EP2535558B1 - Method and device for generating drive power by causing pressure differentials in a closed gas/fluid system - Google Patents

Method and device for generating drive power by causing pressure differentials in a closed gas/fluid system Download PDF

Info

Publication number
EP2535558B1
EP2535558B1 EP11004923.6A EP11004923A EP2535558B1 EP 2535558 B1 EP2535558 B1 EP 2535558B1 EP 11004923 A EP11004923 A EP 11004923A EP 2535558 B1 EP2535558 B1 EP 2535558B1
Authority
EP
European Patent Office
Prior art keywords
hollow body
insert
rotor
vessel
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11004923.6A
Other languages
German (de)
French (fr)
Other versions
EP2535558A1 (en
Inventor
Zeki Akbayir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akbayir Zeki
Original Assignee
Akbayir Zeki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES11004923.6T priority Critical patent/ES2620368T3/en
Application filed by Akbayir Zeki filed Critical Akbayir Zeki
Priority to PL11004923T priority patent/PL2535558T3/en
Priority to EP11004923.6A priority patent/EP2535558B1/en
Priority to CN201280039755.1A priority patent/CN103906918B/en
Priority to JP2014515084A priority patent/JP6067004B2/en
Priority to EA201490023A priority patent/EA033371B1/en
Priority to US14/126,017 priority patent/US10077755B2/en
Priority to PCT/EP2012/002458 priority patent/WO2012171628A1/en
Publication of EP2535558A1 publication Critical patent/EP2535558A1/en
Application granted granted Critical
Publication of EP2535558B1 publication Critical patent/EP2535558B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/005Installations wherein the liquid circulates in a closed loop ; Alleged perpetua mobilia of this or similar kind

Definitions

  • the invention relates to a method for generating a continuous driving force by providing kinetic energy of a liquid by inducing pressure differences in a closed gas / liquid system, in particular in an air / water system, as well as an apparatus for implementing the method.
  • Machines which can convert an available kinetic energy of a fluid into power in the form of a rotating shaft. They are commonly referred to as turbocharged engines. Very high power yields with good efficiency can reach such machines with water as the working fluid, in particular Pelton turbines (eg DE 10133547A1 ) for water under high pressure and rather low volume flow. This type of turbine is also referred to as a constant pressure turbine, since the conversion of energy in the impeller takes place at a constant ambient pressure. In technical application, these turbines are commonly used in hydroelectric power plants with large available fall heights. The applicability of this type of turbine is therefore limited to geographical areas which offer very large height differences at close range. In addition, water from the natural cycle, preferably from high-altitude reservoirs, is usually used as the working medium. Energy production is therefore not unlimited and permanently possible.
  • turbomachinery In principle, such machines generate a pressure or enthalpy increase of the working fluid by introducing mechanical power in the form of a rotating shaft.
  • pumps or reciprocating compressors are used in the art. In both types, the energy transfer takes place directly to the working medium water.
  • the turbo machine pump and the turbo engine radial turbine which are both operated in a closed circuit with the working fluid water, so you have the technical application of the hydrodynamic converter (eg DE 102006023017A1 ). This translates torque and speed of the two shafts and provides lower output than input power due to friction losses and entropy increase in the system.
  • the object of the invention is to provide a method for providing continuous kinetic energy by suitable combination of various described above and other technical principles of action and their targeted application with compressible and incompressible medium and to provide a device for implementing and applying the method for the purpose of continuous power output.
  • the invention is both and primarily the method which generates two continuous forms of water, namely pressure increase and power in the form of a rotating shaft, a continuous water cycle and thus kinetic energy within the machine, as well as the device for implementation and application this method for the purpose of using the permanently available form of energy and its conversion into mechanical energy in the form of a rotating shaft.
  • the gaseous medium is in an open on the bottom, preferably bell-shaped insert, within an at least partially arranged above the insert and connected with him firmly and sealed connected hollow body and before commissioning of the system in one or more risers, at least partially, preferably completely, within the enclosed container, but outside of the insert and preferably perpendicular and at its bottom End open and connected with its upper end to the hollow body.
  • the hollow body is in a preferred embodiment, but not indispensable, completely within the enclosed container.
  • the liquid medium enters when filling the container from below in the bell-shaped insert and the risers and rises in this and the risers until the onset of pressure equalization. Thereafter, the container is first closed pressure-tight and then the potential energy of the two media within the device by applying compressed air additionally increased.
  • a specially designed, horizontally arranged and provided with a vertical axis of rotation rotor is motorized in rotary motion.
  • the level of the liquid medium is within the bell-shaped insert between the lower end and below the bottom of the rotating rotor.
  • This rotor in the form of a disc with a lateral surface of special shape generates at this a negative pressure relative to the pressure of the enclosed gas.
  • This negative pressure leads via tubular open channels within the rotor disk in the hollow body to a corresponding negative pressure. Due to the negative pressure in the hollow body in conjunction with the gas pressure in use, liquid medium is conveyed out of the container into the hollow body by the riser (s) and a kinetic energy is generated and made available in the form of the liquid medium entering the hollow body ,
  • a liquid level of low height is formed within the hollow body, whereby the gas pressure in the hollow body relative to the negative pressure generated by the rotor increases, but even lower than the gas pressure remains in use.
  • the flowing into the hollow body liquid medium is made of it aspirated through channels within the rotor disc due to the effective pressure differences and travels back to the liquid level in use, so that during the rotation of the rotor there is a cycle with continuous provision of kinetic energy.
  • the applied gas pressure and the rotational speed of the rotor in use determine the flow rate and rate of the liquid medium and thus the kinetic energy generated.
  • the ratio between flow rate and speed can also be controlled via nozzles at the outlet of the riser pipes.
  • the generated and available in this form kinetic energy of the liquid medium can be removed via suitable devices, such as. B. a constant pressure turbine, the turbine wheel is offset from the jet of impinging water or other liquid medium in motion, generate drive power for stationary or mobile use.
  • the device according to the invention consists in the illustrated embodiment of a container closed on all sides (1) in the form of a barrel, a ball, a cube or a cuboid or in another form, in this container (1) on its underside open, preferably bell-shaped insert (2) is used.
  • a preferably spherical hollow body (3) is arranged on the upper side of the insert (2).
  • the hollow body (3) extends with part of its height into the insert (2), wherein in the region of the connection of insert (2) and hollow body (3) sealing against the container (1).
  • the hollow body (3) does not have to reach into the insert (2).
  • the hollow body (3) has an outlet opening (4) and an extension piece (5).
  • the insert (2) and the hollow body (3) are arranged in the illustrated embodiment completely within the container (1), so that in In this case, the top of the container (1) is formed according to the executed geometric shape.
  • the top of the container (1) from an annular cover, the upper part of the insert (2) and the upwardly projecting part of the hollow body (3) is formed.
  • the upper side it is possible according to the invention for the upper side to be formed from an annular cover and the upper part of the hollow body (3).
  • a rotor (8) On a vertical shaft (7), which is arranged within the container (1) in a shaft housing rotatably and pressure-tight against gaseous and liquid media and preferably from outside the container (1) is driven by a motor, a rotor (8) is attached in turn, within the insert (2) with a certain distance from the inner wall of the insert (2) is arranged.
  • the rotor (8) has an extension piece (23) by which it is in operative connection with the outlet opening (4) of the hollow body (3) by the extension piece (23) of the rotor (8) rotatably and sealed, but without a fixed connection, into the outlet opening (4) of the hollow body (3) protrudes and over this over a part of its height.
  • the rotor (8) is designed as a cylindrical disc, preferably flat or even with slightly bent at the edge lateral surface.
  • the outer surface of this disc is similar to one or more wing profiles (16) DE patent 10 2005 049 938 educated.
  • the on the circumference of the lateral surface of the rotor (8) in preferably periodic pitch arranged airfoils (16) each consist in the direction of rotation of the rotor (8) from a convex elevation (17), followed by a flat outlet region (18). In this outlet region (18) at the location of the circumferential in the circumferential direction of the rotor shell surface with rotation at nominal operating speed minimally effective static pressure are the outlet openings (21) of the rotor (8).
  • the endpiece (23) of the rotor (8) has one or more, preferably three, tubular open channels (6) extending from the upper end of the endpiece (23) through the inner portion (20) of the rotor (8) to the outer surface thereof run and end in the outlet openings (21).
  • a liquid or gaseous medium introduced from the hollow body (3) through the outlet opening (4) can run into the channels (6) of the rotor (8) and can be introduced into the insert (2) via the channels (6) and the outlet openings (21) ) reach.
  • one or more - in the illustrated embodiment two - risers (10) are mounted, which are open at its lower end and preferably perpendicular and down at least to the Lower edge of the insert (2) are enough. With their upper ends, they are inserted via arc above the insert (2) sealed in the hollow body (3).
  • the risers (10), as shown in the figures, at their ends within the hollow body (3) horizontally extending, via inner nozzle needles adjustable nozzles (22).
  • a fixed ring (25) is arranged in an advantageous embodiment, but not indispensable, which carries a slightly away from the inner wall grid plate (26) on which the the outlet openings (21) of the rotor (8) emerging water impinges.
  • the grid plate (26) amplified by suitable choice of the distance to the convex projections (17) of the airfoils (16) on the one hand, the generation of negative pressure and on the other hand allows the discharge of the outlet openings (21) leaking water away from the rotor towards the inner wall of the insert (2) while minimizing friction loss. The water then drains down the inner wall of the insert (2) down to the liquid level.
  • cover plates (27) which project radially beyond the rotor (8) and extend to near the inner wall of the insert (2) and when attaching a ring (25) with grid plate (26) project beyond this, but without touching them.
  • the rotor (8) is rotated via the shaft (7) either by means of an outside of the container (1) arranged motor (9) in rotation, wherein the shaft (7) is guided under sealing through the bottom of the container (1), or the shaft (7) is part of an enclosed inside the container (1) arranged encapsulated electric motor.
  • a supply pipe (14) is provided for compressed air, which is guided from the outside of the container (1) in the insert (2) and opens into this above the lower boundary, preferably at about half height between the bottom of the rotor (8). and the lower edge of the insert (2).
  • the lid of the container (1) has a closable opening (15) for filling a liquid medium attached.
  • the kinetic energy of a liquid medium provided by the device described above can be used to generate drive energy by, as shown in the illustrated embodiment, within the hollow body (3) at the level of entry of the riser tubes (10) on a vertical shaft (13) a turbine wheel (12) of a constant pressure turbine with blades arranged thereon (19) is mounted.
  • the turbine wheel (12) is mounted in a shell (11) located below.
  • the nozzles (22) are directed to the blade inner sides of the turbine wheel (12), and the blades (19) adjoin the inner wall of the hollow body (3), without touching them.
  • the vertical shaft (13) of the turbine wheel (12) is extended upward and penetrates the wall of the hollow body (3) and the upper wall (the lid) of the container (1) for connection to driven devices and devices (24), in particular generators , Machinery or vehicles.
  • the shaft (13) is in the container (1) tightly mounted relative to the gaseous medium in the hollow body (3) and the liquid medium in the container (1).
  • an incompressible, liquid medium preferably water
  • the liquid medium also penetrates into the bell-shaped insert (2) and the riser tubes (10) from their lower openings until the air enclosed in them and the hollow body (3) which is in communication with them is trapped by the penetrating liquid medium is compressed, that a pressure equalization occurs. Thereafter, the opening (15) of the container (1) is closed.
  • the hollow body (3) instead of the spherical shape in the illustrated embodiment, the shape of a cube, a cuboid, a barrel or any other form.
  • liquid medium preferably water
  • the supply of external compressed air is required only for initial adjustment of the working internal pressure.
  • the provision of the power to drive the shaft (7) is required, and there are no emissions that affect the environment. If the operation of the system should be interrupted or terminated, then only the drive power of the shaft (7) is switched off. The initial state of the system then restarts automatically.

