EP2623626A1 - Non-oriented electric steel plate without corrugated fault and production method thereof - Google Patents
Non-oriented electric steel plate without corrugated fault and production method thereof Download PDFInfo
- Publication number
- EP2623626A1 EP2623626A1 EP11827949.6A EP11827949A EP2623626A1 EP 2623626 A1 EP2623626 A1 EP 2623626A1 EP 11827949 A EP11827949 A EP 11827949A EP 2623626 A1 EP2623626 A1 EP 2623626A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- slab
- temperature
- steel sheet
- oriented electrical
- controlled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 47
- 239000010959 steel Substances 0.000 title claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 75
- 230000008569 process Effects 0.000 claims abstract description 53
- 238000005098 hot rolling Methods 0.000 claims abstract description 38
- 230000007547 defect Effects 0.000 claims abstract description 32
- 238000005096 rolling process Methods 0.000 claims abstract description 23
- 239000007788 liquid Substances 0.000 claims abstract description 22
- 239000000498 cooling water Substances 0.000 claims abstract description 20
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 20
- 238000009749 continuous casting Methods 0.000 claims abstract description 18
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 239000000126 substance Substances 0.000 claims abstract description 13
- 238000005097 cold rolling Methods 0.000 claims abstract description 12
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 12
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 238000000137 annealing Methods 0.000 claims abstract description 7
- 238000003723 Smelting Methods 0.000 claims abstract description 5
- 239000002253 acid Substances 0.000 claims abstract description 3
- 239000011248 coating agent Substances 0.000 claims abstract description 3
- 238000000576 coating method Methods 0.000 claims abstract description 3
- 229910052751 metal Inorganic materials 0.000 claims abstract description 3
- 239000002184 metal Substances 0.000 claims abstract description 3
- 238000005554 pickling Methods 0.000 claims abstract description 3
- 238000007781 pre-processing Methods 0.000 claims abstract description 3
- 238000007670 refining Methods 0.000 claims abstract description 3
- 239000012535 impurity Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 abstract description 17
- 238000001816 cooling Methods 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 description 53
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 25
- 238000003756 stirring Methods 0.000 description 18
- 239000011572 manganese Substances 0.000 description 14
- 230000001276 controlling effect Effects 0.000 description 12
- 230000005389 magnetism Effects 0.000 description 12
- 239000000047 product Substances 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 239000000835 fiber Substances 0.000 description 7
- 238000001953 recrystallisation Methods 0.000 description 7
- 238000005266 casting Methods 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910000976 Electrical steel Inorganic materials 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- -1 MnS Chemical compound 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000006396 nitration reaction Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D25/00—Special casting characterised by the nature of the product
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/18—Controlling or regulating processes or operations for pouring
- B22D11/181—Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
- B22D11/182—Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by measuring temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/22—Controlling or regulating processes or operations for cooling cast stock or mould
- B22D11/225—Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1277—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
Definitions
- the present invention relates to a non-oriented electrical steel sheet and a manufacturing method thereof, especially to a middle steel grade non-oriented electrical steel sheet without corrugated defect, which has an excellent magnetism, and a manufacturing method thereof.
- corrugated defect For a non-oriented electrical steel sheet having a high extent of silicon, in the surface of a finished strip, accidented waves, similar to corrugations, appear in a direction of rolling, which is generally called "corrugated defect". This defect will reduce a stacking coefficient of the finished strip notably, making the magnetism of the finished strip worse and the electrical resistance between insulating film layers decreased, thus reducing the service performance and life of terminal production. Therefore, almost all of users have a definite demand that a finished strip having corrugated defects is not allowed.
- the mechanism of the generation of the corrugated defects may be explained as follows: the equiaxed crystal ratio in the slab is low, whereas the columnar crystal is gross and growing.
- the growing direction of the columnar crystal ⁇ 001> which is the normal direction of (001), is the direction in which the heat flux gradient is the largest. In such a hot rolling process, the gross columnar crystal can not thoroughly break due to dynamic recovery and slow re-crystallization.
- the slab columnar crystals are easy to grow in the direction of heat flux, and form gross columnar crystals having a certain orienting relation, resulting in inhomogeneous deformations in a rolling process, the center in sheet thickness is fiber texture primarily after hot rolling process, and austenite and ferrite have no phase transition in subsequent process, and will not re-crystallize in the following cold rolling and annealing process, which does not make the homogeneity of the texture eliminated, and leaving behind to the finished product, finally forming accidented corrugated defects.
- the conventional methods for treating corrugated defects are mainly as follows: by utilizing electromagnetic stirring, the equiaxed crystal ratio in the slab may be improved, for example, in Japanese Patent Application Laid-open No. 49-39526 ; by adding the contents of carbon and manganese into steel, the phase transiting temperature in hot rolling process may be reduced, for example, in Japanese Patent Application Laid-open No. 48-49617 , Chinese Patent Application CN10127519 , CN1548569 and CN101139681 etc.; by utilizing low temperature pouring, the equiaxed crystal ratio in the slab may be improved, for example, in Japanese Patent Application Laid-open No. 53-14609 and No.
- the strip may re-crystallize sufficiently, for example, in Japanese Patent Application Laid-open No. 49-27420 , No. 49-38813 , No. 53-2332 , No. 61-69923 , Chinese Patent Application CN 1611616 and CN1548569 ; and by utilizing a normalized process, the strip may re-crystallize sufficiently, for example, in Japanese Patent Application Laid-open No. 61-127817 , etc.
- the equiaxed crystal ratio in the slab may be improved.
- This method utilizes electromagnetic stirring, the columnar crystals may break under electromagnetic force, and therefore, the effect thereof is the most effective.
- This method will remarkably reduce the columnar crystal ratio in the slab and improve the equiaxed crystal ratio in the slab, especially when utilizing electromagnetic stirring twice or more, and will effectively prohibit a secondary columnar crystal in the central area as well.
- the main disadvantage of this method is that the stirring effect depends on the content of silicon in steel and the electromagnetic stirring number.
- the equiaxed crystal in the slab is relatively easy to conglomerate, grow, and form a gross columnar crystal once again, therefore, it is necessary to utilize electromagnetic stirring twice or more and control the solidification effect of liquid steel strictly. Also, the manufacturing cost of the electromagnetic stirring is high.
- phase transiting temperature in hot rolling process may be reduced.
- This method is mainly conducted by adding the contents of carbon and manganese in steel, a phase transition occurs to the slab in the heating up and hot rolling process, accelerating dynamic recovery and re-crystallization, so as to eliminate gross deformation crystal grains.
- the main disadvantage of this method is that it is necessary to decarburize in annealing process, which is easy to produce inner oxide layer and inner nitration layer, making the magnetism of steel worse.
- the equiaxed crystal ratio in the slab may be improved.
- This method decreases the columnar crystal ratio in the slab and improves the ratio that the equiaxed crystal accounts for mainly by reducing the superheat of the liquid steel in the pouring process.
- the main disadvantage of this method is that it is demanded that the superheat scope of the liquid steel is very low, which is hard to control effectively, and which affects the normal control in the continuous casting process.
- the strip By increasing furnace tap temperature of the slab, adjusting heating-up speed of the slab, controlling end-rolling temperature in a planishing process, and controlling the degrees of reduction of the first and the last pass in the hot rolling process, the strip may re-crystallize sufficiently.
- This method is mainly conducted by increasing the furnace tap temperature of the slab, adjusting the heating-up speed of the slab, controlling the end-rolling temperature in a planishing process, and controlling the degrees of reduction of the first and the last pass in the hot rolling process, the gross columnar crystals in the slab may break, so as to prohibit the development of the gross deformation crystal grains as well as to make the strip re-crystallized sufficiently.
- the main disadvantage of this method is that increasing the furnace tap temperature of the slab will make the impurities such as MnS, AIN etc., solutionized intensively, thus make the magnetism of the finished strip worse. Meanwhile, in order to ensure the re-crystallization effect of the strip, the contents of impurity elements such as S, N etc., in steel are strictly demanded. Also, improving the degrees of reduction of the first and the last pass in the hot rolling process is restricted by self-capability of a rolling mill.
- the strip may re-crystallize sufficiently.
- the steel grade that has a high content of silicon needs to carry out the normalized process, one of the objects is to increase the re-crystallizing ratio in the hot rolling sheet, so as to avoid the generation of the corrugated defects.
