EP2586067A2 - Solar cell - Google Patents

Solar cell

Info

Publication number
EP2586067A2
EP2586067A2 EP11705887.5A EP11705887A EP2586067A2 EP 2586067 A2 EP2586067 A2 EP 2586067A2 EP 11705887 A EP11705887 A EP 11705887A EP 2586067 A2 EP2586067 A2 EP 2586067A2
Authority
EP
European Patent Office
Prior art keywords
layer
metal layer
solar cell
cell according
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11705887.5A
Other languages
German (de)
French (fr)
Inventor
Hans-Joachim Krokoszinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2586067A2 publication Critical patent/EP2586067A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022491Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of a thin transparent metal layer, e.g. gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of the semiconductor components, in particular the solar cells, and relates to a crystalline solar cell with an n- or p-doped semiconductor substrate and a passivated back.
  • Silicon solar cells with a "passivated backside” have an improved optical mirroring and a much improved passivation of the rear surface compared to the previously standard aluminum back surface field (BSF), see A. Götzberger et al., “Sonnenenergie: Photovoltaics ", BG Teubner Stuttgart, 1997.
  • the cell concept thus produced is called” passivated emitter and rear cell “(PERC), where the dielectric passivation adapted to the backside doping is locally opened at many small points, so that the metal layer deposited on the passivation layer can contact the semiconductor, but only at a small area fraction of the back surface, to minimize the strong recombination of the electron-hole pairs on metallized surfaces.
  • the metallization of the rear side is in most cases made of aluminum and is deposited over the entire area on the entire back, usually with vacuum vapor deposition or sputtering.
  • Documents which relate to such solar cells and methods for their production and are associated with rear-side structuring steps and / or the rear-side driving in of dopants are, for example, DE 19525720 C2, DE 102007059486 A1 or DE 102008 013446 AI and DE 102008033 169 AI (both latter of ErSol Solar Energy AG).
  • connection structures in particular under the influence of soldered joints, is concerned for example with JP 2005027309 A, DE 102008017312 A1 or DE 102008020796 A1.
  • LFC Laser Fired Contacts
  • the backside emitter pn junction
  • the backside emitter pn junction
  • the formation of the Al-Si eutectic which typically melts to a few microns, would increase a breakthrough through the thin p + emitter into the n-base and there lead to a short circuit to the base. Therefore, the metallization with low temperatures (eg 400 ° C, optionally also in forming gas) must be tempered to a sufficiently good ohmic
  • Sputter sources are provided for the aluminum coating.
  • the compromise involves higher investment and / or process costs.
  • the proposed solar cell is characterized by a thin dielectric cover layer covering the first metal layer, which has a first regular arrangement of narrow line-like openings and a second regular arrangement of substantially wider lines or elongated island-like openings, wherein the first and second opening arrangement at an angle, in particular transversely to each other, are aligned. It is further characterized by a highly conductive and solderable on the exposed surface second metal layer in the openings of the first and second opening arrangement, which contacts there the first metal layer.
  • the solar cell according to the invention with a passivated and metallized large back side which was chemically or galvanically reinforced in the open in the dielectric cover layer narrow finger areas and busbar or Lötpad Schemeen current collecting, possesses the case in any case the following advantages over the prior art:
  • the solar cell has in addition to the usual large-area
  • Aluminum layer with local contacts to the semiconductor surface also solderable areas (busbars or soldering pads).
  • the second metal layer comprises at least one metal of the group comprising Pd, Ni, Ag, Cu and Sn.
  • the second metal layer has a sequence of metal layers, in particular the layer sequence Pd / Ni / Ag or Ni / Cu / Sn.
  • the second metal layer is produced by a chemically or galvanically deposited reinforcing layer.
  • the thin dielectric cover layer comprises at least one of the silicon oxide, silicon nitride,
  • the substrate is a p-doped silicon substrate with a phosphorus-doped emitter on the first main surface.
  • the semiconductor substrate is an n-doped silicon substrate having a boron- or aluminum-doped p + emitter on the second major surface.
  • the first and second openings in the thin dielectric capping layer are formed by masked ion etching, particularly in the same plant in which the capping layer is formed.
  • FIG. 1 to 3 in perspective schematic representations of an initial situation and a first and second process section of the production of a
  • 4A and 4B are schematic plan views of two embodiments
  • the emitter may be located either on the front side or on the back side. In the latter case, a doping for a front surface field (FSF) is usually produced on the front side.
  • FSF front surface field
  • the front side 2a is already completely processed, d. H. doped homogeneously or selectively, with passivation / antireflection coating or layer sequence and provided with a solderable contact grid.
  • the back side 2b may be undoped or a homogeneous doping 3
  • the surface is coated by means of chemical vapor deposition (CVD) or physical vapor deposition (PVD, ie vapor deposition or sputtering) with a passivation layer or layer sequence 4 which has been selected and optimized with regard to doping polarity and doping concentration and which is provided with a technique known per se from the prior art locally removed (opened).
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • ie vapor deposition or sputtering a passivation layer or layer sequence 4 which has been selected and optimized with regard to doping polarity and doping concentration and which is provided with a technique known per se from the prior art locally removed (opened).
  • the resulting dot matrix in which the local contact openings 5 are arranged, depends on the sheet resistance of the surface: in the case of undoped surfaces (PERC cell), the distance between the points D
  • the first process step according to the invention begins with the full surface coating (known per se from the prior art) with a metal layer sequence 6 (FIG. 2), it being possible to use either vapor deposition technology or sputtering technology. It may be z. B. aluminum which is optionally covered in the same plant with a thin nickel-containing seed layer (not shown) for later chemical or galvanic reinforcement. Alternatively, of course, other metals or metal layer sequences can be selected, for. Titanium / palladium / silver or nickel chromium / nickel / silver.
  • the entire backside is covered with a thin dielectric thin film 7.
  • all the deposited layers lie both on the passivation layer sequence 4 and on the semiconductor surface exposed in the local openings 5 in the passivation layer.
  • the covering layer 7 may be an oxide or a nitride of aluminum or silicon. It can be evaporated or reactively sputtered from the metal target or deposited by RF sputtering from the dielectric target.
  • the dielectric in the second step, with a suitable technique, the dielectric
  • Cover layer in the form of many, narrow preferably equidistant and parallel to each other arranged lines 8 open ( Figure 3).
  • the following techniques known per se from the prior art can be used: laser ablation, screen-printed or ink-jet printed etching paste, inkjet-masked wet-chemical etching.
  • the distance W of the parallel openings 8 is typically of the order of 1mm to 10mm, preferably 2mm to 5mm.
  • the width of the openings is typically about ⁇ to 1mm, preferably 200pm to 500 ⁇ .
  • Bus bar strips 9a can have any desired width optimized for the soldering process. It could only be 2 busbars.
  • Pad areas 9b can be as many as desired and of any size. They can be arranged along 2 or 3 lines, depending on the number and location of the busbars on the front.
  • the metal surface exposed in the openings 8, 9a, 9b in the covering layer is reinforced in a suitable chemical or galvanic deposition process with a highly conductive and readily solderable metal layer sequence (FIG. 5).
  • a highly conductive and readily solderable metal layer sequence (FIG. 5).
  • the exposed metal for example, it may be palladium, nickel and silver or nickel, Copper and tin act. If aluminum with a nickel seed layer has been chosen, nickel will likely be deposited in the first bath, which will then be covered with sufficient silver.
  • the wider busbar or pad regions 9a or 9b are also post-amplified and solderable with the same layer sequence 11 (FIG. 6).
  • the post-reinforced narrow fingers 10 open either directly into the reinforced busbar surfaces IIa or solder pad surfaces IIb, or into narrow connecting lines between the pads (see FIG. Incidentally, the embodiment of the invention is not limited to the above-described examples and emphasized aspects, but only by the scope of the appended claims.