Description

Verfahren und Vorrichtung zur Erzeugung von Antriebskraft durch Herbeiführung von Druckunterschieden in einem geschlossenen Gas-/Flüssigkeitssystem.Method and apparatus for generating motive power by inducing pressure differentials in a closed gas / liquid system.

BESCHREIBUNGDESCRIPTION

Die Erfindung betrifft ein Verfahren zur Erzeugung einer kontinuierlichen Antriebskraft durch Bereitstellung kinetischer Energie einer Flüssigkeit mittels Herbeiführung von Druckunterschieden in einem geschlossenen Gas-/Flüssigkeits-System, insbesondere in einem Luft-/Wasser-System, sowie eine Vorrichtung zur Umsetzung des Verfahrens.The invention relates to a method for generating a continuous driving force by providing kinetic energy of a liquid by inducing pressure differences in a closed gas / liquid system, in particular in an air / water system, as well as an apparatus for implementing the method.

Bekannt sind Maschinen, welche eine zur Verfügung stehende kinetische Energie eines Fluids in Leistung in Form einer sich drehenden Welle umwandeln können. Sie werden allgemein als Turbokraftmaschinen bezeichnet. Sehr hohe Leistungsausbeuten bei gutem Wirkungsgrad können solche Maschinen mit Wasser als Arbeitsfluid erreichen, insbesondere Peltonturbinen (z. B. Patent DE 10133547A1 ) für Wasser unter hohem Druck und eher geringem Volumenstrom. Diese Turbinenbauart bezeichnet man auch als Gleichdruckturbine, da die Umsetzung der Energie im Laufrad bei konstantem Umgebungsdruck erfolgt. In der technischen Anwendung werden diese Turbinen üblicherweise in Wasserkraftwerken bei großen verfügbaren Fallhöhen eingesetzt. Die Anwendbarkeit dieser Turbinenbauart ist daher beschränkt auf geographische Gebiete, welche auf geringer Entfernung sehr große Höhendifferenzen bieten. Außerdem wird üblicherweise Wasser aus dem natürlichen Kreislauf, vorzugsweise aus hoch gelegenen Stauseen, als Arbeitsmedium verwendet. Die Energieerzeugung ist daher nicht unbegrenzt und permanent möglich.Machines are known which can convert an available kinetic energy of a fluid into power in the form of a rotating shaft. They are commonly referred to as turbocharged engines. Very high power yields with good efficiency can reach such machines with water as the working fluid, in particular Pelton turbines (eg DE 10133547A1 ) for water under high pressure and rather low volume flow. This type of turbine is also referred to as a constant pressure turbine, since the conversion of energy in the impeller takes place at a constant ambient pressure. In technical application, these turbines are commonly used in hydroelectric power plants with large available fall heights. The applicability of this type of turbine is therefore limited to geographical areas which offer very large height differences at close range. In addition, water from the natural cycle, preferably from high-altitude reservoirs, is usually used as the working medium. Energy production is therefore not unlimited and permanently possible.

Bekannt sind ferner Turboarbeitsmaschinen. Solche Maschinen erzeugen grundsätzlich unter Einbringung mechanischer Leistung in Form einer sich drehenden Welle eine Druck- oder Enthalpieerhöhung des Arbeitsfluids. Für die Erhöhung des Drucks von Wasser als Arbeitsfluid werden in der Technik Pumpen oder Hubkolbenkompressoren eingesetzt. Bei beiden Bauarten erfolgt die Energieübertragung direkt an das Arbeitsmedium Wasser. Kombiniert man die Turboarbeitsmaschine Pumpe und die Turbokraftmaschine Radialturbine, welche beide in einem geschlossenen Kreislauf mit dem Arbeitsfluid Wasser betrieben werden, so hat man die technische Anwendung des hydrodynamischen Wandlers (z. B. Patent DE 102006023017A1 ). Dieser übersetzt Drehmoment und Drehzahl der beiden Wellen und liefert aufgrund der Reibungsverluste und der Entropieerhöhung im System eine geringere Ausgangs- als Eingangsleistung.Also known are turbomachinery. In principle, such machines generate a pressure or enthalpy increase of the working fluid by introducing mechanical power in the form of a rotating shaft. To increase the pressure of water as a working fluid, pumps or reciprocating compressors are used in the art. In both types, the energy transfer takes place directly to the working medium water. Combining the turbo machine pump and the turbo engine radial turbine, which are both operated in a closed circuit with the working fluid water, so you have the technical application of the hydrodynamic converter (eg DE 102006023017A1 ). This translates torque and speed of the two shafts and provides lower output than input power due to friction losses and entropy increase in the system.

Bekannt sind ferner in vielerlei technischen Anwendungen umströmte Profile zur Erzeugung von Druckunterschieden. In meist axial durchströmten Turbomaschinen werden diese als Teil des Laufrades eingesetzt oder bei Luftfahrtanwendungen als Tragflügelprofil. Hierbei ist die Aufgabe dieser Profile immer die Erzeugung einer Kraft, welche senkrecht zur Hauptrichtung der am Profil entlanglaufenden Strömung eines meist kompressiblen Fluides wirken soll. Dadurch wird beispielsweise bei Luftfahrtanwendungen Auftrieb und an den Schaufeln axialer Gasturbinenlaufräder ein Drehmoment an der Welle erzeugt.Are also known in many technical applications flow around profiles for generating pressure differences. In mostly axial flow turbomachinery these are used as part of the impeller or in aerospace applications as a wing profile. Here, the task of these profiles is always the generation of a force which is to act perpendicular to the main direction of the profile running along the profile flow of a most compressible fluid. As a result, for example, in aeronautical applications buoyancy and on the blades of axial gas turbine wheels torque is generated on the shaft.

