EP2590035A1 - Circuit d'autoregulation de la frequence d'oscillation d'un systeme mecanique oscillant, et dispositif le comprenant - Google Patents
Circuit d'autoregulation de la frequence d'oscillation d'un systeme mecanique oscillant, et dispositif le comprenant Download PDFInfo
- Publication number
- EP2590035A1 EP2590035A1 EP11187360.0A EP11187360A EP2590035A1 EP 2590035 A1 EP2590035 A1 EP 2590035A1 EP 11187360 A EP11187360 A EP 11187360A EP 2590035 A1 EP2590035 A1 EP 2590035A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- self
- frequency
- piezoelectric
- regulating circuit
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010355 oscillation Effects 0.000 title claims abstract description 38
- 229920000642 polymer Polymers 0.000 claims abstract description 29
- 229920001746 electroactive polymer Polymers 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 12
- 239000003990 capacitor Substances 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 6
- 230000010354 integration Effects 0.000 claims description 5
- 230000006978 adaptation Effects 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C3/00—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
- G04C3/04—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C3/00—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
- G04C3/04—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
- G04C3/06—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance
- G04C3/065—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance the balance controlling gear-train by means of static switches, e.g. transistor circuits
Definitions
- the invention relates to a self-regulating circuit for the oscillation frequency of an oscillating mechanical system.
- the invention also relates to a device comprising the oscillating mechanical system and the self-regulating circuit of the oscillation frequency of the oscillating mechanical system.
- the oscillating mechanical system may be a rocker on which is mounted a spiral spring, one end of which is fixed to the axis of rotation of the rocker arm and the other end is fixed to a fixed element of a platinum.
- the mechanical system is kept in oscillation by means of a generally mechanical energy source.
- This energy source can be for example a cylinder driving a gear train with an escape wheel cooperating with an anchor.
- This rotary anchor actuates for example an anchor fixed near the axis of rotation of the balance.
- the balance with the spiral spring can thus form a regulating member of a clockwork movement.
- This oscillating regulating organ determines the driving speed of the gear train with the escape wheel leading to the time indicating hands.
- the above-mentioned electric generator comprises rotating permanent magnets and a coil facing the magnets, capable of providing an alternating induced voltage.
- the realization of such a generator and the control circuit can be complicated. There must also be provided a large number of elements to design said generator with the control circuit.
- the magnetic field of the rotating magnets can induce spurious effects to some neighboring ferromagnetic parts. This therefore constitutes several disadvantages.
- the adjustment of the oscillation frequency of a pendulum combined with a piezoelectric spiral spring as an alternating voltage generator is known from the patent application. JP 2002-228774 .
- the AC voltage is rectified in a rectifier which comprises at least two diodes and FET transistors controlled by the electronic control circuit.
- the rectified voltage is stored on at least one storage capacitor of the supply voltage.
- the electronic circuit can be powered directly by the alternating voltage of the generator, which has been rectified and stored on the capacitor.
- the piezoelectric generator is of the bimetal type (PZT).
- PZT bimetal type
- For the adjustment of the oscillation frequency a comparison is made between a reference frequency signal supplied by a quartz oscillator circuit, and the alternating signal of the generator.
- the proposed electronic circuit does not allow to design a mechanical system oscillating with the control circuit in a very compact and simple to achieve, which is a drawback.
- the object of the invention is therefore to provide a compact self-regulation circuit in order to be able to precisely regulate the oscillation frequency of an oscillating mechanical system, with a limited number of components and to overcome the aforementioned drawbacks of the state of the art. .
- the invention relates to a self-regulating circuit of the oscillation frequency of an oscillating mechanical system, which comprises the characteristics mentioned in the independent claim 1.
- An advantage of such a self-regulating circuit according to the invention lies in the fact that it can be realized in the form of a single electronic module, which can be connected directly or via two electrical wires to the piezoelectric element or electroactive polymer disposed on the oscillating mechanical system.
- This oscillating mechanical system may preferably be a balance on which is disposed a spiral spring, which comprises the piezoelectric element or electro-active polymer.
- the self-regulating circuit comprises an oscillator stage connected to a MEMS type resonator, which can be placed on or on, next to or in the same integration substrate of the other components of said self-regulation circuit.
- the self-regulating circuit with all these components is only a single compact component. This considerably reduces the size of the oscillating mechanical system with its self-regulating frequency oscillation circuit, in order to be able to mount it advantageously in a mechanical wristwatch.
- the self-regulation circuit makes it possible to apply an adaptation voltage to generate a continuous compressive or extension force or by determined time periods to the piezoelectric element or to the electro-active polymer.
- This makes it possible to regulate the oscillation frequency of the oscillating mechanical system.
- a comparison between a frequency of a reference signal generated via the oscillator stage and the frequency of the alternating voltage generated by the piezoelectric element or the electroactive polymer element is performed. .
- the invention also relates to a device comprising the oscillating mechanical system and the frequency self-regulating circuit. oscillation of the oscillating mechanical system, which comprises the features defined in the independent claim 12.
- the self-regulating circuit is mainly used to regulate the oscillation frequency of a beam on which is mounted a spiral spring piezoelectric element or electro-active polymer.
- the self-regulating circuit is mainly used to regulate the oscillation frequency of a beam on which is mounted a spiral spring piezoelectric element or electro-active polymer.
- other oscillating mechanical systems can also be envisaged, for example an acoustic system such as a tuning fork, but in the remainder of the description, reference will be made only to an oscillating mechanical system. in the form of a balance with the spiral spring with piezoelectric element or electro-active polymer element (EAP).
- the figure 1 represents a device 1, which comprises an oscillating mechanical system 2, 3 and a self-regulating circuit 10 of the oscillation frequency fosc of the oscillating mechanical system.
- the oscillating mechanical system may comprise a rocker 2, which is formed of a metal ring connected for example by three arms 5 to an axis of rotation 6, and a spiral spring 3, on which is disposed a piezoelectric element or an electroactive polymer element explained briefly below.
- a first end 3a of the spiral spring 3 is held fixed by a stud 4 of a balance bridge (not shown). This pendulum bridge is fixed to the plate (not shown) of the movement of the watch.
- a second end 3b of the spiral spring 3 is fixed directly on the axis of rotation 6 of the balance.
- the rocker 2 with its spiral spring 3 is held in oscillation by means of a power source (not shown), which may be electrical, but preferably mechanical.
- This source of mechanical energy may be a cylinder, which traditionally drives a gear train with an escape wheel cooperating with an anchor.
- This rotary anchor actuates for example an anchor fixed near the axis of rotation of the balance.
- the balance with the spiral spring can thus form a regulating member of a clockwork movement.
- the spiral spring 3 is made in known manner by means of a wire or metal strip of thickness generally less than 0.3 mm, for example of the order of 0.025 to 0.045 mm.
- at least one piezoelectric layer or electroactive polymer 23 is deposited on one of the faces of the metal strip 24.
- This piezoelectric layer may be composed for example of titanium oxide with a thickness preferably of less than 0.1 mm. It can also be planned to depositing a first piezoelectric layer or electroactive polymer 23 on a face designated outer face and a second piezoelectric layer or electro-active polymer 23 'on another face designated inner face.
