EP2555585A1 - Stromversorgungsvorrichtung für eine Tiegelheizung und Verfahren zu deren Betrieb - Google Patents

Stromversorgungsvorrichtung für eine Tiegelheizung und Verfahren zu deren Betrieb Download PDF

Info

Publication number
EP2555585A1
EP2555585A1 EP11176125A EP11176125A EP2555585A1 EP 2555585 A1 EP2555585 A1 EP 2555585A1 EP 11176125 A EP11176125 A EP 11176125A EP 11176125 A EP11176125 A EP 11176125A EP 2555585 A1 EP2555585 A1 EP 2555585A1
Authority
EP
European Patent Office
Prior art keywords
power supply
modules
control device
power
supply module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11176125A
Other languages
English (en)
French (fr)
Other versions
EP2555585B1 (de
Inventor
Uwe Baumbach
Mike Rudolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11176125.0A priority Critical patent/EP2555585B1/de
Priority to US13/563,119 priority patent/US20130193133A1/en
Priority to CN201210272810.3A priority patent/CN102912423B/zh
Publication of EP2555585A1 publication Critical patent/EP2555585A1/de
Application granted granted Critical
Publication of EP2555585B1 publication Critical patent/EP2555585B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/04Sources of current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0202Switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/067Control, e.g. of temperature, of power for melting furnaces