Aufgabe der Erfindung ist es, durch geeignete Kombination verschiedener oben beschriebener sowie weiterer technischer Wirkprinzipien und deren zielgerichtete Anwendung mit kompressiblem und inkompressiblem Medium ein Verfahren zur Bereitstellung kontinuierlicher kinetischer Energie zu schaffen sowie eine Vorrichtung zur Umsetzung und Anwendung des Verfahrens zum Zweck der kontinuierlichen Leistungsabgabe bereitzustellen.The object of the invention is to provide a method for providing continuous kinetic energy by suitable combination of various described above and other technical principles of action and their targeted application with compressible and incompressible medium and to provide a device for implementing and applying the method for the purpose of continuous power output.

Diese Aufgabe wird im wesentlichen durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 und durch eine Vorrichtung zur Umsetzung des Verfahrens mit den Merkmalen des Anspruchs 4 gelöst. Vorteilhafte Abwandlungen bzw. Ergänzungen der Vorrichtung sind Gegenstand der weiteren Patentansprüche.This object is achieved essentially by a method having the features of patent claim 1 and by an apparatus for implementing the method having the features of claim 4. Advantageous modifications or additions to the device are the subject of the other claims.

Das erfindungsgemäße Verfahren und eine Vorrichtung zu dessen Umsetzung in einem bevorzugten Ausführungsbeispiel werden nachfolgend anhand von Zeichnungen beschrieben. Es zeigen:

Fig. 1 :
die Vorrichtung zur Erzeugung einer Antriebskraft in der Frontalansicht mit aufgeschnittener Seitenwand des Behältnisses (1);
Fig. 2 :
die Vorrichtung gemäß Fig. 1, jedoch mit zusätzlich aufgeschnittener Wand des glockenförmigen Einsatzes (2) mit darin befindlichem Rotor (8) und mit abschnittsweise aufgeschnittenem Hohlkörper (3);
Fig. 3:
die Vorrichtung wie in Fig. 2, jedoch ohne Seitenwand und obere Wand/Deckel des Behältnisses (1), an der Schnittstelle A-A der Fig. 2;
Fig. 4 :
die Vorrichtung wie in Fig. 3 in perspektivischer Aufsicht von vom oben;
Fig. 5 :
die Vorrichtung gemäß Fig. 1 ohne Seitenwand und Boden des Behältnisses (1) an der Schnittstelle A-A nach Fig. 2, mit Turbinenrad (12) und dessen Lagerschale (11), in perspektivischer Ansicht von vorn unten;
Fig. 6 :
als Details der Vorrichtung den Rotor (8) nebst Welle (7) sowie das Turbinenrad (12) mit Welle (13) und einem schematisch dargestellten angetriebenen Rad (24);
Fig. 7 :
als Details der Vorrichtung die in Fig. 6 dargestellten sowie zusätzlich zwei Steigrohre (10) und Düsen (22);
Fig. 8 :
einen Längsschnitt durch die Vorrichtung am Mittelpunkt des oberen und unteren Bodens;
Fig. 9 :
als weiteres Detail der Vorrichtung den Rotor (8), ohne Welle (7), mit in Durchsicht dargestellten Kanälen (6);
Fig. 10 :
eine schematische Darstellung des Verfahrens in Form eines Längsschnitts wie bei Fig. 8;
Fig. 11 :
als Detail einen fest an der Innenwand des Einsatzes (2) angebrachten Ring (25) mit Gitterblech (26) und den darin laufenden Rotor (8) ohne Welle (7), in perspektivischer Ansicht von vorn unten;
Fig. 12 :
den Ring (25) mit Gitterblech (26) und den Rotor (8) gemäß Fig. 11, jedoch in perspektivischer Ansicht von vorn oben;
Fig. 13 :
als Details den Ring (25) mit Gitterblech (26), angesetzt an der Innenwand des Einsatzes (2), sowie den Rotor (8) bei aufgeschnittenem Einsatz (2) und aufgeschnittenem Ring (25) mit Gitterblech (26), in perspektivischer Ansicht von vorn oben.
The inventive method and an apparatus for its implementation in a preferred embodiment will be described below with reference to drawings. Show it:
Fig. 1:
the device for generating a driving force in the front view with cut side wall of the container (1);
Fig. 2:
the device according to Fig. 1 , but with additionally cut wall of the bell-shaped insert (2) with therein rotor (8) and with sections cut open hollow body (3);
3:
the device as in Fig. 2 , but without side wall and top wall / lid of the container (1), at the interface AA of Fig. 2 ;
4:
the device as in Fig. 3 in perspective view from above;
Fig. 5:
the device according to Fig. 1 without side wall and bottom of the container (1) at the interface AA after Fig. 2 with turbine wheel (12) and its bearing shell (11), in a perspective view from the front below;
Fig. 6:
as details of the device, the rotor (8) together with shaft (7) and the turbine wheel (12) with shaft (13) and a driven wheel (24) shown schematically;
Fig. 7:
as details of the device in the Fig. 6 and additionally two riser pipes (10) and nozzles (22);
Fig. 8:
a longitudinal section through the device at the midpoint of the upper and lower soil;
Fig. 9:
as a further detail of the device, the rotor (8), without shaft (7), with channels (6) shown in phantom;
Fig. 10:
a schematic representation of the method in the form of a longitudinal section as in Fig. 8 ;
Fig. 11:
as a detail of a fixed to the inner wall of the insert (2) mounted ring (25) with grid plate (26) and the rotor (8) running therein without shaft (7), in a perspective view from the bottom front;
Fig. 12:
the ring (25) with grid plate (26) and the rotor (8) according to Fig. 11 but in a perspective view from the top front;
Fig. 13:
as details the ring (25) with grid plate (26), attached to the inner wall of the insert (2), and the rotor (8) with cut insert (2) and cut ring (25) with grid plate (26), in a perspective view from the front up.

Gegenstand der Erfindung ist sowohl und in erster Linie das Verfahren, welches unter Einbringung zweier unterschiedlicher Energieformen, nämlich Druckerhöhung und Leistung in Form einer sich drehenden Welle, einen kontinuierlichen Wasserkreislauf und somit kinetische Energie innerhalb der Maschine erzeugt, als auch die Vorrichtung zur Durchführung und Anwendung dieses Verfahrens zwecks Nutzung der permanent zur Verfügung stehenden Energieform und deren Umwandlung in mechanische Energie in Form einer sich drehenden Welle.The invention is both and primarily the method which generates two continuous forms of water, namely pressure increase and power in the form of a rotating shaft, a continuous water cycle and thus kinetic energy within the machine, as well as the device for implementation and application this method for the purpose of using the permanently available form of energy and its conversion into mechanical energy in the form of a rotating shaft.