Abstract

The invention relates to a solar cell comprising: a passivation layer sequence provided with a plurality of island-shaped recesses in which the passivation layers are completely removed, on the second main surface; a thin first metal layer arranged on the passivation sequence layer and in the recesses on the substrate surface; a thin dielectric cover layer covering the first metal layer and comprising a first regular arrangement of narrow linear openings and a second regular arrangement of essentially wider linear or elongate island-shaped openings, the first and the second opening arrangements being aligned at an angle, in particular perpendicular to each other. Said solar cell also comprises a second metal layer which is highly conductive and can be soldered on the open surface in the openings of the first and second opening arrangements, said second metal layer making contact with the first metal layer.

Description

Beschreibung  description
Titel title
Solarzelle Die Erfindung bezieht sich auf das Sachgebiet der Halbleiter-Bauelemente, insbesondere der Solarzellen, und betrifft eine kristalline Solarzelle mit einem n- oder p-dotierten Halbleitersubstrat und einer passivierten Rückseite. Stand der Technik The invention relates to the field of the semiconductor components, in particular the solar cells, and relates to a crystalline solar cell with an n- or p-doped semiconductor substrate and a passivated back. State of the art
Silizium-Solarzellen mit„passivierter Rückseite" besitzen eine verbesserte optische Verspiegelung und eine gegenüber dem bisher standardmäßig hergestellten Aluminium-Back Surface Field (BSF) stark verbesserte Passivie- rung der rückwärtigen Oberfläche, vgl. A. Götzberger et. al.,„Sonnenenergie: Photovoltaik", B. G. Teubner Stuttgart, 1997. Das damit hergestellte Zellkonzept heißt„Passivated Emitter and Rear Cell" (PERC). Dabei wird die an die Rückseitendotierung angepasste dielektrische Passivierung lokal an vielen kleinen Punkten geöffnet, damit die auf der Passivierschicht abge- schiedene Metallschicht den Halbleiter kontaktieren kann, aber nur an einem kleinen Flächenanteil der Rückseite, um die starke Rekombination der Elektron-Loch-Paare an metallisierten Oberflächen zu minimieren. Silicon solar cells with a "passivated backside" have an improved optical mirroring and a much improved passivation of the rear surface compared to the previously standard aluminum back surface field (BSF), see A. Götzberger et al., "Sonnenenergie: Photovoltaics ", BG Teubner Stuttgart, 1997. The cell concept thus produced is called" passivated emitter and rear cell "(PERC), where the dielectric passivation adapted to the backside doping is locally opened at many small points, so that the metal layer deposited on the passivation layer can contact the semiconductor, but only at a small area fraction of the back surface, to minimize the strong recombination of the electron-hole pairs on metallized surfaces.
Die Metallisierung der Rückseite besteht in den meisten Fällen aus Aluminium und wird großflächig auf der gesamten Rückseite in der Regel mit Vakuum- Aufdampftechnik oder Sputtern abgeschieden. The metallization of the rear side is in most cases made of aluminum and is deposited over the entire area on the entire back, usually with vacuum vapor deposition or sputtering.
Druckschriften, die sich auf derartige Solarzellen sowie Verfahren zu deren Herstellung beziehen und mit Rückseiten-Strukturierungsschritten und/oder dem rückseitigen Eintreiben von Dotierstoffen in Verbindung stehen, sind etwa die DE 19525720 C2, die DE 102007059486 AI oder die DE 102008 013446 AI sowie DE 102008033 169 AI (beide letztere der ErSol Solar Energy AG). Documents which relate to such solar cells and methods for their production and are associated with rear-side structuring steps and / or the rear-side driving in of dopants are, for example, DE 19525720 C2, DE 102007059486 A1 or DE 102008 013446 AI and DE 102008033 169 AI (both latter of ErSol Solar Energy AG).
Mit der effizienten Herstellung zuverlässiger Anschlussstrukturen, insbesondere unter Einfluss von Lötverbindungen, befassen sich etwa die JP 2005027 309 A, die DE 102008017312 AI oder die DE 102008020796 AI. The efficient production of reliable connection structures, in particular under the influence of soldered joints, is concerned for example with JP 2005027309 A, DE 102008017312 A1 or DE 102008020796 A1.
Bekannt ist die Methode der„Laser Fired Contacts" (LFC), bei der die Metallisierung auf der rückseitigen Passivierung mit Laserpulsen durch die Passi- vierschicht hindurchgefeuert wird, so dass ein vorheriges Öffnen der Passi- vierschicht unnötig wird, vgl.„Laserstrahlverfahren zur Fertigung kristalliner Silizium-Solarzellen", Dissertation Eric Schneiderlöchner, Albert-Ludwigs- Universität Freiburg im Breisgau (2004) oder die (frühere) DE 199 15666 AI. The method of "Laser Fired Contacts" (LFC) is known, in which the metallization on the back passivation is fired through the passivation layer with laser pulses, so that a prior opening of the passivation layer becomes unnecessary, see "Laser beam method for fabrication crystalline silicon solar cells ", dissertation Eric Schneiderlöchner, Albert Ludwig University Freiburg im Breisgau (2004) or the (former) DE 199 15666 AI.
Bei Zellen auf p-dotierten Wafern wird die Bildung von„lokalen BSF-Berei- chen" an den Kontaktpunkten in der Rückseitenpassivierung einfach durch Anlegieren des Aluminiums in die p- oder p+-Oberfläche hinein vorgenommen. Dies geschieht bei Temperaturen oberhalb der Al-Si-Eutektikumstempe- ratur von 577°C. Dazu ist es erforderlich, dass die rückseitige Passivier- schicht und auch der vorderseitige Emitter (nach dem vorher durchgeführten Sintern der vorderseitigen Silberpaste) diese Temperaturen unbeschadet überstehen. For cells on p-doped wafers, the formation of "local BSF regions" at the contact points in the backside passivation is done simply by alloying the aluminum into the p- or p + -surface. Si-eutectic temperature of 577 ° C. For this, it is necessary that the backside passivation layer and also the front emitter (after previously sintering the front silver paste) survive these temperatures without damage.
Bei Zellen auf n-dotierten Wafern, bei denen der Emitter (pn-Übergang) auf der Rückseite mit Bor- oder Aluminium-Dotierung hergestellt wird, würde die Bildung des Al-Si-Eutektikums, das in der Regel einige Mikrometer tief aufschmilzt, zu einem Durchbruch durch den dünnen p+-Emitter in die n-Basis hinein und dort zu einem Kurzschluss zur Basis führen. Daher muss die Metallisierung mit niedrigen Temperaturen (z. B.400°C, optional auch in Formiergas) getempert werden, um einen hinreichend guten ohmschen For cells on n-doped wafers, where the backside emitter (pn junction) is made with boron or aluminum doping, the formation of the Al-Si eutectic, which typically melts to a few microns, would increase a breakthrough through the thin p + emitter into the n-base and there lead to a short circuit to the base. Therefore, the metallization with low temperatures (eg 400 ° C, optionally also in forming gas) must be tempered to a sufficiently good ohmic