Definitions

  • the invention relates to a power supply device for a crucible heater.
  • the invention also relates to a method for operating the power supply unit.
  • harmonics lead to increased network losses.
  • Industrial customers are therefore encouraged by their energy supplier to take appropriate measures to reduce the network feedback caused by them.
  • a recorded reactive power is charged separately when the minimum value defined by the energy supplier for the power factor is not taken into account, reactive power losses must be limited by separate technical measures.
  • passive or active filter circuits are used for this purpose.
  • a power supply in the form is known that the interaction caused by a linear Grobstellgliedes (variable transformer) and a fast fine actuator, the input-side noise caused by the power supply can be substantially reduced. Compensation systems are used to improve the power factor of the power supply.
  • the known power supply devices for crucible heating operate mostly in the partial load range.
  • power supplies that operate on the principle of phase control, such as. Thyristor in the partial load range, a relatively low efficiency, which is generally accepted.
  • the superimposed alternating current, also called ripple current, generated by known power supply systems on the secondary side can adversely affect the temperature control process of a crucible heater, since a reduced signal-to-noise ratio occurs at the sensor inputs of the temperature control. Furthermore, this ripple current on the graphite heater leads to undesirable side effects. For example, mechanical vibrations of the graphite heater may occur.
  • the electromagnetic alternating fields generated by the ripple current can produce unpredictable magnetic fields in the crucible and thus negatively influence the crystal growth process, since, conversely, defined and superposed magnetic fields have a positive effect, see, for example, US Pat DE 10 2009 027 436 A1 , Interference voltages on the output side are attenuated by active and passive filters.
  • An object of the invention is to avoid or reduce the above-mentioned disadvantages of known power supply devices, in particular to lower the system perturbations generated during operation, to reduce the ripple current on the output side and to increase the efficiency.
  • Another object of the invention is to increase the availability of the power supply and thus the stability of the crystal pulling process.
  • a power supply device for a crucible heating, comprising at least one heating circuit, each comprising at least two power supply modules, and a process control device for controlling the power supply modules, wherein outputs of the at least two power supply modules are connected in parallel in the or each heating circuit.
  • a method for operating a power supply device for a crucible heating comprising at least one heating circuit, each comprising at least two power supply modules, and a process control device for controlling the power supply modules, provided in the or each heating circuit outputs of the at least two power supply modules are connected in parallel, and wherein the power modules are separately enabled or disabled for each heater circuit as a function of a process flow and / or when faults occur in individual power modules.
  • the invention is based on the recognition that for the operation of crucible heaters, especially in crystal growing systems, high power, for example in the range of 200 to 500 kW, are required, with currents of several thousand amps flow.
  • high power for example in the range of 200 to 500 kW, are required, with currents of several thousand amps flow.
  • the performance must be built precisely and at the same time safety aspects due to the high currents must be considered. This knowledge is implemented so that similar power supply modules are interconnected in a cabinet.
  • the advantage of the invention is that network perturbations are reduced. Separate measures for network filtering are therefore usually not necessary. Depending on the current load requirements, individual power supply modules can be switched on or off in order to operate the active power supply modules in the best possible operating point and thus to achieve an improved power factor. The efficiency can be improved, especially in the partial load range. Thus, separate measures, such as the operation of the power supply to a compensation system, not necessary. In this way, costs can be saved. Primary-side power disturbances, such as flicker, peaks or voltage dips, make themselves noticeably less noticeable on the output side in the power supply device according to the invention than in the case of known power supply devices. The emission of temporary electromagnetic interference fields in the direction of the crucible heating is thus avoided and increased process stability, in particular of a crystal growth process, is the result.
  • the power supply device includes a heater controller connected between the process controller and the power modules for controlling and monitoring the power modules.
  • the heater controller is passed through the process controller, which receives status and error messages from various process monitoring components, e.g. Temperature monitoring, cooling water monitoring, pressure monitoring, receives.
  • each power supply module includes three identical sub-modules, which may be interconnected via an internal system bus.
  • Each sub-module may optionally include a rectifier unit.
  • each sub-module may include a power factor correction stage.
  • the power factor correction stage also called PFC stage, allows a substantial reduction of network perturbation compared to known power supply devices for crucible heating.
  • the power factor correction stage may optionally be followed by clocked power stages.
  • the quality of the output voltage can be significantly improved in comparison to known power supply devices, since the ripple current is reduced.
  • Rippelstrom occur only small inductively generated transverse forces in the heating circuit, for example on a graphite heater. As a result, mechanical vibrations of the graphite heater are reduced and its life thus extended.
  • each power module may include a communication interface for communicating status and control information with the process controller or heater controller.
  • Status and error messages may be e.g. by an LED (Light Emitting Diode) display, which is for example arranged directly on a front of the power supply module or submodule, via an HMI (Human Machine Interface, Human Machine Interface) to a control cabinet, in which the power supply device is arranged , and are displayed via the communication interface.
  • LED Light Emitting Diode
  • HMI Human Machine Interface, Human Machine Interface
  • a signal is transmitted via a communication interface from the defective power supply module to a heating control device connected between the process control device and the power supply modules and the heating control device deactivates the defective power supply module.
  • the heating control device sends a corresponding signal for deactivating the defective power supply module.
  • a signal is transmitted via a communication interface from the defective power supply module to the process control device and the process control device then deactivates the defective power supply module.
  • a corresponding control signal is sent from the process control device to the power supply module.
  • the power of the deactivated power supply module may be additionally or at least partially allocated to the power supply module (s) that are still active in the associated heating circuit, if the power supply module (s) associated therewith are Heating circuit required power is equal to or less than a maximum power of the active power modules, ie a sum of the maximum power of the power supply modules still available in the corresponding heating circuit.
  • a maximum power of the active power modules ie a sum of the maximum power of the power supply modules still available in the corresponding heating circuit.
  • An unneeded power module may be disabled in one embodiment, and the unneeded power module may be automatically re-activated in the event of a failure or failure of a paralleled power module. This makes it possible to optimize the operating point of the power supply device, in particular in the partial load range.
  • an unneeded power module can be disabled and the power module that is not required can be activated manually or automatically in the event of a failure or failure of a paralleled power module, optionally with a confirmation callback.
  • the operating modes for the deactivated power supply modules are either the "Hot Standby Mode” (AC input active) or the “Cold Standby Mode” (AC input deactivated).
  • the modes of operation can be applied to a power module as needed; for example, if multiple power modules are disabled, part of the power modules that are disabled can be operated in “hot standby mode” and another portion in “cold standby” mode.
  • the power supply module or modules connected in parallel to a deactivated power supply module can at least partially reduce the power of the deactivated power supply module Take over the power supply module.
  • the two active power supply modules each take over half of the power of the deactivated power supply module and can thus be operated in a lower operating point.
  • the invention is implemented in software in one embodiment.
  • the invention is therefore on the one hand also a computer program with computer executable program code instructions and on the other hand a storage medium with such a computer program and finally also a process control device or a heating control device with a processing unit loaded in its memory as means for carrying out the method and its embodiments such a computer program or is loadable.
  • the heater controller may equally perform all the tasks mentioned above and below in connection with the process controller.
  • FIG. 1 shows a schematic representation of an embodiment of the power supply device 10 according to the invention.
  • the power supply device 10 includes five power supply modules 12, 14, 16, 18, 20, which are arranged in a control cabinet 22.
  • the outputs 24 of a first and second power supply module 12, 14 are connected in parallel by means of a busbar (not shown) and supply a first heating circuit 26 of a crucible heater 28.
  • the outputs 29 of a third, fourth and fifth power supply module 16, 18, 20 are also connected in parallel and supply a second heating circuit 30 to the crucible heater 28.
  • the power supply modules 12-20 each include three identical sub-modules (not shown) which are interconnected via an internal system bus (not shown).
  • Each submodule typically consists of a rectifier unit, a power factor correction (PFC) stage, a power converter with transformer, and a wide range output (all not shown).
  • Each Power Supply Module 12-20 also has a communication interface to communicate and exchange status and control information, as described below.
  • the control and monitoring of the individual power supply modules 12-20 is performed by a heating control device 32, which communicates via a communication interface 34 with the power supply modules 12-20 and is disposed within the control cabinet 22. However, it is equally possible that the heater control device 32 is disposed outside of the cabinet 22.
  • the heating control device 32 is connected to a communication interface 34 of a process control device 36, which receives status and error messages from individual components such as cooling water monitoring 38, pressure monitoring 40, temperature monitoring 42 for process monitoring and is controlled by them.
  • the process controller 36 includes a processing unit 44 and a memory 46 for executing a computer program for process monitoring and control.
  • the heating control device 32 may also have a processing unit and a Memory includes (both not shown) to run or store a computer program for process monitoring.
  • FIG. 2 an example of a primary power supply 48 for the power modules 12-20 is shown schematically.
  • the power supply 48 comprises a switching field 50 with which a supply voltage 51 is fed directly to the power supply modules 12-20.
  • Each power supply module 12-20 is individually connected to a cooling water circuit 52.
  • FIG. 3 shows a further embodiment of a power supply device 54 according to the invention, in which the power supply modules 12-20 are connected directly to the communication interface 34 of the process control device 36 and are directly monitored and controlled by the process control device 36.
  • FIG. 4 is an example of an optimized power supply for the power supply device 10 from FIG. 1 shown.
  • a no longer required power supply module 20 is deactivated.
  • a corresponding control signal 56 is sent from the heating control device 32 to the power supply module 20 to be deactivated.
  • it can be operated in the "hot standby" or “cold standby” mode, ie, if required, either automatically reactivated or switched on manually, for example if a fault occurs in one of the power supply modules 16 connected in parallel to the deactivated power supply module 20 via the communication interface. 18 is displayed.
  • a corresponding control signal 58 for transferring in each case half of the power from the deactivated power supply module 20 is respectively sent. So they can be operated in a cheaper operating point. Also, another power distribution to the remaining in the second heating circuit 30 active power supply modules 16, 18 can be determined so that, for example, takes over a 30% and the other 70% of the power of the deactivated power supply module 20. The values of the power take-overs can be determined in such a way that the remaining active power supply modules 16, 18 can be operated in the most favorable operating point possible.
  • FIG. 5 shows an example of a failure of a power module 20 in the power supply device 10.
  • a fault signal 60 is sent to the heater controller 32.
  • the power supply module 20 with the fault is then deactivated by the heater controller 32.
  • the heating control device 32 sends a corresponding control signal 62 to the power supply modules 16, 18 remaining in the associated second heating circuit 30, so that the power from the defective power supply module 20 is additionally allocated to each of them in addition to 50% if a heating power required in the second heating circuit 30 is less than or equal to the sum of the maximum power of the still available, functioning power supply modules 16, 18.
  • the operational readiness of the power supply device can be restored in the short term and with low service cost.
  • the modular design of the power supply devices 10, 54 makes it possible to adapt the power supply devices 10, 54 also for other systems, in particular crystal growing systems, with changed power requirements of the heating circuits.
  • FIG. 6 shows an example of a method 64 for operating a power supply device 10, 54 according to the invention.
  • a signal is transmitted via a communication interface from the defective power supply module to the process control device.
  • the process control device deactivates using a corresponding control signal, the defective power supply module.
  • the power of the deactivated power supply module is additionally proportionally assigned to the power module (s) active in the associated heater circuit by a corresponding control signal from the process control device to the power module (s) active in the associated heater circuit when the power required in the associated heater circuit is less than or equal to maximum power of the active power modules.
  • a power supply device 10, 54 for a crucible heater 28, comprising at least one heating circuit 26, 30, each having at least two power supply modules 12, 14, 16, 18, 20, wherein in the or each heating circuit 26, 30 outputs 24, 29 of the at least two power supply modules 12-20 are connected in parallel, and a process control device 36 for controlling the power supply modules 12-20 indicated.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

Die Erfindung betrifft eine Stromversorgungsvorrichtung (10, 54) für eine Tiegelheizung (28) , umfassend mindestens einen Heizstromkreis (26,30) und eine Prozesssteuereinrichtung (36) zur Ansteuerung der Stromversorgungsmodule (12,14,16,18,20), wobei der Heizstromkreis (26,30) jeweils mindestens zwei Stromversorgungsmodule (12,14,16,18, 20) umfasst, wobei in dem oder jedem Heizstromkreis (26, 30) Ausgänge (24,29) der mindestens zwei Stromversorgungsmodule (12,14,16,18,20) parallel geschaltet sind, sowie ein Verfahren (64) zu deren Betrieb. Optional kann statt der Prozesssteuereinrichtung (36) eine Heizungssteuereinrichtung (32) zur Ansteuerung der Stromversorgungsmodule (12,14,16,18,20) vorgesehen sein.