Nach dem Verfahren wird in einem allseitig umschlossenen Behältnis, das zum Teil mit flüssigem Medium und zum Teil mit gasförmigem Medium, vorzugsweise mit Wasser und Luft, gefüllt ist, ein Kreislauf des flüssigen Mediums bewirkt und dadurch kinetische Energie erzeugt. Dabei befindet sich das gasförmige Medium in einem auf der Unterseite offenen, vorzugsweise glockenförmigen Einsatz, innerhalb eines zumindest teilweise oberhalb des Einsatzes angeordneten und mit ihm fest sowie abgedichtet verbundenen Hohlkörpers und vor Inbetriebnahme der Anlage auch in einem oder mehreren Steigrohren, die zumindest teilweise, vorzugsweise vollständig, innerhalb des umschlossenen Behältnisses, jedoch außerhalb des Einsatzes und vorzugsweise senkrecht verlaufen und die an ihrem unteren Ende offen und mit ihrem oberen Ende an den Hohlkörper angeschlossen sind. Der Hohlkörper befindet sich in bevorzugter Ausführungsform, jedoch nicht unabdingbar, vollständig innerhalb des umschlossenen Behältnisses. Das flüssige Medium tritt bei Befüllen des Behältnisses von unten in den glockenförmigen Einsatz und die Steigrohre ein und steigt in diesem und den Steigrohren bis zum Eintreten des Druckausgleichs an. Danach wird zunächst das Behältnis druckdicht verschlossen und sodann die potenzielle Energie der beiden Medien innerhalb der Vorrichtung durch Beaufschlagung mit Druckluft zusätzlich erhöht. Im gasförmigen Medium wird sodann ein speziell gestalteter, horizontal angeordneter und mit vertikaler Drehachse versehener Rotor motorisch in Drehbewegung versetzt. Im zuvor eingestellten, betriebsbereiten Zustand der Anlage befindet sich der Pegelstand des flüssigen Mediums innerhalb des glockenförmigen Einsatzes zwischen dessen unterem Ende und unter der Unterseite des sich drehenden Rotors. Dieser Rotor in Form einer Scheibe mit Mantelfläche besonderer Formgebung erzeugt an dieser einen Unterdruck relativ zum Druck des eingeschlossenen Gases. Dieser Unterdruck führt über röhrenförmige offene Kanäle innerhalb der Rotorscheibe im Hohlkörper zu entsprechendem Unterdruck. Durch den Unterdruck im Hohlkörper in Verbindung mit dem Gasdruck im Einsatz wird durch das/die Steigrohr(e) flüssiges Medium aus dem Behältnis in den Hohlkörper gefördert und in Form des in den Hohlkörper eintretenden flüssigen Mediums eine kinetische Energie er-zeugt und zur Verfügung gestellt.According to the method, in a container enclosed on all sides, which is partly filled with liquid medium and partly with gaseous medium, preferably with water and air, causes a circulation of the liquid medium and thereby generates kinetic energy. In this case, the gaseous medium is in an open on the bottom, preferably bell-shaped insert, within an at least partially arranged above the insert and connected with him firmly and sealed connected hollow body and before commissioning of the system in one or more risers, at least partially, preferably completely, within the enclosed container, but outside of the insert and preferably perpendicular and at its bottom End open and connected with its upper end to the hollow body. The hollow body is in a preferred embodiment, but not indispensable, completely within the enclosed container. The liquid medium enters when filling the container from below in the bell-shaped insert and the risers and rises in this and the risers until the onset of pressure equalization. Thereafter, the container is first closed pressure-tight and then the potential energy of the two media within the device by applying compressed air additionally increased. In the gaseous medium then a specially designed, horizontally arranged and provided with a vertical axis of rotation rotor is motorized in rotary motion. In the previously set, ready state of the system, the level of the liquid medium is within the bell-shaped insert between the lower end and below the bottom of the rotating rotor. This rotor in the form of a disc with a lateral surface of special shape generates at this a negative pressure relative to the pressure of the enclosed gas. This negative pressure leads via tubular open channels within the rotor disk in the hollow body to a corresponding negative pressure. Due to the negative pressure in the hollow body in conjunction with the gas pressure in use, liquid medium is conveyed out of the container into the hollow body by the riser (s) and a kinetic energy is generated and made available in the form of the liquid medium entering the hollow body ,

Infolge des Fördervorgangs bildet sich innerhalb des Hohlkörpers ein Flüssigkeitsniveau geringer Höhe, wodurch der Gasdruck im Hohlkörper gegenüber dem vom Rotor erzeugten Unterdruck ansteigt, aber noch niedriger als der Gasdruck im Einsatz bleibt. Das in den Hohlkörper eingeströmte flüssige Medium wird aus ihm über Kanäle innerhalb der Rotorscheibe infolge der wirksamen Druckunterschiede abgesaugt und läuft zum Flüssigkeitsniveau im Einsatz zurück, so daß während der Rotation des Rotors ein Kreislauf mit kontinuierlicher Bereitstellung kinetischer Energie besteht.As a result of the conveying process, a liquid level of low height is formed within the hollow body, whereby the gas pressure in the hollow body relative to the negative pressure generated by the rotor increases, but even lower than the gas pressure remains in use. The flowing into the hollow body liquid medium is made of it aspirated through channels within the rotor disc due to the effective pressure differences and travels back to the liquid level in use, so that during the rotation of the rotor there is a cycle with continuous provision of kinetic energy.

Der aufgegebene Gasdruck und die Drehgeschwindigkeit des Rotors im Einsatz bestimmen dabei die Fördermenge und -geschwindigkeit des flüssigen Mediums und damit die erzeugte kinetische Energie. Das Verhältnis zwischen Fördermenge und Geschwindigkeit kann zudem über Düsen am Austritt der Steigrohre geregelt werden.The applied gas pressure and the rotational speed of the rotor in use determine the flow rate and rate of the liquid medium and thus the kinetic energy generated. The ratio between flow rate and speed can also be controlled via nozzles at the outlet of the riser pipes.

Die in dieser Form erzeugte und zur Verfügung stehende kinetische Energie des flüssigen Mediums kann über geeignete Vorrichtungen, wie z. B. eine Gleichdruckturbine, deren Turbinenrad vom Strahl des auftreffenden Wassers oder sonstigen flüssigen Mediums in Bewegung versetzt wird, Antriebsenergie erzeugen zur stationären oder mobilen Nutzung.The generated and available in this form kinetic energy of the liquid medium can be removed via suitable devices, such as. B. a constant pressure turbine, the turbine wheel is offset from the jet of impinging water or other liquid medium in motion, generate drive power for stationary or mobile use.

Die erfindungsgemäße Vorrichtung besteht im dargestellten Ausführungsbeispiel aus einem allseitig geschlossenen Behältnis (1) in Form einer Tonne, einer Kugel, eines Würfels oder eines Quaders oder auch in anderer Form, wobei in diesem Behältnis (1) ein auf seiner Unterseite offener, vorzugsweise glockenförmiger Einsatz (2) eingesetzt ist. Ein vorzugsweise kugelförmiger Hohlkörper (3) ist an der Oberseite des Einsatzes (2) angeordnet. In bevorzugter Ausführungsform reicht der Hohlkörper (3) mit einem Teil seiner Höhe in den Einsatz (2) hinein, wobei im Bereich der Verbindung von Einsatz (2) und Hohlkörper (3) eine Abdichtung gegenüber dem Behältnis (1) erfolgt. Der Hohlkörper (3) muß dabei aber nicht in den Einsatz (2) hineinreichen.The device according to the invention consists in the illustrated embodiment of a container closed on all sides (1) in the form of a barrel, a ball, a cube or a cuboid or in another form, in this container (1) on its underside open, preferably bell-shaped insert (2) is used. A preferably spherical hollow body (3) is arranged on the upper side of the insert (2). In a preferred embodiment, the hollow body (3) extends with part of its height into the insert (2), wherein in the region of the connection of insert (2) and hollow body (3) sealing against the container (1). However, the hollow body (3) does not have to reach into the insert (2).

An seinem unteren Ende hat der Hohlkörper (3) eine Austrittsöffnung (4) und ein Ansatzstück (5). Der Einsatz (2) und der Hohlkörper (3) sind im dargestellten Ausführungsbeispiel vollständig innerhalb des Behältnisses (1) angeordnet, so daß in diesem Fall die Oberseite des Behältnisses (1) entsprechend der ausgeführten geometrischen Form gebildet wird. Es liegt jedoch auch im Rahmen der Erfindung, daß die Oberseite des Behältnisses (1) aus einem ringförmigen Deckel, dem oberen Teil des Einsatzes (2) und dem aus ihm nach oben herausragenden Teil des Hohlkörpers (3) gebildet wird. Zudem ist es erfindungsgemäß möglich, daß die Oberseite aus einem ringförmigen Deckel und dem oberen Teil des Hohlkörpers (3) gebildet wird.At its lower end, the hollow body (3) has an outlet opening (4) and an extension piece (5). The insert (2) and the hollow body (3) are arranged in the illustrated embodiment completely within the container (1), so that in In this case, the top of the container (1) is formed according to the executed geometric shape. However, it is also within the scope of the invention that the top of the container (1) from an annular cover, the upper part of the insert (2) and the upwardly projecting part of the hollow body (3) is formed. In addition, it is possible according to the invention for the upper side to be formed from an annular cover and the upper part of the hollow body (3).

An einer vertikalen Welle (7), die innerhalb des Behältnisses (1) in einem Wellengehäuse drehbeweglich und druckdicht gegen gasförmige und flüssige Medien angeordnet ist und vorzugsweise von außerhalb des Behältnisses (1) motorisch angetrieben wird, ist ein Rotor (8) befestigt, der seinerseits innerhalb des Einsatzes (2) mit gewissem Abstand zur Innenwand des Einsatzes (2) angeordnet ist. Der Rotor (8) hat ein Ansatzstück (23), durch das er mit der Austrittsöffnung (4) des Hohlköpers (3) in Wirkverbindung steht, indem das Ansatzstück (23) des Rotors (8) drehbeweglich und abgedichtet, jedoch ohne feste Verbindung, in die Austrittsöffnung (4) des Hohlkörpers (3) hineinragt und diese über einen Teil ihrer Höhe überfängt.On a vertical shaft (7), which is arranged within the container (1) in a shaft housing rotatably and pressure-tight against gaseous and liquid media and preferably from outside the container (1) is driven by a motor, a rotor (8) is attached in turn, within the insert (2) with a certain distance from the inner wall of the insert (2) is arranged. The rotor (8) has an extension piece (23) by which it is in operative connection with the outlet opening (4) of the hollow body (3) by the extension piece (23) of the rotor (8) rotatably and sealed, but without a fixed connection, into the outlet opening (4) of the hollow body (3) protrudes and over this over a part of its height.