- the inner face is the one facing the axis of rotation of the balance, while the outer face is opposite to the inner face .
- the piezoelectric layers or electroactive polymers 23, 23 ' are deposited over the entire length of the metal strip 24, but it can also be envisaged that only a portion of the strip is covered by one or more piezoelectric layers or electroactive polymers. It may even be envisaged that the strip is made integrally in a piezoelectric material or in an electroactive polymer material, for example of circular or rectangular cross section.
- the oscillation frequency of the balance 2 with the spiral spring 3 can be between 3 and 10 Hz.
- the self-regulating circuit 10 is thus electrically connected to the two piezoelectric layers or electro-active polymers to receive this AC voltage.
- This self-regulating circuit can be connected directly or via two metal wires with two terminals of the piezoelectric layers or electro-active polymers.
- the figure 3 represents the various electronic elements of the self-regulating circuit 10 to be able to regulate the oscillation frequency of the oscillating mechanical system.
- the self-regulating circuit 10 is connected to two terminals of the piezoelectric element or the electro-active polymer element 23, which is placed on the spiral spring of the oscillating mechanical system, such as the pendulum.
- the self-regulating circuit 10 is able to rectify the AC voltage V P received from the piezoelectric element or electro-active polymer 23 via a rectifier 11 traditional.
- the rectified voltage of the AC voltage V P is stored on a capacitor Cc. This rectified voltage between terminals V DD and V SS of the capacitor Cc may be sufficient to supply all the electronic elements of the self-regulating circuit without the aid of an additional voltage source such as a battery.
- the self-regulating circuit 10 comprises an oscillator stage 15 connected to a MEMS type resonator 16.
- the oscillating circuit of the oscillator stage with the MEMS resonator provides an oscillating signal, which may be of a frequency less than 500 kHz, by example of the order of 200 kHz.
- the oscillator stage 15 can preferably provide a reference signal V R , the frequency of which can be equal to the frequency of the oscillating signal of the oscillator circuit.
- the oscillator stage comprises at least one frequency divider for dividing the frequency of the oscillating signal, in order to provide a frequency-divided reference signal V R with respect to the frequency of the oscillating signal.
- the frequency of the reference signal V R may be of the order of the frequency of the alternating voltage V P generated by the piezoelectric element or electroactive polymer.
- the MEMS resonator can be produced in a thick monolithic silicon substrate of the SOI type. This same substrate can also be used to carry out the integration of all the other components of the self-regulation circuit 10. To do this, it can be deposited on the SOI thick substrate, another thin SOI layer to integrate the other electronic components.
- the self-regulating circuit can constitute a single compact electronic module for regulating the oscillation frequency of the oscillating mechanical system.
- the self-regulating circuit produced can also be encapsulated in a conventional manner in an opaque plastic material. This reduces the interconnections with other external elements and also reduce power consumption.
- the MEMS resonator in a first monolithic silicon substrate.
- the MEMS resonator may be placed on or beside a second monolithic silicon substrate for integration of the other components of the self-regulation circuit. Both substrates are encapsulated in a traditional opaque plastic material to form a single compact module.
- the self-regulating circuit 10 comprises comparison means 12, 13, 14, 17 for comparing the frequency of the AC voltage V P with the frequency of the reference signal V R.
- the comparison means must be designed to in such a way as to take account of the large difference in frequency between the alternating voltage V P and the reference signal V R.
- the comparison means consist firstly of a first half-wave counter 12, which receives as input the alternating voltage V P of the piezoelectric or electro-active polymer element, and which provides a first counting signal N a processor P processing unit 17.
- the comparison means further comprises a second counter of alternations 14, which receives as input the reference signal V R, and provides a second count signal N R to the unit processor processing 17.
- a measurement window 13 is further provided between the first half-wave counter 12 and the second half-wave counter 14. This measurement window 13 determines the time counting the second alternation counter 14.
- the processor processing unit 17 provides configuration parameters to the measurement window 13 for determining the counting time for the second half-wave counter. These configuration parameters are stored in a memory that is not represented in the processor processing unit. These configuration settings may be different depending on whether it is a lady's watch or a men's watch.
- the various operations processed in the processor processing unit 17 may be controlled by a clock signal supplied for example by the oscillating circuit of the oscillator stage 15.
- the counting time of the second half-wave counter 14 is adapted proportionally to the counting time of a certain number of half-waves counted by the first half-wave counter in the first counting signal N P.
- the processor processing unit may optionally also control the first alternation counter 12 to define the start and end of a count period.
- the first alternation counter 12 provides information of the beginning and the end of a given number of alternations counted at the processor processing unit. If it is expected to count, for example, 200 alternations in the first half-wave counter, the measurement window 13 is configured so that the second half-wave counter 14 counts a number of half-waves of the reference signal V R for a period of time. about 5000 times lower. This duration may also be dependent on the counting time, for example, of the 200 alternations of the first half-wave counter. This reduces the power consumption of the self-regulating circuit.
- the start of counting controlled by the measuring window 13 can be determined by the first half-wave counter 12, but can also preferably be controlled directly by the processor processing unit 17.
- the processor processing unit can receive firstly the first count signal N P relating to a first number determined half-cycles of the alternating voltage V P in a first time interval. This first count signal is stored for example in a register of the processing unit processor. Subsequently, the processor processing unit can receive the second count signal N R relating to a second number of alternations counted in the second half-wave counter 14 in a second time interval controlled by the measurement window 13 This second count signal N R can also be stored in another register of the processor processing unit. Finally, a comparison of the two counting signals is performed in the processor processing unit to determine whether the frequency of the AC voltage V P is too high or too low relative to the frequency of the reference signal.
- said processor processing unit controls a frequency matching unit 18 whose output is connected to the terminals. of the piezoelectric or electro-active polymer element 23.
- This frequency matching unit 18 may be provided to provide a frequency matching signal, which is a DC voltage, whose level is a function of the difference between the two count signals communicated by the processor processing unit.
- a switchable network of capacitors or resistors can be provided for this purpose.
- a DC voltage value can be provided via a voltage follower of the matching unit 18 at one of the terminals of the piezoelectric element or electro-active polymer 23 or the other terminal of the piezoelectric element or electro-active polymer. This thus makes it possible to induce a certain force on the piezoelectric element or electroactive polymer to slow or accelerate the oscillation of the oscillating mechanical system as a function of the comparison of the two counting signals.
- the DC voltage of a certain value VA can be provided by the frequency matching unit 18 in determined time periods, which can be programmed in the processor processing unit. It can also be expected that several electronic components of the self-regulating circuit are engaged only in time intervals determined by energy saving. For example, the measuring window 13, the second half-wave counter 14, the oscillator stage 15 connected to the MEMS resonator 16 and part of the processor processing unit 17 can be left in a rest mode and switched on by time intervals determined to effect the regulation of the oscillation frequency.