Description

  • Die Erfindung betrifft eine Stromversorgungsvorrichtung für eine Tiegelheizung. Die Erfindung bezieht sich auch auf ein Verfahren zum Betrieb der Stromversorgungseinheit.
  • Zum Aufschmelzen der Einwaage in Tiegelheizungen, insbesondere in Kristallzüchtungsanlagen, z.B. bei dem Czochralski-Verfahren, werden üblicherweise niederohmige Graphitheizer eingesetzt. Bei bekannten Stromversorgungsvorrichtungen wird die hierfür benötigte Heizleistung mittels Stellgliedern (Thyristorsteller) bereitgestellt, welche nach dem Prinzip der Phasenanschnittsteuerung arbeiten. Diese Stromversorgungsvorrichtungen besitzen einen Netzeingang und einen oder mehrere Gleichspannungsausgänge. Es ergeben sich durch den Betrieb dieser bekannten Stromversorgungsvorrichtungen zumeist die im Folgenden aufgeführten Nachteile.
  • Die von der Stromversorgungsvorrichtung erzeugten Oberwellen, sogenannte Harmonische, führen zu erhöhten Netzverlusten. Industriekunden werden daher von ihrem Energieversorger angehalten, geeignete Maßnahmen zur Reduzierung der von ihnen verursachten Netzrückwirkung durchzuführen. Da eine aufgenommene Blindleistung bei Unterschreitung des vom Energieversorger für den Powerfaktor definierten Mindestwertes gesondert in Rechnung gestellt wird, sind Blindleistungsverluste durch gesonderte technische Maßnahmen zu begrenzen. Beispielsweise werden dazu passive oder aktive Filterkreise eingesetzt. Alternativ ist auch eine Stromversorgung in der Form bekannt, dass durch das Zusammenwirken eines linearen Grobstellgliedes (Stelltransformator) und eines schnellen Feinstellgliedes die durch die Stromversorgung verursachten eingangsseitigen Störungen wesentlich vermindert werden. Zur Verbesserung des Leistungsfaktors der Stromversorgung werden Kompensationsanlagen eingesetzt.
  • Die bekannten Stromversorgungsvorrichtungen für die Tiegelheizung arbeiten größtenteils im Teillastbereich. Typischerweise haben Stromversorgungen, welche nach dem Prinzip der Phasenanschnittsteuerung arbeiten, wie z.B. Thyristorsteller, im Teillastbereich einen relativ geringen Wirkungsgrad, welcher im Allgemeinen hingenommen wird.
  • Der von bekannten Stromversorgungssystemen auf der Sekundärseite erzeugte überlagerte Wechselstrom, auch Rippelstrom genannt, kann den Temperaturregelprozess einer Tiegelheizung negative beeinflussen, da ein verminderter Signalstörabstand an den Messfühlereingängen der Temperaturregelung auftritt. Weiterhin führt dieser Rippelstrom am Graphitheizer zu unerwünschten Nebeneffekten. Beispielsweise kann es zu mechanischen Schwingungen des Graphitheizers kommen. Außerdem können die durch den Rippelstrom generierten elektromagnetischen Wechselfelder im Tiegel nicht vorhersehbare Magnetfelder erzeugen und somit den Kristallzüchtungsprozess negativ beeinflussen, denn umgekehrt gilt, dass definiert erzeugte und überlagerte Magnetfelder sich positiv auswirken, siehe beispielsweise in der DE 10 2009 027 436 A1 . Störspannungen auf der Ausgangsseite werden durch aktive und passive Filter gedämpft.
  • Unter Umständen auftretende Netzstörungen im Versorgungsnetz des Energieversorgungsunternehmens oder auch im Hausnetz, wie z.B. Flicker, Peaks oder Spannungsdips, führen bei den bekannten Stromversorgungssystemen bedingt durch das Prinzip der Phasenanschnittsteuerung oder auch Wellenpaketsteuerung zu sekundärseitigen Störaussendungen und somit zu einem verminderten Signalstörabstand an den Messfühlereingängen der Temperaturregelung. Dies wiederum kann zu Qualitätsstörungen im Prozess, d.h. der Regelung der Heizleistung, bis hin zum Prozessverlust führen. Wenn Störungen in der Stromversorgung auftreten, kann es zum Abbruch des Prozesses kommen. Allgemein werden aktive und passive Netzfilter eingesetzt, um den Auswirkungen von kurzzeitigen Netzstörungen auf einen Kristallziehprozess entgegenzuwirken. Ausfälle von systemrelevanten Komponenten der Stromversorgung führen in der Regel zum Prozessabbruch.
  • Eine Aufgabe der Erfindung besteht darin, die oben genannten Nachteile bekannter Stromversorgungsvorrichtungen zu vermeiden oder zu vermindern, insbesondere die im Betrieb erzeugten Netzrückwirkungen abzusenken, den Rippelstrom auf der Ausgangsseite zu reduzieren und den Wirkungsgrad zu erhöhen.
  • Eine weitere Aufgabe der Erfindung besteht darin, eine Verfügbarkeit der Stromversorgung und damit die Stabilität des Kristallziehprozesses zu erhöhen.
  • Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des Anspruchs 1 gelöst. Danach ist eine Stromversorgungsvorrichtung für eine Tiegelheizung vorgesehen, umfassend mindestens einen Heizstromkreis, welcher jeweils mindestens zwei Stromversorgungsmodule umfasst, und eine Prozesssteuereinrichtung zur Ansteuerung der Stromversorgungsmodule, wobei in dem oder jedem Heizstromkreis Ausgänge der mindestens zwei Stromversorgungsmodule parallel geschaltet sind.
  • Bezüglich des Verfahrens wird diese Aufgabe erfindungsgemäß gelöst durch die Merkmale des unabhängigen Verfahrensanspruchs. Danach ist ein Verfahren zum Betrieb einer Stromversorgungsvorrichtung für eine Tiegelheizung, umfassend mindestens einen Heizstromkreis, welcher jeweils mindestens zwei Stromversorgungsmodule umfasst, und eine Prozesssteuereinrichtung zur Ansteuerung der Stromversorgungsmodule, vorgesehen, wobei in dem oder jedem Heizstromkreis Ausgänge der mindestens zwei Stromversorgungsmodule parallel geschaltet sind, und wobei die Stromversorgungsmodule getrennt für jeden Heizstromkreis in Abhängigkeit von einem Prozessverlauf und/oder bei Auftreten von Störungen in einzelnen Stromversorgungsmodulen aktiviert oder deaktiviert werden.
  • Die Erfindung geht dabei von der Erkenntnis aus, dass zum Betrieb von Tiegelheizungen, insbesondere in Kristallzüchtungsanlagen, hohe Leistungen, z.B. im Bereich von 200 bis 500 kW, benötigt werden, wobei Ströme von mehreren Tausend Ampere fließen. Die Leistung muss dabei präzise aufgebaut werden und gleichzeitig müssen Sicherheitsaspekte aufgrund der hohen Ströme beachtet werden. Diese Erkenntnis wird so umgesetzt, dass gleichartige Stromversorgungsmodule in einem Schaltschrank zusammengeschaltet werden.
  • Der Vorteil der Erfindung besteht darin, dass Netzrückwirkungen vermindert werden. Gesonderte Maßnahmen zur Netzfilterung sind somit in der Regel nicht notwendig. In Abhängigkeit vom jeweils aktuellen Lastbedarf können einzelne Stromversorgungsmodule zu- oder abgeschaltet werden, um die aktiven Stromversorgungsmodule in einem möglichst optimalen Arbeitspunkt zu betreiben und somit einen verbesserten Leistungsfaktor zu erreichen. Der Wirkungsgrad kann dadurch besonders im Teillastbereich verbessert werden. Somit sind gesonderte Maßnahmen, wie zum Beispiel der Betrieb der Stromversorgung an einer Kompensationsanlage, nicht notwendig. Auf diese Weise können auch Kosten gespart werden. Primärseitige Netzstörungen, wie Flicker, Peaks oder Spannungsdips, machen sich bei der erfindungsgemäßen Stromversorgungsvorrichtung wesentlich weniger auf der Ausgangsseite bemerkbar, als bei bekannten Stromversorgungsvorrichtungen. Die Aussendung von temporären elektromagnetischen Störfeldern in Richtung der Tiegelheizung wird somit vermieden und eine erhöhte Prozessstabilität, insbesondere eines Kristallzüchtungsprozesses, ist die Folge.
  • Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche. Dabei verwendete Rückbeziehungen weisen auf die weitere Ausbildung des Gegenstandes des Hauptanspruches durch die Merkmale des jeweiligen Unteranspruches hin; sie sind nicht als ein Verzicht auf die Erzielung eines selbständigen, gegenständlichen Schutzes für die Merkmalskombinationen der rückbezogenen Unteransprüche zu verstehen. Des Weiteren ist im Hinblick auf eine Auslegung der Ansprüche bei einer näheren Konkretisierung eines Merkmals in einem nachgeordneten Anspruch davon auszugehen, dass eine derartige Beschränkung in den jeweils vorangehenden Ansprüchen nicht vorhanden ist.
  • In einer Ausführungsform umfasst die Stromversorgungsvorrichtung eine zwischen die Prozesssteuereinrichtung und die Stromversorgungsmodule geschaltete Heizungssteuereinrichtung zur Steuerung und Überwachung der Stromversorgungsmodule. Die Heizungssteuereinrichtung wird durch die Prozesssteuereinrichtung geführt, welche Status- und Fehlermeldungen von verschiedenen Prozessüberwachungskomponenten, z.B. Temperaturüberwachung, Kühlwasserüberwachung, Drucküberwachung, erhält.
  • Wenn bei der Stromversorgungsvorrichtung jedes Stromversorgungsmodul eingangsseitig dreiphasig angeschlossen ist, können unsymmetrische Netzbelastungen vermieden werden.
  • In einer Ausführungsform umfasst jedes Stromversorgungsmodul drei identische Untermodule, welche über einen internen Systembus miteinander verbunden sein können. Jedes Untermodul kann optional eine Gleichrichtereinheit umfassen.
  • Optional kann jedes Untermodul eine Leistungsfaktorkorrekturstufe umfassen. Die Leistungsfaktorkorrekturstufe, auch PFC-Stufe genannt ermöglicht eine wesentliche Reduzierung der Netzrückwirkungen im Vergleich zu bekannten Stromversorgungsvorrichtungen für Tiegelheizungen.
  • Der Leistungsfaktorkorrekturstufe können optional getaktete Leistungsstufen nachgeschaltet sein. Dadurch kann die Qualität der Ausgangsspannung im Vergleich zu bekannten Stromversorgungsvorrichtungen deutlich verbessert werden, da der Rippelstrom vermindert wird. Bei einem verminderten Rippelstrom treten nur geringe induktiv erzeugte Querkräfte im Heizstromkreis, z.B. an einem Graphitheizer auf. Dadurch werden mechanische Schwingungen des Graphitheizers verringert und dessen Lebensdauer somit verlängert.
  • In einer Ausführungsform kann jedes Stromversorgungsmodul ein Kommunikationsinterface umfassen, um Status- und Steuerinformationen mit der Prozesssteuervorrichtung oder Heizungssteuereinrichtung austauschen zu können. Status- und Fehlermeldungen können dabei z.B. durch eine LED(Light Emitting Diode)-Anzeige, welche beispielsweise direkt an einer Front des Stromversorgungsmoduls oder Untermoduls angeordnet ist, über ein HMI (Human-Machine-Interface, Mensch-Maschine-Schnittstelle) an einem Schaltschrank, in dem die Stromversorgungsvorrichtung angeordnet ist, und über das Kommunikationsinterface angezeigt werden.
  • Bei dem Verfahren ist optional vorgesehen, dass bei einer Störung eines der Stromversorgungsmodule ein Signal über ein Kommunikationsinterface von dem defekten Stromversorgungsmodul an eine zwischen die Prozesssteuereinrichtung und die Stromversorgungsmodule geschaltete Heizungssteuereinrichtung übermittelt wird und die Heizungssteuereinrichtung das defekte Stromversorgungsmodul deaktiviert. Dazu sendet die Heizungssteuereinrichtung ein entsprechendes Signal zur Deaktivierung des defekten Stromversorgungsmoduls.
  • Alternativ kann vorgesehen sein, dass bei einer Störung eines der Stromversorgungsmodule ein Signal über ein Kommunikationsinterface von dem defekten Stromversorgungsmodul an die Prozesssteuereinrichtung übermittelt wird und die Prozesssteuereinrichtung daraufhin das defekte Stromversorgungsmodul deaktiviert. Dazu wird ein entsprechendes Steuersignal von der Prozesssteuereinrichtung an das Stromversorgungsmodul gesendet. Auf diese Weise wird verhindert, dass defekte Stromversorgungsmodule bei Weiterbetrieb negative Auswirkungen auf die Ausgangsspannung haben oder Netzrückwirkungen verursachen.
  • In einer Ausführungsform kann die Leistung des deaktivierten Stromversorgungsmoduls dem oder den im zugehörigen Heizstromkreis weiterhin aktiven Stromversorgungsmodulen zusätzlich zumindest anteilig zugewiesen werden, wenn die im zugehörigen Heizstromkreis benötigte Leistung kleiner oder gleich einer maximalen Leistung der aktiven Stromversorgungsmodule, d.h. einer Summe der maximalen Leistung der noch im entsprechenden Heizstromkreis verfügbaren Stromversorgungsmodule, ist. Dies ermöglicht eine höhere Verfügbarkeit der Stromversorgungsvorrichtung. Bei Ausfall eines Stromversorgungsmoduls ist die Wiederherstellungszeit der Stromversorgung dann wesentlich kürzer ist als beispielsweise bei bekannten Stromversorgungsvorrichtungen. Somit kann die Tiegelziehanlage wesentlich schneller wieder in Betrieb genommen werden.
  • Ein nicht benötigtes Stromversorgungsmodul kann in einer Ausführungsform deaktiviert werden, und das nicht benötigte Stromversorgungsmodul kann bei Ausfall oder Störung eines parallel geschalteten Stromversorgungsmoduls automatisch wieder aktiviert werden. Dadurch wird ermöglicht, den Betriebspunkt der Stromversorgungsvorrichtung, insbesondere im Teillastbereich, zu optimieren.
  • Alternativ kann ein nicht benötigtes Stromversorgungsmodul deaktiviert werden, und das nicht benötigte Stromversorgungsmodul kann bei Ausfall oder Störung eines parallel geschalteten Stromversorgungsmoduls manuell oder automatisch - optional mit Bestätigungsrückfrage - aktiviert werden.
  • Als Betriebsmodi für die deaktivierten Stromversorgungsmodule kommen sowohl der "Hot Standby-Modus"(AC-Eingang aktiv) bzw. der "Cold Standby-Modus" (AC-Eingang deaktiviert) in Frage. Die Betriebsmodi können je nach Bedarf für ein Stromversorgungsmodul angewendet werden, es können beispielsweise auch, wenn mehrere Stromversorgungsmodule deaktiviert werden, ein Teil der deaktivierten Stromversorgungsmodule im "Hot Standby-Modus" und ein anderer Teil im "Cold Standby-Modus" betrieben werden.
  • In einer Ausführungsform können das oder die zu einem deaktivierten Stromversorgungsmodul parallel geschalteten Stromversorgungsmodule zumindest anteilig die Leistung des deaktivierten Stromversorgungsmoduls übernehmen. Beispielsweise bei drei Stromversorgungsmodulen in einem Heizstromkreis, von denen eines deaktiviert wird, können die beiden aktiven Stromversorgungsmodule jeweils die Hälfte der Leistung des deaktivierten Stromversorgungsmoduls übernehmen und können somit in einem günstigeren Arbeitspunkt betrieben werden.
  • Die Erfindung ist in einer Ausführungsform in Software implementiert. Die Erfindung ist damit einerseits auch ein Computerprogramm mit durch einen Computer ausführbaren Programmcodeanweisungen und andererseits ein Speichermedium mit einem derartigen Computerprogramm sowie schließlich auch eine Prozesssteuerungseinrichtung oder eine Heizungssteuereinrichtung mit einer Verarbeitungseinheit, in dessen Speicher als Mittel zur Durchführung des Verfahrens und seiner Ausgestaltungen ein solches Computerprogramm geladen oder ladbar ist. Die Heizungssteuereinrichtung kann sämtliche Aufgaben, die vorstehend und im Folgenden in Zusammenhang mit der Prozesssteuereinrichtung erwähnt werden, gleichermaßen ausführen.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert. Einander entsprechende Gegenstände oder Elemente sind in allen Figuren mit den gleichen Bezugszeichen versehen. Es zeigen:
  • FIG 1
    ein Ausführungsbeispiel der erfindungsgemäßen Stromversorgungsvorrichtung,
    FIG 2
    eine primäre Spannungsversorgung und Kühlwasserversorgung,
    FIG 3
    ein weiteres Ausführungsbeispiel der erfindungsgemäßen Stromversorgungsvorrichtung,
    FIG 4
    ein Beispiel für eine optimierte Stromversorgung für die Stromversorgungsvorrichtung aus FIG 1,
    FIG 5