Der Rotor (8) ist als zylindrische Scheibe, vorzugsweise eben oder auch mit am Rand leicht nach unten abknickender Mantelfläche ausgeführt. Die äußere Mantelfläche dieser Scheibe ist mit einem oder mehreren Tragflächenprofilen (16) ähnlich dem DE-Patent 10 2005 049 938 ausgebildet. Die am Umfang der Mantelfläche des Rotors (8) in vorzugsweise periodischer Teilung angeordneten Tragflächenprofile (16) bestehen jeweils in Drehrichtung des Rotors (8) aus einer konvexen Erhebung (17), gefolgt von einem flachen Auslaufbereich (18). In diesem Auslaufbereich (18) am Ort des in Umfangsrichtung der Rotormantelfläche bei Rotation mit Betriebsnenndrehzahl minimal wirksamen statischen Drucks befinden sich die Austrittsöffnungen (21) des Rotors (8).The rotor (8) is designed as a cylindrical disc, preferably flat or even with slightly bent at the edge lateral surface. The outer surface of this disc is similar to one or more wing profiles (16) DE patent 10 2005 049 938 educated. The on the circumference of the lateral surface of the rotor (8) in preferably periodic pitch arranged airfoils (16) each consist in the direction of rotation of the rotor (8) from a convex elevation (17), followed by a flat outlet region (18). In this outlet region (18) at the location of the circumferential in the circumferential direction of the rotor shell surface with rotation at nominal operating speed minimally effective static pressure are the outlet openings (21) of the rotor (8).

Das Ansatzstück (23) des Rotors (8) hat einen oder mehrere, vorzugsweise drei röhrenförmige offene Kanäle (6), die von dem oberen Ende des Ansatzstücks (23) durch den inneren Bereich (20) des Rotors (8) zu dessen äußerer Mantelfläche verlaufen und in den Austrittöffnungen (21) enden. Dadurch kann ein aus dem Hohlkörper (3) durch die Austrittsöffnung (4) herangeführtes flüssiges oder gasförmiges Medium in die Kanäle (6) des Rotors (8) einlaufen und über die Kanäle (6) und die Austrittsöffnungen (21) in den Einsatz (2) gelangen.The endpiece (23) of the rotor (8) has one or more, preferably three, tubular open channels (6) extending from the upper end of the endpiece (23) through the inner portion (20) of the rotor (8) to the outer surface thereof run and end in the outlet openings (21). As a result, a liquid or gaseous medium introduced from the hollow body (3) through the outlet opening (4) can run into the channels (6) of the rotor (8) and can be introduced into the insert (2) via the channels (6) and the outlet openings (21) ) reach.

Ferner sind innerhalb des Behältnisses (1), jedoch außerhalb des Einsatzes (2), ein oder mehrere - im dargestellten Ausführungsbeispiel zwei - Steigrohre (10) angebracht, die an ihrem unteren Ende offen sind sowie vorzugsweise senkrecht verlaufen und nach unten mindestens bis an die Unterkante des Einsatzes (2) reichen. Mit ihren oberen Enden sind sie über Bogen oberhalb des Einsatzes (2) in den Hohlkörper (3) abgedichtet eingeführt. In vorteilhafter Ausführungsform haben die Steigrohre (10), wie in den Figuren dargestellt, an ihren Enden innerhalb des Hohlkörpers (3) horizontal verlaufende, über innere Düsennadeln regelbare Düsen (22).Furthermore, within the container (1), but outside of the insert (2), one or more - in the illustrated embodiment two - risers (10) are mounted, which are open at its lower end and preferably perpendicular and down at least to the Lower edge of the insert (2) are enough. With their upper ends, they are inserted via arc above the insert (2) sealed in the hollow body (3). In an advantageous embodiment, the risers (10), as shown in the figures, at their ends within the hollow body (3) horizontally extending, via inner nozzle needles adjustable nozzles (22).

An der Innenwand des Einsatzes (2) gegenüber der Mantelfläche des Rotors (8) ist in vorteilhafter Ausführungsform, jedoch nicht unabdingbar, ein feststehender Ring (25) angeordnet, der ein von der Innenwand geringfügig entferntes Gitterblech (26) trägt, auf das das aus den Austrittsöffnungen (21) des Rotors (8) austretende Wasser auftrifft. Das Gitterblech (26) verstärkt durch geeignete Wahl des Abstandes zu den konvexen Erhebungen (17) der Tragflächenprofile (16) zum einen die Erzeugung des Unterdrucks und ermöglicht zum anderen die Ableitung des aus den Austrittsöffnungen (21) austretenden Wassers weg vom Rotor hin zur Innenwand des Einsatzes (2) unter Minimierung des Reibungsverlusts. Das Wasser läuft sodann entlang der Innenwand des Einsatzes (2) nach unten zum Flüssigkeitsniveau ab.On the inner wall of the insert (2) relative to the lateral surface of the rotor (8), a fixed ring (25) is arranged in an advantageous embodiment, but not indispensable, which carries a slightly away from the inner wall grid plate (26) on which the the outlet openings (21) of the rotor (8) emerging water impinges. The grid plate (26) amplified by suitable choice of the distance to the convex projections (17) of the airfoils (16) on the one hand, the generation of negative pressure and on the other hand allows the discharge of the outlet openings (21) leaking water away from the rotor towards the inner wall of the insert (2) while minimizing friction loss. The water then drains down the inner wall of the insert (2) down to the liquid level.

Gleichfalls in vorteilhafter Ausführungsform, jedoch nicht unabdingbar, befinden sich sowohl an der Ober- als auch an der Unterseite der Mantelfläche des Rotors (8) im Bereich der Tragflächenprofile (16) Abdeckbleche (27), die den Rotor (8) radial nach außen überragen und bis nahe der Innenwand des Einsatzes (2) reichen sowie bei Anbringung eines Rings (25) mit Gitterblech (26) diese überragen, ohne sie aber zu berühren.Likewise, in an advantageous embodiment, but not essential, located on both the top and on the underside of the lateral surface of the rotor (8) in the region of the airfoils (16) cover plates (27) which project radially beyond the rotor (8) and extend to near the inner wall of the insert (2) and when attaching a ring (25) with grid plate (26) project beyond this, but without touching them.

Der Rotor (8) wird über die Welle (7) entweder mittels eines außerhalb des Behältnisses (1) angeordneten Motors (9) in Drehbewegung versetzt, wobei die Welle (7) unter Abdichtung durch den Boden des Behältnisses (1) geführt wird, oder die Welle (7) ist Bestandteil eines innerhalb des Behältnisses (1) angeordneten gekapselten Elektromotors.The rotor (8) is rotated via the shaft (7) either by means of an outside of the container (1) arranged motor (9) in rotation, wherein the shaft (7) is guided under sealing through the bottom of the container (1), or the shaft (7) is part of an enclosed inside the container (1) arranged encapsulated electric motor.

Ferner ist ein Zuführungsrohr (14) für Druckluft vorgesehen, das von der Außenseite des Behältnisses (1) in den Einsatz (2) geführt ist und in diesen oberhalb dessen unterer Begrenzung mündet, vorzugsweise in etwa halber Höhe zwischen der Unterseite des Rotors (8) und der Unterkante des Einsatzes (2).Further, a supply pipe (14) is provided for compressed air, which is guided from the outside of the container (1) in the insert (2) and opens into this above the lower boundary, preferably at about half height between the bottom of the rotor (8). and the lower edge of the insert (2).

Schließlich ist in der oberen Wand/dem Deckel des Behältnisses (1) eine verschließbare Öffnung (15) zum Einfüllen eines flüssigen Mediums angebracht.Finally, in the upper wall / the lid of the container (1) has a closable opening (15) for filling a liquid medium attached.