- the first alternating counter 12, which operates at very low frequency, can however be switched on continuously and used to control the engagement of the other parts of the self-regulation circuit 10 after a certain number of alternating cycles of the alternating voltage V P.
- the oscillation frequency of the oscillating mechanical system can be provided to prolong the dwell time, in particular of the oscillator stage 15.
- Most of the electronic components at rest of the self-regulating circuit can under these conditions For example, they can be switched on every minute, which greatly reduces the power consumption of the self-regulation circuit.
- the capacitor Cc which stores a rectified power supply voltage, discharges only very little, because only a greater point of use of energy occurs during the frequency comparison of the reference signal V R and the AC voltage V P.
- the self-regulating circuit 10 may also comprise well-known thermal compensation elements, as well as a reset unit at each engagement of the self-regulation circuit 10. All the electronic components of the self-regulation circuit, as well as the resonator MEMS 16 and the capacitor Cc are part of the same compact electronic module. All these electronic components can advantageously be integrated in the same monolithic silicon substrate, this makes it possible to have only one self-powered electronic module for frequency regulation of the oscillating mechanical system.
- the counting time of the second counter alternations 14 can be directly controlled by the first half-wave counter 12.
- the number of alternations N P of the alternating voltage V P can be directly compared in the processor processing unit 17 with the number of half-waves counted N R in the second alternation counter 14.
- the oscillating mechanical system can be an acoustic system. It may be provided to adapt the oscillation frequency of the oscillating mechanical system by placing a number of capacitors in parallel with the piezoelectric or electro-active polymer element on the basis of the frequency comparison of the AC voltage and reference signal. It may be envisaged to deposit on the spiral spring a metal-ion composite layer to serve a purpose equivalent to the piezoelectric element.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Oscillators With Electromechanical Resonators (AREA)
Abstract
Description
- L'invention concerne un circuit d'autorégulation de la fréquence d'oscillation d'un système mécanique oscillant.
- L'invention concerne également un dispositif comprenant le système mécanique oscillant et le circuit d'autorégulation de la fréquence d'oscillation du système mécanique oscillant.
- Dans le domaine de l'horlogerie, le système mécanique oscillant peut être un balancier sur lequel est monté un ressort spiral, dont une extrémité est fixée à l'axe de rotation du balancier et l'autre extrémité est fixée sur un élément fixe d'une platine. Le système mécanique est maintenu en oscillation par l'intermédiaire d'une source d'énergie généralement mécanique. Cette source d'énergie peut être par exemple un barillet entraînant un train d'engrenages avec une roue d'échappement coopérant avec une ancre. Cette ancre rotative actionne par exemple une cheville fixée à proximité de l'axe de rotation du balancier. Le balancier avec le ressort spiral peut ainsi former un organe régulateur d'un mouvement d'horlogerie. Cet organe régulateur oscillant détermine la vitesse d'entraînement du train d'engrenages avec la roue d'échappement conduisant aux aiguilles d'indication de l'heure.
- De manière à précisément régler la fréquence d'oscillation du système mécanique oscillant, il peut être prévu d'adapter la longueur du ressort ou également ajouter ou retirer une masse sur la partie circulaire extérieure du balancier. Cependant dans le cas d'une montre-bracelet, tous ces éléments supplémentaires de réglage occupent une place non négligeable à l'intérieur de la boîte de montre, et occasionne un temps de fabrication de la montre et un coût relativement élevés. Cela constitue donc des inconvénients.
- Dans une montre mécanique ou électro-mécanique, il est connu de réguler la vitesse de rotation d'une génératrice électrique reliée au barillet à ressort sous forme de spirale pour l'entraînement mécanique des aiguilles de la montre par l'intermédiaire d'un train d'engrenages. La génératrice électrique génère une tension alternative, qui est redressée au moyen d'un redresseur d'un circuit électronique de régulation. Ce circuit de régulation a pour tâche d'asservir la vitesse de rotation de la génératrice pour pouvoir déplacer les aiguilles d'indication de l'heure en fonction d'une indication correcte de l'heure courante. Un transistor du circuit de régulation peut permettre de court-circuiter par périodes temporelles déterminées, la génératrice afin de la freiner et ainsi réguler la vitesse de rotation. A ce titre, on peut citer les demandes de brevet
EP 0 762 243 A1 ouEP 0 822 470 A1 , qui décrivent une telle montre munie de ce circuit de régulation. - La génératrice électrique susmentionnée comprend des aimants permanents en rotation et une bobine en regard des aimants, susceptible de fournir une tension induite alternative. La réalisation d'une telle génératrice et du circuit de régulation peut s'avérer compliquée. Il doit également être prévu un grand nombre d'éléments pour concevoir ladite génératrice avec le circuit de régulation. De plus, le champ magnétique des aimants en rotation peut induire des effets parasites à certaines parties ferromagnétiques voisines. Cela constitue donc plusieurs inconvénients.
- En lieu et place d'une génératrice électrique composée d'aimants permanents en rotation et d'une bobine générant une tension induite alternative, il a déjà été proposé dans le brevet
FR 2.119.482 - Le réglage de la fréquence d'oscillation d'un balancier combiné à un ressort spiral piézoélectrique en tant que générateur de tension alternative est connu de la demande de brevet
JP 2002-228774 - L'invention a donc pour but de fournir un circuit d'autorégulation compact pour pouvoir réguler précisément la fréquence d'oscillation d'un système mécanique oscillant, avec un nombre restreint de composants et pour pallier aux inconvénients susmentionnés de l'état de la technique.
- A cet effet, l'invention concerne un circuit d'autorégulation de la fréquence d'oscillation d'un système mécanique oscillant, qui comprend les caractéristiques mentionnées dans la revendication indépendante 1.
- Des formes particulières du circuit d'autorégulation sont définies dans les revendications dépendantes 2 à 11.
- Un avantage d'un tel circuit d'autorégulation selon l'invention réside dans le fait qu'il peut être réalisé sous la forme d'un unique module électronique, qui peut être relié directement ou par l'intermédiaire de deux fils électriques à l'élément piézoélectrique ou à polymère électro-actif disposé sur le système mécanique oscillant. Ce système mécanique oscillant peut être de préférence un balancier sur lequel est disposé un ressort spiral, qui comprend l'élément piézoélectrique ou à polymère électro-actif.
- Avantageusement, le circuit d'autorégulation comprend un étage oscillateur relié à un résonateur du type MEMS, qui peut être placé ou réalisé sur, à côté ou dans le même substrat d'intégration des autres composants dudit circuit d'autorégulation. De cette manière, le circuit d'autorégulation avec tous ces composants ne constitue qu'un unique composant compact. Cela permet de réduire considérablement la dimension du système mécanique oscillant avec son circuit d'autorégulation de la fréquence d'oscillation, afin de pouvoir le monter avantageusement dans une montre-bracelet mécanique.
- Avantageusement, le circuit d'autorégulation permet d'appliquer une tension d'adaptation pour générer une force de compression ou d'extension continuelle ou par périodes temporelles déterminées à l'élément piézoélectrique ou à polymère électro-actif. Ceci permet de réguler la fréquence d'oscillation du système mécanique oscillant. A ce titre, une comparaison entre une fréquence d'un signal de référence généré par l'intermédiaire de l'étage oscillateur et la fréquence de la tension alternative générée par l'élément piézoélectrique ou par l'élément à polymère électro-actif est effectuée.