    ein Beispiel für eine Störung eines Stromversorgungsmoduls in der Stromversorgungsvorrichtung aus FIG 1 und
    FIG 6
    ein Beispiel für ein Verfahren zum Betrieb einer erfindungsgemäßen Stromversorgungsvorrichtung.
  • FIG 1 zeigt in schematischer Darstellung ein Ausführungsbeispiel der erfindungsgemäßen Stromversorgungsvorrichtung 10. Die Stromversorgungsvorrichtung 10 umfasst fünf Stromversorgungsmodule 12, 14, 16, 18, 20, die in einem Schaltschrank 22 angeordnet sind. Die Ausgänge 24 eines ersten und zweiten Stromversorgungsmoduls 12, 14 sind mittels einer Stromschiene (nicht dargestellt) parallel geschaltet und versorgen einen ersten Heizstromkreis 26 einer Tiegelheizung 28. Die Ausgänge 29 eines dritten, vierten und fünften Stromversorgungsmoduls 16, 18, 20 sind ebenfalls parallel geschaltet und versorgen einen zweiten Heizstromkreis 30 der Tiegelheizung 28. Die Stromversorgungsmodule 12-20 umfassen jeweils drei identische Untermodule (nicht dargestellt), welche über einen internen Systembus (nicht dargestellt) miteinander verbunden sind. Jedes Untermodul besteht in der Regel aus einer Gleichrichtereinheit, einer Leistungsfaktorkorrekturstufe (PFC-Stufe), einem Leistungswandler mit Übertrager und einem Weitbereichsausgang (alle nicht dargestellt). Jedes Stromversorgungsmodul 12-20 verfügt außerdem über ein Kommunikationsinterface, um Status- und Steuerinformationen übermitteln und austauschen zu können, wie im Folgenden beschrieben. Die Steuerung und Überwachung der einzelnen Stromversorgungsmodule 12-20 erfolgt durch eine Heizungssteuereinrichtung 32, welche über eine Kommunikationsschnittstelle 34 mit den Stromversorgungsmodulen 12-20 kommuniziert und innerhalb des Schaltschranks 22 angeordnet ist. Es ist jedoch gleichermaßen möglich, dass die Heizungssteuereinrichtung 32 außerhalb des Schaltschranks 22 angeordnet ist. Die Heizungssteuereinrichtung 32 ist mit einer Kommunikationsschnittstelle 34 einer Prozesssteuereinrichtung 36 verbunden, die Status- und Fehlermeldungen von einzelnen Komponenten wie zum Beispiel Kühlwasserüberwachung 38, Drucküberwachung 40, Temperaturüberwachung 42 zur Prozessüberwachung erhält und durch diese gesteuert wird. Die Prozesssteuereinrichtung 36 umfasst eine Verarbeitungseinheit 44 und einen Speicher 46 zum Ausführen bzw. Speichern eines Computerprogramms für die Prozessüberwachung und Steuerung. Anstelle der Prozesssteuereinrichtung 36 kann auch die Heizungssteuereinrichtung 32 eine Verarbeitungseinheit und einen Speicher umfassen (beides nicht dargestellt), um ein Computerprogramm für die Prozessüberwachung auszuführen bzw. zu speichern.
  • In FIG 2 ist ein Beispiel für eine primäre Spannungsversorgung 48 für die Stromversorgungsmodule 12-20 schematisch dargestellt. Die Spannungsversorgung 48 umfasst ein Schaltfeld 50, mit dem eine Versorgungsspannung 51 direkt auf die Stromversorgungsmodule 12-20 geführt wird. Jedes Stromversorgungsmodul 12-20 ist einzeln an einen Kühlwasserkreislauf 52 angeschlossen.
  • FIG 3 zeigt ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Stromversorgungsvorrichtung 54, bei der die Stromversorgungsmodule 12-20 direkt mit der Kommunikationsschnittstelle 34 der Prozesssteuereinrichtung 36 verbunden sind und durch die Prozesssteuereinrichtung 36 direkt überwacht und gesteuert werden.
  • In FIG 4 ist ein Beispiel für eine optimierte Stromversorgung für die Stromversorgungsvorrichtung 10 aus FIG 1 dargestellt. Im Teillastbereich wird dazu ein nicht mehr benötigtes Stromversorgungsmodul 20 deaktiviert. Dazu wird ein entsprechendes Steuersignal 56 von der Heizungssteuereinrichtung 32 an das zu deaktivierende Stromversorgungsmodul 20 gesendet. Es kann je nach Bedarf im "Hot Standby" oder "Cold Standby" betrieben werden, d.h. bei Bedarf entweder automatisch reaktiviert werden oder manuell zugeschaltet werden, beispielsweise wenn über die Kommunikationsschnittstelle eine Störung in einem der zu dem deaktivierten Stromversorgungsmodul 20 parallel geschalteten Stromversorgungsmodule 16, 18 angezeigt wird. An die im zweiten Heizstromkreis 30 weiterhin aktiven Stromversorgungsmodule 16, 18 wird jeweils ein entsprechendes Steuersignal 58 zur Übernahme von jeweils der Hälfte der Leistung von dem deaktivierten Stromversorgungsmodul 20 gesendet. So können sie in einem günstigeren Arbeitspunkt betrieben werden. Auch eine andere Leistungsverteilung auf die im zweiten Heizstromkreis 30 verbleibenden aktiven Stromversorgungsmodule 16, 18 kann bestimmt werden, so dass z.B. eines 30% und das andere 70% der Leistung des deaktivierten Stromversorgungsmoduls 20 übernimmt. Die Werte der Leistungsübernahmen können derart bestimmt werden, so dass die verbleibenden aktiven Stromversorgungsmodule 16, 18 in einem möglichst günstigen Arbeitspunkt betrieben werden können.
  • FIG 5 zeigt ein Beispiel für eine Störung eines Stromversorgungsmoduls 20 in der Stromversorgungsvorrichtung 10. Von dem Stromversorgungsmodul 20 wird ein Störungssignal 60 an die Heizungssteuereinrichtung 32 gesendet. Das Stromversorgungsmodul 20 mit der Störung wird dann durch die Heizungssteuereinrichtung 32 deaktiviert. Gleichzeitig wird von der Heizungssteuereinrichtung 32 ein entsprechendes Steuersignal 62 an die im zugehörigen zweiten Heizstromkreis 30 verbliebenen Stromversorgungsmodule 16, 18 gesendet, so dass diesen die Leistung vom defekten Stromversorgungsmodul 20 z.B. jeweils zu 50% zusätzlich zugewiesen wird, soweit eine im zweiten Heizstromkreis 30 benötigte Heizleistung kleiner oder gleich der Summe der maximalen Leistung der noch verfügbaren, funktionsfähigen Stromversorgungsmodule 16, 18 ist.
  • Nach Beendigung des Prozesses, z.B. eines Kristallzüchtungsprozesses, kann mittels Austausch des defekten Stromversorgungsmoduls 20 die Betriebsbereitschaft der Stromversorgungsvorrichtung kurzfristig und mit geringem Serviceaufwand wieder hergestellt werden. Der modulare Aufbau der Stromversorgungsvorrichtungen 10, 54 ermöglicht es, die Stromversorgungsvorrichtungen 10, 54 auch für andere Anlagen, insbesondere Kristallzüchtungsanlagen, mit geändertem Leistungsbedarf der Heizstromkreise anzupassen.
  • FIG 6 zeigt ein Beispiel für ein Verfahren 64 zum Betrieb einer erfindungsgemäßen Stromversorgungsvorrichtung 10, 54. Dabei wird in einem ersten Schritt 66 ein Signal über ein Kommunikationsinterface von dem defekten Stromversorgungsmodul an die Prozesssteuereinrichtung übermittelt. In einem zweiten Schritt 68 deaktiviert die Prozesssteuereinrichtung mithilfe eines entsprechenden Steuersignals das defekte Stromversorgungsmodul. In einem dritten Schritt 70 wird durch ein entsprechendes Steuersignal von der Prozesssteuereinrichtung an das oder die im zugehörigen Heizstromkreis aktiven Stromversorgungsmodule die Leistung des deaktivierten Stromversorgungsmoduls dem bzw. den im zugehörigen Heizstromkreis aktiven Stromversorgungsmodulen zusätzlich anteilig zugewiesen, wenn die im zugehörigen Heizstromkreis benötigte Leistung kleiner oder gleich einer maximalen Leistung der aktiven Stromversorgungsmodule ist.
  • Einzelne im Vordergrund stehende Aspekte der hier eingereichten Beschreibung lassen sich damit kurz wie folgt zusammenfassen: Es wird eine Stromversorgungsvorrichtung 10, 54 für eine Tiegelheizung 28, umfassend mindestens einen Heizstromkreis 26, 30, welcher jeweils mindestens zwei Stromversorgungsmodule 12, 14, 16, 18, 20 umfasst, wobei in dem oder jedem Heizstromkreis 26, 30 Ausgänge 24, 29 der mindestens zwei Stromversorgungsmodule 12-20 parallel geschaltet sind, und eine Prozesssteuereinrichtung 36 zur Ansteuerung der Stromversorgungsmodule 12-20 angegeben.