Die durch die vorstehend beschriebene Vorrichtung zur Verfügung gestellte kinetische Energie eines flüssigen Mediums kann zur Erzeugung von Antriebsenergie genutzt werden, indem, wie im dargestellten Ausführungsbeispiel gezeigt, innerhalb des Hohlkörpers (3) auf der Ebene des Eintritts der Steigrohre (10) an einer vertikalen Welle (13) ein Turbinenrad (12) einer Gleichdruckturbine mit daran angeordneten Schaufeln (19) angebracht ist. Das Turbinenrad (12) ist in einer unterhalb befindlichen Schale (11) gelagert. Die Düsen (22) sind auf die Schaufelinnenseiten des Turbinenrads (12) gerichtet, und die Schaufeln (19) grenzen an die Innenwand des Hohlkörpers (3), ohne diese zu berühren. Die vertikale Welle (13) des Turbinenrads (12) ist nach oben verlängert und durchdringt die Wand des Hohlkörpers (3) und die obere Wand (den Deckel) des Behältnisses (1) zum Anschluß an anzutreibende Vorrichtungen und Geräte (24), insbesondere Generatoren, Maschinen oder Fahrzeuge. Die Welle (13) ist im Behältnis (1) dicht gegenüber dem gasförmigen Medium im Hohlkörper (3) und dem flüssigen Medium im Behältnis (1) gelagert.The kinetic energy of a liquid medium provided by the device described above can be used to generate drive energy by, as shown in the illustrated embodiment, within the hollow body (3) at the level of entry of the riser tubes (10) on a vertical shaft (13) a turbine wheel (12) of a constant pressure turbine with blades arranged thereon (19) is mounted. The turbine wheel (12) is mounted in a shell (11) located below. The nozzles (22) are directed to the blade inner sides of the turbine wheel (12), and the blades (19) adjoin the inner wall of the hollow body (3), without touching them. The vertical shaft (13) of the turbine wheel (12) is extended upward and penetrates the wall of the hollow body (3) and the upper wall (the lid) of the container (1) for connection to driven devices and devices (24), in particular generators , Machinery or vehicles. The shaft (13) is in the container (1) tightly mounted relative to the gaseous medium in the hollow body (3) and the liquid medium in the container (1).

Zur Durchführung des Verfahrens und Inbetriebnahme der Vorrichtung wird in normaler Umgebungsatmosphäre in das Behältnis (1) über dessen Öffnung (15) ein inkompressibles, flüssiges Medium, vorzugsweise Wasser, eingefüllt, bis dieses den obersten Punkt des Behältnisses (1) erreicht. Dabei dringt das flüssige Medium auch in den glockenförmigen Einsatz (2) sowie die Steigrohre (10) von ihren unteren Öffnungen her ein, bis die in diesen und dem mit ihnen in Verbindung stehenden Hohlkörper (3) vorhandene, vom eindringenden flüssigen Medium eingeschlossene Luft soweit komprimiert ist, daß ein Druckausgleich eintritt. Danach wird die Öffnung (15) des Behältnisses (1) verschlossen.To carry out the method and start-up of the device is in normal ambient atmosphere in the container (1) via the opening (15) an incompressible, liquid medium, preferably water, filled until it reaches the top of the container (1). The liquid medium also penetrates into the bell-shaped insert (2) and the riser tubes (10) from their lower openings until the air enclosed in them and the hollow body (3) which is in communication with them is trapped by the penetrating liquid medium is compressed, that a pressure equalization occurs. Thereafter, the opening (15) of the container (1) is closed.

Sodann wird über das Zuführungsrohr (14) Druckluft von außerhalb des Behältnisses (1) in den Einsatz (2) eingeführt, wodurch sich der Druck im gesamten Behältnis (1) solange entsprechend erhöht, bis der gewünschte Betriebszustand erreicht ist. In diesem Zustand erhöhter potenzieller Energie der eingeschlossenen Medien wird der Rotor (8) über die Welle (7) durch den Motor (9) in Drehung versetzt, und zwar in der Drehrichtung (im mit den Zeichnungen dargestellten Ausführungsbeispiel in Linksdrehung), daß gemäß dem DE-Patent 10 2005 049 938 an den Tragflächenprofilen (16) im Anschluß an deren konvexe Erhebungen (17) in ihren abfallenden langgestreckten Auslaufbereichen (18) eine Unterdruckwirkung entsteht. Der Unterdruck ist in seiner Größe von der gewählten Drehzahl des Rotors und dem Gasdruck innerhalb des Einsatzes (2) abhängig. Zur Änderung des Betriebszustands können jederzeit während des Betriebs sowohl der Gasdruck als auch die Drehzahl des Rotors (8) verändert werden.Then compressed air is introduced from outside the container (1) into the insert (2) via the feed tube (14), whereby the pressure in the entire container (1) increases accordingly until the desired operating state is reached. In this state of increased potential energy of the enclosed media, the rotor (8) via the shaft (7) by the motor (9) is rotated, in the direction of rotation (in the embodiment illustrated with the drawings in left rotation), that according to the DE patent 10 2005 049 938 on the airfoil profiles (16) following the convex elevations (17) in their sloping elongated outlet regions (18) creates a negative pressure effect. The negative pressure is dependent in its size on the selected speed of the rotor and the gas pressure within the insert (2). To change the operating state, both the gas pressure and the rotational speed of the rotor (8) can be changed at any time during operation.

Der Unterdruck im Auslaufbereich (18) des Tragflächenprofils (16) setzt sich über die Kanäle (6) im Hohlkörper (3) und von diesem in den Steigrohren (10) fort. Der dann im Hohlkörper (3) wirksame Unterdruck und der gleichzeitig im Einsatz (2) bestehende Gasdruck bewirken, daß das Wasser oder sonstige flüssige Medium aus dem Behältnis (1) und dem Einsatz (2) über die Steigrohre (10) und die Düsen (22) in den Hohlkörper (3) als Strahl hoher kinetischer Energie einströmt.The negative pressure in the outlet region (18) of the airfoil profile (16) continues via the channels (6) in the hollow body (3) and from this into the riser tubes (10). The then in the hollow body (3) effective vacuum and the same time in use (2) existing gas pressure cause the water or other liquid medium from the container (1) and the insert (2) via the risers (10) and the nozzles ( 22) flows into the hollow body (3) as a jet of high kinetic energy.

Ebenfalls infolge des vom laufenden Rotor (8) bewirkten Unterdrucks an dessen Austrittsöffnungen (21) sowie des innerhalb des Hohlkörpers (3) wirksamen Gasdrucks läuft das Wasser oder sonstige flüssige Medium aus dem Hohlkörper (3) durch die Kanäle (6) des Rotors (8) und durch die Austrittsöffnungen (21) im Auslaufbereich (18) der Tragflächenprofile (16) in den Einsatz (2) zum Flüssigkeitsniveau zurück. Im laufenden Betrieb liegt das Flüssigkeitsniveau immer oberhalb der Unterkante des Einsatzes (2).Also as a result of the current from the rotor (8) caused negative pressure at the outlet openings (21) and within the hollow body (3) effective gas pressure the water or other liquid medium from the hollow body (3) through the channels (6) of the rotor (8) and through the outlet openings (21) in the outlet region (18) of the airfoils (16) in the insert (2) to the liquid level , During operation, the liquid level is always above the lower edge of the insert (2).

Im Sinne der Erfindung kann der Hohlkörper (3) statt der Kugelform im dargestellten Ausführungsbeispiel auch die Form eines Würfels, eines Quaders, einer Tonne oder auch eine sonstige Form haben.For the purposes of the invention, the hollow body (3) instead of the spherical shape in the illustrated embodiment, the shape of a cube, a cuboid, a barrel or any other form.

Durch das beschriebene Verfahren und die Vorrichtung zu seiner Ausführung wird über die Drehbewegung des Rotors (8) zum einen mechanische Energie in das System eingebracht und zum anderen mittels externer Druckbeaufschlagung die potenzielle Energie der im System befindlichen Medien erhöht. Der infolgedessen an den Tragflächenprofilen (16) entlang der Rotormantelfläche wirksame Unterdruck erzeugt einen kontinuierlichen Kreislauf des Wassers oder anderen flüssigen Mediums und somit stetig verfügbare kinetische Energie. Diese Energieform kann, wie bei dem dargestellten Ausführungsbeispiel beschrieben, zur zeitlich konstanten Leistungsabgabe genutzt werden und ist somit im Gegensatz zu den üblichen Einsatzbedingungen der technisch bekannten Turbokraftmaschinen unabhängig von geographischen Verhältnissen bzw. natürlichen Gegebenheiten.By the described method and the device for its execution is on the rotational movement of the rotor (8) for a mechanical energy introduced into the system and on the other hand increases the potential energy of the media in the system by means of external pressurization. The consequently acting on the airfoils (16) along the rotor shell surface negative pressure generates a continuous circulation of water or other liquid medium and thus continuously available kinetic energy. This energy form can, as described in the illustrated embodiment, be used for time constant power output and thus, in contrast to the usual conditions of use of the turbo-engine technically known regardless of geographical conditions or natural conditions.