Kontakt zur Emitteroberfläche herzustellen, ohne der Zelle Schaden zuzufügen. Damit wird das Feuern einer normalen Siebdruckpaste zum Nachträglichen Abscheiden einer lötfähigen Silberschicht auf dem Aluminium unmöglich. Alle aus dem Stand der Technik bekannten PERC-Technologien besitzen folgende Nachteile: 1) Gemeinsam ist allen Konzepten, dass die Rückseite am Ende desContact the emitter surface without damaging the cell. This makes it impossible to fire a normal screen-print paste to subsequently deposit a solderable silver layer on the aluminum. All PERC technologies known from the prior art have the following disadvantages: 1) Common to all concepts is that the back at the end of the
Prozesses mit großflächiger Aluminiumschicht vorliegt, die nicht über lötfähige Padbereiche verfügt. Process with a large aluminum layer is present, which does not have solderable pad areas.
2) Die für die Stromleitung notwendige Niederohmigkeit der Metallisierung kann nur über eine hinreichend dicke Aluminiumschicht, in der Regel 2-2) The low-resistance of the metallization necessary for the power line can only be achieved by means of a sufficiently thick aluminum layer, as a rule
4 μιτι, hergestellt werden. Wenn die Aufdampf- oder Sputterrate hoch gewählt wird, um die Prozesszeiten kurz zu halten, nehmen der 4 μιτι be prepared. If the vapor deposition or sputtering rate is set high to keep the process times short, the
Wärmeeintrag und damit die Temperatur der Wafer in der Prozesskammer stark zu. Wenn die Rate niedrig gehalten wird, müssen mehr Zeit oder eine längere Durchlaufanlage mit zusätzlichen Aufdampf- oder Heat input and thus the temperature of the wafer in the process chamber strong too. If the rate is kept low, more time or a longer run-time system with additional vapor or steam must be used
Sputterquellen für die Aluminiumbeschichtung bereitgestellt werden. In jedem Fall ist der Kompromiss mit höheren Investitions- und/oder Prozesskosten verbunden. Sputter sources are provided for the aluminum coating. In any case, the compromise involves higher investment and / or process costs.
3) Eine Alternative ist eine dünnere Aluminiumschicht, die in hinreichend kurzer Zeit mit moderater Depositionsrate hergestellt werden kann, aber dann wird eine chemische oder galvanische Verstärkung der AI- Rückseitenmetallisierung benötigt. Diese findet immerhin bei sehr moderaten Temperaturen statt (<90°C) und stellt somit keine thermische Belastung der fast fertigen Solarzellen dar. 3) An alternative is a thinner aluminum layer which can be produced in a reasonably short time with a moderate deposition rate, but then a chemical or galvanic strengthening of the Al backside metallization is needed. After all, this takes place at very moderate temperatures (<90 ° C) and thus does not represent a thermal load on the almost finished solar cells.
4) Wenn man eine geeignete Methode findet, um Aluminium chemisch oder galvanisch zu verstärken, würde aber letztlich die gesamte Rückseite mit Silber verstärkt werden, was einen erheblichen Kostenfaktor darstellen würde. 4) If one finds a suitable method to chemically or galvanically reinforce aluminum, but ultimately the entire back would be reinforced with silver, which would be a significant cost factor.
Offenbarung der Erfindung Disclosure of the invention
Vorgeschlagen wird eine Solarzelle mit den Merkmalen des Anspruches 1 sowie ein Verfahren zur Herstellung einer solchen, welches die Merkmale des Anspruches 10 aufweist. Zweckmäßige Fortbildungen des Erfindungsgedankens sind Gegenstand der jeweiligen abhängigen Ansprüche. Proposed is a solar cell with the features of claim 1 and a method for producing such, which has the features of claim 10. Advantageous further developments of the inventive concept are the subject of the respective dependent claims.
Die vorgeschlagene Solarzelle zeichnet sich aus durch eine die erste Metall- schicht bedeckende dünne dielektrische Abdeckschicht, die eine erste regelmäßige Anordnung schmaler linienartiger Öffnungen und eine zweite regelmäßige Anordnung wesentlich breiterer linienartiger oder langgestreckt inselartiger Öffnungen aufweist, wobei die erste und zweite Öffnungs-Anordnung unter einem Winkel, insbesondere quer zueinander, ausgerichtet sind. Sie zeichnet sich des Weiteren aus durch eine hoch leitfähige und an der freiliegenden Oberfläche lötfähige zweite Metallschicht in den Öffnungen der ersten und zweiten Öffnungs-Anordnung, die dort die erste Metallschicht kontaktiert. The proposed solar cell is characterized by a thin dielectric cover layer covering the first metal layer, which has a first regular arrangement of narrow line-like openings and a second regular arrangement of substantially wider lines or elongated island-like openings, wherein the first and second opening arrangement at an angle, in particular transversely to each other, are aligned. It is further characterized by a highly conductive and solderable on the exposed surface second metal layer in the openings of the first and second opening arrangement, which contacts there the first metal layer.
Die erfindungsgemäße Solarzelle mit einer passivierten und großflächig metallisierten Rückseite, die in den in der dielektrischen Abdeckschicht geöffneten schmalen Fingerbereichen und stromsammelnden Busbar- oder Lötpadbereichen chemisch oder galvanisch verstärkt wurde, besitzt jedenfall in zweckmäßigen Ausführungen folgende Vorteile gegenüber dem Stand der Technik: The solar cell according to the invention with a passivated and metallized large back side, which was chemically or galvanically reinforced in the open in the dielectric cover layer narrow finger areas and busbar or Lötpadbereichen current collecting, possesses the case in any case the following advantages over the prior art:
1) Die Solarzelle besitzt zusätzlich zur bisher üblichen großflächigen 1) The solar cell has in addition to the usual large-area
Aluminiumschicht mit lokalen Kontakten zur Halbleiteroberfläche auch lötfähige Bereiche (Busbars oder Lötpads).  Aluminum layer with local contacts to the semiconductor surface also solderable areas (busbars or soldering pads).
2) Die chemisch/galvanisch verstärkten, d. h. sehr leitfähigen Finger auf der Rückseite sammeln den Strom überall auf der großen Waferfläche und leiten ihn niederohmig zu den Busbars oder Pads weiter. Der generierte Strom muss, aus den lokalen Kontaktpunkten aus der Solarzelle austretend, in der Metallschichtfolge nur eine kleine Entfernung bis zum nächsten Plating-Finger zurücklegen. Daher kann diese Metallschichtfolge aus sehr dünnen Metallschichten, z. B. 0,5 μιτι Aluminium mit 0,1 μιτι Nickel-Saatschicht, bestehen. Sie kann also mit moderaten Abscheideraten in so kurzer Zeit hergestellt werden, dass die Zellen nicht zu sehr aufgeheizt werden. 2) The chemically / galvanically reinforced, d. H. very conductive fingers on the back collect the power everywhere on the large wafer surface and pass it low impedance to the busbars or pads. The generated current, leaving the local contact points from the solar cell, must travel only a small distance in the metal layer sequence to the next plating finger. Therefore, this metal layer sequence of very thin metal layers, for. B. 0.5 μιτι aluminum with 0.1 μιτι nickel seed layer consist. It can therefore be produced with moderate deposition rates in such a short time that the cells are not heated too much.