Claims (18)

  1. Stromversorgungsvorrichtung (10) für eine Tiegelheizung (28), umfassend mindestens einen Heizstromkreis (26,30), welcher jeweils mindestens zwei Stromversorgungsmodule (12,14, 16,18,20) umfasst, und eine Prozesssteuereinrichtung (36) zur Ansteuerung der Stromversorgungsmodule (12,14,16,18,20), wobei in dem oder jedem Heizstromkreis (26,30) Ausgänge (24, 29) der mindestens zwei Stromversorgungsmodule (12,14,16,18, 20) parallel geschaltet sind.
  2. Stromversorgungsvorrichtung (10) nach Anspruch 1, mit einer zwischen die Prozesssteuereinrichtung (36) und die Stromversorgungsmodule (12,14,16,18,20) geschalteten Heizungssteuereinrichtung (32) zur Steuerung und Überwachung der Stromversorgungsmodule (12,14,16,18,20).
  3. Stromversorgungsvorrichtung (10) nach Anspruch 1 oder 2, wobei jedes Stromversorgungsmodul (12,14,16,18,20) eingangsseitig dreiphasig angeschlossen ist.
  4. Stromversorgungsvorrichtung (10) nach einem der Ansprüche 1 bis 3, wobei jedes Stromversorgungsmodul (12,14,16,18,20) drei identische Untermodule umfasst, welche über einen internen Systembus miteinander verbunden sind.
  5. Stromversorgungsvorrichtung (10) nach Anspruch 4, wobei jedes Untermodul eine Gleichrichtereinheit umfasst.
  6. Stromversorgungsvorrichtung (10) nach Anspruch 4 oder 5, wobei jedes Untermodul eine Leistungsfaktorkorrekturstufe umfasst.
  7. Stromversorgungsvorrichtung (10) nach Anspruch 6, wobei der Leistungsfaktorkorrekturstufe getaktete Leistungsstufen nachgeschaltet sind.
  8. Stromversorgungsvorrichtung (10) nach einem der Ansprüche 1 bis 7, wobei jedes Stromversorgungsmodul (12,14,16,18,20) ein Kommunikationsinterface umfasst.
  9. Verfahren zum Betrieb einer Stromversorgungsvorrichtung (10) für eine Tiegelheizung (28), umfassend mindestens einen Heizstromkreis (26,30), welcher jeweils mindestens zwei Stromversorgungsmodule (12,14,16,18,20) umfasst, und eine Prozesssteuereinrichtung (36) zur Ansteuerung der Stromversorgungsmodule (12,14,16,18,20), wobei in dem oder jedem Heizstromkreis (26,30) Ausgänge (24,29) der mindestens zwei Stromversorgungsmodule (12,14,16,18,20) parallel geschaltet sind, und wobei die Stromversorgungsmodule (12,14,16,18,20) getrennt für jeden Heizstromkreis (26, 30) in Abhängigkeit von einem Prozessverlauf und/oder bei Auftreten von Störungen in einzelnen Stromversorgungsmodulen (12,14,16,18,20) aktiviert oder deaktiviert werden.
  10. Verfahren nach Anspruch 9, wobei bei einer Störung in einem der Stromversorgungsmodule (12,14,16,18,20) ein Signal (56) über ein Kommunikationsinterface von dem defekten Stromversorgungsmodul (12,14,16,18,20) an eine zwischen die Prozesssteuereinrichtung (36) und die Stromversorgungsmodule (12,14,16,18,20) geschaltete Heizungssteuereinrichtung (32) übermittelt wird und die Heizungssteuereinrichtung (32) das defekte Stromversorgungsmodul (12,14,16,18,20) deaktiviert.
  11. Verfahren nach Anspruch 9, wobei bei einer Störung in einem der Stromversorgungsmodule (12,14,16,18,20) ein Signal (56) über ein Kommunikationsinterface von dem defekten Stromversorgungsmodul (12,14,16,18,20) an die Prozesssteuereinrichtung (36) übermittelt wird und die Prozesssteuereinrichtung (36) das defekte Stromversorgungsmodul (12,14,16,18,20) deaktiviert.
  12. Verfahren nach Anspruch 10 oder 11, wobei die Leistung des deaktivierten Stromversorgungsmoduls (12,14,16,18,20) dem oder den im zugehörigen Heizstromkreis (26,30) aktiven Stromversorgungsmodulen (12,14,16,18,20) zusätzlich anteilig zugewiesen wird, wenn die im zugehörigen Heizstromkreis (26,30) benötigte Leistung kleiner oder gleich einer maximalen Leistung der aktiven Stromversorgungsmodule (12,14,16,18,20) ist.
  13. Verfahren nach einem der Ansprüche 9 bis 12, wobei ein nicht benötigtes Stromversorgungsmodul (12,14,16,18,20) deaktiviert wird, und wobei das nicht benötigte Stromversorgungsmodul (12,14,16,18,20) bei Ausfall oder Störung eines parallel geschalteten Stromversorgungsmoduls (12,14,16,18,20) automatisch aktiviert wird.
  14. Verfahren nach Anspruch 13, wobei das oder die zu einem deaktivierten Stromversorgungsmodul (12,14,16,18,20) parallel geschalteten Stromversorgungsmodule (12,14,16,18,20) zumindest anteilig die Leistung des deaktivierten Stromversorgungsmoduls (12,14,16,18,20) übernehmen.
  15. Computerprogramm mit Programmcode-Mitteln, um alle Schritte von jedem beliebigen der Ansprüche 9 bis 14 durchzuführen, wenn das Programm auf einer Prozesssteuereinrichtung (36) oder Heizungssteuereinrichtung (32) ausgeführt wird.
  16. Computerprogrammprodukt mit Programmcode-Mitteln, die auf einem computerlesbaren Datenträger gespeichert sind, um das Verfahren nach jedem beliebigen der Ansprüche 9 bis 14 durchzuführen, wenn das Programmprodukt auf einer Prozesssteuereinrichtung (36) oder Heizungssteuereinrichtung (32) ausgeführt wird.
  17. Digitales Speichermedium, insbesondere Diskette, mit elektronisch auslesbaren Steuersignalen, die so mit einer programmierbaren Prozesssteuereinrichtung (36) oder Heizungssteuereinrichtung (32) zusammenwirken können, dass ein Verfahren nach einem der Ansprüche 9 bis 14 ausgeführt wird.
  18. Prozesssteuereinrichtung (36) oder Heizungssteuereinrichtung (32) mit einer Verarbeitungseinheit (44) und einem Speicher (46), in den ein Computerprogramm nach Anspruch 15 geladen ist, das im Betrieb des Gerätes durch die Verarbeitungseinheit (44) ausgeführt wird.
EP11176125.0A 2011-08-01 2011-08-01 Stromversorgungsvorrichtung für eine Tiegelheizung und Verfahren zu deren Betrieb Active EP2555585B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11176125.0A EP2555585B1 (de) 2011-08-01 2011-08-01 Stromversorgungsvorrichtung für eine Tiegelheizung und Verfahren zu deren Betrieb
US13/563,119 US20130193133A1 (en) 2011-08-01 2012-07-31 Power supply device for a crucible heater and method for its operation
CN201210272810.3A CN102912423B (zh) 2011-08-01 2012-08-01 用于坩埚加热装置的供电装置和使其运行的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11176125.0A EP2555585B1 (de) 2011-08-01 2011-08-01 Stromversorgungsvorrichtung für eine Tiegelheizung und Verfahren zu deren Betrieb