- A cet effet, l'invention concerne également un dispositif comprenant le système mécanique oscillant et le circuit d'autorégulation de la fréquence d'oscillation du système mécanique oscillant, qui comprend les caractéristiques définies dans la revendication indépendante 12.
- Des formes particulières du dispositif sont définies dans les revendications dépendantes 13 à 16.
- Les buts, avantages et caractéristiques du circuit d'autorégulation de la fréquence d'oscillation d'un système mécanique oscillant, et le dispositif le comprenant, apparaîtront mieux dans la description suivante sur la base d'au moins une forme d'exécution non limitative illustrée par les dessins sur lesquels :
- la
figure 1 représente de manière simplifiée un dispositif, qui comprend un système mécanique oscillant et un circuit d'autorégulation de la fréquence d'oscillation du système mécanique oscillant selon l'invention, - la
figure 2 représente une portion d'un ressort spiral du système mécanique oscillant, qui comprend un élément piézoélectrique ou à polymère électro-actif du dispositif selon l'invention, et - la
figure 3 représente un schéma bloc simplifié des composants électroniques du circuit d'autorégulation selon l'invention, qui est relié à l'élément piézoélectrique ou à polymère électro-actif du système mécanique oscillant. - Dans la description suivante, tous les composants électroniques du circuit d'autorégulation de la fréquence d'oscillation du système mécanique oscillant, qui sont bien connus d'un homme du métier dans ce domaine technique, ne sont décrits que de manière simplifiée. Comme décrit ci-après, le circuit d'autorégulation est principalement utilisé pour réguler la fréquence d'oscillation d'un balancier sur lequel est monté un ressort spiral à élément piézoélectrique ou à polymère électro-actif. Toutefois d'autres systèmes mécaniques oscillants peuvent aussi être envisagés, par exemple un système acoustique comme un diapason, mais dans la suite de la description, il ne sera fait référence qu'à un système mécanique oscillant sous la forme d'un balancier avec le ressort spiral à élément piézoélectrique ou à élément à polymère électro-actif (EAP).
- La
figure 1 représente un dispositif 1, qui comprend un système mécanique oscillant 2, 3 et un circuit d'autorégulation 10 de la fréquence d'oscillation fosc du système mécanique oscillant. Dans une montre mécanique, le système mécanique oscillant peut comprendre un balancier 2, qui est formé d'un anneau métallique relié par exemple par trois bras 5 à un axe de rotation 6, et un ressort spiral 3, sur lequel est disposé un élément piézoélectrique ou un élément à polymère électro-actif expliqué brièvement ci-après. Une première extrémité 3a du ressort spiral 3 est maintenue fixe par un piton 4 d'un pont de balancier (non représenté). Ce pont de balancier est fixé à la platine (non représentée) du mouvement de la montre. Une seconde extrémité 3b du ressort spiral 3 est fixée directement sur l'axe de rotation 6 du balancier. - Le balancier 2 avec son ressort spiral 3 est maintenu en oscillation par l'intermédiaire d'une source d'énergie (non représentée), qui peut être électrique, mais de préférence mécanique. Cette source d'énergie mécanique peut être un barillet, qui entraîne traditionnellement un train d'engrenages avec une roue d'échappement coopérant avec une ancre. Cette ancre rotative actionne par exemple une cheville fixée à proximité de l'axe de rotation du balancier. Le balancier avec le ressort spiral peut ainsi former un organe régulateur d'un mouvement d'horlogerie.
- Comme représenté en partie à la
figure 2 , le ressort spiral 3 est réalisé de manière connue au moyen d'un fil ou bande métallique d'épaisseur généralement inférieure à 0.3 mm, par exemple de l'ordre de 0.025 à 0.045 mm. Avant d'enrouler à chaud de préférence la bande métallique 24 sous la forme d'un spiral avec les spires espacées l'une de l'autre, au moins une couche piézoélectrique ou polymère électro-active 23 est déposée sur une des faces de la bande métallique 24. Cette couche piézoélectrique peut être composée par exemple d'oxyde de titane d'une épaisseur de préférence inférieure à 0.1 mm. Il peut aussi être prévu de déposer une première couche piézoélectrique ou polymère électro-active 23 sur une face désignée face extérieure et une seconde couche piézoélectrique ou polymère électro-active 23' sur une autre face désignée face intérieure. Lors de l'enroulement de la bande métallique avec les couches piézoélectriques ou polymères électro-actives 23, 23', la face intérieure est celle en regard de l'axe de rotation du balancier, alors que la face extérieure est opposée à la face intérieure. - De préférence, les couches piézoélectriques ou polymères électro-actives 23, 23' sont déposées sur toute la longueur de la bande métallique 24, mais il peut aussi être envisagé qu'uniquement une portion de la bande est recouverte par une ou plusieurs couches piézoélectriques ou polymères électro-actives. Il peut même aussi être envisagé que la bande est réalisée intégralement dans un matériau piézoélectrique ou dans un matériau polymère électro-actif par exemple de section transversale circulaire ou rectangulaire.
- Lors de l'oscillation du balancier 2 avec le ressort spiral 3, une force de compression ou une force d'extension est appliquée alternativement aux couches piézoélectriques ou polymères électro-actives, qui génèrent ainsi une tension alternative. La fréquence d'oscillation du balancier 2 avec le ressort spiral 3 peut être située entre 3 et 10 Hz. Le circuit d'autorégulation 10 est donc relié électriquement aux deux couches piézoélectriques ou polymères électro-actives pour recevoir cette tension alternative. Ce circuit d'autorégulation peut être relié directement ou par l'intermédiaire de deux fils métalliques à deux bornes des couches piézoélectriques ou polymères électro-actives.
- La
figure 3 représente les différents éléments électroniques du circuit d'autorégulation 10 pour pouvoir réguler la fréquence d'oscillation du système mécanique oscillant. Le circuit d'autorégulation 10 est relié à deux bornes de l'élément piézoélectrique ou l'élément à polymère électro-actif 23, qui est placé sur le ressort spiral du système mécanique oscillant, tel que le balancier. Le circuit d'autorégulation 10 est en mesure de redresser la tension alternative VP reçue de l'élément piézoélectrique ou à polymère électro-actif 23 par l'intermédiaire d'un redresseur 11 traditionnel. La tension redressée de la tension alternative VP est stockée sur un condensateur Cc. Cette tension redressée entre les bornes VDD et VSS du condensateur Cc peut être suffisante pour alimenter tous les éléments électroniques du circuit d'autorégulation sans l'aide d'une source de tension supplémentaire comme une batterie. - Le circuit d'autorégulation 10 comprend un étage oscillateur 15 connecté à un résonateur du type MEMS 16. Le circuit oscillant de l'étage oscillateur avec le résonateur MEMS fournit un signal oscillant, qui peut être d'une fréquence inférieure à 500 kHz, par exemple de l'ordre de 200 kHz. Ainsi l'étage oscillateur 15 peut fournir de préférence un signal de référence VR, dont la fréquence peut être égale à la fréquence du signal oscillant du circuit oscillateur.