3) Die großflächige Metallschichtfolge bleibt auch nach Fertigstellung der chemischen oder galvanischen Verstärkung durch die dielektrische Abdeckschicht gegen chemischen Angriff, z. B. Korrosion im Modul, über 25 Jahre Lebensdauer geschützt. 3) The large-area metal layer sequence remains even after completion of the chemical or galvanic reinforcement by the dielectric cover layer against chemical attack, z. B. Corrosion in the module, over 25 years life protected.
4) Die dünne Metallisierung und die lokale Nachverstärkung führen, 4) Perform thin metallization and local amplification
anders als die bisher übliche Siebdruck-Metallisierung der Rückseite, nicht zu einer Waferverbiegung. Dadurch wird es möglich, die Wafer- dicke/Zelldicke weiter zu verringern und damit Kosten für Silizium zu sparen. unlike the hitherto conventional screen printing metallization of the backside, not a wafer bending. This makes it possible to increase the wafer further reduce thickness / cell thickness and thus save costs for silicon.
In einer technologisch und aus Kostensicht zweckmäßigen Ausführung weist die zweite Metallschicht mindestens ein Metall aus der Pd, Ni, Ag, Cu und Sn umfassenden Gruppe auf. Insbesondere weist hierbei die zweite Metallschicht eine Folge von Metallschichten auf, insbesondere die Schichtfolge Pd/Ni/Ag oder Ni/Cu/Sn. In a technologically and cost-effective embodiment, the second metal layer comprises at least one metal of the group comprising Pd, Ni, Ag, Cu and Sn. In particular, in this case the second metal layer has a sequence of metal layers, in particular the layer sequence Pd / Ni / Ag or Ni / Cu / Sn.
Weiterhin ist vorgesehen, dass die zweite Metallschicht durch eine chemisch oder galvanisch abgeschiedene Verstärkungsschicht hergestellt wird. Furthermore, it is provided that the second metal layer is produced by a chemically or galvanically deposited reinforcing layer.
Eine weitere Ausführung sieht vor, dass die dünne dielektrische Abdeck- schicht mindestens ein Material aus der Siliziumoxid, Siliziumnitrid, A further embodiment provides that the thin dielectric cover layer comprises at least one of the silicon oxide, silicon nitride,
Aluminiumoxid, Aluminiumnitrid und Titanoxid umfassenden Gruppe aufweist. Comprising alumina, aluminum nitride and titanium oxide.
In einer ersten Variante handelt es sich bei dem Substrat um ein p-dotiertes Siliziumsubstrat mit einem Phosphor-dotierten Emitter auf der ersten Hauptoberfläche. In einer hierzu alternativen Ausführung ist das Halbleitersubstrat ein n-dotiertes Siliziumsubstrat mit einem Bor- oder Aluminium-dotierten p+- Emitter auf der zweiten Hauptoberfläche. In a first variant, the substrate is a p-doped silicon substrate with a phosphorus-doped emitter on the first main surface. In an alternative embodiment, the semiconductor substrate is an n-doped silicon substrate having a boron- or aluminum-doped p + emitter on the second major surface.
Insbesondere werden die ersten und zweiten Öffnungen in der dünnen dielektrischen Abdeckschicht durch maskiertes Ionenätzen gebildet, insbesondere in der gleichen Anlage, in der die Abdeckschicht erzeugt wird. Alter- nativ hierzu kann vorgesehen sein, dass die ersten und zweiten Öffnungen in der dünnen dielektrischen Abdeckschicht durch Laserablation oder durch Ätzen unter Nutzung einer mittels Siebdruck oder Tintenstrahldruck aufgetragenen Ätzpaste gebildet werden. Zeichnungen In particular, the first and second openings in the thin dielectric capping layer are formed by masked ion etching, particularly in the same plant in which the capping layer is formed. Alternatively, provision may be made for the first and second openings in the thin dielectric cap layer to be formed by laser ablation or by etching using an etch paste applied by screen printing or ink jet printing. drawings
Vorteile und Zweckmäßigkeiten der Erfindung ergeben sich im Übrigen aus der nachfolgenden Beschreibung eines Ausführungsbeispiels anhand der Figuren. Von diesen zeigen: Incidentally, advantages and expediencies of the invention emerge from the following description of an exemplary embodiment with reference to the figures. From these show:
Fig. 1 bis 3 in perspektivischen schematischen Darstellungen eine Ausgangssituation sowie einen ersten und zweiten Prozessabschnitt der Herstellung einer Fig. 1 to 3 in perspective schematic representations of an initial situation and a first and second process section of the production of a
Ausführungsform der erfindungsgemäßen Solarzelle,  Embodiment of the solar cell according to the invention,
Fig.4A und 4B schematische Draufsichten zweier Ausführungen 4A and 4B are schematic plan views of two embodiments
einer Kontaktstruktur der Solarzelle sowie  a contact structure of the solar cell as well
Fig. 5 und 6 in schematischen perspektivischen Darstellungen einen dritten Prozessabschnitt. 5 and 6 in schematic perspective views of a third process section.
In allen Figuren bleibt offen, ob es sich um einen p-dotierten oder n-dotier- ten Wafer handelt. Im Fall des n-Materials kann der Emitter entweder auf der Vorderseite oder auf der Rückseite angeordnet sein. Im letzteren Fall wird in der Regel auf der Vorderseite eine Dotierung für ein Front Surface Field (FSF) hergestellt. Ausgangspunkt der folgenden Beschreibung ist eine fast vollständig In all figures, it remains unclear whether it is a p-doped or n-doped wafer. In the case of the n-type material, the emitter may be located either on the front side or on the back side. In the latter case, a doping for a front surface field (FSF) is usually produced on the front side. The starting point of the following description is almost complete
hergestellte zweiseitig zu kontaktierende Solarzelle auf p- oder n-dotiertem kristallinem Silizium 1 (Figur 1). Die Vorderseite 2a sei bereits vollständig prozessiert, d. h. homogen oder selektiv dotiert, mit Passivierung/Antireflex- schicht oder -schichtfolge und mit einem löttähigem Kontaktgitter versehen. Die Rückseite 2b kann undotiert sein oder eine homogene Dotierung 3 produced on two sides to be contacted solar cell on p- or n-doped crystalline silicon 1 (Figure 1). The front side 2a is already completely processed, d. H. doped homogeneously or selectively, with passivation / antireflection coating or layer sequence and provided with a solderable contact grid. The back side 2b may be undoped or a homogeneous doping 3
enthalten, die einen Emitter oder ein BSF darstellt. which represents an emitter or a BSF.
Die Oberfläche ist mittels Chemical Vapor Deposition (CVD) oder Physical Vapor Deposition (PVD, also Aufdampfen oder Sputtern) mit einer hinsichtlich Dotierungspolarität und Dotierungskonzentration ausgewählten und optimierten Passivierschicht oder -schichtfolge 4 beschichtet, die mit einer an sich aus dem Stand der Technik bekannten Technik lokal entfernt (geöffnet) wurde. Das so entstandene Punktraster, in dem die lokalen Kontaktöffnungen 5 angeordnet sind, richtet sich nach dem Schichtwiderstand der Oberfläche: bei undotierten Oberflächen (PERC-Zelle) ist der Abstand der Punkte D The surface is coated by means of chemical vapor deposition (CVD) or physical vapor deposition (PVD, ie vapor deposition or sputtering) with a passivation layer or layer sequence 4 which has been selected and optimized with regard to doping polarity and doping concentration and which is provided with a technique known per se from the prior art locally removed (opened). The resulting dot matrix, in which the local contact openings 5 are arranged, depends on the sheet resistance of the surface: in the case of undoped surfaces (PERC cell), the distance between the points D