Publications (2)

Publication Number Publication Date
EP2555585A1 true EP2555585A1 (de) 2013-02-06
EP2555585B1 EP2555585B1 (de) 2017-07-05

Family

ID=44503630

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11176125.0A Active EP2555585B1 (de) 2011-08-01 2011-08-01 Stromversorgungsvorrichtung für eine Tiegelheizung und Verfahren zu deren Betrieb

Country Status (3)

Country Link
US (1) US20130193133A1 (de)
EP (1) EP2555585B1 (de)
CN (1) CN102912423B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108419307A (zh) * 2018-04-17 2018-08-17 北京强度环境研究所 一种石墨加热器的控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10750576B2 (en) * 2015-01-30 2020-08-18 Hewlett-Packard Development Company, L.P. Heating unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032640A1 (de) * 2006-07-13 2008-01-17 Ema Indutec Gmbh Umrichter, insbesondere zur Erzeugung von Wirkleistung für die induktive Erwärmung und Verfahren zum induktiven Schmelzen und Rühren
DE102007051666A1 (de) * 2007-10-26 2009-04-30 Otto Junker Gmbh Stromversorgungseinrichtung für Induktionsöfen
DE102009027436A1 (de) 2009-07-02 2011-01-13 Calisolar Gmbh Verfahren und Vorrichtung zur Züchtung von Kristallen aus elektrisch leitenden Schmelzen, die in der Diamant- oder Zinkblendestruktur kristallisieren