- the main disadvantage of this method is that the manufacturing cost is very high, which is not applied in low or middle steel grade silicon steel of which the additional value is relatively low.
- the object of the present invention is to provide a non-oriented electrical steel sheet without the corrugated defect and a manufacturing method thereof.
- the manufacture of a middle steel grade non-oriented electrical steel sheet without corrugated defect can be accomplished, which has advantages of easy operation, low cost, energy conservation and environmental protection, and excellent magnetism, by strictly controlling the cooling speed of the slab in continuous casting and pouring process, the temperature difference in the length direction of the slab in the heating furnace, and by controlling the temperature drop before planishing the slab.
- the casting speed of the slab in continuous casting and pouring process is normal, so that the relatively high superheat of the liquid steel can be maintained, and the relatively low furnace tap temperature of the slab, and normal end-rolling temperature and coiling temperature etc., can be maintained in the hot rolling and steel reheating process, so that the strip in the hot rolling process does not need to carry out a normalized process.
- the technical solution of the present invention is that a middle steel grade non-oriented electrical steel sheet without the corrugated defect, wherein the weight percentage of the chemical composition thereof is that C is no more than 0.005%, Si is 1.2-2.2%, Mn is 0.2-0.4%, P is no more than 0.2%, S is no more than 0.005%, Al is 0.2-0.6%, N is no more than 0.005%, O is no more than 0.005%, and a balance substantially being Fe and inevitable impurities.
- C is no more than 0.005%.
- C is an element for strongly inhibiting the growth of crystal grains, which is easy to result in the increase of iron loss of a strip, producing the serious magnetic aging. Meanwhile, C may further widen ⁇ phase, and increase the transition amount between ⁇ phase and ⁇ phase when in the normalized process, so as to reduce Acl point notably, and to fine crystallizing structure. Therefore, C is necessary to be controlled to no more than 0.005%.
- Si is 1.2%-2.2%.Si is an effective element for increasing the electrical resistivity of the steel. If the content of Si is lower than 1.2%, the electromagnetic performance of the steel is not good, whereas if the content of Si is higher than 2.2%, phase change will not occur in the hot rolling process, and the cold-working performance is not good.
- Al is 0.2%-0.6%.Al is an effective element for increasing the electrical resistivity of the steel. If the content of Al is lower than 0.2%, the electromagnetic performance is not stable, whereas if the content of Al is higher than 0.6%, the smelting and pouring process will become difficult, thus increasing the manufacturing cost.
- Mn is 0.2%-0.4%.Like the elements Si and Al, Mn may increase the electrical resistivity of the steel, as well as improve the surface state of the electrical steel, so it is necessary to add no less than 0.2% of Mn. While the content of Mn is higher than 0.4%, the smelting and pouring process will become difficult, thus increasing the manufacturing cost.
- P is no more than 0.2%.Adding some phosphorus into steel can improve the workability of steel sheet, but if the content of phosphorus is more than 0.2%, it instead makes the cold rolling workability of steel plate deteriorated.
- S is no more than 0.005%. If the content of S is more than 0.005%, the deposition amount of sulfide such as MnS, will increase greatly, thus strongly preventing crystal grains growing and making iron loss worse.
- N is no more than 0.005%. If the content of N is more than 0.005%, the deposition amount of nitride such as AIN, will increase greatly, thus strongly preventing crystal grains growing and making iron loss worse.
- O is no more than 0.005%. If the content of O is more than 0.005%, the impurity amount of oxidate such as Al 2 O 3 , will increase greatly, thus strongly preventing crystal grains growing and making iron loss worse.
- a method for manufacturing a non-oriented electrical steel sheet without corrugated defect of the present invention comprises the following steps:
- the middle steel grade non-oriented electrical steel sheet without corrugated defect of the present invention and the manufacturing method thereof comprise the following steps:
- the temperature difference between the random two points in the length direction when the slab is heated is controlled to be lower than 25 °C; the temperature difference between the watermark points of the slab is limited within 25 °C , meanwhile the residence time of the slab in after-firing zone should be no less than 45 min, so as to ensure uniform heating, making the temperatures of both surfaces of the slab close.
- the furnace tap temperature of the slab can be reduced to no higher than 1150 °C , avoiding the impurities such as MnS, AIN etc., solutionized intensively, which thus making the magnetism of the finished strip worse.
- Hot rolling sheet is rolled to have a thickness of 2.0mm-2.8mm.Before the rough rolling process and the planishing process, hot tops are respectively utilized to thermal insulate the slab and the intermediate billet, the entry temperature in the planishing process is controlled to no lower than 970 °C so as to facilitate sufficient re-crystallization, and the end-rolling temperature is controlled to about 850 °C , the coiling temperature is controlled to about 600 °C.
- the hot rolling is rolled to thick strip that has a thickness of 0.5mm, and then is annealed continuously in a dry atmosphere.
- the electromagnetic performance of the steel is further improved by warming up the finished strip quickly in a preheating zone, in which the heat-up speed is no less than 1000°C/min, and by controlling the atmosphere mode in furnace.
- the content of silicon when the content of silicon is less than 2.2%, the content of silicon does not affect the growth of the columnar crystal as greatly as the cooling speed of the slab, therefore, the water flowrate of cooling water in the continuous casting process can be adjusted to reduce the heat flux gradient of the slab in the growing direction of the columnar crystal, so that the ratio of gross and growing columnar crystals can be reduced effectively.
- the temperature of the slab at the location where the slab contacts the roller table is relatively low in the slab heating process, which affects the re-crystallization of the fiber texture in the interior of the slab, not making the homogeneity of the texture eliminated and leaving behind to the finished product, therefore, it is necessary to strictly control the temperature of the watermark point of the slab.
- the main reason on improving the entry temperature in the planishing process is to facilitate the break and elimination of the columnar crystals in the rolling process and improve the re-crystallization ratio of the fiber texture in the hot rolling strip.
- the content of silicon is no more than 1.2%, the phase change from ⁇ phase to ⁇ phase in the hot rolling process is sufficient, the corrugated defects will not occur in the surface of the subsequent finished product.
- the columnar crystals in the slab may be broken due to highly electromagnetic stirring force, as possible as to transit to fine equiaxed crystals, so as to improve the equiaxed crystal ratio in the slab greatly; or the phase change from ⁇ phase to ⁇ phase happens in the interior of the slab by increasing the furnace tap temperature of the slab in the heat process greatly, meanwhile the re-crystallization of the slab is improved by utilizing high temperature status to enlarge the re-crystallizing structure in the interior of the slab.
- the electromagnetic stirring technology is hard to match the superheat of the liquid steel precisely, if the superheat of the liquid steel is controlled improperly, the controlling effect of the electromagnetic stirring is not stable, which is hard to obtain the expecting effect; and by increasing the furnace tap temperature of the slab, the heating load distribution in the heating furnace will forward, making high temperature time zone relatively long, which affects the magnetism of the finished strip.
- This method is easy to result in mass defect at the edge of the strip with respect to high-silicon steel grade.
- the water flowrate of cooling water in the continuous casting process can be adjusted to reduce the heat flux gradient of the slab in the growing direction of the columnar crystal, so that the ratio of gross and growing columnar crystals can be reduced effectively. It is more important that this method is substantially affected by the change in the superheat of the liquid steel, so the range of application is relatively wide. Meanwhile, the adjustment on the water flowrate of cooling water is very simple and controllable, so the difficulty in implementation is low, the stability is good. Further, the equipment load may be reduced by utilizing lower furnace tap temperature of the slab, avoiding the deposition of fine impurities in the steel and affecting the magnetism of final product.
- the temperature at the watermark points in the slab may be adjusted to increase re-crystallizing ratio of the fiber texture of the slab in the hot rolling process, and to improve the homogeneity of the texture of the slab in the hot rolling strip, which facilitates to the corrugated defects in the surface of the finished strip.
- the chemical composition of the tundish liquid steel in the continuous casting process is controlled as follows: C is 0.001%, Si is 1.22%, Mn is 0.25%, P is 0.02%, S is 0.003%, Al is 0.33%, N is 0.001%, O is 0.004%, and a balance substantially being Fe and inevitable impurities.
- the average superheat of the liquid steel is 34.6 °C
- the casting speed is 1.07m/min
- the water flowrate of the cooling water is 185 l/min
- the temperature drop speed of the slab is 11.6min/°C
- the surface temperature of the slab at the outlet of a caster is 710 °C
- the equiaxed crystal ratio is 43%.
- the temperature difference between the watermark points is 22 °C
- the residence time in after-firing zone of the slab is 46 minutes.
- the rolling process will be carried out after heating for 3h at 1125°C, the temperature at the inlet in planishing process is 978 °C, the end-rolling temperature is 856 °C and the coiling temperature is 567 °C .
- the hot rolling sheet is rolled to 0.5mm thickness of strip with the single cold rolling method, and then is annealed continuously in a dry atmosphere. Corrugated defects are not generated in the surface of the finished strip, the iron loss is 4.743 W/kg, and the magnetic induction is 1.727T.
- the chemical composition of the tundish liquid steel in the continuous casting process is controlled as follows: C is 0.002%, Si is 1.42%, Mn is 0.30%, P is 0.06%, S is 0.002%, Al is 0.25%, N is 0.002%, O is 0.002%, and a balance substantially being Fe and inevitable impurities.
- the average superheat of the liquid steel is 31.4 °C
- the casting speed is 1.04m/min
- the water flowrate of the cooling water is 175 l/min
- the temperature drop speed of the slab is 9.6 min/°C
- the surface temperature of the slab at the outlet of a caster is 680 °C
- the equiaxed crystal ratio is 57%.
- the temperature difference between the watermark points is 22 °C
- the residence time in after-firing zone of the slab is 48 minutes.
- the rolling process will be carried out after heating for 3h at 1135 °C, the temperature at the inlet in planishing process is 973 °C, the end-rolling temperature is 853 °C and the coiling temperature is 563 °C.
- the hot rolling sheet is rolled to 0.5mm thickness of strip with the single cold rolling method, and then is annealed continuously in a dry atmosphere. Corrugated defects are not generated in the surface of the finished strip, the iron loss is 3.130 W/kg, and the magnetic induction is 1.741 T.
- the chemical composition of the tundish liquid steel in the continuous casting process is controlled as follows: C is 0.002%, Si is 1.49%, Mn is 0.49%, P is 0.02%, S is 0.003%, Al is 0.59%, N is 0.001%, O is 0.002%, and a balance substantially being Fe and inevitable impurities.
- the average superheat of the liquid steel is 28.7 °C , the casting speed is 0.99m/min, the water flowrate of the cooling water is 189 l/min, the temperature drop speed of the slab is 8.7 min/°C, the surface temperature of the slab at the outlet of a caster is 660°C and the equiaxed crystal ratio is 63%.
- the temperature difference between the watermark points is 24 °C, the residence time in after-firing zone of the slab is 53 minutes.
- the rolling process will be carried out after heating for 3h at 1102°C, the temperature at the inlet in planishing process is 983 °C, the end-rolling temperature is 854 °C and the coiling temperature is 575 °C.
- the hot rolling sheet is rolled to 0.5mm thickness of strip with the single cold rolling method, and then is annealed continuously in a dry atmosphere. Corrugated defects are not generated in the surface of the finished strip, the iron loss is 3.559 W/kg, and the magnetic induction is 1.737T.
- the chemical composition of the tundish liquid steel in the continuous casting process is controlled as follows: C is 0.001%, Si is 2.12%, Mn is 0.25%, P is 0.01%, S is 0.002%, Al is 0.36%, N is 0.001%, O is 0.004%, and a balance substantially being Fe and inevitable impurities.
- the average superheat of the liquid steel is 31.2°C
- the casting speed is 0.95m/min
- the water flowrate of the cooling water is 173 l/min
- the temperature drop speed of the slab is 13.2 min/°C
- the temperature difference between the watermark points is 20 °C
- the residence time in after-firing zone of the slab is 48 minutes.
- the rolling process will be carried out after heating for 3h at 1097°C
- the temperature at the inlet in planishing process is 972°C
- the end-rolling temperature is 844°C
- the coiling temperature is 583°C .
- the hot rolling sheet is rolled to 0.5mm thickness of strip with the single cold rolling method, and then is annealed continuously in a dry atmosphere. Corrugated defects are not generated in the surface of the finished strip, the iron loss is 2.833 W/kg, and the magnetic induction is 1.726T.
- the chemical composition of the tundish liquid steel in the continuous casting process is controlled as follows: C is 0.001%, Si is 1.47%, Mn is 0.32%, P is 0.02%, S is 0.003%, Al is 0.25%, N is 0.002%, O is 0.002%, and a balance substantially being Fe and inevitable impurities.
- the average superheat of the liquid steel is 28.9°C
- the casting speed is 1.03m/min
- the water flowrate of the cooling water is 257 l/min
- the temperature drop speed of the slab is 17.4 min/°C
- the temperature difference between the watermark points is 37 °C
- the residence time in after-firing zone of the slab is 41 minutes.
- the rolling process will be carried out after heating for 3h at 1153°C
- the temperature at the inlet in planishing process is 947°C
- the end-rolling temperature is 847°C
- the coiling temperature is 567°C .
- the hot rolling sheet is rolled to 0.5mm thickness of strip with the single cold rolling method, and then is annealed continuously in a dry atmosphere.
- the percentage of the generation of corrugated defects in the surface of the finished strip is as high as no less than 90%
- the iron loss is 3.273 W/kg
- the magnetic induction is 1.736T.
- Fig. 1 shows the relation between the water flowrate of the cooling water and the equiaxed crystal ratio in the slab.
- the equiaxed crystal ratio in the slab may be controlled when the superheat of the liquid steel is relatively high.
- the equiaxed crystal ratio in the slab when the water flowrate of the cooling water is 173 1/m, the equiaxed crystal ratio in the slab is up to 59%, in the comparative example, when the water flowrate of the cooling water is 257 1/min, the equiaxed crystal ratio in the slab is only 28%. Also, in the third embodiment, the control of the equiaxed crystal ratio in the slab is better, up to 63%.
- Fig. 2 shows the relation between the entry temperature in the hot rolling and planishing process and the incidence of the corrugated defects in a finished product. It is indicated in accordance with the statistical results that by increasing the entry temperature in the hot rolling and planishing process and up to more than 970°C, because the re-crystallizing ratio of the fiber texture of the slab in the hot rolling process is increased remarkably, the incidence of the corrugated defects in the finished strip may be reduced greatly.
- the entry temperatures in the hot rolling and planishing process of most of strips are less than 970°C, the percentage of the generation of corrugated defects in the surface of the finished strip is as high as no less than 90%.
- most of the entry temperatures in the hot rolling and planishing process of strips are more than 970°C, corrugated defects are not generated in the surface of the finished strip, respectively.
- Fig. 3 shows the relation between the furnace tap temperature of the slab and the magnetism of the finished product. The higher the furnace tap temperature of the slab is, the worse the magnetism of the finished product is.
- Figs. 4 and 5 are metallographic structures of strips in hot rolling process corresponding to different watermark point temperatures.
- the watermark point temperatures are all less than 25 °C in the first to fourth embodiments, so re-crystallizing structures of the strips in the hot rolling process are very homogeneous, the fiber textures disappear completely, whereas in the comparative example, the temperature at the watermark point is as high as 37 °C, the fiber texture of the strip in the hot rolling process is clear, which is hard to re-crystallized in the period of the subsequent cold rolling and annealing process, not being able to destroy the homogeneity of the structures and leaving behind to the finished product, finally forming accidented corrugated defects.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Continuous Casting (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
- The present invention relates to a non-oriented electrical steel sheet and a manufacturing method thereof, especially to a middle steel grade non-oriented electrical steel sheet without corrugated defect, which has an excellent magnetism, and a manufacturing method thereof.
- For a non-oriented electrical steel sheet having a high extent of silicon, in the surface of a finished strip, accidented waves, similar to corrugations, appear in a direction of rolling, which is generally called "corrugated defect". This defect will reduce a stacking coefficient of the finished strip notably, making the magnetism of the finished strip worse and the electrical resistance between insulating film layers decreased, thus reducing the service performance and life of terminal production. Therefore, almost all of users have a definite demand that a finished strip having corrugated defects is not allowed.
- The mechanism of the generation of the corrugated defects may be explained as follows: the equiaxed crystal ratio in the slab is low, whereas the columnar crystal is gross and growing. The growing direction of the columnar crystal <001>, which is the normal direction of (001), is the direction in which the heat flux gradient is the largest. In such a hot rolling process, the gross columnar crystal can not thoroughly break due to dynamic recovery and slow re-crystallization. However, the slab columnar crystals are easy to grow in the direction of heat flux, and form gross columnar crystals having a certain orienting relation, resulting in inhomogeneous deformations in a rolling process, the center in sheet thickness is fiber texture primarily after hot rolling process, and austenite and ferrite have no phase transition in subsequent process, and will not re-crystallize in the following cold rolling and annealing process, which does not make the homogeneity of the texture eliminated, and leaving behind to the finished product, finally forming accidented corrugated defects.
- The conventional methods for treating corrugated defects are mainly as follows: by utilizing electromagnetic stirring, the equiaxed crystal ratio in the slab may be improved, for example, in Japanese Patent Application Laid-open No.
49-39526 48-49617 CN10127519 ,CN1548569 andCN101139681 etc.; by utilizing low temperature pouring, the equiaxed crystal ratio in the slab may be improved, for example, in Japanese Patent Application Laid-open No.53-14609 2-192853 49-27420 49-38813 53-2332 61-69923 CN 1611616 andCN1548569 ; and by utilizing a normalized process, the strip may re-crystallize sufficiently, for example, in Japanese Patent Application Laid-open No.61-127817 - The above-mentioned methods may be used solely or simultaneously depending on technology, cost and the demands on the magnetism of the finished product and surface. These methods have characteristics and requirements described below, respectively.
- By utilizing electromagnetic stirring, the equiaxed crystal ratio in the slab may be improved. This method utilizes electromagnetic stirring, the columnar crystals may break under electromagnetic force, and therefore, the effect thereof is the most effective. This method will remarkably reduce the columnar crystal ratio in the slab and improve the equiaxed crystal ratio in the slab, especially when utilizing electromagnetic stirring twice or more, and will effectively prohibit a secondary columnar crystal in the central area as well. The main disadvantage of this method is that the stirring effect depends on the content of silicon in steel and the electromagnetic stirring number. As to the steel grade that has a low content of silicon, after primary electromagnetic stirring, the equiaxed crystal in the slab is relatively easy to conglomerate, grow, and form a gross columnar crystal once again, therefore, it is necessary to utilize electromagnetic stirring twice or more and control the solidification effect of liquid steel strictly. Also, the manufacturing cost of the electromagnetic stirring is high.
- By adding the contents of carbon and manganese into steel, the phase transiting temperature in hot rolling process may be reduced. This method is mainly conducted by adding the contents of carbon and manganese in steel, a phase transition occurs to the slab in the heating up and hot rolling process, accelerating dynamic recovery and re-crystallization, so as to eliminate gross deformation crystal grains. The main disadvantage of this method is that it is necessary to decarburize in annealing process, which is easy to produce inner oxide layer and inner nitration layer, making the magnetism of steel worse.
- By utilizing low temperature pouring, the equiaxed crystal ratio in the slab may be improved. This method decreases the columnar crystal ratio in the slab and improves the ratio that the equiaxed crystal accounts for mainly by reducing the superheat of the liquid steel in the pouring process. The main disadvantage of this method is that it is demanded that the superheat scope of the liquid steel is very low, which is hard to control effectively, and which affects the normal control in the continuous casting process.
- By increasing furnace tap temperature of the slab, adjusting heating-up speed of the slab, controlling end-rolling temperature in a planishing process, and controlling the degrees of reduction of the first and the last pass in the hot rolling process, the strip may re-crystallize sufficiently. This method is mainly conducted by increasing the furnace tap temperature of the slab, adjusting the heating-up speed of the slab, controlling the end-rolling temperature in a planishing process, and controlling the degrees of reduction of the first and the last pass in the hot rolling process, the gross columnar crystals in the slab may break, so as to prohibit the development of the gross deformation crystal grains as well as to make the strip re-crystallized sufficiently. The main disadvantage of this method is that increasing the furnace tap temperature of the slab will make the impurities such as MnS, AIN etc., solutionized intensively, thus make the magnetism of the finished strip worse. Meanwhile, in order to ensure the re-crystallization effect of the strip, the contents of impurity elements such as S, N etc., in steel are strictly demanded. Also, improving the degrees of reduction of the first and the last pass in the hot rolling process is restricted by self-capability of a rolling mill.
- By utilizing the normalized process, the strip may re-crystallize sufficiently. When the single cold rolling method is utilized, the steel grade that has a high content of silicon needs to carry out the normalized process, one of the objects is to increase the re-crystallizing ratio in the hot rolling sheet, so as to avoid the generation of the corrugated defects. The main disadvantage of this method is that the manufacturing cost is very high, which is not applied in low or middle steel grade silicon steel of which the additional value is relatively low.
- The object of the present invention is to provide a non-oriented electrical steel sheet without the corrugated defect and a manufacturing method thereof. The manufacture of a middle steel grade non-oriented electrical steel sheet without corrugated defect can be accomplished, which has advantages of easy operation, low cost, energy conservation and environmental protection, and excellent magnetism, by strictly controlling the cooling speed of the slab in continuous casting and pouring process, the temperature difference in the length direction of the slab in the heating furnace, and by controlling the temperature drop before planishing the slab. Meanwhile, the casting speed of the slab in continuous casting and pouring process is normal, so that the relatively high superheat of the liquid steel can be maintained, and the relatively low furnace tap temperature of the slab, and normal end-rolling temperature and coiling temperature etc., can be maintained in the hot rolling and steel reheating process, so that the strip in the hot rolling process does not need to carry out a normalized process.
- In order to obtain the above-described object, the technical solution of the present invention is that
a middle steel grade non-oriented electrical steel sheet without the corrugated defect, wherein the weight percentage of the chemical composition thereof is that C is no more than 0.005%, Si is 1.2-2.2%, Mn is 0.2-0.4%, P is no more than 0.2%, S is no more than 0.005%, Al is 0.2-0.6%, N is no more than 0.005%, O is no more than 0.005%, and a balance substantially being Fe and inevitable impurities. - In the sub-designs of the present invention,
- C is no more than 0.005%.C is an element for strongly inhibiting the growth of crystal grains, which is easy to result in the increase of iron loss of a strip, producing the serious magnetic aging. Meanwhile, C may further widen γ phase, and increase the transition amount between α phase and γ phase when in the normalized process, so as to reduce Acl point notably, and to fine crystallizing structure. Therefore, C is necessary to be controlled to no more than 0.005%.
- Si is 1.2%-2.2%.Si is an effective element for increasing the electrical resistivity of the steel. If the content of Si is lower than 1.2%, the electromagnetic performance of the steel is not good, whereas if the content of Si is higher than 2.2%, phase change will not occur in the hot rolling process, and the cold-working performance is not good.
- Al is 0.2%-0.6%.Al is an effective element for increasing the electrical resistivity of the steel. If the content of Al is lower than 0.2%, the electromagnetic performance is not stable, whereas if the content of Al is higher than 0.6%, the smelting and pouring process will become difficult, thus increasing the manufacturing cost.
- Mn is 0.2%-0.4%.Like the elements Si and Al, Mn may increase the electrical resistivity of the steel, as well as improve the surface state of the electrical steel, so it is necessary to add no less than 0.2% of Mn. While the content of Mn is higher than 0.4%, the smelting and pouring process will become difficult, thus increasing the manufacturing cost.
- P is no more than 0.2%.Adding some phosphorus into steel can improve the workability of steel sheet, but if the content of phosphorus is more than 0.2%, it instead makes the cold rolling workability of steel plate deteriorated.
- S is no more than 0.005%.If the content of S is more than 0.005%, the deposition amount of sulfide such as MnS, will increase greatly, thus strongly preventing crystal grains growing and making iron loss worse.
- N is no more than 0.005%.If the content of N is more than 0.005%, the deposition amount of nitride such as AIN, will increase greatly, thus strongly preventing crystal grains growing and making iron loss worse.
- O is no more than 0.005%.If the content of O is more than 0.005%, the impurity amount of oxidate such as Al2O3, will increase greatly, thus strongly preventing crystal grains growing and making iron loss worse.
- A method for manufacturing a non-oriented electrical steel sheet without corrugated defect of the present invention comprises the following steps:
- 1) the weight percentage of the chemical composition of non-oriented electrical steel sheet is that C <0.005%, Si is 1.2-2.2%, Mn is 0.2-0.4%, P <0.2%, S <0.005%, Al is 0.2-0.6%, N <0.005%, O <0.005%, and a balance substantially being Fe and inevitable impurities, in accordance with the above chemical composition, a slab is obtained by hot metal preprocessing, smelting with converter, RH refining, and continuous casting and pouring, wherein a secondary cooling water amount is controlled, the water flowrate of cooling water is controlled to 100-190 l/min, the average superheat of liquid steel in the continuous casting process is controlled to 10-45 °C ;
- 2) the slab is heated and hot rolled;
the furnace tap temperature of the slab is 1050-1150 °C , the temperature difference between the random two points in the length direction when the slab is heated, is lower than 25 °C , the hot rolling process includes a rough rolling process and a planishing process, the entry temperature in the planishing process is no lower than 970 °C ; - 3) the finished non-oriented electrical steel sheet is obtained by acid pickling, cold rolling, annealing and coating.
- The middle steel grade non-oriented electrical steel sheet without corrugated defect of the present invention and the manufacturing method thereof comprise the following steps:
- The average superheat of liquid steel in the pouring process is controlled to 10-45 °C . In the continuous casting and pouring process, the water flowrate of cooling water is adjusted to 100-190 1/min, so as to improve the equiaxed crystal ratio in the slab, avoiding columnar crystals in the slab gross and growing.
- Relatively low temperature, which affects the surface temperature of the slab so as to make the strip re-crystallized insufficiently, should be avoided. Therefore, the temperature difference between the random two points in the length direction when the slab is heated, is controlled to be lower than 25 °C; the temperature difference between the watermark points of the slab is limited within 25 °C , meanwhile the residence time of the slab in after-firing zone should be no less than 45 min, so as to ensure uniform heating, making the temperatures of both surfaces of the slab close.
- The furnace tap temperature of the slab can be reduced to no higher than 1150 °C , avoiding the impurities such as MnS, AIN etc., solutionized intensively, which thus making the magnetism of the finished strip worse. Hot rolling sheet is rolled to have a thickness of 2.0mm-2.8mm.Before the rough rolling process and the planishing process, hot tops are respectively utilized to thermal insulate the slab and the intermediate billet, the entry temperature in the planishing process is controlled to no lower than 970 °C so as to facilitate sufficient re-crystallization, and the end-rolling temperature is controlled to about 850 °C , the coiling temperature is controlled to about 600 °C.
- The hot rolling is rolled to thick strip that has a thickness of 0.5mm, and then is annealed continuously in a dry atmosphere. In the continuous annealing process, the electromagnetic performance of the steel is further improved by warming up the finished strip quickly in a preheating zone, in which the heat-up speed is no less than 1000°C/min, and by controlling the atmosphere mode in furnace.
- Basing on the controlling demand on the composition of the present invention, after the extent of silicon in the steel exceeds 2.2%, when an electromagnetic stirring is not utilized or a slightly electromagnetic stirring is utilized, since the content of silicon is relatively high, the columnar crystal in the slab is growing and gross, and the electromagnetic stirring force is not enough to break the columnar crystals, and a part of the broken columnar crystals will still polymerize and grow once again, so that making the ratio of fine equiaxed crystals in the slab is relatively low while the ratio of gross and growing columnar crystals is relatively high. Therefore, it is necessary to improve electromagnetic stirring intensity so as to control the corrugated defects in the surface of the finished strip.
- In the present invention, when the content of silicon is less than 2.2%, the content of silicon does not affect the growth of the columnar crystal as greatly as the cooling speed of the slab, therefore, the water flowrate of cooling water in the continuous casting process can be adjusted to reduce the heat flux gradient of the slab in the growing direction of the columnar crystal, so that the ratio of gross and growing columnar crystals can be reduced effectively. Further, considering the temperature of the slab at the location where the slab contacts the roller table is relatively low in the slab heating process, which affects the re-crystallization of the fiber texture in the interior of the slab, not making the homogeneity of the texture eliminated and leaving behind to the finished product, therefore, it is necessary to strictly control the temperature of the watermark point of the slab. The main reason on improving the entry temperature in the planishing process is to facilitate the break and elimination of the columnar crystals in the rolling process and improve the re-crystallization ratio of the fiber texture in the hot rolling strip.
- Also, since the content of silicon is no more than 1.2%, the phase change from γ phase to α phase in the hot rolling process is sufficient, the corrugated defects will not occur in the surface of the subsequent finished product.
- Also, if two or three pairs of electromagnetic stirring rolls are utilized, the columnar crystals in the slab may be broken due to highly electromagnetic stirring force, as possible as to transit to fine equiaxed crystals, so as to improve the equiaxed crystal ratio in the slab greatly; or the phase change from γ phase to α phase happens in the interior of the slab by increasing the furnace tap temperature of the slab in the heat process greatly, meanwhile the re-crystallization of the slab is improved by utilizing high temperature status to enlarge the re-crystallizing structure in the interior of the slab. Except for the great increasement in the aspect of equipment investment and energy consumption, it is more important that the electromagnetic stirring technology is hard to match the superheat of the liquid steel precisely, if the superheat of the liquid steel is controlled improperly, the controlling effect of the electromagnetic stirring is not stable, which is hard to obtain the expecting effect; and by increasing the furnace tap temperature of the slab, the heating load distribution in the heating furnace will forward, making high temperature time zone relatively long, which affects the magnetism of the finished strip. This method is easy to result in mass defect at the edge of the strip with respect to high-silicon steel grade.
- Under the condition of the special chemical composition of the present invention, the water flowrate of cooling water in the continuous casting process can be adjusted to reduce the heat flux gradient of the slab in the growing direction of the columnar crystal, so that the ratio of gross and growing columnar crystals can be reduced effectively. It is more important that this method is substantially affected by the change in the superheat of the liquid steel, so the range of application is relatively wide. Meanwhile, the adjustment on the water flowrate of cooling water is very simple and controllable, so the difficulty in implementation is low, the stability is good. Further, the equipment load may be reduced by utilizing lower furnace tap temperature of the slab, avoiding the deposition of fine impurities in the steel and affecting the magnetism of final product. If the lower temperature is used to heat the slab, the temperature at the watermark points in the slab may be adjusted to increase re-crystallizing ratio of the fiber texture of the slab in the hot rolling process, and to improve the homogeneity of the texture of the slab in the hot rolling strip, which facilitates to the corrugated defects in the surface of the finished strip.
-
-
Fig. 1 is a schematic view of the relation between the water flowrate of the cooling water and the equiaxed crystal ratio in the slab. -
Fig. 2 is a schematic view of the relation between the entry temperature in the hot rolling and planishing process and the incidence of the corrugated defects in a finished product. -
Fig. 3 is a schematic view of the relation between the furnace tap temperature of the slab and the magnetism of the finished product. -
Fig. 4 is a picture of a metallographic structure of a strip in hot rolling process corresponding to a watermark point temperature of 20 °C. -
Fig. 5 is a picture of a metallographic structure of a strip in hot rolling process corresponding to a watermark point temperature of 35 °C. - Hereinafter, the present invention will be described in connection with the embodiments and drawings.
- The chemical composition of the tundish liquid steel in the continuous casting process is controlled as follows: C is 0.001%, Si is 1.22%, Mn is 0.25%, P is 0.02%, S is 0.003%, Al is 0.33%, N is 0.001%, O is 0.004%, and a balance substantially being Fe and inevitable impurities. The average superheat of the liquid steel is 34.6 °C, the casting speed is 1.07m/min, the water flowrate of the cooling water is 185 l/min, the temperature drop speed of the slab is 11.6min/°C, the surface temperature of the slab at the outlet of a caster is 710 °C and the equiaxed crystal ratio is 43%.In the heating furnace, the temperature difference between the watermark points is 22 °C, the residence time in after-firing zone of the slab is 46 minutes. The rolling process will be carried out after heating for 3h at 1125°C, the temperature at the inlet in planishing process is 978 °C, the end-rolling temperature is 856 °C and the coiling temperature is 567 °C .The hot rolling sheet is rolled to 0.5mm thickness of strip with the single cold rolling method, and then is annealed continuously in a dry atmosphere. Corrugated defects are not generated in the surface of the finished strip, the iron loss is 4.743 W/kg, and the magnetic induction is 1.727T.
- The chemical composition of the tundish liquid steel in the continuous casting process is controlled as follows: C is 0.002%, Si is 1.42%, Mn is 0.30%, P is 0.06%, S is 0.002%, Al is 0.25%, N is 0.002%, O is 0.002%, and a balance substantially being Fe and inevitable impurities. The average superheat of the liquid steel is 31.4 °C, the casting speed is 1.04m/min, the water flowrate of the cooling water is 175 l/min, the temperature drop speed of the slab is 9.6 min/°C, the surface temperature of the slab at the outlet of a caster is 680 °C and the equiaxed crystal ratio is 57%.In the heating furnace, the temperature difference between the watermark points is 22 °C, the residence time in after-firing zone of the slab is 48 minutes. The rolling process will be carried out after heating for 3h at 1135 °C, the temperature at the inlet in planishing process is 973 °C, the end-rolling temperature is 853 °C and the coiling temperature is 563 °C.The hot rolling sheet is rolled to 0.5mm thickness of strip with the single cold rolling method, and then is annealed continuously in a dry atmosphere. Corrugated defects are not generated in the surface of the finished strip, the iron loss is 3.130 W/kg, and the magnetic induction is 1.741 T.
- The chemical composition of the tundish liquid steel in the continuous casting process is controlled as follows: C is 0.002%, Si is 1.49%, Mn is 0.49%, P is 0.02%, S is 0.003%, Al is 0.59%, N is 0.001%, O is 0.002%, and a balance substantially being Fe and inevitable impurities. The average superheat of the liquid steel is 28.7 °C , the casting speed is 0.99m/min, the water flowrate of the cooling water is 189 l/min, the temperature drop speed of the slab is 8.7 min/°C, the surface temperature of the slab at the outlet of a caster is 660°C and the equiaxed crystal ratio is 63%.In the heating furnace, the temperature difference between the watermark points is 24 °C, the residence time in after-firing zone of the slab is 53 minutes. The rolling process will be carried out after heating for 3h at 1102°C, the temperature at the inlet in planishing process is 983 °C, the end-rolling temperature is 854 °C and the coiling temperature is 575 °C.The hot rolling sheet is rolled to 0.5mm thickness of strip with the single cold rolling method, and then is annealed continuously in a dry atmosphere. Corrugated defects are not generated in the surface of the finished strip, the iron loss is 3.559 W/kg, and the magnetic induction is 1.737T.
- The chemical composition of the tundish liquid steel in the continuous casting process is controlled as follows: C is 0.001%, Si is 2.12%, Mn is 0.25%, P is 0.01%, S is 0.002%, Al is 0.36%, N is 0.001%, O is 0.004%, and a balance substantially being Fe and inevitable impurities. The average superheat of the liquid steel is 31.2°C, the casting speed is 0.95m/min, the water flowrate of the cooling water is 173 l/min, the temperature drop speed of the slab is 13.2 min/°C, the surface temperature of the slab at the outlet of a caster is 680°C and the equiaxed crystal ratio is 59%. In the heating furnace, the temperature difference between the watermark points is 20 °C, the residence time in after-firing zone of the slab is 48 minutes. The rolling process will be carried out after heating for 3h at 1097°C , the temperature at the inlet in planishing process is 972°C, the end-rolling temperature is 844°C and the coiling temperature is 583°C . The hot rolling sheet is rolled to 0.5mm thickness of strip with the single cold rolling method, and then is annealed continuously in a dry atmosphere. Corrugated defects are not generated in the surface of the finished strip, the iron loss is 2.833 W/kg, and the magnetic induction is 1.726T.
- The chemical composition of the tundish liquid steel in the continuous casting process is controlled as follows: C is 0.001%, Si is 1.47%, Mn is 0.32%, P is 0.02%, S is 0.003%, Al is 0.25%, N is 0.002%, O is 0.002%, and a balance substantially being Fe and inevitable impurities. The average superheat of the liquid steel is 28.9°C, the casting speed is 1.03m/min, the water flowrate of the cooling water is 257 l/min, the temperature drop speed of the slab is 17.4 min/°C, the surface temperature of the slab at the outlet of a caster is 580°C and the equiaxed crystal ratio is 28%. In the heating furnace, the temperature difference between the watermark points is 37 °C , the residence time in after-firing zone of the slab is 41 minutes. The rolling process will be carried out after heating for 3h at 1153°C, the temperature at the inlet in planishing process is 947°C, the end-rolling temperature is 847°C and the coiling temperature is 567°C . The hot rolling sheet is rolled to 0.5mm thickness of strip with the single cold rolling method, and then is annealed continuously in a dry atmosphere. The percentage of the generation of corrugated defects in the surface of the finished strip is as high as no less than 90%, the iron loss is 3.273 W/kg, and the magnetic induction is 1.736T.
-
Fig. 1 shows the relation between the water flowrate of the cooling water and the equiaxed crystal ratio in the slab. As seen inFig.1 , on the premise of not utilizing an electromagnetic stirring, by decreasing the water flowrate of the cooling water and strictly controlling it to no more than 190 1/min, the equiaxed crystal ratio in the slab is improved remarkably. In the embodiments, the equiaxed crystal ratio in the slab may be controlled when the superheat of the liquid steel is relatively high. In the fourth embodiment of these embodiments, when the water flowrate of the cooling water is 173 1/m, the equiaxed crystal ratio in the slab is up to 59%, in the comparative example, when the water flowrate of the cooling water is 257 1/min, the equiaxed crystal ratio in the slab is only 28%. Also, in the third embodiment, the control of the equiaxed crystal ratio in the slab is better, up to 63%. -
Fig. 2 shows the relation between the entry temperature in the hot rolling and planishing process and the incidence of the corrugated defects in a finished product. It is indicated in accordance with the statistical results that by increasing the entry temperature in the hot rolling and planishing process and up to more than 970°C, because the re-crystallizing ratio of the fiber texture of the slab in the hot rolling process is increased remarkably, the incidence of the corrugated defects in the finished strip may be reduced greatly. In the comparative example, the entry temperatures in the hot rolling and planishing process of most of strips are less than 970°C, the percentage of the generation of corrugated defects in the surface of the finished strip is as high as no less than 90%. In several embodiments, most of the entry temperatures in the hot rolling and planishing process of strips are more than 970°C, corrugated defects are not generated in the surface of the finished strip, respectively. -
Fig. 3 shows the relation between the furnace tap temperature of the slab and the magnetism of the finished product. The higher the furnace tap temperature of the slab is, the worse the magnetism of the finished product is. -
Figs. 4 and 5 are metallographic structures of strips in hot rolling process corresponding to different watermark point temperatures. The watermark point temperatures are all less than 25 °C in the first to fourth embodiments, so re-crystallizing structures of the strips in the hot rolling process are very homogeneous, the fiber textures disappear completely, whereas in the comparative example, the temperature at the watermark point is as high as 37 °C, the fiber texture of the strip in the hot rolling process is clear, which is hard to re-crystallized in the period of the subsequent cold rolling and annealing process, not being able to destroy the homogeneity of the structures and leaving behind to the finished product, finally forming accidented corrugated defects.
Claims (2)
- A non-oriented electrical steel sheet without corrugated defect, wherein the weight percentage of the chemical composition thereof is that C <0.005%, Si is 1.2-2.2%, Mn is 0.2-0.4%, P <0.2%, S <0.005%, Al is 0.2-0.6%, N <0.005%, O <0.005%, and a balance substantially being Fe and inevitable impurities.
- A method for manufacturing a non-oriented electrical steel sheet without corrugated defect of Claim 1, comprising the following steps:1) the weight percentage of the chemical composition of non-oriented electrical steel sheet is that C <0.005%, Si is 1.2-2.2%, Mn is 0.2-0.4%, P <0.2%, S <0.005%, Al is 0.2-0.6%, N <0.005%, O <0.005%, and a balance substantially being Fe and inevitable impurities, in accordance with the above chemical composition, a slab is obtained by hot metal preprocessing, smelting with converter, RH refining, and continuous casting and pouring, wherein a secondary cooling water amount is controlled, the water flowrate of cooling water is controlled to 100-190 1/min, the average superheat of liquid steel in the continuous casting process is controlled to 10-45°C;2) the slab is heated and hot rolled;
wherein the furnace tap temperature of the slab is 1050-1150°C, the temperature difference between the random two points in the length direction when the slab is heated, is lower than 25°C, the hot rolling process includes a rough rolling process and a planishing process, the entry temperature in the planishing process is no lower than 970 °C ;3) the finished non-oriented electrical steel sheet is obtained by acid pickling, cold rolling, annealing and coating.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102989655A CN102443734B (en) | 2010-09-30 | 2010-09-30 | Non-oriented electrical steel plate without corrugated defect and its manufacturing method |
PCT/CN2011/072766 WO2012041053A1 (en) | 2010-09-30 | 2011-04-14 | Non-oriented electric steel plate without corrugated fault and production method thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2623626A1 true EP2623626A1 (en) | 2013-08-07 |
EP2623626A4 EP2623626A4 (en) | 2017-11-22 |
EP2623626B1 EP2623626B1 (en) | 2019-11-20 |
Family
ID=45891876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11827949.6A Active EP2623626B1 (en) | 2010-09-30 | 2011-04-14 | Non-oriented electric steel plate without corrugated fault and production method thereof |
Country Status (8)
Country | Link |
---|---|
US (1) | US20130224064A1 (en) |
EP (1) | EP2623626B1 (en) |
JP (1) | JP2013540900A (en) |
KR (1) | KR20130049822A (en) |
CN (1) | CN102443734B (en) |
MX (1) | MX357357B (en) |
RU (1) | RU2550440C2 (en) |
WO (1) | WO2012041053A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2824192A4 (en) * | 2012-03-08 | 2015-09-30 | Baoshan Iron & Steel | Non-oriented electrical steel sheet with fine magnetic performance, and calcium treatment method therefor |
EP3272898A4 (en) * | 2015-03-20 | 2018-11-14 | Baoshan Iron & Steel Co., Ltd. | High magnetic induction and low iron loss non-oriented electrical steel sheet with good surface state and manufacturing method therefor |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103509906B (en) * | 2012-06-29 | 2016-01-20 | 宝山钢铁股份有限公司 | The smelting process of the non-oriented electromagnetic steel sheet of excellent magnetic |
JP5942712B2 (en) * | 2012-09-06 | 2016-06-29 | 新日鐵住金株式会社 | Scum weir, thin slab manufacturing method, thin slab manufacturing equipment |
CN102925795A (en) * | 2012-10-23 | 2013-02-13 | 鞍钢股份有限公司 | Production method for controlling transverse and longitudinal electromagnetic properties of low-grade and medium-grade non-oriented electrical steel products |
CN104073714A (en) * | 2013-03-28 | 2014-10-01 | 宝山钢铁股份有限公司 | Good-surface high magnetic strength low iron loss orientation-free electrical steel plate and preparation method thereof |
CN104164544A (en) * | 2013-05-17 | 2014-11-26 | 宝山钢铁股份有限公司 | Method for manufacturing non-oriented electrical steel plate without line-shaped projection defects |
CN104726763B (en) * | 2013-12-23 | 2017-04-12 | 鞍钢股份有限公司 | Hot rolling method of electrical steel |
CN104073715B (en) * | 2014-06-19 | 2016-04-20 | 马钢(集团)控股有限公司 | A kind of manufacture method of high-magnetic strength non-oriented electrical steel |
CN104342604B (en) * | 2014-11-10 | 2016-11-30 | 五行科技股份有限公司 | A kind of high intensity band manufacture method |
KR101901313B1 (en) | 2016-12-19 | 2018-09-21 | 주식회사 포스코 | Non-oriented electrical steel sheet and method for manufacturing the same |
CN111719078B (en) * | 2019-03-19 | 2021-06-15 | 江苏集萃冶金技术研究院有限公司 | Production method of non-oriented silicon steel for eliminating corrugated defects |
CN109825775B (en) * | 2019-04-04 | 2020-03-27 | 中山市中圣金属板带科技有限公司 | Cold-rolled non-oriented electrical steel 35WD1900 and production method thereof |
CN112430780B (en) * | 2019-08-26 | 2022-03-18 | 宝山钢铁股份有限公司 | Cu-containing high-cleanliness non-oriented electrical steel plate and manufacturing method thereof |
US20230046884A1 (en) * | 2020-02-20 | 2023-02-16 | Nippon Steel Corporation | Steel sheet for non-oriented electrical steel sheet |
CN111560554A (en) * | 2020-05-06 | 2020-08-21 | 包头钢铁(集团)有限责任公司 | Preparation method of rare earth non-oriented silicon steel |
CN111748740A (en) * | 2020-06-30 | 2020-10-09 | 武汉钢铁有限公司 | Non-oriented silicon steel free of corrugated defects and excellent in magnetism and production method thereof |
CN111961980B (en) * | 2020-09-16 | 2022-06-07 | 内蒙古工业大学 | Method for producing thin-specification medium-high-grade non-oriented silicon steel by CSP process non-normalized process |
CN115198203B (en) * | 2021-04-09 | 2024-02-13 | 宝山钢铁股份有限公司 | Non-oriented electrical steel plate free of normalizing intermediate annealing and manufacturing method thereof |
CN115704073B (en) * | 2021-08-09 | 2024-01-09 | 宝山钢铁股份有限公司 | Non-oriented electrical steel plate with good surface state and manufacturing method thereof |
CN114369761B (en) * | 2022-01-07 | 2022-11-25 | 山西太钢不锈钢股份有限公司 | Thin non-oriented silicon steel and preparation method thereof |
CN114393185B (en) * | 2022-01-27 | 2023-08-15 | 马鞍山钢铁股份有限公司 | Method for improving equiaxial crystal rate of non-oriented electrical steel casting blank at high continuous casting speed |
CN114854966B (en) * | 2022-04-12 | 2024-05-10 | 湖南华菱涟钢特种新材料有限公司 | Electrical steel, preparation method and product thereof |
CN116117096B (en) * | 2023-01-04 | 2023-07-18 | 安庆新普电气设备有限公司 | High equiaxial crystal rate non-oriented electrical steel continuous casting billet and preparation method thereof |
CN117867248A (en) * | 2023-12-27 | 2024-04-12 | 湖南华菱涟源钢铁有限公司 | Non-oriented silicon steel and preparation method thereof |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS512289B2 (en) | 1971-10-28 | 1976-01-24 | ||
JPS5037127B2 (en) * | 1972-07-08 | 1975-12-01 | ||
JPS5037132B2 (en) | 1972-08-18 | 1975-12-01 | ||
JPS5238490B2 (en) | 1972-08-23 | 1977-09-29 | ||
JPS532332A (en) | 1976-06-29 | 1978-01-11 | Nippon Steel Corp | Production of nondirectional electrical steel sheet having excellent surface property |
JPS5314609A (en) | 1976-07-27 | 1978-02-09 | Nippon Steel Corp | Production of nondirectional electromagnetic steel sheet free from ridging |
JPS6169923A (en) * | 1984-09-13 | 1986-04-10 | Kawasaki Steel Corp | Manufacture of non-orientation silicon steel plate of good surface |
JPS61127817A (en) | 1984-11-26 | 1986-06-16 | Kawasaki Steel Corp | Manufacture of nonoriented silicon steel sheet causing hardly ridging |
JPH0620593B2 (en) * | 1989-01-20 | 1994-03-23 | 新日本製鐵株式会社 | Manufacturing method of cast slab for non-oriented electrical steel sheet |
JPH0784617B2 (en) * | 1989-03-24 | 1995-09-13 | 住友金属工業株式会社 | Method for manufacturing ferritic stainless steel sheet |
JP2536976B2 (en) * | 1991-05-17 | 1996-09-25 | 新日本製鐵株式会社 | Manufacturing method of non-oriented electrical steel sheet having excellent surface properties and magnetic properties |
KR100240995B1 (en) * | 1995-12-19 | 2000-03-02 | 이구택 | The manufacturing method for non-oriented electric steel sheet with excellent heat insulating coated property |
JP4207231B2 (en) * | 1997-08-08 | 2009-01-14 | Jfeスチール株式会社 | Method for producing non-oriented electrical steel sheet |
CN1258608A (en) * | 1998-12-25 | 2000-07-05 | 傅元竹 | Single automatic clutch |
JP2000273549A (en) * | 1999-03-25 | 2000-10-03 | Nkk Corp | Production of nonoriented silicon steel sheet excellent in magnetic property |
FR2818664B1 (en) * | 2000-12-27 | 2003-12-05 | Usinor | MAGNETIC STEEL WITH NON-ORIENTED GRAINS, PROCESS FOR PRODUCING SHEETS AND SHEETS OBTAINED |
RU2318883C2 (en) * | 2002-05-08 | 2008-03-10 | Эй-Кей СТИЛ ПРОПЕРТИЗ ИНК | Non-oriented electrical steel strip continuous casting method |
DE10221793C1 (en) * | 2002-05-15 | 2003-12-04 | Thyssenkrupp Electrical Steel Ebg Gmbh | Non-grain oriented electrical steel or sheet and process for its manufacture |
JP4331969B2 (en) * | 2003-05-06 | 2009-09-16 | 新日本製鐵株式会社 | Method for producing non-oriented electrical steel sheet |
CN1258610C (en) | 2003-05-12 | 2006-06-07 | 宝山钢铁股份有限公司 | Indirectional electric steel plate without corrugated fault and its making process |
CN1258608C (en) | 2003-10-27 | 2006-06-07 | 宝山钢铁股份有限公司 | Method for manufacturing cold-rolled orientation-free electrical sheet |
WO2006048989A1 (en) * | 2004-11-04 | 2006-05-11 | Nippon Steel Corporation | Non-oriented magnetic steel sheet excellent in iron loss |
JP4804478B2 (en) * | 2004-12-21 | 2011-11-02 | ポスコ | Method for producing non-oriented electrical steel sheet with improved magnetic flux density |
CN1796015A (en) * | 2004-12-28 | 2006-07-05 | 宝山钢铁股份有限公司 | Method for manufacturing cold rolling non oriented electrical steel through continuous casting and tandem rolling sheet bar |
CN100446919C (en) * | 2005-06-30 | 2008-12-31 | 宝山钢铁股份有限公司 | Production process of cold rolled orientation-free electrical steel plate with low iron loss and high magnetic induction |
CN100999050A (en) * | 2006-01-11 | 2007-07-18 | 宝山钢铁股份有限公司 | Production method of low iron loss high magnetic sensing cold milling orientation less electrical steel plate |
CN100436631C (en) * | 2006-05-18 | 2008-11-26 | 武汉科技大学 | Low-carbon high-manganese oriented electrical steel plate, and its manufacturing method |
CN101139681B (en) | 2007-10-26 | 2010-07-21 | 山西太钢不锈钢股份有限公司 | High grade cold rolling non-oriented silicon steel and method for manufacturing same |
CN101306434B (en) * | 2008-06-23 | 2012-05-30 | 首钢总公司 | Preparation method of low carbon low silicon no-aluminum half-technique non oriented electrical steel |
JP4510911B2 (en) * | 2008-07-24 | 2010-07-28 | 新日本製鐵株式会社 | Method for producing high-frequency non-oriented electrical steel slabs |
-
2010
- 2010-09-30 CN CN2010102989655A patent/CN102443734B/en active Active
-
2011
- 2011-04-14 WO PCT/CN2011/072766 patent/WO2012041053A1/en active Application Filing
- 2011-04-14 US US13/823,311 patent/US20130224064A1/en not_active Abandoned
- 2011-04-14 MX MX2013003261A patent/MX357357B/en active IP Right Grant
- 2011-04-14 RU RU2013114859/02A patent/RU2550440C2/en active
- 2011-04-14 EP EP11827949.6A patent/EP2623626B1/en active Active
- 2011-04-14 JP JP2013530533A patent/JP2013540900A/en active Pending
- 2011-04-14 KR KR1020137008046A patent/KR20130049822A/en active Search and Examination
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2824192A4 (en) * | 2012-03-08 | 2015-09-30 | Baoshan Iron & Steel | Non-oriented electrical steel sheet with fine magnetic performance, and calcium treatment method therefor |
EP3272898A4 (en) * | 2015-03-20 | 2018-11-14 | Baoshan Iron & Steel Co., Ltd. | High magnetic induction and low iron loss non-oriented electrical steel sheet with good surface state and manufacturing method therefor |
US10844451B2 (en) | 2015-03-20 | 2020-11-24 | Baoshan Iron & Steel Co., Ltd. | High magnetic induction and low iron loss non-oriented electrical steel sheet with good surface state and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
US20130224064A1 (en) | 2013-08-29 |
MX357357B (en) | 2018-07-05 |
JP2013540900A (en) | 2013-11-07 |
RU2013114859A (en) | 2014-11-10 |
KR20130049822A (en) | 2013-05-14 |
MX2013003261A (en) | 2013-05-01 |
CN102443734A (en) | 2012-05-09 |
EP2623626A4 (en) | 2017-11-22 |
RU2550440C2 (en) | 2015-05-10 |
WO2012041053A1 (en) | 2012-04-05 |
CN102443734B (en) | 2013-06-19 |
EP2623626B1 (en) | 2019-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2623626B1 (en) | Non-oriented electric steel plate without corrugated fault and production method thereof | |
JP7454646B2 (en) | High magnetic induction grain-oriented silicon steel and its manufacturing method | |
JP6580700B2 (en) | High magnetic flux density / low iron loss / non-oriented electrical steel sheet with good surface condition and manufacturing method thereof | |
JP6208855B2 (en) | Method for producing oriented high silicon steel | |
JP2013540900A5 (en) | ||
CN104962816B (en) | A kind of very thin directional silicon steel and its short route manufacture method | |
WO2014027452A1 (en) | Method for manufacturing non-oriented electromagnetic steel sheet | |
CN104561795A (en) | High magnetic induction grain-oriented silicon steel with B800 being more than or equal to 1.94T and production method thereof | |
CN104073714A (en) | Good-surface high magnetic strength low iron loss orientation-free electrical steel plate and preparation method thereof | |
JP2013139629A (en) | Method for producing low iron loss grain-oriented magnetic steel sheet | |
CN100436042C (en) | Thin slab process high magnetic induction oriented electrical steel sheet and its manufacturing method | |
CN107779727A (en) | A kind of production method of orientation silicon steel | |
CN103834908A (en) | Production method for improving electromagnetic property of oriented silicon steel | |
JP7378585B2 (en) | Non-oriented electrical steel sheet and its manufacturing method | |
JP6079580B2 (en) | Method for producing grain-oriented electrical steel sheet | |
CN111719078B (en) | Production method of non-oriented silicon steel for eliminating corrugated defects | |
US5330586A (en) | Method of producing grain oriented silicon steel sheet having very excellent magnetic properties | |
JP5907202B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5920387B2 (en) | Method for producing grain-oriented electrical steel sheet | |
CN108431244B (en) | Oriented electrical steel sheet and method for manufacturing the same | |
CN110640104A (en) | Non-oriented electrical steel plate with excellent magnetic property and manufacturing method thereof | |
JP4279993B2 (en) | Method for producing unidirectional silicon steel sheet | |
JP6056675B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP4258156B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
WO2022004752A1 (en) | Method for producing grain-oriented electromagnetic steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130304 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20171023 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C21D 8/02 20060101ALI20171017BHEP Ipc: B22D 11/22 20060101ALI20171017BHEP Ipc: C21D 8/12 20060101ALI20171017BHEP Ipc: C22C 38/06 20060101AFI20171017BHEP Ipc: C22C 38/02 20060101ALI20171017BHEP Ipc: H01F 1/16 20060101ALI20171017BHEP Ipc: B22D 11/18 20060101ALI20171017BHEP Ipc: C22C 38/04 20060101ALI20171017BHEP Ipc: C21D 6/00 20060101ALI20171017BHEP Ipc: C22C 38/00 20060101ALI20171017BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181019 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190731 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011063544 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1204270 Country of ref document: AT Kind code of ref document: T Effective date: 20191215 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191120 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200220 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200221 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200412 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1204270 Country of ref document: AT Kind code of ref document: T Effective date: 20191120 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011063544 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20200821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200414 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200414 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191120 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240404 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240409 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240409 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240411 Year of fee payment: 14 Ref country code: FR Payment date: 20240408 Year of fee payment: 14 |