Dabei wird für die erforderliche mechanische Energie aus der Drehbewegung der Antriebswelle (7)nur eine relativ geringe Antriebsleistung des Motors (9) für den Antrieb des Rotors (8) benötigt, weil der Rotor (8) im stationären Betrieb ausschließlich, jedenfalls vorrangig, im gasförmigen kompressiblen Medium sehr geringer Dichte und reibungsarm läuft. Deshalb kann auch eine hohe Drehzahl des Rotors (8) gewählt werden. Dies wird nach einem technisch neuen Prinzip erreicht, indem bei dem erfindungsgemäßen Verfahren und der Vorrichtung zu seiner Ausführung die Energieübertragung vom Rotor (8) auf das inkompressible Medium - mechanisch zu kinetisch - nicht direkt durch ein Laufrad herkömmlicher Bauart, sondern indirekt durch die Erzeugung eines relativen Unterdrucks im kompressiblen Medium erfolgt. Zur Steigerung der Effizienz dieses Vorgangs wird der Druck des kompressiblen Mediums zuvor gegenüber dem Umgebungszustand erhöht. Die Erzeugung des wirksamen Unterdrucks erfolgt an der Mantelfläche des Rotors (8), welche in oben beschriebener und auf dem Wirkprinzip des DE-Patents 10 2005 049 938 basierenden Profilform ausgeführt ist. It is for the required mechanical energy from the rotational movement of the drive shaft (7) only a relatively low drive power of the motor (9) for driving the Rotor (8) is required because the rotor (8) in stationary operation exclusively, at least primarily, in the gaseous compressible medium very low density and low friction. Therefore, a high speed of the rotor (8) can be selected. This is achieved according to a technically new principle by the energy transfer from the rotor (8) to the incompressible medium - mechanically too kinetically - not directly by an impeller conventional design, but indirectly by the generation of a. In the inventive method and apparatus relative negative pressure takes place in the compressible medium. To increase the efficiency of this process, the pressure of the compressible medium is increased previously compared to the ambient state. The generation of the effective negative pressure takes place on the lateral surface of the rotor (8), which in the above-described and on the operating principle of DE patent 10 2005 049 938 based profile shape is executed.

Der Bedarf der Anlage an flüssigem Medium, vorzugsweise Wasser, beschränkt sich auf den einmaligen Befüllvorgang vor der ersten Inbetriebnahme. Ebenso ist die Zufuhr externer Druckluft nur zur erstmaligen Einstellung des Arbeitsinnendrucks erforderlich. Während des gesamten Betriebs der Anlage wird nur die Bereitstellung der Leistung zum Antrieb der Welle (7) benötigt, und es entstehen keinerlei die Umgebung beeinträchtigende Emissionen. Soll der Betrieb der Anlage unterbrochen oder beendet werden, so ist lediglich die Antriebsleistung der Welle (7) abzuschalten. Der Ausgangszustand der Anlage stellt sich sodann selbständig wieder ein.The requirement of the plant on liquid medium, preferably water, is limited to the one-time filling process before the first start-up. Likewise, the supply of external compressed air is required only for initial adjustment of the working internal pressure. Throughout the operation of the plant, only the provision of the power to drive the shaft (7) is required, and there are no emissions that affect the environment. If the operation of the system should be interrupted or terminated, then only the drive power of the shaft (7) is switched off. The initial state of the system then restarts automatically.

Claims (12)

  1. A method for producing a continuous driving force by providing kinetic energy of a liquid medium by bringing about differences in pressure in a closed system that is filled with liquid medium, in particular water, and gaseous medium, in particular air, characterized in that, in a device according to claim 4 or according to claim 4 in combination with one or more of the claims 5 to 11, circulation of the liquid medium is induced, wherein the vessel, which is closed on all sides, is filled with the liquid medium, and this liquid medium thereby encloses the gaseous medium, which is present before the filling and which is under atmospheric pressure, in the insert, which is open on the underside, in the hollow body connected to this insert, and the ascending pipes, which are connected to the hollow body and are open at the bottom, and rises therein until pressure equilibrium is reached, and then the potential energy of the two media is further increased via external application of pressure, further characterized in that, by means of the rotor, which is then set into rotational motion within the insert in the gaseous medium by a motor, a negative pressure relative to the pressure of the enclosed gas is produced at the surface of the rotor jacket, said negative pressure inducing a corresponding negative pressure in the hollow body, and wherein, by means of the negative pressure in the hollow body, in combination with the gas pressure in the insert, liquid medium is conveyed through the ascending pipes, out of the vessel and into the hollow body, and kinetic energy is generated and made available, and, finally, characterized in that the liquid medium that has flowed into the hollow body is suctioned out of said hollow body and returns to the liquid level in the insert due to an increase in the gas pressure in the hollow body relative to the negative pressure produced by the rotor, brought about by a liquid level having a lower height formed within the hollow body in the conveying process, wherein the gas pressure in the hollow body remains lower than the gas pressure in the insert.
  2. The method according to claim 1, characterized in that the amount of kinetic energy generated is determined by the volumetric flow rate and conveyance speed of the liquid medium, which depend on the external application of pressure and the rotational speed of the rotor in the insert.
  3. The method according to claims 1 and 2, characterized in that the ratio of the volumetric flow rate and the conveyance speed of the liquid medium is additionally controlled via nozzles at the outlet of the ascending pipes in the hollow body.
  4. A device for implementing the method according to claim 1, comprising a vessel (1), which is closed on all sides, having the form of a barrel, a sphere, a cube, a cuboid, or another form, characterized in that an insert (2), which is open on the underside thereof and is preferably bell-shaped, is inserted in this vessel (1), and a preferably spherical hollow body (3) having an outlet opening (4) and an attachment (5) is located on the top side of this insert, wherein this hollow body itself is disposed entirely or partially within the vessel (1) and preferably extends, by a portion of the height thereof, into the insert (2) and is pressure-sealed, except for the outlet opening (4), relative to the vessel (1) and relative to the insert (2), furthermore characterized in that a rotor (8) is disposed within the insert (2), having a certain separation from the inner wall thereof, wherein this rotor is disposed, as a cylindrical disk, on a vertical shaft (7) in a shaft housing so as to be rotatable and pressure-sealed, and has, on the top side thereof, an attachment (23), via which said rotor extends, in a rotatable and sealed manner, although without a fixed connection, into the outlet opening (4) via the attachment (5) of the hollow body (3), and extends over this outlet opening over a portion of the height thereof, wherein the rotor (8), with the attachment (23), comprises one or more, preferably three, tubular channels (6), which are open at the ends thereof and extend from the upper end of the attachment (23) through the inner region (20) of the rotor (8) to the outer circumference thereof and, there, lead into in the outlet openings (21), further characterized in that the jacket surface of the rotor (8) is provided with one or more wing profile units (16), which are disposed with preferably periodic spacing and each comprise a convex raised area (17) followed, in the direction of rotation of the rotor (8), by a flat runout region (18), and the outlet openings (21) of the channels (6) disposed in this runout region, characterized in that the rotor (8) is driven by a motor (9), preferably from outside the vessel (1), and characterized in that one or more ascending pipes (10) are disposed in the vessel (1), but outside of the insert (2), which are open at the ends thereof and preferably extend vertically, extend downwardly at least to the lower edge of the insert (2) and are inserted, via the upper ends thereof, into the hollow body (3) in a sealed manner via bends above the insert (2) and terminate horizontally within the hollow body (3), further characterized in that a closable opening (15) for filling with liquid medium is formed in the upper wall (the cover) of the vessel (1), and in that a feed pipe (14) for compressed air extends from outside the vessel (1) into the insert (2) and leads therein, above the lower edge thereof.
  5. The device according to claim 4, characterized in that the upper closure of the vessel (1) is formed by an annular cover, the upper part of the insert (2), and the part of the hollow body (3) protruding upwardly out of this insert.
  6. The device according to claim 4, characterized in that the upper closure of the vessel (1) is formed by an annular cover and the upper part of the hollow body (3).
  7. The device according to claim 4, characterized in that the rotor (8) is designed as a cylindrical disk and is flat or has a jacket surface bending slightly downward at the edge.
  8. The device according to claim 4 or one or more of the claims 5 to 7, characterized in that a ring (25) is fixedly disposed on the inner wall of the insert (2) and opposite the jacket surface of the rotor (8), wherein said ring supports a mesh sheet (26), which is separated slightly from the inner wall, and on which the water emerging from the outlet openings (21) of the rotor (8) appears.
  9. The device according to claim 4 and claim 7 or according to claims 4, 7 and 8, characterized in that the wing profile units (16) comprise cover plates (27) on the top side and on the underside of the rotor (8), which extend radially outwardly and extend to the vicinity of the inner wall of the insert (2) and, provided a ring (25) with mesh sheet (26) is installed thereon, extend over these without having contact therewith.
  10. The device according to claim 4 or one or more of the claims 5 to 9, characterized in that the ascending pipes (10) comprise, on the horizontally extending ends thereof, nozzles (22) that can be controlled in the hollow body (3).
  11. The device according to claim 4, characterized in that the shaft (7) of the rotor (8) is a component of an encapsulated electric motor disposed within the vessel (1).
  12. The device according to claim 4 or one or more of the claims 5 to 11, characterized in that a turbine wheel (12) of a constant-pressure turbine having vanes (19) disposed thereon is installed, on a vertical shaft (13), within the hollow body (3) at the level of the entry of the ascending pipes (10), and is supported in a bushing (11) located underneath the turbine wheel (12), wherein the vanes (19) verge on the inner wall of the hollow body (3) without having contact therewith, and in that the nozzles (22) on the ends of the ascending pipes (10) are directed toward the inner sides of the vanes (19), further characterized in that the shaft (13) of the turbine wheel (12) extends through the wall of the hollow body (3) and .the upper wall of the vessel (1) - supported so as to be sealed with respect to the gaseous medium in the hollow body (3) and the liquid medium in the vessel (1) - and terminates at devices and implements (24) to be driven.
EP11004923.6A 2011-06-16 2011-06-16 Method and device for generating drive power by causing pressure differentials in a closed gas/fluid system Active EP2535558B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PL11004923T PL2535558T3 (en) 2011-06-16 2011-06-16 Method and device for generating drive power by causing pressure differentials in a closed gas/fluid system
EP11004923.6A EP2535558B1 (en) 2011-06-16 2011-06-16 Method and device for generating drive power by causing pressure differentials in a closed gas/fluid system
ES11004923.6T ES2620368T3 (en) 2011-06-16 2011-06-16 Procedure and device for generating drive force causing pressure differences in a closed gas / liquid system
JP2014515084A JP6067004B2 (en) 2011-06-16 2012-06-11 Method and apparatus for generating a driving force by creating a pressure differential in a closed gas / liquid system
CN201280039755.1A CN103906918B (en) 2011-06-16 2012-06-11 For the method and apparatus by causing pressure difference to produce driving force in the gas/liquid system of closing
EA201490023A EA033371B1 (en) 2011-06-16 2012-06-11 Method and device for producing a driving force by bringing about differences in pressure in a closed gas/liquid system
US14/126,017 US10077755B2 (en) 2011-06-16 2012-06-11 Method and device for producing a driving force by bringing about differences in a closed gas/liquid system
PCT/EP2012/002458 WO2012171628A1 (en) 2011-06-16 2012-06-11 Method and device for producing a driving force by bringing about differences in pressure in a closed gas/liquid system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11004923.6A EP2535558B1 (en) 2011-06-16 2011-06-16 Method and device for generating drive power by causing pressure differentials in a closed gas/fluid system

Publications (2)

Publication Number Publication Date
EP2535558A1 EP2535558A1 (en) 2012-12-19
EP2535558B1 true EP2535558B1 (en) 2016-12-21

Family

ID=46489156

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11004923.6A Active EP2535558B1 (en) 2011-06-16 2011-06-16 Method and device for generating drive power by causing pressure differentials in a closed gas/fluid system

Country Status (8)

Country Link
US (1) US10077755B2 (en)
EP (1) EP2535558B1 (en)
JP (1) JP6067004B2 (en)
CN (1) CN103906918B (en)
EA (1) EA033371B1 (en)
ES (1) ES2620368T3 (en)
PL (1) PL2535558T3 (en)
WO (1) WO2012171628A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2742883B2 (en) * 2018-08-17 2020-06-17 Calvo Merida Zacarias Dynamic pressure generator
KR20210001266A (en) 2019-06-27 2021-01-06 김병식 Energy conversion apparatus
WO2021256924A1 (en) * 2020-06-18 2021-12-23 Arnbarg Beheer B.V. Vortex motor
NL2025860B1 (en) * 2020-06-18 2022-02-17 Arnbarg Beheer B V VORTEX ENGINE
WO2022084905A1 (en) * 2020-10-23 2022-04-28 Mphahlele Maredi Wilson Method of auto-converting fluid enthalpy to fluid jet kinetic energy through a convergent nozzle
WO2023164740A1 (en) * 2022-03-02 2023-09-07 Gravity Energy Pty Ltd Recirculating hydro-pneumatic impulse turbine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611723A (en) * 1969-11-13 1971-10-12 Hollymatic Corp Hydraulic turbine and method
US4345160A (en) * 1978-10-06 1982-08-17 Smith J T Waterwheel power generator
DE3720580A1 (en) * 1987-03-05 1989-01-05 Binder Johann Plant for driving hydroelectric turbines
JPH02104983A (en) * 1988-09-02 1990-04-17 Fujimatsu Sasaki Hydraulic power circulating generation
DE19644670A1 (en) * 1995-10-27 1997-07-24 Benno Ewert Pumping system
DE19647476A1 (en) * 1996-11-16 1998-05-20 Manfred Klenk Pneumatic/hydraulic centrifugal drive mechanism
DE10133547A1 (en) 2001-03-14 2002-10-02 Johann Binder Hydraulic energy recovery plant has cross section of pressure tube steadily decreasing in water flow direction
US6787934B2 (en) * 2002-02-05 2004-09-07 Pentti Henrik Parviainen Turbine system
DE102006023017A1 (en) 2005-06-10 2006-12-14 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydrodynamic torque converter for use with planetary gear, has guide wheel blades which are attached to guide wheel such that blades can move between through-flow position and guide position
DE102005049938B3 (en) 2005-10-19 2007-03-01 Zeki Akbayir Rotor for fluid flow machine e.g. pump, has wing profile unit including convex elevation on outer mantel surface, axial hollow space enclosed in interior, and opening between space and mantel surface in region of profile units
DE112007003687A5 (en) * 2007-08-10 2010-07-22 Krauss, Gunter Flow energy plant, in particular wind turbine
US7579700B1 (en) * 2008-05-28 2009-08-25 Moshe Meller System and method for converting electrical energy into pressurized air and converting pressurized air into electricity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20140133961A1 (en) 2014-05-15
US10077755B2 (en) 2018-09-18
PL2535558T3 (en) 2017-09-29
CN103906918B (en) 2017-09-12
CN103906918A (en) 2014-07-02
WO2012171628A1 (en) 2012-12-20
EA201490023A1 (en) 2014-05-30
JP6067004B2 (en) 2017-01-25
EP2535558A1 (en) 2012-12-19
ES2620368T3 (en) 2017-06-28
EA033371B1 (en) 2019-10-31
JP2014519576A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
EP2535558B1 (en) Method and device for generating drive power by causing pressure differentials in a closed gas/fluid system
DE112010003745T5 (en) Fluid pump with at least one airfoil and a support means
CH659851A5 (en) TURBINE.
DE2715729B2 (en) Rotor for a turbine
DE102014009735A1 (en) Blade and impeller of a turbomachine, as well as manufacturing process for it
EP2655874A1 (en) Wind-powered rotor and energy generation method using said rotor
DE102010050185B4 (en) axial turbomachine
DE102014017372A1 (en) Pump turbine and pumped storage power plant with such a pump turbine
DE102016206022A1 (en) Seal for turbomachinery
AT512653A4 (en) Rotor and radially flowable turbine
WO2012059174A2 (en) Francis-type pump for a hydroelectric power plant
EP2923074A2 (en) Impeller for a kaplan turbine
DE102020006586A1 (en) Air pressure power plant for environmentally friendly power generation
DE102015108556A1 (en) turbine assembly
DE102018123620B4 (en) Turbine arrangement
DE684207C (en) Circulation pump, especially for high pressures
DE102008051297B3 (en) Rotor blade of a wind turbine
CH621602A5 (en) Hydro-electric generating set
DE19714549C2 (en) Vacuum housing for a flywheel for high speeds
DE969620C (en) Hydro turbine generator set with vertical shaft, radial nozzle and overhung generator rotor
WO2013084196A1 (en) Wind turbine
WO2011110157A2 (en) Energy converter
DE102012108184A1 (en) Low-pressure steam turbine with swiveling nozzle
DE102015015788B4 (en) Uplift wind power plant with rotating wind tunnels for harvesting energy from weak to moderate winds
DE102006013986B4 (en) Device for energy conversion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130618

RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20130618

Extension state: ME

Payment date: 20130618

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20140103

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160629

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 855735

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011011366

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170321

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2620368

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170421

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170421

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170321

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011011366

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20171229

Year of fee payment: 7

Ref country code: FR

Payment date: 20171227

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171222

Year of fee payment: 7

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170616

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170616

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20181217

Year of fee payment: 8

Ref country code: AT

Payment date: 20181227

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20181217

Year of fee payment: 8

Ref country code: CH

Payment date: 20181228

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190122

Year of fee payment: 8

Ref country code: IT

Payment date: 20181228

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 855735

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190616

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191227

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011011366

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190616