- Il peut aussi être envisagé que l'étage oscillateur comprenne au moins un diviseur de fréquence pour diviser la fréquence du signal oscillant, afin de fournir un signal de référence VR à fréquence divisée par rapport à la fréquence du signal oscillant. Dans ce cas, la fréquence du signal de référence VR peut être de l'ordre de la fréquence de la tension alternative VP générée par l'élément piézoélectrique ou à polymère électro-actif.
- Le résonateur MEMS peut être réalisé dans un substrat silicium monolithique épais du type SOI. Ce même substrat peut également servir pour réaliser l'intégration de tous les autres composants du circuit d'autorégulation 10. Pour ce faire, il peut être déposé sur le substrat épais SOI, une autre couche de SOI fin pour intégrer les autres composants électroniques. Ainsi le circuit d'autorégulation peut constituer un unique module électronique compact pour la régulation de la fréquence d'oscillation du système mécanique oscillant. Le circuit d'autorégulation réalisé peut également être encapsulé de manière traditionnelle dans un matériau plastique opaque. Cela permet de réduire les interconnexions avec d'autres éléments externes et également de réduire la consommation électrique.
- Il est à noter qu'il peut aussi être envisagé de réaliser le résonateur MEMS dans un premier substrat silicium monolithique. Le résonateur MEMS peut être placé sur ou à côté d'un second substrat silicium monolithique d'intégration des autres composants du circuit d'autorégulation. Les deux substrats sont encapsulés dans un matériau plastique opaque traditionnel pour former un unique module compact.
- Pour pouvoir réguler la fréquence d'oscillation du système mécanique oscillant, une comparaison doit être effectuée dans le circuit d'autorégulation 10 entre la tension alternative VP et le signal de référence VR. Pour ce faire, le circuit d'autorégulation 10 comprend des moyens de comparaison 12, 13, 14, 17 pour comparer la fréquence de la tension alternative VP avec la fréquence du signal de référence VR. Dans le cas où la fréquence du signal de référence correspond à la fréquence du circuit oscillant de l'étage oscillateur 15, c'est-à-dire à une fréquence de l'ordre de 200 kHz, les moyens de comparaison doivent être conçus de telle manière à tenir compte de l'écart important de fréquence entre la tension alternative VP et le signal de référence VR.
- Les moyens de comparaison sont constitués tout d'abord d'un premier compteur d'alternances 12, qui reçoit en entrée la tension alternative VP de l'élément piézoélectrique ou à polymère électro-actif, et qui fournit un premier signal de comptage NP à une unité de traitement à processeur 17. Les moyens de comparaison comprennent encore un second compteur d'alternances 14, qui reçoit en entrée le signal de référence VR, et qui fournit un second signal de comptage NR à l'unité de traitement à processeur 17.
- Pour tenir compte de l'écart de fréquence entre la tension alternative VP et le signal de référence VR, il est prévu encore une fenêtre de mesure 13 disposée entre le premier compteur d'alternances 12 et le second compteur d'alternances 14. Cette fenêtre de mesure 13 détermine le temps de comptage du second compteur d'alternances 14. L'unité de traitement à processeur 17 fournit des paramètres de configuration à la fenêtre de mesure 13 pour déterminer le temps de comptage pour le second compteur d'alternances. Ces paramètres de configuration sont mémorisés dans une mémoire non représentée dans l'unité de traitement à processeur. Ces paramètres de configuration peuvent être différents selon qu'il s'agisse d'une montre pour dame ou d'une montre pour homme. Les différentes opérations traitées dans l'unité de traitement à processeur 17 peuvent être contrôlées par un signal d'horloge fourni par exemple par le circuit oscillant de l'étage oscillateur 15.
- Le temps de comptage du second compteur d'alternances 14 est adapté proportionnellement au temps de comptage d'un certain nombre déterminé d'alternances comptées par le premier compteur d'alternances dans le premier signal de comptage NP. L'unité de traitement à processeur peut éventuellement commander aussi le premier compteur d'alternances 12 pour définir le début et la fin d'une période de comptage. Cependant il peut aussi être envisagé que le premier compteur d'alternances 12 fournisse une information du début et de la fin d'un nombre déterminé d'alternances comptées à l'unité de traitement à processeur. S'il est prévu de compter par exemple 200 alternances dans le premier compteur d'alternances, la fenêtre de mesure 13 est configurée pour que le second compteur d'alternances 14 compte un nombre d'alternances du signal de référence VR pendant une durée à peu près 5000 fois inférieure. Cette durée peut être dépendante aussi du temps de comptage par exemple des 200 alternances du premier compteur d'alternances. Cela permet de réduire la consommation électrique du circuit d'autorégulation.
- Le début de comptage commandé par la fenêtre de mesure 13 peut être déterminé par le premier compteur d'alternances 12, mais peut aussi de préférence être commandé directement par l'unité de traitement à processeur 17. L'unité de traitement à processeur peut recevoir tout d'abord le premier signal de comptage NP relatif à un premier nombre déterminé d'alternances comptées de la tension alternative VP dans un premier intervalle de temps. Ce premier signal de comptage est mémorisé par exemple dans un registre de l'unité de traitement à processeur. Par la suite, l'unité de traitement à processeur peut recevoir le second signal de comptage NR relatif à un second nombre d'alternances comptées dans le second compteur d'alternances 14 dans un second intervalle de temps commandé par la fenêtre de mesure 13. Ce second signal de comptage NR peut aussi être mémorisé dans un autre registre de l'unité de traitement à processeur. Finalement une comparaison des deux signaux de comptage est effectuée dans l'unité de traitement à processeur pour déterminer si la fréquence de la tension alternative VP est trop élevée ou trop basse par rapport proportionnellement à la fréquence du signal de référence.
- Sur la base de la comparaison effectuée entre les deux signaux de comptage NP et NR dans l'unité de traitement à processeur, ladite unité de traitement à processeur commande une unité d'adaptation de fréquence 18, dont la sortie est reliée aux bornes de l'élément piézoélectrique ou à polymère électro-actif 23. Cette unité d'adaptation de fréquence 18 peut être prévue pour fournir un signal d'adaptation de fréquence, qui est une tension continue VA, dont le niveau est fonction de la différence entre les deux signaux de comptage communiquée par l'unité de traitement à processeur. Un réseau commutable de condensateurs ou de résistances peut être prévu à cet effet. Il peut être fourni une valeur de tension continue par l'intermédiaire d'un suiveur de tension de l'unité d'adaptation 18 à une des bornes de l'élément piézoélectrique ou à polymère électro-actif 23 ou à l'autre borne de l'élément piézoélectrique ou à polymère électro-actif. Cela permet ainsi d'induire une certaine force sur l'élément piézoélectrique ou à polymère électro-actif pour freiner ou accélérer l'oscillation du système mécanique oscillant en fonction de la comparaison des deux signaux de comptage.