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2827443C2 (de) * 1978-06-22 1982-08-26 Siemens Ag, 1000 Berlin Und 8000 Muenchen Gesicherte Stromrichteranordnung
DE3311626C2 (de) * 1983-03-30 1986-09-25 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8900 Augsburg Aufgeladene Vier-Takt-Brennkraftmaschine
DE3890368C2 (de) * 1987-05-05 1997-08-14 Ase Americas Inc N D Ges D Sta Systemeinrichtung zur Steuerung von Vorrichtungen zum Ziehen rohrförmiger Kristallkörper und Verfahren zum Ziehen eines rohrförmigen Kristallkörpers
US4877972A (en) * 1988-06-21 1989-10-31 The Boeing Company Fault tolerant modular power supply system
CN2103830U (zh) * 1991-10-23 1992-05-06 成都市电热器厂 电热毯恒温控制调节装置
JP2533840B2 (ja) * 1993-06-25 1996-09-11 株式会社愛知電機製作所 無瞬断電源切替方法及びその装置
US5831346A (en) * 1996-07-08 1998-11-03 Force Computers, Inc. Method and apparatus for control of power supply coupling on computer backplane
DE19901196A1 (de) * 1999-01-14 2000-07-20 Siemens Ag Verfahren und Einrichtung zur Spannungsversorgung
US6166455A (en) * 1999-01-14 2000-12-26 Micro Linear Corporation Load current sharing and cascaded power supply modules
CN1246749A (zh) * 1999-07-13 2000-03-08 北京利德华福技术有限公司 一种减小电网输入谐波的电路
CN1255823A (zh) * 1999-11-26 2000-06-07 姚野 一种气体放电灯的供电方法及其装置
US6438007B1 (en) * 2000-05-03 2002-08-20 Raymond W. Pilukaitis Control circuit for paralleling power supplies and method of operation thereof
US20060013024A1 (en) * 2004-05-05 2006-01-19 Erno Temesi Rectifier circuit having a power factor correction
US7332692B2 (en) * 2005-05-06 2008-02-19 Illinois Tool Works Inc. Redundant control circuit for hot melt adhesive assembly heater circuits and temperature sensors
JP4492435B2 (ja) * 2005-05-18 2010-06-30 日本電気株式会社 冗長構成システム、通信処理装置及びそれらに用いる送達非確認コネクション切替方法
DE102005044831A1 (de) * 2005-09-20 2007-03-22 Siemens Ag Verfahren und Vorrichtung zur Überwachung einer elektrischen Heizung
US8816535B2 (en) * 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
CN201054794Y (zh) * 2007-05-29 2008-04-30 郑洪林 一种用于玻璃窑炉供料道和退火窑的电加热装置
CN101472360A (zh) * 2007-12-28 2009-07-01 西安瑞驰电力设备有限公司 矿热炉二次低压补偿装置系统的单相连接方法
CN201528181U (zh) * 2009-09-27 2010-07-14 惠州市斯科电气照明有限公司 一种照明装置中的接力电源
US8395917B2 (en) * 2010-06-17 2013-03-12 Hewlett-Packard Development Company, L.P. Redundant parallel non-isolated input converters
US8699251B2 (en) * 2012-04-24 2014-04-15 Hamilton Sundstrand Corporation Direct current generating, management and distribution system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032640A1 (de) * 2006-07-13 2008-01-17 Ema Indutec Gmbh Umrichter, insbesondere zur Erzeugung von Wirkleistung für die induktive Erwärmung und Verfahren zum induktiven Schmelzen und Rühren
DE102007051666A1 (de) * 2007-10-26 2009-04-30 Otto Junker Gmbh Stromversorgungseinrichtung für Induktionsöfen
DE102009027436A1 (de) 2009-07-02 2011-01-13 Calisolar Gmbh Verfahren und Vorrichtung zur Züchtung von Kristallen aus elektrisch leitenden Schmelzen, die in der Diamant- oder Zinkblendestruktur kristallisieren

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108419307A (zh) * 2018-04-17 2018-08-17 北京强度环境研究所 一种石墨加热器的控制方法

Also Published As

Publication number Publication date
EP2555585B1 (de) 2017-07-05
US20130193133A1 (en) 2013-08-01
CN102912423B (zh) 2017-07-07
CN102912423A (zh) 2013-02-06

Similar Documents

Publication Publication Date Title
DE112014002899B4 (de) Wechselrichtersynchronisation
DE102012111063A1 (de) DC-DC-Wandler und Verfahren zur Steuerung eines DC-DC-Wandlers
EP2812970B1 (de) Modular redundante dc/dc stromversorgungsanordnung mit parallelschaltbaren ausgängen
DE102009014243A1 (de) Ortsnetztrafo, bzw. Schaltung für einen elektrischen Verteiltransformator
EP2027646B1 (de) Ansteuerung mit wechselrichtern bei geringen schaltverlusten
DE102019129754A1 (de) Vorrichtung und Verfahren zur Ladung eines elektrischen Batteriefahrzeugs
DE102013006964A1 (de) Vorrichtung, insbesondere Maschine oder Anlage, und Verfahren zum Betreiben einer Vorrichtung
DE102012111607A1 (de) DC-DC-Wandler und Verfahren zur Steuerung eines DC-DC-Wandlers
EP2555585B1 (de) Stromversorgungsvorrichtung für eine Tiegelheizung und Verfahren zu deren Betrieb
DE102015111553A1 (de) Vorrichtung und Verfahren zur induktiven Übertragung elektrischer Energie
DE102012112671A1 (de) DC / DC Wandler
EP3642932A1 (de) Vorrichtung und verfahren zur aktiven erzeugung und einprägung von blindleistung in induktive übertragungssystem
EP2856625B1 (de) Spannungsversorgung für einen wechselrichter
EP2477301A1 (de) Anordnung zur Einspeisung elektrischer Energie in ein Energieversorgungsnetz
EP3363089B1 (de) Blindleistungskompensationseinrichtung sowie verfahren zum betreiben einer blindleistungskompensationseinrichtung
EP2826126B1 (de) Leistungselektronische anordnung mit symmetrierung eines spannungsknotens im zwischenkreis
DE102005026338A1 (de) Unterbrechungsfreie Stromversorgung und Steuerverfahren für diese
EP2756590B1 (de) Stromrichterschaltung
EP3668745B1 (de) Energiespeicheranordnung und verfahren zum betreiben einer solchen energiespeicheranordnung
EP3449554B1 (de) Wechselrichter und verfahren zum erzeugen eines wechselstroms
DE102020111556A1 (de) Verfahren zur erweiterung eines dc-spannungsbereichs eines gleichrichters, gleichrichter zur durchführung des verfahrens und elektrolyseanlage
EP3024003B1 (de) Vorrichtung zur einstellung einer spannung mit wenigstens einer elektromagnetischen vorrichtung
DE102012213725A1 (de) Ansteuerungsverfahren und Steuerschaltung einer Stromrichterparallelschaltung
EP2975747B1 (de) Verbessern einer Spannung einer Stromversorgungsverbindung
EP3596792A1 (de) Elektrisches energieversorgungsnetz und verfahren zu dessen betrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17P Request for examination filed

Effective date: 20130719

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011012537

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0006040000

Ipc: H05B0001020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 6/06 20060101ALI20170110BHEP

Ipc: H05B 1/02 20060101AFI20170110BHEP

Ipc: H05B 3/02 20060101ALI20170110BHEP

Ipc: H05B 6/04 20060101ALI20170110BHEP

INTG Intention to grant announced

Effective date: 20170127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 907429

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011012537

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170705

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171105

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171006

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011012537

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

26N No opposition filed

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 907429

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230905

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230926

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230913

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240910

Year of fee payment: 14