profile to a LAS Nonionic surfactant blend and is therefore preferred for hand washing formulations requiring high levels of foam.
- SLES may be used at levels of up to 30%.
- a preferred calcium tolerant coated laundry detergent particle comprises 15 to 100 wt% anionic surfactant of which 20 to 30 wt % is sodium lauryl ether sulphate.
- a LAS/NI surfactant blend provides a harder particle and its lower foam profile makes it more suited for automatic washing machine use.
- the coating may comprise a water soluble inorganic salt. Other water compatible ingredients may be included in the coating.
- the water soluble inorganic salts are preferably selected from sodium carbonate, sodium chloride, sodium silicate and sodium sulphate, or mixtures thereof, most preferably 70 to 100 wt % sodium carbonate.
- the water soluble inorganic salt is present as a coating on the particle.
- the water soluble inorganic salt is preferably present at a level that reduces the stickiness of the laundry detergent particle to a point where the particles are free flowing.
- the amount of coating should lay in the range 15 to 45 wt % of the particle, preferably 20 to 40 wt %, even more preferably 25 to 35 wt % for the best results in terms of anti-caking properties of the detergent particles and control of the flow from the package.
- the coating is applied to the surface of the surfactant core, by crystallisation from an aqueous solution of the water soluble inorganic salt.
- the aqueous solution preferably contains greater than 50g/L, more preferably 200 g/L of the salt.
- An aqueous spray-on of the coating solution in a fluidised bed has been found to give good results and may also generate a slight rounding of the detergent particles during the fluidisation process. Drying and/or cooling may be needed to finish the process.
- the thickness of coating obtainable by use of a coating level of say 5 wt% is much greater than would be achieved on typically sized detergent granules (0.5-2 mm diameter sphere).
- this surface area to volume ratio must be greater than 3 mm -1 .
- the coating thickness is inversely proportional to this coefficient and hence for the coating the ratio "Surface area of coated particle" divided by "Volume of coated particle” should be less than 15 mm -1 .
- the coated detergent particle is the coated detergent particle
- the coated detergent particle comprises from 70 to 100 wt %, preferably 85 to 90 wt %, of a detergent composition in a package.
- the coated detergent particles are substantially the same shape and size by this is meant that at least 90 to 100 % of the coated laundry detergent particles in the in the x, y and z dimensions are within a 20 %, preferably 10%, variable from the largest to the smallest coated laundry detergent particle in the corresponding dimension.
- the coated particles preferably comprise from 0 to 15 wt % water, more preferably 0 to 10 wt %, most preferably from 1 to 5 wt % water, at 293K and 50% relative humidity. This facilitates the storage stability of the particle and its mechanical properties.
- ingredients described below may be present in the coating or the core.
- the coated laundry detergent particle preferably comprises a fluorescent agent (optical brightener).
- fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
- the total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt %, more preferably 0.01 to 1.0 wt %. Suitable Fluorescers for use in the invention are described in chapter 7 of Industrial Dyes edited by K. Hunger 2003 Wiley-VCH ISBN 3-527-30426-6 .
- Preferred fluorescers are selected from the classes distyrylbiphenyls, triazinylaminostilbenes, bis(1,2,3-triazol-2-yl)stilbenes, bis(benzo[b]furan-2-yl)biphenyls, 1,3-diphenyl-2-pyrazolines and courmarins.
- the fluorescer is preferably sulphonated.
- Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
- Di-styryl biphenyl compounds e.g. Tinopal (Trade Mark) CBS-X
- Di-amine stilbene di-sulphonic acid compounds e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH
- Pyrazoline compounds e.g. Blankophor SN.
- Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2'disulfonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfostyryl)biphenyl.
- Tinopal® DMS is the disodium salt of disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate.
- Tinopal® CBS is the disodium salt of disodium 4,4'-bis(2-sulfostyryl)biphenyl.
- the composition comprises a perfume.
- the perfume is preferably in the range from 0.001 to 3 wt %, most preferably 0.1 to 1 wt %.
- CTFA Cosmetic, Toiletry and Fragrance Association
- Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co .
- compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
- top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]).
- Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
- the perfume may be added into the core either as a liquid or as encapsulated perfume particles.
- the perfume may be mixed with a nonionic material and applied as a coating the extruded particles, for example by spraying it mixed with molten nonionic surfactant.
- Perfume may also be introduced into the composition by means of a separate perfume granule and then the detergent particle does not need to comprise any perfume.
- the coated detergent particles do not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, peracid.
- a peroxygen bleach e.g., sodium percarbonate, sodium perborate, peracid.
- the composition may comprise one or more further polymers.
- further polymers are carboxymethylcellulose, poly (ethylene glycol), poly(vinyl alcohol), polyethylene imines, ethoxylated polyethylene imines, water soluble polyester polymers polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
- One or more enzymes are preferably present in the composition.
- the level of each enzyme is from 0.0001 wt% to 0.5 wt% protein.
- enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
- Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580 , a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes ( EP 218 272 ), P. cepacia ( EP 331 376 ), P. stutzeri ( GB 1,372,034 ), P.
- lipase variants such as those described in WO 92/05249 , WO 94/01541 , EP 407 225 , EP 260 105 , WO 95/35381 , WO 96/00292 , WO 95/30744 , WO 94/25578 , WO 95/14783 , WO 95/22615 , WO 97/04079 and WO 97/07202 , WO 00/60063 , WO 09/107091 and WO09/111258 .
- Preferred lipase enzymes include LipolaseTM and Lipolase UltraTM, LipexTM (Novozymes A/S) and LipodeanTM.
- the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32.
- phospholipase is an enzyme that has activity towards phospholipids.
- Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
- Phospholipases are enzymes that participate in the hydrolysis of phospholipids.
- phospholipases A1 and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
- lysophospholipase or phospholipase B
- Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
- proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included.
- the protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease.
- Suitable protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM, DuralaseTM, DyrazymTM, EsperaseTM, EverlaseTM, PolarzymeTM, and KannaseTM, (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, and FN3TM (Genencor International Inc.).
- the method of the invention may be carried out in the presence of cutinase. classified in EC 3.1.1.74.
- the cutinase used according to the invention may be of any origin.
- cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
- Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1,296,839 , or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060 .
- Suitable amylases are DuramylTM, TermamylTM, Termamyl UltraTM , NatalaseTM, StainzymeTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (from Genencor International Inc.).
- Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307 , US 5,648,263 , US 5,691,178 , US 5,776,757 , WO 89/09259 , WO 96/029397 , and WO 98/012307 .
- Cellulases include CelluzymeTM, CarezymeTM, EndolaseTM, RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation).
- Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618 , WO 95/10602 , and WO 98/15257 . Peroxidases include GuardzymeTM and NovozymTM 51004 (Novozymes A/S).
- Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708 .
- a polyol such as propylene glycol or glycerol
- a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
- Sequestrants may be present in the detergent particles.
- the core of the particles was extruded substantially as described in WO 2010/122050 .
- the coating of the core is substantially as described in WO 2010/122050 .
- Table 1 Ingredient % Inclusion NaLAS 20.9
- the sodium carbonate is present as a coating and the remainder of the ingredients is present as a core.
- table 2 This formulation was used to demonstrate the concentrated nature of the particle of table 1.
- table 1 For convenience the formulation in table 1 is referred to as a non-peroxide composition.
- the washing experiment was carried out using water at a total hardness of 25°FH (4:1 Ca:Mg). Washes were carried out at a liquor to cloth ratio of 4:1 with a total load weight of 3 Kg.
- the wash composition comprised of a mix of 50% cotton and 50% polyester.
- the non-peroxide composition was added at 38 g and the peroxide composition was added at 85g respectively to the wash.
- SRI Stain Removal Index
- the value of the stain removal index value is indicative of the amount of stain removed.
- non-peroxide formulation provides comparative results with the peroxide composition at a reduced dosage.
- Table 4 shows SRI values obtained during a 15°C wash.
- Table 4 Stain Peroxide Composition Non-Peroxide Composition Least Significant Difference Black Coffee of cotton 92.91 95.15 1.40 Black Tea on polyester 88.72 94.11 2.66 Red Wine on cotton 83.62 84.73 1.39
- non-peroxide formulation provides superior results compared to the peroxide composition at a reduced dosage.
- the oblate spheroid is formed by a malleable circular exudate being cut as it exits a conduit.
- the inner section of the exudate travels a greater speed than the edge of the exudate as it is cut forming the "oblate spheroid" shape (discs with rounded surfaces).
- the coating process also serves to further round the edges of the "oblate spheroid".
- detergent manufacture will appreciate that there will be some deviation in the exactness of the "oblate spheroids”.
- the BD container was fitted with a removable collar to extend the height of the container. This extended container was then filled via the poured BD technique. The extended container was then placed on a Retsch Sieve Shaker and allowed to vibrate/tap for 5 min using the 0.2mm/"g" setting on the instrument. The collar was then removed and the excess powder levelled as per the standard BD measurement, the mass of the container measured and the Tapped BD calculated in the usual way.
- Standard DFR Dynamic Flow Rate
- a cylindrical glass tube having an internal diameter of 35 mm and a length of 600 mm.
- the tube is securely clamped with its longitudinal axis vertical. Its lower end is terminated by means of a smooth cone of polyvinyl chloride having an internal angle of 15 DEG and a lower outlet orifice of diameter 22.5 mm.
- a beam sensor is positioned 150 mm above the outlet, and a second beam sensor is positioned 250 mm above the first sensor.
- the outlet orifice is temporarily closed, for example, by covering with a piece of card, and detergent composition is poured into the top of the cylinder until the detergent composition level is about 100 mm above the upper sensor.
- the outlet is then opened and the time t (seconds) taken for the detergent composition level to fall from the upper sensor to the lower sensor is measured electronically.
- the DFR is the tube volume between the sensors, divided by the time measured.
- the coated non-spherical large particles despite their superior appearance to the uncoated core particles have a lower DFR then the uncoated ones, hence the coating is improving appearance but not the flow.
- the coated particles do have a very consistent DFR. They seem to flow the same way reliably no matter what their history.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12159247.1A EP2639291A1 (de) | 2012-03-13 | 2012-03-13 | Verpackte partikelförmige Reinigungsmittelzusammensetzung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12159247.1A EP2639291A1 (de) | 2012-03-13 | 2012-03-13 | Verpackte partikelförmige Reinigungsmittelzusammensetzung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2639291A1 true EP2639291A1 (de) | 2013-09-18 |
Family
ID=45877981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12159247.1A Ceased EP2639291A1 (de) | 2012-03-13 | 2012-03-13 | Verpackte partikelförmige Reinigungsmittelzusammensetzung |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2639291A1 (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016134102A1 (en) * | 2015-02-18 | 2016-08-25 | The Dial Corporation | Solid state detergent in a transparent container |
WO2018048364A1 (en) * | 2016-09-08 | 2018-03-15 | Hayat Kimya San. A. Ş. | Laundering of fabrics woven from polyester fibres |
EP3339407A1 (de) * | 2016-12-22 | 2018-06-27 | The Procter & Gamble Company | Wäschewaschmittelzusammensetzung |
WO2018113644A1 (en) * | 2016-12-22 | 2018-06-28 | The Procter & Gamble Company | Laundry detergent composition |
WO2018113643A1 (en) * | 2016-12-22 | 2018-06-28 | The Procter & Gamble Company | Laundry detergent composition |
WO2018113645A1 (en) * | 2016-12-22 | 2018-06-28 | The Procter & Gamble Company | Laundry detergent composition |
WO2018113646A1 (en) * | 2016-12-22 | 2018-06-28 | The Procter & Gamble Company | Laundry detergent composition |
WO2020109227A1 (en) | 2018-11-28 | 2020-06-04 | Unilever N.V. | Large particles |
Citations (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1296839A (de) | 1969-05-29 | 1972-11-22 | ||
GB1372034A (en) | 1970-12-31 | 1974-10-30 | Unilever Ltd | Detergent compositions |
US4269722A (en) * | 1976-09-29 | 1981-05-26 | Colgate-Palmolive Company | Bottled particulate detergent |
EP0070074A2 (de) | 1981-07-13 | 1983-01-19 | THE PROCTER & GAMBLE COMPANY | Schäumende, oberflächenaktive Verbindungen enthaltende Zusammensetzungen |
US4435307A (en) | 1980-04-30 | 1984-03-06 | Novo Industri A/S | Detergent cellulase |
EP0218272A1 (de) | 1985-08-09 | 1987-04-15 | Gist-Brocades N.V. | Lipolytische Enzyme und deren Anwendung in Reinigungsmitteln |
EP0258068A2 (de) | 1986-08-29 | 1988-03-02 | Novo Nordisk A/S | Enzymhaltiger Reinigungsmittelzusatz |
EP0260105A2 (de) | 1986-09-09 | 1988-03-16 | Genencor, Inc. | Herstellung von Enzymen mit geänderter Aktivität |
EP0305216A1 (de) | 1987-08-28 | 1989-03-01 | Novo Nordisk A/S | Rekombinante Humicola-Lipase und Verfahren zur Herstellung von rekombinanten Humicola-Lipasen |
JPS6474992A (en) | 1987-09-16 | 1989-03-20 | Fuji Oil Co Ltd | Dna sequence, plasmid and production of lipase |
EP0328177A2 (de) | 1988-02-10 | 1989-08-16 | Unilever N.V. | Flüssige Reinigungsmittel |
EP0331376A2 (de) | 1988-02-28 | 1989-09-06 | Amano Pharmaceutical Co., Ltd. | Rekombinante DNA, sie enthaltendes Bakterium der Gattung Pseudomonas und ihre Verwendung zur Herstellung von Lipase |
WO1989009259A1 (en) | 1988-03-24 | 1989-10-05 | Novo-Nordisk A/S | A cellulase preparation |
EP0407225A1 (de) | 1989-07-07 | 1991-01-09 | Unilever Plc | Enzyme und enzymhaltiges Reinigungsmittel |
WO1991016422A1 (de) | 1990-04-14 | 1991-10-31 | Kali-Chemie Aktiengesellschaft | Alkalische bacillus-lipasen, hierfür codierende dna-sequenzen sowie bacilli, die diese lipasen produzieren |
WO1992005249A1 (en) | 1990-09-13 | 1992-04-02 | Novo Nordisk A/S | Lipase variants |
WO1992019708A1 (en) | 1991-04-30 | 1992-11-12 | The Procter & Gamble Company | Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme |
WO1992019709A1 (en) | 1991-04-30 | 1992-11-12 | The Procter & Gamble Company | Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme |
WO1993024618A1 (en) | 1992-06-01 | 1993-12-09 | Novo Nordisk A/S | Peroxidase variants with improved hydrogen peroxide stability |
WO1994001541A1 (en) | 1992-07-06 | 1994-01-20 | Novo Nordisk A/S | C. antarctica lipase and lipase variants |
WO1994025578A1 (en) | 1993-04-27 | 1994-11-10 | Gist-Brocades N.V. | New lipase variants for use in detergent applications |
WO1995006720A1 (fr) | 1993-08-30 | 1995-03-09 | Showa Denko K.K. | Nouvelle lipase, micro-organisme la produisant, procede de production de cette lipase, et utilisation de ladite lipase |
WO1995010602A1 (en) | 1993-10-13 | 1995-04-20 | Novo Nordisk A/S | H2o2-stable peroxidase variants |
WO1995014783A1 (fr) | 1993-11-24 | 1995-06-01 | Showa Denko K.K. | Gene de lipase et lipase variante |
WO1995022615A1 (en) | 1994-02-22 | 1995-08-24 | Novo Nordisk A/S | A method of preparing a variant of a lipolytic enzyme |
WO1995026397A1 (en) | 1994-03-29 | 1995-10-05 | Novo Nordisk A/S | Alkaline bacillus amylase |
WO1995030744A2 (en) | 1994-05-04 | 1995-11-16 | Genencor International Inc. | Lipases with improved surfactant resistance |
WO1995035381A1 (en) | 1994-06-20 | 1995-12-28 | Unilever N.V. | Modified pseudomonas lipases and their use |
WO1996000292A1 (en) | 1994-06-23 | 1996-01-04 | Unilever N.V. | Modified pseudomonas lipases and their use |
WO1996012012A1 (fr) | 1994-10-14 | 1996-04-25 | Solvay S.A. | Lipase, micro-organisme la produisant, procede de preparation de cette lipase et utilisation de celle-ci |
WO1996013580A1 (en) | 1994-10-26 | 1996-05-09 | Novo Nordisk A/S | An enzyme with lipolytic activity |
WO1996027002A1 (fr) | 1995-02-27 | 1996-09-06 | Novo Nordisk A/S | Nouveau gene de lipase et procede de production de lipase a l'aide de celui-ci |
WO1996029397A1 (en) | 1995-03-17 | 1996-09-26 | Novo Nordisk A/S | Novel endoglucanases |
WO1997004079A1 (en) | 1995-07-14 | 1997-02-06 | Novo Nordisk A/S | A modified enzyme with lipolytic activity |
WO1997007202A1 (en) | 1995-08-11 | 1997-02-27 | Novo Nordisk A/S | Novel lipolytic enzymes |
US5648263A (en) | 1988-03-24 | 1997-07-15 | Novo Nordisk A/S | Methods for reducing the harshness of a cotton-containing fabric |
WO1998012307A1 (en) | 1996-09-17 | 1998-03-26 | Novo Nordisk A/S | Cellulase variants |
WO1998015257A1 (en) | 1996-10-08 | 1998-04-16 | Novo Nordisk A/S | Diaminobenzoic acid derivatives as dye precursors |
EP0993505A1 (de) | 1997-06-16 | 2000-04-19 | Unilever Plc | Herstellung von waschmittelgranulaten |
WO2000053714A1 (en) * | 1999-03-09 | 2000-09-14 | The Procter & Gamble Company | Process for producing coated detergent particles |
WO2000060060A2 (en) | 1999-03-31 | 2000-10-12 | Novozymes A/S | Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same |
WO2000060063A1 (en) | 1999-03-31 | 2000-10-12 | Novozymes A/S | Lipase variant |
EP1187903A1 (de) | 1999-06-21 | 2002-03-20 | The Procter & Gamble Company | Verfahren zum beschichten von waschmittelgranulaten in einem fluidisierten gutbett |
WO2008007318A2 (en) | 2006-07-07 | 2008-01-17 | The Procter & Gamble Company | Detergent compositions |
WO2009087524A1 (en) | 2008-01-04 | 2009-07-16 | The Procter & Gamble Company | Enzyme and fabric hueing agent containing compositions |
WO2009090576A2 (en) | 2008-01-11 | 2009-07-23 | Procter & Gamble International Operations Sa | Cleaning and/or treatment compositions |
WO2009107091A2 (en) | 2008-02-29 | 2009-09-03 | The Procter & Gamble Company | Detergent composition comprising lipase |
WO2009111258A2 (en) | 2008-02-29 | 2009-09-11 | The Procter & Gamble Company | Detergent composition comprising lipase |
WO2009148983A1 (en) | 2008-06-06 | 2009-12-10 | The Procter & Gamble Company | Detergent composition comprising a variant of a family 44 xyloglucanase |
WO2010122050A2 (en) | 2009-04-24 | 2010-10-28 | Unilever Plc | Manufacture of high active detergent particles |
-
2012
- 2012-03-13 EP EP12159247.1A patent/EP2639291A1/de not_active Ceased
Patent Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1296839A (de) | 1969-05-29 | 1972-11-22 | ||
GB1372034A (en) | 1970-12-31 | 1974-10-30 | Unilever Ltd | Detergent compositions |
US4269722A (en) * | 1976-09-29 | 1981-05-26 | Colgate-Palmolive Company | Bottled particulate detergent |
US4435307A (en) | 1980-04-30 | 1984-03-06 | Novo Industri A/S | Detergent cellulase |
EP0070074A2 (de) | 1981-07-13 | 1983-01-19 | THE PROCTER & GAMBLE COMPANY | Schäumende, oberflächenaktive Verbindungen enthaltende Zusammensetzungen |
EP0218272A1 (de) | 1985-08-09 | 1987-04-15 | Gist-Brocades N.V. | Lipolytische Enzyme und deren Anwendung in Reinigungsmitteln |
EP0258068A2 (de) | 1986-08-29 | 1988-03-02 | Novo Nordisk A/S | Enzymhaltiger Reinigungsmittelzusatz |
EP0260105A2 (de) | 1986-09-09 | 1988-03-16 | Genencor, Inc. | Herstellung von Enzymen mit geänderter Aktivität |
EP0305216A1 (de) | 1987-08-28 | 1989-03-01 | Novo Nordisk A/S | Rekombinante Humicola-Lipase und Verfahren zur Herstellung von rekombinanten Humicola-Lipasen |
JPS6474992A (en) | 1987-09-16 | 1989-03-20 | Fuji Oil Co Ltd | Dna sequence, plasmid and production of lipase |
EP0328177A2 (de) | 1988-02-10 | 1989-08-16 | Unilever N.V. | Flüssige Reinigungsmittel |
EP0331376A2 (de) | 1988-02-28 | 1989-09-06 | Amano Pharmaceutical Co., Ltd. | Rekombinante DNA, sie enthaltendes Bakterium der Gattung Pseudomonas und ihre Verwendung zur Herstellung von Lipase |
US5691178A (en) | 1988-03-22 | 1997-11-25 | Novo Nordisk A/S | Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase |
WO1989009259A1 (en) | 1988-03-24 | 1989-10-05 | Novo-Nordisk A/S | A cellulase preparation |
US5648263A (en) | 1988-03-24 | 1997-07-15 | Novo Nordisk A/S | Methods for reducing the harshness of a cotton-containing fabric |
US5776757A (en) | 1988-03-24 | 1998-07-07 | Novo Nordisk A/S | Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof |
EP0407225A1 (de) | 1989-07-07 | 1991-01-09 | Unilever Plc | Enzyme und enzymhaltiges Reinigungsmittel |
WO1991016422A1 (de) | 1990-04-14 | 1991-10-31 | Kali-Chemie Aktiengesellschaft | Alkalische bacillus-lipasen, hierfür codierende dna-sequenzen sowie bacilli, die diese lipasen produzieren |
WO1992005249A1 (en) | 1990-09-13 | 1992-04-02 | Novo Nordisk A/S | Lipase variants |
WO1992019709A1 (en) | 1991-04-30 | 1992-11-12 | The Procter & Gamble Company | Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme |
WO1992019708A1 (en) | 1991-04-30 | 1992-11-12 | The Procter & Gamble Company | Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme |
WO1993024618A1 (en) | 1992-06-01 | 1993-12-09 | Novo Nordisk A/S | Peroxidase variants with improved hydrogen peroxide stability |
WO1994001541A1 (en) | 1992-07-06 | 1994-01-20 | Novo Nordisk A/S | C. antarctica lipase and lipase variants |
WO1994025578A1 (en) | 1993-04-27 | 1994-11-10 | Gist-Brocades N.V. | New lipase variants for use in detergent applications |
WO1995006720A1 (fr) | 1993-08-30 | 1995-03-09 | Showa Denko K.K. | Nouvelle lipase, micro-organisme la produisant, procede de production de cette lipase, et utilisation de ladite lipase |
WO1995010602A1 (en) | 1993-10-13 | 1995-04-20 | Novo Nordisk A/S | H2o2-stable peroxidase variants |
WO1995014783A1 (fr) | 1993-11-24 | 1995-06-01 | Showa Denko K.K. | Gene de lipase et lipase variante |
WO1995022615A1 (en) | 1994-02-22 | 1995-08-24 | Novo Nordisk A/S | A method of preparing a variant of a lipolytic enzyme |
WO1995026397A1 (en) | 1994-03-29 | 1995-10-05 | Novo Nordisk A/S | Alkaline bacillus amylase |
WO1995030744A2 (en) | 1994-05-04 | 1995-11-16 | Genencor International Inc. | Lipases with improved surfactant resistance |
WO1995035381A1 (en) | 1994-06-20 | 1995-12-28 | Unilever N.V. | Modified pseudomonas lipases and their use |
WO1996000292A1 (en) | 1994-06-23 | 1996-01-04 | Unilever N.V. | Modified pseudomonas lipases and their use |
WO1996012012A1 (fr) | 1994-10-14 | 1996-04-25 | Solvay S.A. | Lipase, micro-organisme la produisant, procede de preparation de cette lipase et utilisation de celle-ci |
WO1996013580A1 (en) | 1994-10-26 | 1996-05-09 | Novo Nordisk A/S | An enzyme with lipolytic activity |
WO1996027002A1 (fr) | 1995-02-27 | 1996-09-06 | Novo Nordisk A/S | Nouveau gene de lipase et procede de production de lipase a l'aide de celui-ci |
WO1996029397A1 (en) | 1995-03-17 | 1996-09-26 | Novo Nordisk A/S | Novel endoglucanases |
WO1997004079A1 (en) | 1995-07-14 | 1997-02-06 | Novo Nordisk A/S | A modified enzyme with lipolytic activity |
WO1997007202A1 (en) | 1995-08-11 | 1997-02-27 | Novo Nordisk A/S | Novel lipolytic enzymes |
WO1998012307A1 (en) | 1996-09-17 | 1998-03-26 | Novo Nordisk A/S | Cellulase variants |
WO1998015257A1 (en) | 1996-10-08 | 1998-04-16 | Novo Nordisk A/S | Diaminobenzoic acid derivatives as dye precursors |
EP0993505A1 (de) | 1997-06-16 | 2000-04-19 | Unilever Plc | Herstellung von waschmittelgranulaten |
WO2000053714A1 (en) * | 1999-03-09 | 2000-09-14 | The Procter & Gamble Company | Process for producing coated detergent particles |
WO2000060060A2 (en) | 1999-03-31 | 2000-10-12 | Novozymes A/S | Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same |
WO2000060063A1 (en) | 1999-03-31 | 2000-10-12 | Novozymes A/S | Lipase variant |
EP1187903A1 (de) | 1999-06-21 | 2002-03-20 | The Procter & Gamble Company | Verfahren zum beschichten von waschmittelgranulaten in einem fluidisierten gutbett |
EP1187903B1 (de) * | 1999-06-21 | 2006-03-15 | The Procter & Gamble Company | Verfahren zum beschichten von waschmittelgranulaten in einem fluidisierten gutbett |
WO2008007318A2 (en) | 2006-07-07 | 2008-01-17 | The Procter & Gamble Company | Detergent compositions |
WO2009087524A1 (en) | 2008-01-04 | 2009-07-16 | The Procter & Gamble Company | Enzyme and fabric hueing agent containing compositions |
WO2009090576A2 (en) | 2008-01-11 | 2009-07-23 | Procter & Gamble International Operations Sa | Cleaning and/or treatment compositions |
WO2009107091A2 (en) | 2008-02-29 | 2009-09-03 | The Procter & Gamble Company | Detergent composition comprising lipase |
WO2009111258A2 (en) | 2008-02-29 | 2009-09-11 | The Procter & Gamble Company | Detergent composition comprising lipase |
WO2009148983A1 (en) | 2008-06-06 | 2009-12-10 | The Procter & Gamble Company | Detergent composition comprising a variant of a family 44 xyloglucanase |
WO2010122050A2 (en) | 2009-04-24 | 2010-10-28 | Unilever Plc | Manufacture of high active detergent particles |
Non-Patent Citations (12)
Title |
---|
"1992 International Buyers Guide", 1992, CFTA PUBLICATIONS |
"Colour Physics for Industry", 1997, THE SOCIETY OF DYERS AND COLOURISTS |
"Industrial Dyes", 2003, WILEY-VCH |
"McCutcheon's Emulsifiers and Detergents", MANUFACTURING CONFECTIONERS COMPANY |
"OPD 1993 Chemicals Buyers Directory", 1993, SCHNELL PUBLISHING CO |
DARTOIS ET AL., BIOCHEMICA ET BIOPHYSICA ACTA, vol. 1131, 1993, pages 253 - 360 |
H. STACHE: "Tenside Taschenbuch", 1981, CARL HAUSER VERLAG |
JAKOBI G ET AL: "Detergents and Textile Washing. Principles and Practice", part 3.2 Builders 1 January 1987, VCH VERLAGSGESELLSCHAFT, Weinheim, DE, ISBN: 3-527-26810-3, pages: 63 - 71, XP002681068 * |
POUCHER, JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, vol. 6, no. 2, 1955, pages 80 |
POWDER TECHNOLOGY, vol. 65, 1991, pages 257 - 272 |
SCHWARTZ; PERRY: "Surface Active Agents", vol. 2, 1949, INTERSCIENCE |
SCHWARTZ; PERRY; BERCH: "SURFACE ACTIVE AGENTS", 1958, INTERSCIENCE |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016134102A1 (en) * | 2015-02-18 | 2016-08-25 | The Dial Corporation | Solid state detergent in a transparent container |
US9512388B2 (en) | 2015-02-18 | 2016-12-06 | Henkel Ag & Co. Kgaa | Solid state detergent in a transparent container |
WO2018048364A1 (en) * | 2016-09-08 | 2018-03-15 | Hayat Kimya San. A. Ş. | Laundering of fabrics woven from polyester fibres |
EP3339407A1 (de) * | 2016-12-22 | 2018-06-27 | The Procter & Gamble Company | Wäschewaschmittelzusammensetzung |
WO2018113644A1 (en) * | 2016-12-22 | 2018-06-28 | The Procter & Gamble Company | Laundry detergent composition |
WO2018113643A1 (en) * | 2016-12-22 | 2018-06-28 | The Procter & Gamble Company | Laundry detergent composition |
WO2018113645A1 (en) * | 2016-12-22 | 2018-06-28 | The Procter & Gamble Company | Laundry detergent composition |
WO2018113646A1 (en) * | 2016-12-22 | 2018-06-28 | The Procter & Gamble Company | Laundry detergent composition |
WO2020109227A1 (en) | 2018-11-28 | 2020-06-04 | Unilever N.V. | Large particles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2011316078B2 (en) | Packaged particulate detergent composition | |
EP2639291A1 (de) | Verpackte partikelförmige Reinigungsmittelzusammensetzung | |
US9062281B2 (en) | Particulate detergent compositions comprising fluorescer | |
AU2011315788A1 (en) | Particulate detergent compositions comprising fluorescer | |
US9688948B2 (en) | Laundry detergent particles | |
WO2012049178A1 (en) | Laundry detergent particles | |
EP2627577B1 (de) | Packung mit einer waschmittelzusammensetzung, und waschverfahren mit dieser packung | |
EP2627759B1 (de) | Verpackung und abgabe einer reinigungsmittelzusammensetzung | |
EP2627755B1 (de) | Verpackte partikelförmige reinigungsmittelzusammensetzung | |
EP2627753A1 (de) | Waschmittelpartikel | |
EP2627578B1 (de) | Transparente packung für waschmittelzusammensetzungen | |
WO2018234003A1 (en) | PACKAGING AND DISTRIBUTION OF DETERGENT COMPOSITIONS | |
WO2012049032A1 (en) | Refill and refillable packages of concentrated particulate detergent compositions | |
WO2012049034A1 (en) | Packaging and dispensing of detergent compositions | |
EP2627576B1 (de) | Verpackte konzentrierte partikelförmige reinigungsmittelzusammensetzung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20131011 |