- La tension continue d'une certaine valeur VA peut être fournie par l'unité d'adaptation de fréquence 18 par périodes temporelles déterminées, ce qui peut être programmé dans l'unité de traitement à processeur. Il peut aussi être prévu que plusieurs composants électroniques du circuit d'autorégulation ne soient enclenchés que dans des intervalles temporels déterminés par économie d'énergie. Par exemple, la fenêtre de mesure 13, le second compteur d'alternances 14, l'étage oscillateur 15 relié au résonateur MEMS 16 et une partie de l'unité de traitement à processeur 17 peuvent être laissés dans un mode de repos et enclenchés par intervalles temporels déterminés pour effectuer la régulation de la fréquence d'oscillation. Le premier compteur d'alternances 12 qui fonctionne à très basse fréquence, peut par contre être enclenché en continu et servir à commander l'enclenchement des autres parties du circuit d'autorégulation 10 après un certain nombre d'alternances comptées de la tension alternative VP.
- Si la fréquence d'oscillation du système mécanique oscillant a été adaptée, il peut être prévu de prolonger le temps de mise au repos notamment de l'étage oscillateur 15. La plupart des composants électroniques au repos du circuit d'autorégulation peuvent dans ces conditions être enclenchés par exemple chaque minute, ce qui permet de fortement réduire la consommation électrique du circuit d'autorégulation. Dans ces conditions, le condensateur Cc, qui stocke une tension redressée d'alimentation, ne se décharge que fort peu, car uniquement une utilisation ponctuelle plus importante d'énergie intervient lors de la comparaison de fréquence du signal de référence VR et de la tension alternative VP.
- Le circuit d'autorégulation 10 peut comprendre également des éléments de compensation thermique bien connus, ainsi qu'une unité de remise à zéro à chaque enclenchement du circuit d'autorégulation 10. Tous les composants électroniques du circuit d'autorégulation, ainsi que le résonateur MEMS 16 et le condensateur Cc font partie d'un même module électronique compact. Tous ces composants électroniques peuvent être intégrés avantageusement dans un même substrat silicium monolithique, ce qui permet de n'avoir qu'un seul module électronique autoalimenté pour la régulation de fréquence du système mécanique oscillant.
- Dans le cas où l'étage oscillateur 15 fournit un signal de référence VR à fréquence divisée correspondant à une fréquence désirée de la tension alternative VP de l'élément piézoélectrique ou à polymère électro-actif 23, le temps de comptage du second compteur d'alternances 14 peut être directement commandé par le premier compteur d'alternances 12. Le nombre d'alternances NP de la tension alternative VP peut être directement comparé dans l'unité de traitement à processeur 17 avec le nombre d'alternances comptées NR dans le second compteur d'alternances 14.
- A partir de la description qui vient d'être faite, plusieurs variantes du circuit d'autorégulation de la fréquence d'oscillation d'un système mécanique oscillant, ainsi que du dispositif le comprenant peuvent être conçues par l'homme du métier sans sortir du cadre de l'invention définie par les revendications. Le système mécanique oscillant peut être un système acoustique. Il peut être prévu d'adapter la fréquence d'oscillation du système mécanique oscillant en plaçant un certain nombre de condensateurs en parallèle avec l'élément piézoélectrique ou à polymère électro-actif sur la base de la comparaison de fréquence de la tension alternative et du signal de référence. Il peut être envisagé de déposer sur le ressort spiral une couche composite métal-ion pour servir dans un but équivalent à l'élément piézoélectrique.
Claims (16)
- Circuit d'autorégulation (10) d'une fréquence d'oscillation d'un système mécanique oscillant (2, 3), le système mécanique comprenant un élément piézoélectrique ou à polymère électro-actif (23) susceptible de générer une tension alternative (VP) suite à l'oscillation du système mécanique, le circuit d'autorégulation étant destiné à être relié à l'élément piézoélectrique ou à polymère électro-actif pour adapter la fréquence d'oscillation du système mécanique oscillant, le circuit d'autorégulation comprenant :- un redresseur (11) pour redresser la tension alternative (VP) générée par l'élément piézoélectrique ou à polymère électro-actif et pour stocker la tension redressée sur au moins un condensateur (Cc) pour pouvoir alimenter en électricité le circuit d'autorégulation,- un étage oscillateur (15) pour fournir un signal de référence (VR),- des moyens de comparaison (12, 13, 14, 17) pour comparer la fréquence de la tension alternative (VP) avec la fréquence du signal de référence (VR), et- une unité d'adaptation de fréquence (18) destinée à être reliée à l'élément piézoélectrique ou à polymère électro-actif (23) pour fournir un signal d'adaptation de fréquence (VA) à l'élément piézoélectrique ou à polymère électro-actif sur la base du résultat de la comparaison dans les moyens de comparaison (12, 13, 14, 17), pour pouvoir réguler la fréquence d'oscillation du système mécanique oscillant,
caractérisé en ce que l'étage oscillateur (15) comprend un circuit oscillant relié à un résonateur MEMS (16) pour fournir un signal oscillant, afin que l'étage oscillateur (15) fournisse le signal de référence (VR), et
en ce que tous les composants électroniques du circuit d'autorégulation sont regroupés pour ne former qu'un unique module électronique. - Circuit d'autorégulation (10) selon la revendication 1, caractérisé en ce que le résonateur MEMS est réalisé dans un substrat silicium monolithique, qui est également utilisé pour l'intégration de tous les autres composants électroniques du circuit d'autorégulation, afin de ne former qu'un unique module compact.
- Circuit d'autorégulation (10) selon la revendication 1, caractérisé en ce que le résonateur MEMS est réalisé dans un premier substrat silicium monolithique, qui est placé sur ou à côté d'un second substrat silicium monolithique d'intégration des autres composants du circuit d'autorégulation, les deux substrats étant encapsulés pour former un unique module compact.
- Circuit d'autorégulation (10) selon la revendication 1, caractérisé en ce que l'étage oscillateur (15) est adapté pour fournir un signal de référence (VR) de fréquence identique à la fréquence du signal oscillant du circuit oscillant.
- Circuit d'autorégulation (10) selon la revendication 4, caractérisé en ce que l'étage oscillateur (15) est configuré pour fournir un signal de référence (VR) de fréquence supérieure ou égale à 200 kHz.
- Circuit d'autorégulation (10) selon la revendication 1, caractérisé en ce que les moyens de comparaison (12, 13, 14, 17) comprennent un premier compteur d'alternances (12) destiné à compter un premier nombre d'alternances de la tension alternative (VP) de l'élément piézoélectrique ou à polymère électro-actif dans un premier intervalle de temps déterminé et à fournir un premier signal de comptage (NP), un second compteur d'alternances (14) pour compter un second nombre d'alternances du signal de référence (VR) fourni par l'étage oscillateur (15) dans un second intervalle de temps déterminé en partie sur la base du premier intervalle de temps et pour fournir un second signal de comptage (NR), et une unité de traitement à processeur (17) pour comparer le premier signal de comptage avec le second signal de comptage de manière à commander l'unité d'adaptation de fréquence (18) sur la base du résultat de la comparaison.