kleiner als bei dotierten Oberflächen (PERT-Zelle, also vollflächig dotierte Zelle). smaller than with doped surfaces (PERT cell, ie full-area doped cell).
Der erste erfindungsgemäße Prozessschritt beginnt mit der (an sich aus dem Stand der Technik bekannten) vollflächigen Beschichtung mit einer Metallschichtfolge 6 (Figur 2), wobei entweder Aufdampftechnik oder Sputtertech- nik zur Anwendung kommen kann. Es kann sich dabei z. B. um Aluminium handeln, das optional in derselben Anlage mit einer (nicht gezeigten) dünnen Nickel-haltigen Saatschicht für die spätere chemische oder galvanische Verstärkung bedeckt wird. Alternativ können natürlich auch andere Metalle oder Metallschichtfolgen gewählt werden, z. B. Titan/Palladium/Silber oder Nickel chrom/ Nickel/Silber. The first process step according to the invention begins with the full surface coating (known per se from the prior art) with a metal layer sequence 6 (FIG. 2), it being possible to use either vapor deposition technology or sputtering technology. It may be z. B. aluminum which is optionally covered in the same plant with a thin nickel-containing seed layer (not shown) for later chemical or galvanic reinforcement. Alternatively, of course, other metals or metal layer sequences can be selected, for. Titanium / palladium / silver or nickel chromium / nickel / silver.
Abschließend wird in allen Fällen (in derselben Anlage, ohne Unterbrechung des Vakuums) die gesamte Rückseite mit einer dünnen dielektrischen Dünnschicht 7 bedeckt. Dabei liegen alle abgeschiedenen Schichten sowohl auf der Passivierschichtfolge 4 als auch auf der in den lokalen Öffnungen 5 in der Passivierschicht freigelegten Halbleiteroberfläche. Die Abdeckschicht 7 kann ein Oxid oder ein Nitrid des Aluminiums oder Siliziums sein. Sie kann aufgedampft werden oder reaktiv vom Metalltarget gesputtert oder mit RF- Sputtern vom Dielektrikum-Target abgeschieden werden. Im zweiten Schritt wird mit einer geeigneten Technik die dielektrische Finally, in all cases (in the same system, without interruption of the vacuum), the entire backside is covered with a thin dielectric thin film 7. In this case, all the deposited layers lie both on the passivation layer sequence 4 and on the semiconductor surface exposed in the local openings 5 in the passivation layer. The covering layer 7 may be an oxide or a nitride of aluminum or silicon. It can be evaporated or reactively sputtered from the metal target or deposited by RF sputtering from the dielectric target. In the second step, with a suitable technique, the dielectric
Abdeckschicht in Form von vielen, schmalen vorzugsweise äquidistant und parallel zu einander angeordneten Linien 8 geöffnet (Figur 3). Dabei können zum Beispiel folgende an sich aus dem Stand der Technik bekannten Techniken zur Anwendung kommen: Laserablation, siebgedruckte oder Tintenstrahl- gedruckte Ätzpaste, Inkjet-maskierte nasschemische Ätzung. Der Abstand W der parallelen Öffnungen 8 ist typisch in der Größenordnung von 1mm bis 10mm, vorzugsweise 2 mm bis 5 mm. Die Breite der Öffnungen ist typisch etwa ΙΟΟμιτι bis 1mm, vorzugsweise 200pm bis 500 μιτι. In 90° zum Verlauf der schmalen Öffnungen 8 werden simultan, d. h. im selben Öffnungsschritt, breitere Bereiche 9a bzw. 9b in der dielektrischen Abdeckschicht geöffnet, in denen später lötfähige Busbars bzw. Lötpads erzeugt werden sollen. Busbarstreifen 9a (Figur 4A) können eine beliebige, für den Lötprozess optimierte Breite haben. Es könnten auch nur 2 Busbars sein. Padbereiche 9b (Figur 4B) können beliebig viele sein und beliebig groß gestalten werden. Sie können entlang von 2 oder von 3 Linien angeordnet sein, abhängig von der Zahl und der Lage der Busbars auf der Vorderseite. Im dritten Schritt wird die in den Öffnungen 8, 9a, 9b in der Abdeckschicht offen liegende Metalloberfläche in einem geeigneten chemischen oder galva- nischen Abscheidungsprozess mit einer sehr gut leitenden und gut lötbaren Metallschichtfolge verstärkt (Figur 5). Dabei kann es sich zum Beispiel, je nach freiliegendem Metall, um Palladium, Nickel und Silber oder Nickel, Kupfer und Zinn handeln. Wenn Aluminium mit einer Nickel-Saatschicht gewählt worden ist, dann wird im ersten Bad mit hoher Wahrscheinlichkeit Nickel abgeschieden werden, das dann noch mit hinreichend viel Silber abgedeckt wird. Im selben Verstärkungsprozess werden auch die breiteren Busbar- oder Padbereiche 9a oder 9b mit der gleichen Schichtfolge nachver- stärkt und lötbar gemacht 11 (Figur 6). Die nachverstärkten schmalen Finger 10 münden entweder direkt in die verstärkten Busbarflächen IIa oder Löt- padflächen IIb, oder in schmale Verbindungslinien zwischen den Pads (vgl. Figur 4). Im Übrigen ist die Ausführung der Erfindung nicht auf die oben beschriebenen Beispiele und hervorgehobenen Aspekte beschränkt, sondern lediglich durch den Schutzbereich der anhängenden Patentansprüche. Cover layer in the form of many, narrow preferably equidistant and parallel to each other arranged lines 8 open (Figure 3). In this case, for example, the following techniques known per se from the prior art can be used: laser ablation, screen-printed or ink-jet printed etching paste, inkjet-masked wet-chemical etching. The distance W of the parallel openings 8 is typically of the order of 1mm to 10mm, preferably 2mm to 5mm. The width of the openings is typically about ΙΟΟμιτι to 1mm, preferably 200pm to 500 μιτι. In 90 ° to the course of the narrow openings 8 are wider, ie opened in the same opening step, wider areas 9a and 9b in the dielectric cover, in which later solderable busbars or solder pads are to be generated. Bus bar strips 9a (FIG. 4A) can have any desired width optimized for the soldering process. It could only be 2 busbars. Pad areas 9b (FIG. 4B) can be as many as desired and of any size. They can be arranged along 2 or 3 lines, depending on the number and location of the busbars on the front. In the third step, the metal surface exposed in the openings 8, 9a, 9b in the covering layer is reinforced in a suitable chemical or galvanic deposition process with a highly conductive and readily solderable metal layer sequence (FIG. 5). Depending on the exposed metal, for example, it may be palladium, nickel and silver or nickel, Copper and tin act. If aluminum with a nickel seed layer has been chosen, nickel will likely be deposited in the first bath, which will then be covered with sufficient silver. In the same amplification process, the wider busbar or pad regions 9a or 9b are also post-amplified and solderable with the same layer sequence 11 (FIG. 6). The post-reinforced narrow fingers 10 open either directly into the reinforced busbar surfaces IIa or solder pad surfaces IIb, or into narrow connecting lines between the pads (see FIG. Incidentally, the embodiment of the invention is not limited to the above-described examples and emphasized aspects, but only by the scope of the appended claims.

Claims

Ansprüche claims
1. Solarzelle mit einem n- oder p-dotierten Halbleitersubstrat, insbesondere aus Silizium, das eine im Gebrauchszustand als Lichteinfallsseite dienende erste Hauptoberfläche und eine als Rückseite dienende zweite Hauptoberfläche hat, einer Passivierungs-Schichtfolge mit einer Vielzahl inselartiger Ausnehmungen, in denen die Passivierungsschichten vollständig entfernt sind, auf der zweiten Hauptoberfläche, einer auf der Passivierungs-Schichtfolge und in den Ausnehmungen auf der Substratoberfläche angeordneten dünnen ersten Metallschicht, einer die erste Metallschicht bedeckenden dünnen dielektrischen Abdeckschicht, die eine erste regelmäßige Anordnung schmaler linienartiger Öffnungen und eine zweite regelmäßige Anordnung wesentlich breiterer linienartiger oder langgestreckt inselartiger Öffnungen aufweist, wobei die erste und zweite Öffnungs-Anordnung unter einem Winkel, insbesondere quer zueinander ausgerichtet sind, und einer hoch leitfähigen und an der freiliegenden Oberfläche lötfähigen zweiten Metallschicht in den Öffnungen der ersten und zweiten Öffnungs-Anordnung, die dort die erste Metallschicht kontaktiert. 1. A solar cell with an n- or p-doped semiconductor substrate, in particular made of silicon, which has a serving as a light incident side first main surface and serving as a back second main surface, a passivation layer sequence with a plurality of island-like recesses in which the passivation layers completely a thin first metal layer on the passivation layer sequence and in the recesses on the substrate surface, a thin dielectric covering layer covering the first metal layer, the first regular arrangement of narrow line-like openings and a second regular arrangement substantially wider line-like or elongated island-like openings, wherein the first and second opening arrangement are oriented at an angle, in particular transversely to each other, and a highly conductive and at the exposed O. Surface solderable second metal layer in the openings of the first and second opening arrangement, which contacts there the first metal layer.
Solarzelle nach Anspruch 1, wobei die zweite Metallschicht mindestens ein Metall aus der Pd, Ni, Ag, Cu und Sn umfassenden Gruppe auf- weist. The solar cell according to claim 1, wherein the second metal layer comprises at least one metal of the group comprising Pd, Ni, Ag, Cu and Sn.
Solarzelle nach Anspruch 2, wobei die zweite Metallschicht eine Folge von Metallschichten aufweist, insbesondere die Schichtfolge Pd/Ni/Ag oder Ni/Cu/Sn. Solar cell according to claim 2, wherein the second metal layer has a sequence of metal layers, in particular the layer sequence Pd / Ni / Ag or Ni / Cu / Sn.
Solarzelle nach einem der vorangegangenen Ansprüche, wobei die erste Metallschicht mindestens ein Metall aus der AI, Ti, Pd, Ag, NiCr, Ni und Ag umfassenden Gruppe aufweist.  Solar cell according to one of the preceding claims, wherein the first metal layer comprises at least one metal of the group comprising Al, Ti, Pd, Ag, NiCr, Ni and Ag.
Solarzelle nach Anspruch 4, wobei die erste Metallschicht eine Folge von Metallschichten aufweist, insbesondere die Schichtfolge Ti/Pd/Ag oder NiCr/Ni/Ag oder Al/Ni-Saatschicht. Solar cell according to claim 4, wherein the first metal layer has a series of metal layers, in particular the layer sequence Ti / Pd / Ag or NiCr / Ni / Ag or Al / Ni seed layer.
Solarzelle nach einem der vorangehenden Ansprüche, wobei die zweite Metallschicht eine chemisch oder galvanisch abgeschiedene Verstärkungsschicht aufweist. Solar cell according to one of the preceding claims, wherein the second metal layer has a chemically or galvanically deposited reinforcing layer.
Solarzelle nach einem der vorangehenden Ansprüche, wobei die dünne dielektrische Abdeckschicht mindestens ein Material aus der Siliziumoxid, Siliziumnitrid, Aluminiumoxid, Aluminiumnitrid und Titanoxid umfassenden Gruppe aufweist. A solar cell according to any one of the preceding claims, wherein the thin dielectric capping layer comprises at least one material of the group comprising silicon oxide, silicon nitride, aluminum oxide, aluminum nitride and titanium oxide.
Solarzelle nach einem der vorangehenden Ansprüche, wobei das Halbleitersubstrat ein p-dotiertes Siliziumsubstrat mit einem Phosphordotierten Emitter auf der ersten Hauptoberfläche ist. A solar cell according to any one of the preceding claims, wherein the semiconductor substrate is a p-doped silicon substrate having a phosphorus doped emitter on the first major surface.
Solarzelle nach einem der Ansprüche 1 bis 7, wobei das Halbleitersubstrat ein n-dotiertes Siliziumsubstrat mit einem Bor- oder Aluminiumdotierten p+-Emitter auf der zweiten Hauptoberfläche ist. A solar cell according to any one of claims 1 to 7, wherein the semiconductor substrate is an n-doped silicon substrate having a boron or aluminum doped p + emitter on the second major surface.
Verfahren zur Herstellung einer Solarzelle nach einem der vorangehenden Ansprüche, wobei die erste Metallschicht mittels eines Vakuum- Aufdampf- oder Sputterverfahrens erzeugt wird. A method of manufacturing a solar cell according to any one of the preceding claims, wherein the first metal layer is formed by a vacuum vapor deposition or sputtering method.
Verfahren nach Anspruch 10, wobei die zweite Metallschicht unter Einsatz einer chemischen oder galvanischen Verstärkungsbades erzeugt wird. The method of claim 10, wherein the second metal layer is formed using a chemical or galvanic amplification bath.
Verfahren nach Anspruch 10 oder 11, wobei die ersten und zweiten Öffnungen in der dünnen dielektrischen Abdeckschicht durch maskier- tes Ionenätzen gebildet werden, insbesondere in der gleichen Anlage, in der die Abdeckschicht erzeugt wurde. The method of claim 10 or 11, wherein the first and second openings in the thin dielectric capping layer are masked. Ion etching are formed, in particular in the same plant in which the cover layer was produced.
13. Verfahren nach Anspruch 10 oder 11, wobei die ersten und zweiten Öffnungen in der dünnen dielektrischen Abdeckschicht durch Laser- ablation oder durch Ätzen unter Nutzung einer mittels Siebdruck oder Tintenstrahldruck aufgetragenen Ätzpaste gebildet werden. 13. The method of claim 10, wherein the first and second openings in the thin dielectric cap layer are formed by laser ablation or by etching using an etch paste applied by screen printing or ink jet printing.
EP11705887.5A 2010-04-26 2011-03-01 Solar cell Withdrawn EP2586067A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010028189.1A DE102010028189B4 (en) 2010-04-26 2010-04-26 solar cell
PCT/EP2011/052954 WO2011134700A2 (en) 2010-04-26 2011-03-01 Solar cell

Publications (1)

Publication Number Publication Date
EP2586067A2 true EP2586067A2 (en) 2013-05-01

Family

ID=44625254

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11705887.5A Withdrawn EP2586067A2 (en) 2010-04-26 2011-03-01 Solar cell

Country Status (7)

Country Link
US (1) US9209321B2 (en)
EP (1) EP2586067A2 (en)
JP (1) JP2013526045A (en)
KR (1) KR20130073900A (en)
CN (1) CN102893406B (en)
DE (1) DE102010028189B4 (en)
WO (1) WO2011134700A2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012766B2 (en) 2009-11-12 2015-04-21 Silevo, Inc. Aluminum grid as backside conductor on epitaxial silicon thin film solar cells
US9214576B2 (en) 2010-06-09 2015-12-15 Solarcity Corporation Transparent conducting oxide for photovoltaic devices
US9773928B2 (en) 2010-09-10 2017-09-26 Tesla, Inc. Solar cell with electroplated metal grid
US9800053B2 (en) 2010-10-08 2017-10-24 Tesla, Inc. Solar panels with integrated cell-level MPPT devices
US9054256B2 (en) 2011-06-02 2015-06-09 Solarcity Corporation Tunneling-junction solar cell with copper grid for concentrated photovoltaic application
US9312420B2 (en) 2012-04-17 2016-04-12 Lg Electronics Inc. Solar cell and method for manufacturing the same
US9865754B2 (en) 2012-10-10 2018-01-09 Tesla, Inc. Hole collectors for silicon photovoltaic cells
TWI500174B (en) * 2013-01-08 2015-09-11 Motech Ind Inc Solar cell and module comprising the same
US10074755B2 (en) 2013-01-11 2018-09-11 Tesla, Inc. High efficiency solar panel
US9219174B2 (en) 2013-01-11 2015-12-22 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
US9412884B2 (en) 2013-01-11 2016-08-09 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
TWI505484B (en) * 2013-05-31 2015-10-21 Motech Ind Inc Solar cell and module comprising the same
US9786800B2 (en) 2013-10-15 2017-10-10 Solarworld Americas Inc. Solar cell contact structure
US10309012B2 (en) 2014-07-03 2019-06-04 Tesla, Inc. Wafer carrier for reducing contamination from carbon particles and outgassing
US9899546B2 (en) 2014-12-05 2018-02-20 Tesla, Inc. Photovoltaic cells with electrodes adapted to house conductive paste
US9947822B2 (en) 2015-02-02 2018-04-17 Tesla, Inc. Bifacial photovoltaic module using heterojunction solar cells
US9761744B2 (en) 2015-10-22 2017-09-12 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer
US9842956B2 (en) 2015-12-21 2017-12-12 Tesla, Inc. System and method for mass-production of high-efficiency photovoltaic structures
US10115838B2 (en) 2016-04-19 2018-10-30 Tesla, Inc. Photovoltaic structures with interlocking busbars
JP6807462B2 (en) 2017-08-29 2021-01-06 京セラ株式会社 Solar cell elements and solar cell modules
US10672919B2 (en) 2017-09-19 2020-06-02 Tesla, Inc. Moisture-resistant solar cells for solar roof tiles
US11190128B2 (en) 2018-02-27 2021-11-30 Tesla, Inc. Parallel-connected solar roof tile modules
CN113306272A (en) * 2021-06-21 2021-08-27 江苏润阳世纪光伏科技有限公司 Novel screen pattern manufacturing method for screen printing production

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927770A (en) * 1988-11-14 1990-05-22 Electric Power Research Inst. Corp. Of District Of Columbia Method of fabricating back surface point contact solar cells
JP3398385B2 (en) * 1993-07-29 2003-04-21 ヴィレケ・ゲルハルト Method of manufacturing solar cell and solar cell manufactured by this method
DE19515666A1 (en) 1995-04-28 1996-10-31 Daimler Benz Ag Radar-based object detection and classification method
DE19525720C2 (en) 1995-07-14 1998-06-10 Siemens Solar Gmbh Manufacturing process for a solar cell without front-side metallization
US20090111206A1 (en) * 1999-03-30 2009-04-30 Daniel Luch Collector grid, electrode structures and interrconnect structures for photovoltaic arrays and methods of manufacture
DE19915666A1 (en) 1999-04-07 2000-10-19 Fraunhofer Ges Forschung Method and device for selective contacting of solar cells
US6337283B1 (en) 1999-12-30 2002-01-08 Sunpower Corporation Method of fabricating a silicon solar cell
JP4170701B2 (en) * 2002-07-31 2008-10-22 信越半導体株式会社 Solar cell and manufacturing method thereof
US7200277B2 (en) 2003-07-01 2007-04-03 Eastman Kodak Company Method for transcoding a JPEG2000 compressed image
US20070107773A1 (en) * 2005-11-17 2007-05-17 Palo Alto Research Center Incorporated Bifacial cell with extruded gridline metallization
US20070295399A1 (en) * 2005-12-16 2007-12-27 Bp Corporation North America Inc. Back-Contact Photovoltaic Cells
EP1987543A1 (en) * 2006-01-25 2008-11-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a metal contact structure of a solar cell
US20080128020A1 (en) * 2006-11-30 2008-06-05 First Solar, Inc. Photovoltaic devices including a metal stack
WO2008157577A2 (en) * 2007-06-18 2008-12-24 E-Cube Technologies, Inc. Methods and apparatuses for improving power extraction from solar cells
JP5226255B2 (en) * 2007-07-13 2013-07-03 シャープ株式会社 Manufacturing method of solar cell
DE102007059486A1 (en) 2007-12-11 2009-06-18 Institut Für Solarenergieforschung Gmbh Rear contact solar cell with elongated, interleaved emitter and base regions at the back and manufacturing method thereof
US7820540B2 (en) 2007-12-21 2010-10-26 Palo Alto Research Center Incorporated Metallization contact structures and methods for forming multiple-layer electrode structures for silicon solar cells
DE102008013446A1 (en) 2008-02-15 2009-08-27 Ersol Solar Energy Ag Process for producing monocrystalline n-silicon solar cells and solar cell, produced by such a process
DE102008017312B4 (en) 2008-04-04 2012-11-22 Universität Stuttgart Process for producing a solar cell
DE102008020796A1 (en) 2008-04-22 2009-11-05 Q-Cells Ag Rearside contact-solar cell manufacturing method, involves galvanically separating conductor material for spatially separated formation of metallic contacts, where material is limited by structured seed layer structure
DE102008033169A1 (en) 2008-05-07 2009-11-12 Ersol Solar Energy Ag Process for producing a monocrystalline solar cell
US20090301559A1 (en) * 2008-05-13 2009-12-10 Georgia Tech Research Corporation Solar cell having a high quality rear surface spin-on dielectric layer
DE102008024053A1 (en) 2008-05-16 2009-12-17 Deutsche Cell Gmbh Point-contact solar cell
US8207444B2 (en) * 2008-07-01 2012-06-26 Sunpower Corporation Front contact solar cell with formed electrically conducting layers on the front side and backside
JP5410050B2 (en) * 2008-08-08 2014-02-05 三洋電機株式会社 Solar cell module
US7897434B2 (en) * 2008-08-12 2011-03-01 International Business Machines Corporation Methods of fabricating solar cell chips
EP2324509A2 (en) * 2008-08-27 2011-05-25 Applied Materials, Inc. Back contact solar cells using printed dielectric barrier
DE102009031151A1 (en) * 2008-10-31 2010-05-12 Bosch Solar Energy Ag Solar cell and process for its production
DE102009016268A1 (en) * 2008-10-31 2010-05-12 Bosch Solar Energy Ag Solar cell and process for its production
DE102009008786A1 (en) * 2008-10-31 2010-06-10 Bosch Solar Energy Ag Process for producing a solar cell and solar cell
JP5642370B2 (en) * 2009-09-29 2014-12-17 三洋電機株式会社 Solar cell module
US8115097B2 (en) * 2009-11-19 2012-02-14 International Business Machines Corporation Grid-line-free contact for a photovoltaic cell
DE102010027940A1 (en) * 2010-04-20 2011-10-20 Robert Bosch Gmbh Process for producing a solar cell and solar cell produced by this process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011134700A2 *

Also Published As

Publication number Publication date
CN102893406B (en) 2016-11-09
KR20130073900A (en) 2013-07-03
DE102010028189A1 (en) 2011-10-27
JP2013526045A (en) 2013-06-20
CN102893406A (en) 2013-01-23
WO2011134700A2 (en) 2011-11-03
US20130104975A1 (en) 2013-05-02
DE102010028189B4 (en) 2018-09-27
US9209321B2 (en) 2015-12-08
WO2011134700A3 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
DE102010028189B4 (en) solar cell
DE102011050089B4 (en) Method for making electrical contacts on a solar cell, solar cell and method for making a rear contact of a solar cell
EP2151869A2 (en) Semiconductor component
DE112012006610T5 (en) Solar cell, solar cell module and method for manufacturing a solar cell
EP2561557B1 (en) Method for producing a solar cell
DE102011000753A1 (en) Solar cell, solar module and method for producing a solar cell
EP2083445A1 (en) Method of production of a photovoltaic modul
DE102011075352A1 (en) A method of back contacting a silicon solar cell and silicon solar cell with such backside contacting
DE102011115581B4 (en) Process for the production of a solar cell
DE102009053416A1 (en) Method for producing and interconnecting solar cell arrangement to convert solar power into electricity, involves shifting front side back contact access to back side of solar cell and contacting front contact of another solar cell
EP2786420A2 (en) Solar cell and process for producing a solar cell
DE112017004982B4 (en) Solar cells with differentiated p-type and n-type region architectures
DE102010020557A1 (en) Method for producing a single-contact solar cell from a silicon semiconductor substrate
WO2014128032A1 (en) Semiconductor component, more particularly solar cell, and method for producing a metallic contact-making structure of a semiconductor component
DE102011010077A1 (en) Photovoltaic solar cell and process for its production
DE102011086302A1 (en) Method for producing contact grid on surface of e.g. photovoltaic solar cell for converting incident electromagnetic radiation into electrical energy, involves electrochemically metalizing contact region with metal, which is not aluminum
WO2022117826A1 (en) Back-contact solar cell, and production thereof
WO2010081460A1 (en) Solar cell and method for producing a solar cell
WO2015044109A1 (en) Photovoltaic solar cell and method for producing a metallic contact-connection of a photovoltaic solar cell
WO2013113638A1 (en) Photovoltaic solar cell and method for producing a photovoltaic solar cell
WO2017178941A1 (en) Method for producing a solar cell, solar cell produced by this method and substrate carrier
EP4147277B1 (en) Back-side contact solar cell
DE102016110965B4 (en) Front and back side semiconductor device and method of making the same
WO2022179650A1 (en) Method for metallizing a component, and components produced in this manner
WO2017220444A1 (en) Method for interconnecting solar cells

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130318

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171003