- Circuit d'autorégulation (10) selon la revendication 6, caractérisé en ce que les moyens de comparaison (12, 13, 14, 17) comprennent encore une fenêtre de mesure (13) disposée entre le premier compteur d'alternances (12) et le second compteur d'alternances (14), ladite fenêtre de mesure (13) étant configurée par des paramètres de configuration fournis par l'unité de traitement à processeur (17) de manière à déterminer le second intervalle de temps de comptage pour le second compteur d'alternances (14) en tenant compte du premier intervalle de temps.
- Circuit d'autorégulation (10) selon la revendication 6, caractérisé en ce que l'étage oscillateur (15) comprend un diviseur de fréquence pour pouvoir diviser la fréquence du signal oscillant, afin de fournir un signal de référence (VR), dont la fréquence est définie selon la fréquence d'adaptation désirée de la tension alternative (VP) de l'élément piézoélectrique ou à polymère électro-actif, et en ce que l'unité de traitement à processeur (17) commande une opération de comptage des premier et second compteurs d'alternances (12, 14) avec un premier intervalle de comptage équivalent au second intervalle de comptage.
- Circuit d'autorégulation (10) selon l'une des revendications précédentes, caractérisé en ce que l'unité d'adaptation de fréquence (18) est adaptée pour fournir une tension continue d'adaptation (VA) à l'élément piézoélectrique ou à polymère électro-actif (23) en fonction du résultat de la comparaison dans une unité de traitement (17) des moyens de comparaison (12, 13, 14, 17).
- Circuit d'autorégulation (10) selon la revendication 9, caractérisé en ce que l'unité d'adaptation de fréquence (18) est adaptée pour fournir une tension continue d'adaptation (VA) dans des périodes temporelles déterminées.
- Circuit d'autorégulation (10) selon la revendication 6, caractérisé en ce que le premier compteur d'alternances (12) est adapté pour enclencher dans des périodes déterminées pour la comparaison de fréquence, l'étage oscillateur (15), le second compteur d'alternances (14) et une partie de l'unité de traitement à processeur (17), en dehors des périodes déterminées, l'étage oscillateur (15), le second compteur d'alternances (14) et une partie de l'unité de traitement à processeur (17) n'étant pas alimenté par la tension redressée sur le condensateur (Cc).
- Dispositif comprenant un système mécanique oscillant (2, 3) et le circuit d'autorégulation (10) de la fréquence d'oscillation du système oscillant selon l'une des revendications précédentes, caractérisé en ce que le système mécanique oscillant (2, 3) comprend un élément piézoélectrique ou à polymère électro-actif (23) pour générer une tension alternative à fréquence correspondant à la fréquence d'oscillation du système mécanique oscillant, deux bornes de l'élément piézoélectrique ou à polymère électro-actif étant reliées au circuit d'autorégulation de manière à recevoir du circuit d'autorégulation (10), un signal d'adaptation de fréquence (VA) sur la base d'une comparaison de fréquence entre la tension alternative (VP) et un signal de référence (VR) d'un étage oscillateur (15) du circuit d'autorégulation.
- Dispositif selon la revendication 12, caractérisé en ce que le système mécanique oscillant (2, 3) est un balancier (2) d'une montre, sur lequel est monté un ressort spiral (3), qui porte l'élément piézoélectrique ou à polymère électro-actif (23).
- Dispositif selon la revendication 13, caractérisé en ce que l'élément piézoélectrique ou à polymère électro-actif comprend au moins une couche piézoélectrique ou à polymère électro-active (23) disposée sur au moins une face d'une bande métallique (24) du ressort spiral (3).
- Dispositif selon la revendication 14, caractérisé en ce que l'élément piézoélectrique ou à polymère électro-actif comprend une première couche piézoélectrique ou à polymère électro-active (23) disposée sur une face extérieure de la bande métallique (24), et une seconde couche piézoélectrique ou à polymère électro-active (23') disposée sur une face intérieure de la bande métallique (24), en ce qu'une première borne de connexion de l'élément piézoélectrique ou à polymère électro-actif est fixée à la première couche piézoélectrique ou à polymère électro-active, et en ce qu'une seconde borne de connexion de l'élément piézoélectrique ou à polymère électro-actif est fixée à la seconde couche piézoélectrique ou à polymère électro-active, les première et seconde bornes étant reliées au circuit d'autorégulation (10).
- Dispositif selon la revendication 15, caractérisé en ce que les première et seconde couches piézoélectrique ou à polymères électro-actives (23, 23') sont déposées sur une partie ou toute la longueur des faces intérieure et extérieure de la bande métallique (24).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11187360.0A EP2590035B1 (fr) | 2011-11-01 | 2011-11-01 | Circuit d'autorégulation de la fréquence d'oscillation d'un système mécanique oscillant, et dispositif le comprenant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11187360.0A EP2590035B1 (fr) | 2011-11-01 | 2011-11-01 | Circuit d'autorégulation de la fréquence d'oscillation d'un système mécanique oscillant, et dispositif le comprenant |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2590035A1 true EP2590035A1 (fr) | 2013-05-08 |
EP2590035B1 EP2590035B1 (fr) | 2020-12-30 |
Family
ID=44862831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11187360.0A Active EP2590035B1 (fr) | 2011-11-01 | 2011-11-01 | Circuit d'autorégulation de la fréquence d'oscillation d'un système mécanique oscillant, et dispositif le comprenant |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2590035B1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3457224A1 (fr) | 2017-09-14 | 2019-03-20 | The Swatch Group Research and Development Ltd | Element piezoelectrique pour un circuit d'autoregulation de frequence, systeme mecanique oscillant et dispositif le comprenant, et procede de fabrication de l'element piezoelectrique |
EP3457223A1 (fr) | 2017-09-14 | 2019-03-20 | The Swatch Group Research and Development Ltd | Element piezoelectrique pour un circuit d'autoregulation de frequence, et systeme mecanique oscillant et dispositif le comprenant |
EP3540528A1 (fr) * | 2018-03-16 | 2019-09-18 | The Swatch Group Research and Development Ltd | Pièce d'horlogerie comprenant un mouvement mécanique dont la marche est régulée par un dispositif électronique |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4194960A1 (fr) | 2021-12-10 | 2023-06-14 | The Swatch Group Research and Development Ltd | Ressort spiral piézoélectrique, et procédé de fabrication du ressort spiral |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2119482A5 (fr) | 1970-12-21 | 1972-08-04 | Ki | |
EP0762243A1 (fr) | 1995-08-10 | 1997-03-12 | Asulab S.A. | Pièce d'horlogerie avec indication de la réserve de marche |
EP0822470A1 (fr) | 1996-08-01 | 1998-02-04 | Asulab S.A. | Pièce d'horlogerie électronique comportant une génératrice entrainée par un barillet à ressort |
US6194878B1 (en) * | 1997-06-25 | 2001-02-27 | Conseils Et Manufactures Vlg Sa | Electronic speed control circuit |
JP2002228774A (ja) | 2001-01-30 | 2002-08-14 | Seiko Epson Corp | 圧電調速機およびこの圧電調速機を用いた電子機器 |
US20040004520A1 (en) * | 1999-11-02 | 2004-01-08 | Eta Sa Fabriques D'ebauches | Temperature compensation mechanism for a micromechanical ring resonator |
WO2011131784A1 (fr) * | 2010-04-21 | 2011-10-27 | Team Smartfish Gmbh | Organe de réglage pour un mécanisme d'horloge et procédé correspondant |
-
2011
- 2011-11-01 EP EP11187360.0A patent/EP2590035B1/fr active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2119482A5 (fr) | 1970-12-21 | 1972-08-04 | Ki | |
EP0762243A1 (fr) | 1995-08-10 | 1997-03-12 | Asulab S.A. | Pièce d'horlogerie avec indication de la réserve de marche |
EP0822470A1 (fr) | 1996-08-01 | 1998-02-04 | Asulab S.A. | Pièce d'horlogerie électronique comportant une génératrice entrainée par un barillet à ressort |
US6194878B1 (en) * | 1997-06-25 | 2001-02-27 | Conseils Et Manufactures Vlg Sa | Electronic speed control circuit |
US20040004520A1 (en) * | 1999-11-02 | 2004-01-08 | Eta Sa Fabriques D'ebauches | Temperature compensation mechanism for a micromechanical ring resonator |
JP2002228774A (ja) | 2001-01-30 | 2002-08-14 | Seiko Epson Corp | 圧電調速機およびこの圧電調速機を用いた電子機器 |
WO2011131784A1 (fr) * | 2010-04-21 | 2011-10-27 | Team Smartfish Gmbh | Organe de réglage pour un mécanisme d'horloge et procédé correspondant |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3457224A1 (fr) | 2017-09-14 | 2019-03-20 | The Swatch Group Research and Development Ltd | Element piezoelectrique pour un circuit d'autoregulation de frequence, systeme mecanique oscillant et dispositif le comprenant, et procede de fabrication de l'element piezoelectrique |
EP3457223A1 (fr) | 2017-09-14 | 2019-03-20 | The Swatch Group Research and Development Ltd | Element piezoelectrique pour un circuit d'autoregulation de frequence, et systeme mecanique oscillant et dispositif le comprenant |
EP3540528A1 (fr) * | 2018-03-16 | 2019-09-18 | The Swatch Group Research and Development Ltd | Pièce d'horlogerie comprenant un mouvement mécanique dont la marche est régulée par un dispositif électronique |
CN110275420A (zh) * | 2018-03-16 | 2019-09-24 | 斯沃奇集团研究和开发有限公司 | 包括由电子装置调节速率的机械机芯的钟表 |
CN110275420B (zh) * | 2018-03-16 | 2020-11-27 | 斯沃奇集团研究和开发有限公司 | 包括机械机芯和用于调节该机芯的速率的电子装置的钟表 |
US11415946B2 (en) | 2018-03-16 | 2022-08-16 | The Swatch Group Research And Development Ltd | Timepiece comprising a mechanical movement whose rate is regulated by an electronic device |
Also Published As
Publication number | Publication date |
---|---|
EP2590035B1 (fr) | 2020-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CH705679A2 (fr) | Circuit d'autorégulation de la fréquence d'oscillation d'un système mécanique oscillant, et dispositif le comprenant. | |
EP3339982B1 (fr) | Régulation par freinage mécanique d'un oscillateur mécanique horloger | |
EP3457224B1 (fr) | Element piezoelectrique pour un circuit d'autoregulation de frequence, systeme mecanique oscillant et dispositif le comprenant, et procede de fabrication de l'element piezoelectrique | |
EP3457223A1 (fr) | Element piezoelectrique pour un circuit d'autoregulation de frequence, et systeme mecanique oscillant et dispositif le comprenant | |
EP0679968B1 (fr) | Pièce d'horlogerie mue par une source d'énergie mécanique et régulée par un circuit électronique | |
EP3579061B1 (fr) | Ecrin pour montre electromecanique et ensemble le comprenant | |
EP2590035B1 (fr) | Circuit d'autorégulation de la fréquence d'oscillation d'un système mécanique oscillant, et dispositif le comprenant | |
EP3629104B1 (fr) | Piece d'horlogerie mécanique comportant un dispositif electronique de regulation de la précision de marche de la pièce d'horlogerie | |
CH688879B5 (fr) | Pièce d'horlogerie avec indication de la réserve de marche. | |
EP1521142A1 (fr) | Pièce d'horlogerie ayant un mouvement mécanique associé à un régulateur électronique | |
EP3842876A1 (fr) | Piece d horlogerie munie d'un mouvement mecanique et d'un dispositif de correction d'une heure affichee | |
EP0587031B1 (fr) | Pièce d'horlogerie pourvue de moyens d'entraînement formés par un moteur piézo-électrique | |
EP2169479B1 (fr) | Dispositif base de temps pour une montre | |
CH713306B1 (fr) | Ensemble horloger comprenant un oscillateur mécanique associé à un dispositif de régulation de sa fréquence moyenne. | |
CH690523A5 (fr) | Pièce d'horlogerie comportant une génératrice d'énergie électrique. | |
EP1890204B1 (fr) | Montre électronique comprenant un résonateur | |
EP4099100A1 (fr) | Mouvement horloger muni d'un oscillateur comprenant un spiral piezoelectrique | |
CH714144A2 (fr) | Elément piézoélectrique pour un circuit d'autorégulation de fréquence, système mécanique oscillant et dispositif le comprenant, et procédé de fabrication de l'élément piézoélectrique. | |
WO2021121711A1 (fr) | Piece d'horlogerie munie d'un mouvement mecanique et d'un dispositif de correction d'une heure affichee | |
EP4130890A1 (fr) | Mouvement horloger muni d'un oscillateur comprenant un spiral piézoélectrique | |
CH714143A2 (fr) | Elément piézoélectrique pour un circuit d'autorégulation de fréquence, et système mécanique oscillant et dispositif le comprenant. | |
CH717000A2 (fr) | Pièce d'horlogerie munie d'un mouvement mécanique et d'un dispositif de correction d'une heure affichée. | |
EP1426837B1 (fr) | Pièce d'horlogerie avec indication de la réserve de marche | |
CH715399A2 (fr) | Pièce d'horlogerie comprenant un oscillateur mécanique associé à un dispositif électronique de régulation de sa fréquence moyenne. | |
CH717002A2 (fr) | Pièce d'horlogerie munie d'un mouvement mécanique et d'un dispositif de correction d'une heure affichée. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20131108 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20140703 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200824 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011069800 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1350542 Country of ref document: AT Kind code of ref document: T Effective date: 20210115 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210330 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1350542 Country of ref document: AT Kind code of ref document: T Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210330 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011069800 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
26N | No opposition filed |
Effective date: 20211001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211101 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211101 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111101 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231019 Year of fee payment: 13 Ref country code: DE Payment date: 20231019 Year of fee payment: 13 Ref country code: CH Payment date: 20231201 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |