EP2495081B1 - Cutting tool with blade made from fine-crystalline diamond - Google Patents

Cutting tool with blade made from fine-crystalline diamond Download PDF

Info

Publication number
EP2495081B1
EP2495081B1 EP20110001694 EP11001694A EP2495081B1 EP 2495081 B1 EP2495081 B1 EP 2495081B1 EP 20110001694 EP20110001694 EP 20110001694 EP 11001694 A EP11001694 A EP 11001694A EP 2495081 B1 EP2495081 B1 EP 2495081B1
Authority
EP
European Patent Office
Prior art keywords
layer
cutting tool
diamond layer
diamond
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20110001694
Other languages
German (de)
French (fr)
Other versions
EP2495081A8 (en
EP2495081A1 (en
Inventor
André Dr. Flöter
Stefan Strobel
Peter Dr.-Ing. Gluche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GFD Gesellschaft fuer Diamantprodukte mbH
Original Assignee
GFD Gesellschaft fuer Diamantprodukte mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GFD Gesellschaft fuer Diamantprodukte mbH filed Critical GFD Gesellschaft fuer Diamantprodukte mbH
Priority to EP20110001694 priority Critical patent/EP2495081B1/en
Priority to US13/408,093 priority patent/US8904650B2/en
Publication of EP2495081A1 publication Critical patent/EP2495081A1/en
Publication of EP2495081A8 publication Critical patent/EP2495081A8/en
Application granted granted Critical
Publication of EP2495081B1 publication Critical patent/EP2495081B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B21/00Razors of the open or knife type; Safety razors or other shaving implements of the planing type; Hair-trimming devices involving a razor-blade; Equipment therefor
    • B26B21/54Razor-blades
    • B26B21/58Razor-blades characterised by the material
    • B26B21/60Razor-blades characterised by the material by the coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B21/00Razors of the open or knife type; Safety razors or other shaving implements of the planing type; Hair-trimming devices involving a razor-blade; Equipment therefor
    • B26B21/54Razor-blades
    • B26B21/58Razor-blades characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/929Tool or tool with support

Definitions

  • the present invention relates to a cutting tool, in particular in the form of a razor blade, a scalpel, a knife, a machine knife, a pair of scissors, etc., which has a synthetic diamond layer with a cutting edge.
  • the diamond layer consists of fine crystalline diamond.
  • Cutting tools such as knives and scalpels having diamond layers have been known in the prior art for some time. These cutting tools can be completely formed from a diamond layer (full diamond blade), as well as the possibility can be given that a synthetic diamond layer is applied to a substrate suitable for this purpose. In most cases, the cutting edge of the cutting tool is formed in the diamond layer, since diamond is the hardest known Material is.
  • These blades are distinguished from, for example, steel blades by a higher cutting ability (sharpness) and a higher cutting durability (life, service life).
  • the diamond materials that are used for the blades known from the prior art are either polycrystalline diamond materials, on the other hand, the use of single-crystal diamond is possible.
  • single-crystal diamond is extremely difficult to produce and process, on the other hand it is very expensive, so that it is unsuitable for use in mass products such as razor blades.
  • Polycrystalline diamond layers are characterized by a clearly heterogeneous distribution of the size of the crystalline domains.
  • the sizes of the crystalline regions in polycrystalline diamond vary over several orders of magnitude.
  • at least 50% of the crystallites are present with an average size between 2 and 100 ⁇ m.
  • Such a polycrystalline diamond layer is thus very heterogeneous, but inexpensive to produce.
  • polycrystalline diamond layers on the growth side have high surface roughness roughness on. This is usually about rms> 1 ⁇ m.
  • polycrystalline diamond layers in the transverse fracture have a columnar structure, ie the grain boundaries are substantially perpendicular to the substrate surface. Since the grain boundary represents a macroscopic defect, it acts like a predetermined breaking point.
  • polycrystalline diamond layers contain a large number of these predetermined breaking points and are therefore very susceptible to breakage. For example, the bending fracture stress ⁇ 0 in the case of polycrystalline layers is approximately 1/10 that of monocrystalline diamond.
  • a cutting tool which comprises a cutting edge, synthetic diamond layer.
  • the cutting edge is characterized by a profile with decreasing layer thickness, wherein the diamond layer consists of fine crystalline diamond.
  • finely crystalline diamond is understood to mean a diamond layer, the crystalline domains having an average particle size d 50 of ⁇ 500 nm. By this is meant that at least 50% of the crystallites have each dimension of a single crystallite ⁇ 500 nm.
  • the fine-crystalline diamond layer is thus characterized by an extremely high homogeneity of the crystallites.
  • the bending fracture stress ⁇ 0 is determined by statistical evaluation of fracture tests, eg in the B3B load test according to the literature references above. It is defined as the breaking stress, with a probability of 63%.
  • the cutting tools according to the invention can be formed symmetrically or asymmetrically with respect to the cutting edge.
  • the cutting tool may have a chamfer, i. a second angle at the cutting edge.
  • a preferred embodiment provides that the mean grain size d ⁇ 0 of the fine-crystalline diamond is ⁇ 100 nm, more preferably between 5 and 100 nm, particularly preferably between 10 and 70 nm.
  • the proportion of sp and sp 2 bonds of the fine-crystalline diamond layer is between 0.5 and 10%, preferably between 2 and 9%, particularly preferably between 3 and 8%.
  • a higher sp 2 content causes the modulus of elasticity of the fine-grained diamond layer to be slightly lowered.
  • the hardness of this material also decreases.
  • the fine-crystalline diamond layers become more flexible and elastic overall and can better adapt to the material to be cut or the contour of the material to be cut.
  • the cutting edge is ideally round, preferably the rounding radius r of the diamond layer at the cutting edge is between 3 and 100 nm, preferably between 15 and 70 nm, especially preferably between 20 and 50 nm.
  • the cutting angle ⁇ is between 10 ° and 40 °, preferably between 10 ° and 30 °, particularly preferably between 15 ° and 25 °.
  • the rounding radius r is matched to the mean grain size d 50 of the fine-crystalline diamond.
  • the ratio between the radius of curvature r of the diamond layer at the cutting edge and the mean grain size d 50 of the fine-crystalline diamond r / d 50 is between 0.03 and 20, preferably between 0.05 and 15, particularly preferably between 0 , 5 and 10.
  • a first particularly preferred alternative of the present invention provides that the cutting tool is formed entirely from the diamond layer, wherein the diamond layer has a thickness of 10 to 1000 .mu.m, preferably 10 to 500 .mu.m, particularly preferably 20 to 250 microns.
  • the cutting tool is formed as a full diamond blade.
  • the diamond layer is arranged on a substrate material, the diamond layer having a thickness of up to 1 and 500 ⁇ m, preferably 5 to 200 ⁇ m.
  • the cutting edge is formed in the diamond layer.
  • This embodiment is advantageous in that the diamond layer is formed with a smaller layer thickness than a full diamond blade can be, resulting in savings on the relatively expensive and expensive to produce diamond material.
  • the function of reinforcing the blade can take over the substrate.
  • Preferred substrate materials are selected from the group consisting of metals such as titanium, nickel, chromium, niobium, tungsten, tantalum, molybdenum, vanadium, platinum, iron-containing materials such as steel and / or germanium; from carbon and / or nitrogen or boron-containing ceramics, such as silicon carbide, silicon nitride, boron nitride, tantalum carbide, tungsten carbide, molybdenum carbide, titanium nitrides, TiAlN, TiCN and / or TiB 2 , glass ceramics, such as Zerodur® or Pyrex®; Composites of ceramic materials in a metallic matrix (cermets); Hard metals; sintered carbide carbides such as cobalt or nickel bonded tungsten carbides or titanium carbides; Silicon, glass or sapphire; and monocrystalline or polycrystalline diamond and / or diamond-like carbon layers.
  • metals such as titanium, nickel, chromium, niobium, tungsten
  • the gradient of the average grain size of the fine-crystalline diamond measured in the direction of the thickness of the finely crystalline diamond layer is ⁇ 300%, preferably ⁇ 100%, particularly preferably ⁇ 50%.
  • This embodiment provides that the mean grain size diameter of the fine-grained domains of the diamond layer is distributed relatively evenly to evenly throughout the entire layer thickness, ie the grain sizes are approximately the same on one side of the diamond layer as on the other side of the diamond layer; Of course, it is particularly advantageous in this case for a virtually complete or complete complete homogeneity of the finely crystalline domains of the diamond layer.
  • the gradient is determined by determining the average grain size diameter d 50 on one side of the diamond layer and relating it to the average grain size diameter on the opposite side of the diamond layer.
  • a further preferred embodiment of the present invention provides that at least one first adhesion promoter layer, preferably of silicon carbide, silicon nitride, tungsten, titanium or silicon, is applied between the substrate and the fine-crystalline diamond layer.
  • This embodiment ensures a good hold of the diamond layer on the substrate.
  • the first primer layer increases the strength of the mechanical bond between the core and the fine-grained diamond layer and thus enables reliable further processing.
  • At least one second primer layer preferably of Cr, Pt, Ti or W, and thereon a sliding layer, in particular a polymer layer, preferably a PTFE layer (Teflon) on the fine crystalline diamond layer , Carbon layer, preferably a graphite layer and / or a DLC layer applied.
  • the second adhesion promoter layer also serves to better bond the sliding layer to the fine crystalline diamond layer.
  • the sliding layer serves to minimize friction.
  • carbon layers, graphite or DLC layers can also be dispensed with the second adhesion promoter layer, since a direct bonding of the carbon layers to the fine crystalline diamond layer is possible.
  • the sliding layer serves to minimize friction between cutting tool and cutting material. Likewise, a minimization of dirt adhesion, avoidance of cutting dust and a reduction of the cutting forces is achieved.
  • these additional coatings may for example be present locally in the region of the cutting edge, as well as the entire cutting tool may be provided with these coatings.
  • the additional coatings described above may also be used e.g. be applied in the region of the edges forming the cutting edge of the cutting tool. Likewise, however, a complete coating of the cutting tool or at least the surfaces of the diamond layer is possible.
  • the diamond layer has an average surface roughness of R A ⁇ 5 ⁇ m, preferably ⁇ 2 ⁇ m, particularly preferably ⁇ 1 ⁇ m. This makes an additional mechanical polishing of the grown diamond surface superfluous.
  • a further preferred variant provides that the cutting edge has notches or cuts at regular intervals, preferably at regular intervals of less than 10 mm. Preferred distances are for example between 5 and 9 mm. These indentations allow the blade to be guided relative to the material to be cut, thus stabilizing the cutting tool during the cutting process.
  • the cutting tool is a blade, knife blade, razor blade, scalpel, knife, machine knife, Scissors or machine shears trained or can be used as such. It is also possible that the cutting tool is designed as a shaving system, ie, as a head with a plurality of razor blades or can be used as such. All razor blades are designed as cutting tools according to the invention.
  • the bending fracture stress ⁇ 0 of the diamond layer is> 2 GPa, preferably> 4 GPa, particularly preferably> 5 GFa.
  • ⁇ 0 is defined as above.
  • the modulus of elasticity of the diamond layer is ⁇ 1.200 GPa, preferably ⁇ 900, particularly preferably ⁇ 750 GPa.
  • a further preferred embodiment provides that the crystallites of the fine-crystalline diamond layer are preferably grown in the ⁇ 100>, ⁇ 110> and / or ⁇ 111> direction, ie. a texture is present. This can result from the manufacturing process, in which the growth rate of certain crystal directions can be deliberately preferred. This anisotropic texture of the crystallites also positively affects the mechanical properties.
  • a separation of the diamond layer is performed at a given angle ⁇ .
  • This sharp edge forms later, i. after resharpening the cutting edge.
  • the relationship ⁇ + ⁇ 90 ° between angle ⁇ and cutting angle ⁇ .
  • the finely crystalline diamond layer is cut through by two flat sides at an angle ⁇ , wherein preferably the same angles ⁇ are selected for the cuts from both sides.
  • cutting tools with symmetrical cutting edges can thus be produced in this way, as they are eg in Fig. 2b are shown.
  • an asymmetrical or symmetrical solid diamond blade can be realized.
  • the synthetic, finely crystalline diamond layer provided in the first step can be produced on a planar substrate by standard methods known from the prior art. It is only important that the average grain size diameter d 50 of the crystalline domains in the fine-crystalline diamond layer is ⁇ 500 nm. By subsequently removing the substrate by suitable methods, the finely crystalline diamond layer is obtained in isolation.
  • the separation step can be used in all possible ways such as laser cutting, plasma or ion etching, water jet cutting or mechanical processing are performed.
  • the cutting angle ⁇ of the resulting cutting tool is already predetermined.
  • the cutting edge ideally two identical fragments are formed; if the separating cut is carried out appropriately, both acute-angled ends of the diamond layer are already suitable for being used as the cutting edge of the cutting tool.
  • the provision of the fine crystalline diamond layer is performed by applying the fine crystalline diamond layer to a substrate and then partially or completely removing the substrate.
  • planar substrate can be done before or after the execution of the separation step.
  • the substrate can also be maintained and contribute to mechanical stability (sandwich construction).
  • the synthetic fine-grained diamond layer is deposited on a substrate and subsequently steps b) and c) are carried out.
  • the farther above-described diamond blade having a fine crystalline diamond layer deposited on a substrate With regard to the individual steps, reference is made to the comments made above.
  • the fine crystalline diamond layer may be formed such that fine crystalline diamond seed crystals are deposited on the substrate for depositing the fine crystalline diamond layer, and the fine crystalline diamond layer is deposited on the diamond seed crystals, e.g. is deposited via CVD method.
  • the fine-crystalline diamond films are produced, for example, by means of a "hot-wire CVD process".
  • a gas phase consisting of, for example 1 to 5 vol .-% CH 4 and 95 to 99 vol .-% hydrogen activated.
  • the wire temperature is, for example, in a range of 1,800 ° C to 2,400 ° C.
  • a substrate temperature of 600 ° C to 900 ° C is set.
  • the pressure of the gas atmosphere is between 3 mbar and 30 mbar. In this case, the fine-grained diamond layer is deposited on the substrate.
  • the severing which is carried out in the abovementioned variants of the method in step b), can, for example by means of a laser, by means of Wire erosion, by water jet, by plasma or ion etching, or by mechanical ⁇ procedure.
  • FIG. 1 shows three different variants of blades, each made entirely of diamond.
  • FIG. 1a shows a blade consisting of single crystal diamond.
  • monocrystalline diamond in macroscopic form, such as blades, efficient and reproducible manufacture, so that such blades are available only in limited quantities and are also very expensive.
  • the rounding radius r of the cutting edge is indicated (detail D).
  • FIG. 1b shows by default known in the art Volldiamantklingen based on polycrystalline diamond material.
  • the polymorphism of the arranged crystallite domains of the polycrystalline material is shown schematically.
  • it can occur with the high cutting forces occurring here that individual crystallites break out of the blade, in particular in the region preferably along grain boundaries of the cutting edge (see detail A), so that the blade, for example, already during initial use has an increased pungency. This results in a very inhomogeneous cutting edge, which significantly affects the cutting ability and the cutting edge of such a blade.
  • FIG. 1c a blade according to the invention of nano or fine crystalline diamond material is shown.
  • the average size that is to say the diameter d 50 of the respective crystallite domains
  • the breaking of the blade in the cutting area in comparison to the form of the polycrystalline diamond according to FIG. 1b is significantly reduced, since the crystallites, which may possibly break out, much smaller pronounced are.
  • damage to the blade compared to FIG. 1b detectable only on a microscopic scale, so that the macroscopic structure of the cutting edge of the blade according to Figure 1c essentially unimpaired.
  • nanocrystalline crystallite domains of a blade according to Figure 1c lie below 500 nm, while polycrystalline diamond crystal domains have an average order of the crystallite domain d 50 between 2 and 100 microns.
  • FIG. 2 shows three alternative variants for the production of the cutting tool according to the invention by means of the method according to the invention, which are each shown in the figure sequence 2a) to 2c), 2d) to 2f) and 2g) to 2i).
  • the diamond layer 1 is in an in Fig. 2b
  • a two-time cutting process in each case at an angle ⁇ to the surface normal (shown as arrow in FIG Fig. 2b ) carried out.
  • represents the angle to the surface normal the diamond layer under which the diamond layer is cut from both sides, and ⁇ the cutting angle.
  • step sequence according to FIGS. 2g) to 2i is based on a diamond layer 2, which is applied to a substrate 1. Between substrate 1 and diamond layer 2 further layers may be arranged, such as the adhesive layer shown in detail c 3.
  • This compound is in the step sequence in FIG. 2h ) is also severed at an angle ⁇ to the surface normal, so that two fragments A and B are formed. This results in fragment A also already - not sufficiently sharp - cutting edge in the diamond layer 2, which analogous to the step according to FIG. 2f ) in a subsequent sharpening process (step according to FIG. 2i )) can be resharpened by plasma or ion etching.
  • FIG. 2h the adhesive layer shown in detail c 3.
  • fragment B to be able to form a cutting edge in the diamond layer 2, the cutting projection of the substrate layer 1 still has to be removed (not shown). This can be done for example by a new cutting process, so that after appropriate processing, a further fragment is present, the fragment A, as in FIG. 2h ), corresponds.
  • FIG. 3 shows various embodiments of the cutting tool according to the invention, for example in the form of a machine knife a), a kitchen knife b) or differently designed blades c) or d). Also razor blades (see e)) are possible.
  • FIG. 4 shows a special embodiment in which the cutting tool is based on a fine crystalline diamond layer 2.
  • This cutting tool represents a solid diamond blade.
  • an adhesion promoter layer 3 and a lubricant layer 4 applied to the adhesion promoter layer 3 are formed on the diamond layer 2, an adhesion promoter layer 3 and a lubricant layer 4 applied to the adhesion promoter layer 3 are formed.
  • the bonding agent layer 3 may preferably consist of metals, such as chromium, platinum, titanium, silicon or tungsten. These metals may, for example, by CVD or PVD processes on the diamond layer 2, which forms the blade deposited or sputtered on.
  • the sliding layer 4 are in particular polymeric materials, such as PTFE, in question. But there are also carbon-based sliding layers, such as DLC or graphite possible.
  • FIG. 4 an embodiment of the cutting tool is shown, wherein the cutting edge is formed asymmetrically.
  • FIG. 5 shows essentially the same embodiment as FIG. 4 , only that here only the cutting tool is symmetrical with respect to the cutting edge.
  • FIG. 6 another embodiment of the diamond blade is shown having notches in the cutting edge.
  • the notches are formed throughout by the diamond blade and can, for example, as in FIG. 6a shown to be formed at regular intervals.
  • the regular spacing shown here may be, for example, less than 10 mm, for example 5 mm.
  • FIG. 6b shows a further variant of the blade, wherein the notch is formed wider, the width of such a notch may for example be between 0.01 and 1 mm and serve to guide the blade relative to the cutting material.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

Die vorliegende Erfindung betrifft ein Schneidwerkzeug, insbesondere in Form einer Rasierklinge, eines Skalpells, eines Messers, eines Maschinenmessers, einer Schere, etc., das eine synthetische Diamantschicht mit einer Schneidkante aufweist. Die Diamantschicht besteht dabei aus feinkristallinem Diamant.The present invention relates to a cutting tool, in particular in the form of a razor blade, a scalpel, a knife, a machine knife, a pair of scissors, etc., which has a synthetic diamond layer with a cutting edge. The diamond layer consists of fine crystalline diamond.

Schneidwerkzeuge, wie beispielsweise Messer und Skalpelle, die Diamantschichten aufweisen, sind bereits länger aus dem Stand der Technik bekannt. Diese Schneidwerkzeuge können dabei vollständig aus einer Diamantschicht gebildet sein (Volldiamantklinge), ebenso kann die Möglichkeit gegeben sein, dass eine synthetische Diamantschicht auf einem hierfür geeigneten Substrat aufgebracht ist. Zumeist ist die Schneidkante des Schneidwerkzeuges dabei in der Diamantschicht ausgebildet, da Diamant das härteste bekannteste Material ist.Cutting tools such as knives and scalpels having diamond layers have been known in the prior art for some time. These cutting tools can be completely formed from a diamond layer (full diamond blade), as well as the possibility can be given that a synthetic diamond layer is applied to a substrate suitable for this purpose. In most cases, the cutting edge of the cutting tool is formed in the diamond layer, since diamond is the hardest known Material is.

Diese Klingen zeichnen sich gegenüber beispielsweise Stahlklingen durch eine höhere Schneidfähigkeit (Schärfe) sowie eine höhere Schneidhaltigkeit (Lebensdauer, Standzeit) aus.These blades are distinguished from, for example, steel blades by a higher cutting ability (sharpness) and a higher cutting durability (life, service life).

Beispiele für die zuvor beschriebenen Diamantklingen mit einem derartigen prinzipiellen Aufbau finden sich in den Druckschriften WO 99/37437 , DE 602 10 449 T2 , WO 03/101683 , DE 10 2004 052 068 A1 sowie WO 98/04382 A1 .Examples of the previously described diamond blades with such a basic structure can be found in the documents WO 99/37437 . DE 602 10 449 T2 . WO 03/101683 . DE 10 2004 052 068 A1 such as WO 98/04382 A1 ,

Die Diamantmaterialien, die für die aus dem Stand der Technik bekannten Klingen verwendet werden, sind dabei entweder polykristalline Diamantmaterialien, andererseits ist auch der Einsatz von einkristallinem Diamant möglich.The diamond materials that are used for the blades known from the prior art are either polycrystalline diamond materials, on the other hand, the use of single-crystal diamond is possible.

Derartige Diamantmaterialien weisen jedoch eine Reihe von Nachteilen auf.However, such diamond materials have a number of disadvantages.

Einkristalliner Diamant ist einerseits extrem schwierig herzustellen und zu bearbeiten, andererseits sehr teuer, so dass er für den Einsatz bei Massenprodukten, wie beispielsweise Rasierklingen, denkbar ungeeignet ist.On the one hand, single-crystal diamond is extremely difficult to produce and process, on the other hand it is very expensive, so that it is unsuitable for use in mass products such as razor blades.

Polykristalline Diamantschichten, wie sie im Stand der Technik verwendet werden, zeichnen sich durch eine deutlich heterogene Verteilung der Größe der kristallinen Domänen aus. Typischerweise variieren die Größen der kristallinen Bereiche bei polykristallinem Diamant über mehrere Größenordnungen. Hierbei finden sich Verteilungen, bei denen die größten auftretenden Kristallitdomänen einen Durchmesser aufweisen, der um einen Faktor 100 größer ist als der Durchmesser der kleinsten auftretenden kristallinen Domänen, wobei typische Werte für die durchschnittliche Größe der Kristallite d50 zwischen 2 und 100 µm liegen. Gemäß dieser Definition liegen zumindest 50 % der Kristallite mit einer durchschnittlichen Größe zwischen 2 und 100 µm vor. Eine derartige polykristalline Diamantschicht ist damit sehr heterogen, jedoch kostengünstig herzustellen.Polycrystalline diamond layers, as used in the prior art, are characterized by a clearly heterogeneous distribution of the size of the crystalline domains. Typically, the sizes of the crystalline regions in polycrystalline diamond vary over several orders of magnitude. Here are distributions in which the largest occurring crystallite domains have a diameter, which is larger by a factor of 100 than the diameter of the smallest occurring crystalline domains, with typical values for the average size of the crystallites d 50 being between 2 and 100 μm. According to this definition, at least 50% of the crystallites are present with an average size between 2 and 100 μm. Such a polycrystalline diamond layer is thus very heterogeneous, but inexpensive to produce.

Bei derartigen polykristallinen heterogenen Diamantschichten hat es sich als nachteilig gezeigt, dass aufgrund der Heterogenität der kristallinen Domänen diese Klingen äußerst schwer anzuschärfen sind. Selbst für den Fall, dass eine zuverlässige Schneide, d.h. eine glatte und durchgehende Schneide, aus polykristallinem Diamant hergestellt werden kann, ist zu beobachten, dass aufgrund der heterogenen Kristalldomänen bereits beim erstmaligen Gebrauch eine Schartigkeit zu beobachten ist. Dies ist auf die beim Schneidvorgang auf die Schneidkante auftretenden hohen Schneidkräfte zurückzuführen, wobei stets ein gewisser Anteil vorhandener Kristallite aus dem Kristallitverband herausbricht. Die Größe des Ausbruchs richtet sich dabei nach der Korngröße. Beispielsweise bei der Anwendung als Rasierklinge, ist dies jedoch nicht wünschenswert, da derartige Schartigkeiten oder Ausbrüche schnell zu einem Verlust der Schneidfähigkeit und Schneidhaltigkeit bzw. zur Erhöhung der Schneidkräfte führen, was sich z.B. in einem schmerzhaften Gefühl bei der Rasur äußern kann, da Verletzungen der Haut auftreten können.In such polycrystalline heterogeneous diamond layers, it has proved to be disadvantageous that due to the heterogeneity of the crystalline domains these blades are extremely difficult to sharpen. Even in the case where a reliable cutting edge, i. a smooth and continuous cutting edge, can be made of polycrystalline diamond, it can be observed that due to the heterogeneous crystal domains already on first use a Schartigkeit is observed. This is due to the high cutting forces occurring on the cutting edge during the cutting process, with a certain proportion of existing crystallites always breaking out of the crystallite bond. The size of the outbreak depends on the grain size. For example, when used as a razor blade, however, this is not desirable, as such scores or breakouts rapidly lead to a loss of cutting ability and cutting edge strength, or to an increase in cutting forces, e.g. may express a painful sensation when shaving, as skin injuries may occur.

Aufgrund der polykristallinen Struktur und der Ausbildung einer Textur, weisen polykristalline Diamantschichten auf der Wachstumsseite eine hohe Oberflächenrauheit chenrauheit auf. Diese ist liegt in der Regel über rms>1µm.Due to the polycrystalline structure and the formation of a texture, polycrystalline diamond layers on the growth side have high surface roughness roughness on. This is usually about rms> 1μm.

Dies macht somit eine nachträgliche Politur von polykristallinen Schichten notwendig, um glatte Oberflächen zu erhalten.This therefore necessitates a subsequent polishing of polycrystalline layers in order to obtain smooth surfaces.

Ferner weisen polykristalline Diamantschichten im Querbruch eine kolumnare Struktur auf, d.h. die Korngrenzen verlaufen im Wesentlichen senkrecht zur Substratoberfläche. Da die Korngrenze einen makroskopischen Defekt darstellt, wirkt sie wie eine Sollbruchstelle. Ungünstigerweise beinhalten polykristalline Diamantschichten eine Vielzahl dieser Sollbruchstellen und sind deshalb sehr bruchanfällig, So liegt etwa die Biegebruchspannung σ0 bei polykristallinen Schichten etwa bei ca. 1/10 derer von einkristallinem Diamant.Furthermore, polycrystalline diamond layers in the transverse fracture have a columnar structure, ie the grain boundaries are substantially perpendicular to the substrate surface. Since the grain boundary represents a macroscopic defect, it acts like a predetermined breaking point. Unfortunately, polycrystalline diamond layers contain a large number of these predetermined breaking points and are therefore very susceptible to breakage. For example, the bending fracture stress σ 0 in the case of polycrystalline layers is approximately 1/10 that of monocrystalline diamond.

Durch den heterogenen Aufbau polykristalliner Diamantschichten weisen diese auch meist innere mechanische Spannungen auf, die sich makroskopisch durch einen Verzug der Schichten äußern. Neben den damit verbundenen Problemen der Durchbiegung (Verzug) der Schneidkante verringern diese zusätzlich die Bruchspannung und führen somit zu erhöhter Bruchanfälligkeit.Due to the heterogeneous structure of polycrystalline diamond layers, these also mostly have internal mechanical stresses, which manifest themselves macroscopically through a distortion of the layers. In addition to the associated problems of deflection (distortion) of the cutting edge, these additionally reduce the breaking stress and thus lead to increased susceptibility to breakage.

Aus der US 6,289,593 A ist eine Rasierklinge bekannt, die eine Beschichtung aus einer amorphen Kohlenstoffschicht besteht.From the US 6,289,593 A For example, a razor blade that has a coating of an amorphous carbon layer is known.

Ausgehend von den aus dem Stand der Technik bekannten Nachteilen ist es daher Aufgabe der vorliegenden Erfindung, ein Schneidwerkzeug anzugeben, das kostengünstig und zuverlässig herstellbar ist, eine zumindest gleiche hohe Schneidhaltigkeit und Schneidfähigkeit gegenüber den aus dem Stand der Technik bekannten Diamantklingen aufweist und bei dem Ausbrüche, wie sie bei den polykristallinen Diamant-Schneidwerkzeugen bekannt sind, nur in untergeordneter Ordnung auftreten.Based on the known from the prior art disadvantages, it is therefore an object of the present invention to provide a cutting tool that is inexpensive and reliable to produce, at least one has the same high cutting strength and cutting ability over the diamond blades known from the prior art and occur in the outbreaks, as are known in the polycrystalline diamond cutting tools, only in minor order.

Diese Aufgabe wird bezüglich eines Schneidwerkzeugs mit den Merkmalen des Patentanspruchs 1 sowie bezüglich eines Verfahrens zur Herstellung des erfindungsgemäßen Schneidwerkzeuges mit den Merkmalen des Patentanspruchs 14 gelöst. Mit Patentanspruch 15 werden Verwendungszwecke des erfindungsgemäßen Schneidwerkzeugs angegeben. Die jeweiligen abhängigen Patentansprüche stellen dabei vorteilhafte Weiterbildungen dar.This object is achieved with respect to a cutting tool having the features of patent claim 1 and with respect to a method for producing the cutting tool according to the invention with the features of patent claim 14. With claim 15 uses of the cutting tool according to the invention are given. The respective dependent claims are advantageous developments.

Erfindungsgemäß wird somit ein Schneidwerkzeug bereitgestellt, das eine Schneidkante aufweisende, synthetische Diamantschicht umfasst. Die Schneidkante zeichnet sich dabei durch ein Profil mit abnehmender Schichtdicke auf, wobei die Diamantschicht aus feinkristallinem Diamant besteht.According to the invention, a cutting tool is thus provided which comprises a cutting edge, synthetic diamond layer. The cutting edge is characterized by a profile with decreasing layer thickness, wherein the diamond layer consists of fine crystalline diamond.

Erfindungsgemäß wird unter feinkristallinem Diamant eine Diamantschicht verstanden, wobei die kristallinen Domänen eine mittlere Korngröße d50 von ≤ 500 nm aufweisen. Hierunter wird verstanden, dass zumindest bei 50 % der Kristallite jede Dimension eines einzelnen Kristallits ≤ 500 nm ist. Die fein-kristalline Diamantschicht zeichnet sich somit durch eine äußerst hohe Homogenität der Kristallite aus.According to the invention, finely crystalline diamond is understood to mean a diamond layer, the crystalline domains having an average particle size d 50 of ≦ 500 nm. By this is meant that at least 50% of the crystallites have each dimension of a single crystallite ≤ 500 nm. The fine-crystalline diamond layer is thus characterized by an extremely high homogeneity of the crystallites.

Überraschenderweise konnte gefunden werden, dass bei Schneidkanten, die aus derartigen feinkristallinen Diamantschichten gebildet sind, ein Ausbrechen, wie es von polykristallinem Diamant bekannt ist, quasi vollständig unterbleibt. Gegenüber einkristallinem Diamant hat sich gezeigt, dass die Herstellung von feinkristallinem Diamant verglichen mit der Herstellung von einkristallinem Diamant wesentlich einfacher und kostengünstiger zu bewerkstelligen ist. Somit können auch längere und/oder großflächigere Diamantklingen bereitgestellt werden, wie sie z.B. in Rasierern Verwendung finden, was bei Diamantklingen aus einkristallinem Diamant bislang nicht möglich war.Surprisingly, it has been found that cutting edges, which are formed from such fine-crystalline diamond layers, a breaking, such as it is known from polycrystalline diamond, quasi completely omitted. Compared with monocrystalline diamond, it has been found that the production of fine crystalline diamond is much easier and cheaper to accomplish compared to the production of single crystal diamond. Thus, longer and / or larger-area diamond blades can be provided, as they are used in razors, for example, which was previously not possible with diamond blades made of monocrystalline diamond.

Aufgrund der extrem hohen Biegebruchspannung des feinkristallinen Diamants (σ0 ~ 5,7 GPa) wird erreicht, dass trotz hoher lokaler mechanischer Beanspruchung ein Ausbrechen einzelner Kristallite aus der feinkristallinen Diamantschicht, insbesondere aus der Schneidkante, fast vollständig unterbleibt. Auch bei längerem Gebrauch behält daher das Schneidwerkzeug seine ursprüngliche Schärfe bei.Due to the extremely high bending stress of the finely crystalline diamond (σ 0 ~ 5.7 GPa) is achieved that despite high local mechanical stress, a breakout of individual crystallites from the fine crystalline diamond layer, in particular from the cutting edge, almost completely omitted. Even with prolonged use, therefore, the cutting tool retains its original sharpness.

Bezüglich der Definition der Biegebruchspannung σ0 wird auf die folgenden Literaturstellen verwiesen:

  • R. Morrell et al., Int. Journal of Refractory Metals & Hard Materials, 28 (2010), S. 508-515 ;
  • R. Danzer et al. in "Technische keramische Werkstoffe", herausgegeben von J. Kriegesmann, HvB Verlag, Ellerau, ISBN 978-3-938595-00-8, Kapitel 6.2.3.1 - Der 4-Kugelversuch zur Ermittlung der biaxialen Biegefestigkeit spröder Werkstoffe".
For the definition of the bending stress σ 0 reference is made to the following references:
  • R. Morrell et al., Int. Journal of Refractory Metals & Hard Materials, 28 (2010), pp. 508-515 ;
  • R. Danzer et al. in "Technische keramische Werkstoffe", edited by J. Kriegesmann, HvB Verlag, Ellerau, ISBN 978-3-938595-00-8, Chapter 6.2.3.1 - The 4-Ball Test to Determine the Biaxial Bending Strength of Brittle Materials ".

Die Biegebruchspannung σ0 wird dabei durch statistische Auswertung von Bruchversuchen z.B. im B3B Belastungsversuch gemäß den oben stehenden Literaturangaben ermittelt. Sie ist dabei definiert als die Bruchspannung, bei der eine Bruchwahrscheinlichkeit von 63 % vorliegt.The bending fracture stress σ 0 is determined by statistical evaluation of fracture tests, eg in the B3B load test according to the literature references above. It is defined as the breaking stress, with a probability of 63%.

Da feinkristalline Diamantschichten bezüglich Ihrer Korngrößenverteilung homogener sind als polykristalline Diamantschichten, weist das Material auch weniger Eigenspannungen auf. Dadurch ist ein makroskopischer Verzug der Schneide weniger wahrscheinlich.Since finely crystalline diamond layers are more homogeneous with respect to their particle size distribution than polycrystalline diamond layers, the material also has lower residual stresses. As a result, a macroscopic distortion of the cutting edge is less likely.

Die erfindungsgemäßen Schneidwerkzeuge können dabei bezüglich der Schneidkante symmetrisch oder asymmetrisch ausgebildet sein. Insbesondere ist es möglich, dass das Schneidwerkzeug eine Fase aufweisen kann, d.h. einen zweiten Winkel an der Schneide.The cutting tools according to the invention can be formed symmetrically or asymmetrically with respect to the cutting edge. In particular, it is possible that the cutting tool may have a chamfer, i. a second angle at the cutting edge.

Eine bevorzugte Ausführungsform sieht vor, dass die mittlere Korngröße dσ0 des feinkristallinen Diamants ≤ 100 nm, weiter bevorzugt zwischen 5 und 100 nm, besonders bevorzugt zwischen 10 und 70 nm beträgt.A preferred embodiment provides that the mean grain size dσ 0 of the fine-crystalline diamond is ≦ 100 nm, more preferably between 5 and 100 nm, particularly preferably between 10 and 70 nm.

Gemäß der Erfindung ist vorgesehen, dass der Anteil an sp- und sp2-Bindungen der feinkristallinen Diamantschicht zwischen 0,5 und 10 %, bevorzugt zwischen 2 und 9 %, besonders bevorzugt zwischen 3 und 8 % beträgt. Ein höherer sp2-Anteil bewirkt dabei, dass das E-Modul der feinkristallinen Diamantschicht etwas erniedrigt wird. Gleichzeitig sinkt ebenso die Härte dieses Materials. Dadurch werden die feinkristallinen Diamantschichten insgesamt flexibler und elastischer und können sich dem Schneidgut bzw. der Kontur des Schneidguts besser anpassen.According to the invention, it is provided that the proportion of sp and sp 2 bonds of the fine-crystalline diamond layer is between 0.5 and 10%, preferably between 2 and 9%, particularly preferably between 3 and 8%. A higher sp 2 content causes the modulus of elasticity of the fine-grained diamond layer to be slightly lowered. At the same time, the hardness of this material also decreases. As a result, the fine-crystalline diamond layers become more flexible and elastic overall and can better adapt to the material to be cut or the contour of the material to be cut.

Die Schneidkante ist idealerweise rund ausgebildet, bevorzugt beträgt dabei der Verrundungsradius r der Diamantschicht an der Schneidkante zwischen 3 und 100 nm, bevorzugt zwischen 15 und 70 nm, besonders bevorzugt zwischen 20 und 50 nm.The cutting edge is ideally round, preferably the rounding radius r of the diamond layer at the cutting edge is between 3 and 100 nm, preferably between 15 and 70 nm, especially preferably between 20 and 50 nm.

Besonders gute Ergebnisse hinsichtlich der Schneidfähigkeit ergeben sich, wenn der Schneidwinkel β zwischen 10° und 40°, bevorzugt zwischen 10° und 30°, besonders bevorzugt zwischen 15° und 25° beträgt.Particularly good results with regard to the cutting capability are obtained when the cutting angle β is between 10 ° and 40 °, preferably between 10 ° and 30 °, particularly preferably between 15 ° and 25 °.

In einer weiter bevorzugten Ausführungsform ist der Verrundungsradius r auf die mittlere Korngröße d50 des feinkristallinen Diamants abgestimmt. Hierbei ist es insbesondere vorteilhaft, wenn das Verhältnis zwischen dem Verrundungsradius r der Diamantschicht an der Schneidkante und der mittleren Korngröße d50 des feinkristallinen Diamants r/d50 zwischen 0,03 und 20, bevorzugt zwischen 0,05 und 15, besonders bevorzugt zwischen 0,5 und 10 beträgt.In a further preferred embodiment, the rounding radius r is matched to the mean grain size d 50 of the fine-crystalline diamond. In this case, it is particularly advantageous if the ratio between the radius of curvature r of the diamond layer at the cutting edge and the mean grain size d 50 of the fine-crystalline diamond r / d 50 is between 0.03 and 20, preferably between 0.05 and 15, particularly preferably between 0 , 5 and 10.

Eine erste besonders bevorzugte Alternative der vorliegenden Erfindung sieht vor, dass das Schneidwerkzeug vollständig aus der Diamantschicht gebildet ist, wobei die Diamantschicht eine Dicke von 10 bis 1.000 µm, bevorzugt 10 bis 500 µm, besonders bevorzugt 20 bis 250 µm aufweist. In dieser Ausführungsform ist das Schneidwerkzeug als Volldiamantklinge ausgebildet.A first particularly preferred alternative of the present invention provides that the cutting tool is formed entirely from the diamond layer, wherein the diamond layer has a thickness of 10 to 1000 .mu.m, preferably 10 to 500 .mu.m, particularly preferably 20 to 250 microns. In this embodiment, the cutting tool is formed as a full diamond blade.

Eine ebenso bevorzugte weitere Alternative der vorliegenden Erfindung sieht vor, dass die Diamantschicht auf einem Substratmaterial angeordnet ist, wobei die Diamantschicht eine Dicke von bis zu 1 und 500 µm, bevorzugt 5 bis 200 µm aufweist. Die Schneidkante ist dabei in der Diamantschicht ausgebildet.An equally preferred further alternative of the present invention provides that the diamond layer is arranged on a substrate material, the diamond layer having a thickness of up to 1 and 500 μm, preferably 5 to 200 μm. The cutting edge is formed in the diamond layer.

Diese Ausführungsform ist dahingehend vorteilhaft, dass die Diamantschicht mit einer geringeren Schichtdicke als bei einer Volldiamantklinge ausgebildet werden kann, wobei sich Einsparungen hinsichtlich des relativ teuer und aufwändig herzustellenden Diamantmaterials ergeben. Die Funktion der Verstärkung der Klinge kann dabei das Substrat übernehmen.This embodiment is advantageous in that the diamond layer is formed with a smaller layer thickness than a full diamond blade can be, resulting in savings on the relatively expensive and expensive to produce diamond material. The function of reinforcing the blade can take over the substrate.

Bevorzugte Substratmaterialien sind dabei ausgewählt aus der Gruppe bestehend aus Metallen, wie Titan, Nickel, Chrom, Niob, Wolfram, Tantal, Molybdän, Vanadium, Platin, eisenhaltigen Werkstoffen, wie Stahl und/oder Germanium; aus kohlenstoff- und/oder stickstoff- oder bor-haltigen Keramiken, wie Siliziumkarbid, Siliziumnitrid, Bornitrid, Tantalkarbid, Wolframkarbid, Molybdänkarbid, Titannitriden, TiAlN, TiCN und/oder TiB2, Glaskeramiken, wie z.B. Zerodur® oder Pyrex®; Verbundwerkstoffen aus keramischen Werkstoffen in einer metallischen Matrix (Cermets); Hartmetallen; gesinterten Carbidhartmetallen, wie z.B. Cobalt- oder Nickel-gebundene Wolframcarbide oder Titancarbide; Silizium, Glas oder Saphir; sowie einoder polykristallinem Diamant und/oder diamantartigen Kohlenstoffschichten.Preferred substrate materials are selected from the group consisting of metals such as titanium, nickel, chromium, niobium, tungsten, tantalum, molybdenum, vanadium, platinum, iron-containing materials such as steel and / or germanium; from carbon and / or nitrogen or boron-containing ceramics, such as silicon carbide, silicon nitride, boron nitride, tantalum carbide, tungsten carbide, molybdenum carbide, titanium nitrides, TiAlN, TiCN and / or TiB 2 , glass ceramics, such as Zerodur® or Pyrex®; Composites of ceramic materials in a metallic matrix (cermets); Hard metals; sintered carbide carbides such as cobalt or nickel bonded tungsten carbides or titanium carbides; Silicon, glass or sapphire; and monocrystalline or polycrystalline diamond and / or diamond-like carbon layers.

Weiter ist bevorzugt, wenn der in Richtung der Dicke der feinkristallinen Diamantschicht gemessene Gradient der mittleren Korngröße des feinkristallinen Diamants < 300 %, bevorzugte < 100 %, besonders bevorzugt < 50 % beträgt. Diese Ausführungsform sieht vor, dass der mittlere Korngrößendurchmesser der feinkristallinen Domänen der Diamantschicht durch die gesamte Schichtdicke hindurch relativ gleichmäßig bis besonders gleichmäßig verteilt ist, d.h. die Korngrößen sind auf der einen Seite der Diamantschicht ca. gleich groß wie auf der anderen Seite der Diamantschicht; besonders vorteilhaft ist dabei natürlich eine nahezu oder eine vollständig komplette Homogenität der feinkristallinen Domänen der Diamantschicht. Der Gradient wird dadurch bestimmt, dass der mittlere Korngrößendurchmesser d50 auf einer Seite der Diamantschicht ermittelt wird und in Bezug zum mittleren Korngrößendurchmesser auf der gegenüber liegenden Seite der Diamantschicht in Bezug gesetzt wird.It is further preferred if the gradient of the average grain size of the fine-crystalline diamond measured in the direction of the thickness of the finely crystalline diamond layer is <300%, preferably <100%, particularly preferably <50%. This embodiment provides that the mean grain size diameter of the fine-grained domains of the diamond layer is distributed relatively evenly to evenly throughout the entire layer thickness, ie the grain sizes are approximately the same on one side of the diamond layer as on the other side of the diamond layer; Of course, it is particularly advantageous in this case for a virtually complete or complete complete homogeneity of the finely crystalline domains of the diamond layer. The gradient is determined by determining the average grain size diameter d 50 on one side of the diamond layer and relating it to the average grain size diameter on the opposite side of the diamond layer.

Eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung sieht vor, dass zwischen dem Substrat und der feinkristallinen Diamantschicht mindestens eine erste Haftvermittlerschicht, bevorzugt aus Siliziumkarbid, Siliziumnitrid, Wolfram, Titan oder Silizium, aufgebracht ist. Diese Ausführungsform gewährleistet einen guten Halt der Diamantschicht auf dem Substrat. Die erste Haftvermittlerschicht erhöht dabei die Stärke des mechanischen Verbunds zwischen Kern und feinkristalliner Diamantschicht und ermöglicht so eine zuverlässige Weiterverarbeitung.A further preferred embodiment of the present invention provides that at least one first adhesion promoter layer, preferably of silicon carbide, silicon nitride, tungsten, titanium or silicon, is applied between the substrate and the fine-crystalline diamond layer. This embodiment ensures a good hold of the diamond layer on the substrate. The first primer layer increases the strength of the mechanical bond between the core and the fine-grained diamond layer and thus enables reliable further processing.

Unabhängig von der zuvor erwähnten Ausführungsform ist gemäß einer besonders bevorzugten Variante der Erfindung auf der feinkristallinen Diamantschicht mindestens eine zweite Haftvermittlerschicht, bevorzugt aus Cr, Pt, Ti oder W, sowie darauf eine Gleitschicht, insbesondere eine Polymerschicht, bevorzugt eine PTFE-Schicht (Teflon), Kohlenstoffschicht, bevorzugt eine Graphitschicht und/oder eine DLC-Schicht, aufgebracht. Die zweite Haftvermittlerschicht dient ebenso der besseren Anbindung der Gleitschicht an die feinkristalline Diamantschicht. Die Gleitschicht dient zur Reibungsminimierung. Für den Fall, dass Kohlenstoffschichten, Graphit- oder DLC-Schichten als Gleitschicht verwendet werden, kann auf die zweite Haftvermittlerschicht auch verzichtet werden, da ein direktes Anbinden der Kohlenstoffschichten an die feinkristalline Diamantschicht möglich ist. Die Gleitschicht dient dabei der Reibungsminimierung zwischen Schneidwerkzeug und Schneidgut. Ebenso wird eine Minimierung von Schmutzanhaftung, eine Vermeidung von Schneidstaub sowie eine Verringerung der Schneidkräfte erreicht. Bei einer zuvor beschriebenen Volldiamantklinge können diese zusätzlichen Beschichtungen z.B. lokal im Bereich der Schneide vorhanden sein, ebenso kann das komplette Schneidwerkzeug mit diesen Beschichtungen versehen sein.Regardless of the aforementioned embodiment, according to a particularly preferred variant of the invention, at least one second primer layer, preferably of Cr, Pt, Ti or W, and thereon a sliding layer, in particular a polymer layer, preferably a PTFE layer (Teflon) on the fine crystalline diamond layer , Carbon layer, preferably a graphite layer and / or a DLC layer applied. The second adhesion promoter layer also serves to better bond the sliding layer to the fine crystalline diamond layer. The sliding layer serves to minimize friction. In the event that carbon layers, graphite or DLC layers are used as a sliding layer, can also be dispensed with the second adhesion promoter layer, since a direct bonding of the carbon layers to the fine crystalline diamond layer is possible. The sliding layer serves to minimize friction between cutting tool and cutting material. Likewise, a minimization of dirt adhesion, avoidance of cutting dust and a reduction of the cutting forces is achieved. In a full diamond blade described above, these additional coatings may for example be present locally in the region of the cutting edge, as well as the entire cutting tool may be provided with these coatings.

Bei einem Schneidwerkzeug, das eine auf einem Substrat angeordnete Diamantschicht aufweist, können die zuvor beschriebenen zusätzlichen Beschichtungen ebenso z.B. im Bereich der die Schneide bildenden Flanken des Schneidwerkzeugs aufgebracht sein. Ebenso ist jedoch ein kompletter Überzug des Schneidwerkzeugs bzw. zumindest der Flächen der Diamantschicht möglich.For a cutting tool having a diamond layer disposed on a substrate, the additional coatings described above may also be used e.g. be applied in the region of the edges forming the cutting edge of the cutting tool. Likewise, however, a complete coating of the cutting tool or at least the surfaces of the diamond layer is possible.

In einer weiteren vorteilhaften Ausführungsform weist die Diamantschicht eine mittlere Oberflächenrauigkeit von RA < 5 µm, bevorzugt < 2 µm, besonders bevorzugt < 1 µm, auf. Dies macht eine zusätzliche mechanische Politur der gewachsenen Diamantoberfläche überflüssig.In a further advantageous embodiment, the diamond layer has an average surface roughness of R A <5 μm, preferably <2 μm, particularly preferably <1 μm. This makes an additional mechanical polishing of the grown diamond surface superfluous.

Eine weitere bevorzugte Variante sieht vor, dass die Schneidkante in regelmäßigen Abständen, bevorzugt in regelmäßigen Abständen von weniger als 10 mm, Einkerbungen oder Durchtrennungen aufweist. Bevorzugte Abstände liegen dabei beispielsweise zwischen 5 und 9 mm. Diese Einkerbungen ermöglichen die Führung der Klinge relativ zum Schneidgut und somit eine Stabilisierung des Schneidwerkzeugs während des Schneidvorgangs.A further preferred variant provides that the cutting edge has notches or cuts at regular intervals, preferably at regular intervals of less than 10 mm. Preferred distances are for example between 5 and 9 mm. These indentations allow the blade to be guided relative to the material to be cut, thus stabilizing the cutting tool during the cutting process.

Insbesondere ist das Schneidwerkzeug als Klinge, Messerklinge, Rasierklinge, Skalpell, Messer, Maschinenmesser, Schere oder Maschinenschere ausgebildet bzw. kann als solches verwendet werden. Ebenso ist es möglich, dass das Schneidwerkzeug als Rasiersystem, d.h, als Kopf mit mehreren Rasierklingen ausgebildet ist bzw. als solches verwendet werden kann. Dabei sind alle Rasierklingen als erfindungsgemäßes Schneidwerkzeug ausgebildet.In particular, the cutting tool is a blade, knife blade, razor blade, scalpel, knife, machine knife, Scissors or machine shears trained or can be used as such. It is also possible that the cutting tool is designed as a shaving system, ie, as a head with a plurality of razor blades or can be used as such. All razor blades are designed as cutting tools according to the invention.

In einer bevorzugten Ausführungsform beträgt die Biegebruchspannung σ0 der Diamantschicht > 2 GPa, bevorzugt > 4 GPa, besonders bevorzugt > 5 GFa. σ0 ist dabei wie oben stehend definiert.In a preferred embodiment, the bending fracture stress σ 0 of the diamond layer is> 2 GPa, preferably> 4 GPa, particularly preferably> 5 GFa. σ 0 is defined as above.

In einer weiteren bevorzugten Ausführungsform beträgt der E-Modul der Diamantschicht < 1.200 GPa, bevorzugt < 900, besonders bevorzugt < 750 GPa.In a further preferred embodiment, the modulus of elasticity of the diamond layer is <1.200 GPa, preferably <900, particularly preferably <750 GPa.

Eine weitere bevorzugte Ausführungsform sieht vor, dass die Kristallite der feinkristallinen Diamantschicht bevorzugt in <100>-, <110>- und/oder <111>-Richtung aufgewachsen sind, d.h. eine Textur vorliegt. Dies kann aus dem Herstellungsprozess resultieren, bei dem die wachstumsgeschwindigkeit bestimmter Kristallrichtungen gezielt bevorzugt werden kann. Diese anisotrope Textur der Kristallite beeinflusst die mechanischen Eigenschaften ebenso positiv.A further preferred embodiment provides that the crystallites of the fine-crystalline diamond layer are preferably grown in the <100>, <110> and / or <111> direction, ie. a texture is present. This can result from the manufacturing process, in which the growth rate of certain crystal directions can be deliberately preferred. This anisotropic texture of the crystallites also positively affects the mechanical properties.

Erfindungsgemäß wird ebenso ein Verfahren zur Herstellung eines im Voranstehenden beschriebenen Schneidwerkzeuges angegeben, bei dem die folgenden Schritte durchgeführt werden:

  1. a) Bereitstellen einer synthetischen, feinkristallinen Diamantschicht,
  2. b) ein- oder beidseitiges Durchtrennen der feinkristallinen Diamantschicht unter einem Winkel α, der zwischen 50° und 85°, bevorzugt zwischen 60° und 80°, weiter bevorzugt zwischen 65° und 75°, zur Flächennormalen der feinkristallinen Diamantschicht liegt, wobei mindestens ein Fragment mit einer Schneidkante entsteht, sowie
  3. c) Nachschärfen der Schneidkante mittels eines Plasma- oder Ionenätzverfahrens.
The invention also provides a method for producing a cutting tool described in the preceding, in which the following steps are carried out:
  1. a) providing a synthetic, fine-crystalline diamond layer,
  2. b) one or both sides cutting the fine crystalline diamond layer at an angle α, which is between 50 ° and 85 °, preferably between 60 ° and 80 °, more preferably between 65 ° and 75 °, to the surface normal of the fine crystalline diamond layer, wherein at least one fragment is formed with a cutting edge, and
  3. c) resharpening the cutting edge by means of a plasma or ion etching process.

Bei einem einseitigen Durchtrennen der einkristallinen Diamantschicht entsteht dabei ein asymmetrisches Schneidwerkzeug. Dabei wird unter einem gegebenen Winkel α eine Durchtrennung der Diamantschicht durchgeführt. Es entsteht dabei ein Fragment, das an den beiden die Diamantschicht begrenzenden Flächen, eine stumpfe Kante aufweist, die einen Winkel > 90° aufweist, sowie eine scharfe Kante, die einen Winkel 90° aufweist. Diese scharfe Kante bildet später, d.h. nach dem Nachschärfen die Schneidkante. Dabei gilt prinzipiell die Beziehung α + β = 90° zwischen Winkel α und Schneidwinkel β. Durch das Nachschärfen kann es u.U. zu Abweichungen von der oben genannten Beziehung kommen.In a one-sided cutting of the monocrystalline diamond layer thereby creates an asymmetric cutting tool. In this case, a separation of the diamond layer is performed at a given angle α. This results in a fragment which has at the two surfaces delimiting the diamond layer, a blunt edge which has an angle> 90 °, and a sharp edge which has an angle of 90 °. This sharp edge forms later, i. after resharpening the cutting edge. In principle, the relationship α + β = 90 ° between angle α and cutting angle β. By re-sharpening it may u.U. to deviate from the above relationship.

Ebenso ist es jedoch möglich, die feinkristalline Diamantschicht von beiden Seiten her zu durchtrennen. Dabei wird die feinkristalline Diamantschicht von beiden flächigen Seiten jeweils unter einem Winkel α durchschnitten, wobei vorzugsweise die gleichen Winkel α für die Schnitte von beiden Seiten her gewählt werden. Für den Fall, dass die feinkristalline Diamantschicht von beiden Seiten her unter gleichem Winkel und auf gleicher Höhe durchtrennt wird, können auf diese Art und Weise somit auch Schneidwerkzeuge mit symmetrischen Schneidkanten hergestellt werden, wie sie z.B. in Fig. 2b dargestellt sind. Für derartige Klingen gilt prinzipiell die Beziehung α + γ = 90° (mit γ = β/2) zwischen Winkel α und Schneidwinkel β. Durch das Nachschärfen kann es u.U. zu gewissen Abweichungen von der oben genannten Beziehung kommen.However, it is also possible to cut through the fine-crystalline diamond layer from both sides. In this case, the finely crystalline diamond layer is cut through by two flat sides at an angle α, wherein preferably the same angles α are selected for the cuts from both sides. In the event that the fine crystalline diamond layer is severed from both sides at the same angle and at the same height, cutting tools with symmetrical cutting edges can thus be produced in this way, as they are eg in Fig. 2b are shown. For such Blades, in principle, the relationship α + γ = 90 ° (with γ = β / 2) between angle α and cutting angle β. Resharpening may lead to certain deviations from the above relationship.

Die Beziehung zwischen den Winkeln α, β und γ ist beispielsweise auch in den Figuren 2b und 2e dargestellt und erläutert.The relationship between the angles α, β and γ is also in the FIGS. 2b and 2e illustrated and explained.

Je nachdem, ob die feinkristalline Diamantschicht von einer oder von beiden Seiten her durchtrennt wird, muss, wie aus den voranstehenden Ausführungen ersichtlich ist, ein anderer Winkel α, unter dem die feinkristalline Diamantschicht geschnitten wird, gewählt werden, um zu gleichen Schnittwinkeln β zu gelangen. Es ist dabei jedoch stets zu bevorzugen, dass - egal ob die feinkristalline Diamantschicht von einer oder von beiden Seiten her durchtrennt wird - nach dem Durchtrennungsvorgang ein Schneidwinkel β zwischen 10 und 40°, bevorzugt 10 und 30°, weiter bevorzugt zwischen 15 und 25° vorliegt.Depending on whether the fine-grained diamond layer is severed from one or both sides, as shown in the foregoing, another angle α under which the fine-grained diamond layer is cut must be selected in order to arrive at equal cutting angles β , However, it is always preferable that - regardless of whether the fine crystalline diamond layer is severed from one or both sides - after the cutting process, a cutting angle β between 10 and 40 °, preferably 10 and 30 °, more preferably between 15 and 25 ° is present.

Gemäß dieser allgemeinen ersten Ausführungsform ist dabei beispielsweise eine asymmetrische oder symmetrische Volldiamantklinge realisierbar. Die im ersten Schritt bereitgestellte synthetische, feinkristalline Diamantschicht kann dabei auf einem planaren Substrat durch aus dem Stand der Technik bekannte Standardverfahren erzeugt werden. Wichtig ist dabei lediglich, dass der durchschnittliche Korngrößendurchmesser d50 der kristallinen Domänen in der feinkristallinen Diamantschicht ≤ 500 nm beträgt. Durch anschließendes Entfernen des Substrats durch geeignete Methoden wird die feinkristalline Diamantschicht isoliert erhalten.According to this general first embodiment, for example, an asymmetrical or symmetrical solid diamond blade can be realized. The synthetic, finely crystalline diamond layer provided in the first step can be produced on a planar substrate by standard methods known from the prior art. It is only important that the average grain size diameter d 50 of the crystalline domains in the fine-crystalline diamond layer is ≦ 500 nm. By subsequently removing the substrate by suitable methods, the finely crystalline diamond layer is obtained in isolation.

Der Trennschritt kann dabei auf alle möglichen Arten, wie z.B. Laserschneiden, Plasma- bzw. Ionenätzen, Wasserstrahlschneiden oder mechanische Bearbeitung durchgeführt werden. Bei Durchführung des Trennschrittes wird dabei bereits der Schneidwinkel β des entstehenden Schneidwerkzeugs vorgegeben. Hinsichtlich der Schneidkante bilden sich dabei im Idealfall zwei gleichartige Fragmente aus, bei geeigneter Durchführung des Trennschnittes sind beide spitzwinkligen Enden der Diamantschicht bereits dafür geeignet, als Schneidkante des Schneidwerkzeugs herangezogen zu werden.The separation step can be used in all possible ways such as laser cutting, plasma or ion etching, water jet cutting or mechanical processing are performed. When carrying out the separation step, the cutting angle β of the resulting cutting tool is already predetermined. With regard to the cutting edge, ideally two identical fragments are formed; if the separating cut is carried out appropriately, both acute-angled ends of the diamond layer are already suitable for being used as the cutting edge of the cutting tool.

Bei den weiter oben beschriebenen Verfahren zur Herstellung der Volldiamantklinge ist es bevorzugt, wenn das Bereitstellen der feinkristallinen Diamantschicht durch Aufbringen der feinkristallinen Diamantschicht auf ein Substrat sowie anschließender teilweiser oder vollständiger Entfernung des Substrates erfolgt.In the above-described methods for producing the solid diamond blade, it is preferable that the provision of the fine crystalline diamond layer is performed by applying the fine crystalline diamond layer to a substrate and then partially or completely removing the substrate.

Die eventuelle Entfernung des planaren Substrats kann vor oder auch nach der Ausführung des Trennschritts erfolgen. Gegebenenfalls kann das Substrat auch beibehalten werden und zur mechanischen Stabilität beitragen (Sandwichaufbau).The possible removal of the planar substrate can be done before or after the execution of the separation step. Optionally, the substrate can also be maintained and contribute to mechanical stability (sandwich construction).

Das im Anschluss an den Trennschritt erfolgende Nachschärften mittels eines Plasma- oder Ionenätzverfahrens ist ebenso durch bereits aus dem Stand der Technik bekannte Plasmaätzverfahren möglich.The subsequent sharpening following the separation step by means of a plasma or ion etching method is likewise possible by plasma etching methods already known from the prior art.

In einer weiteren Ausführungsform des Verfahrens wird die synthetische, feinkristalline Diamantschicht auf ein Substrat abgeschieden und im Anschluss daran werden die Schritte b) und c) durchgeführt.In a further embodiment of the method, the synthetic fine-grained diamond layer is deposited on a substrate and subsequently steps b) and c) are carried out.

Gemäß dieser besonderen Ausführungsform kann die weiter oben beschriebene Diamantklinge, die eine auf einem Substrat aufgebrachte feinkristalline Diamantschicht aufweist, hergestellt werden. Bezüglich der einzelnen Schritte wird auch schon auf die weiter oben gemachten Ausführungen verwiesen.According to this particular embodiment, the farther above-described diamond blade having a fine crystalline diamond layer deposited on a substrate. With regard to the individual steps, reference is made to the comments made above.

Die feinkristalline Diamantschicht kann derart erzeugt werden, dass zum Aufbringen der feinkristallinen Diamantschicht feinkristalline Diamantimpfkristalle auf dem Substrat abgeschieden und auf den Diamantimpfkristallen die feinkristalline Diamantschicht z.B. über CVD-Verfahren abgeschieden wird.The fine crystalline diamond layer may be formed such that fine crystalline diamond seed crystals are deposited on the substrate for depositing the fine crystalline diamond layer, and the fine crystalline diamond layer is deposited on the diamond seed crystals, e.g. is deposited via CVD method.

Eine exemplarische Verfahrensführung zur Herstellung der feinkristallinen Diamantschicht ist nachfolgend angegeben:An exemplary process for producing the fine crystalline diamond layer is given below:

Beispielexample

Die feinkristallinen Diamantschichten werden z.B. mittels eines "Heißdraht-CVD-Verfahren" hergestellt. Bei diesem Verfahren wird in einer Vakuumkammer mittels heißer Drähte, z.B. Wolframdrähte, eine Gasphase bestehend aus z.B. 1 bis 5 Vol.-% CH4 und 95 bis 99 Vol.-% Wasserstoff aktiviert. Die Drahttemperatur liegt beispielsweise in einem Bereich von 1.800°C bis 2.400°C. Bei einem Abstand zwischen dem Substrat und den Drähten von 1 cm bis 5 cm wird dabei eine Substrattemperatur von 600 °C bis 900 °C eingestellt. Der Druck der Gasatmosphäre liegt zwischen 3 mbar und 30 mbar. Dabei erfolgt eine Abscheidung der feinkristallinen Diamantschicht auf dem Substrat.The fine-crystalline diamond films are produced, for example, by means of a "hot-wire CVD process". In this method, in a vacuum chamber by means of hot wires, such as tungsten wires, a gas phase consisting of, for example 1 to 5 vol .-% CH 4 and 95 to 99 vol .-% hydrogen activated. The wire temperature is, for example, in a range of 1,800 ° C to 2,400 ° C. At a distance between the substrate and the wires of 1 cm to 5 cm while a substrate temperature of 600 ° C to 900 ° C is set. The pressure of the gas atmosphere is between 3 mbar and 30 mbar. In this case, the fine-grained diamond layer is deposited on the substrate.

Das Durchtrennen, das bei den oben genannten Varianten des Verfahrens im Schritt b) durchgeführt wird, kann beispielsweise mittels eines Lasers, mittels Drahterosion, mittels Wasserstrahl, mittels Plasmaoder Ionenätzen, oder mittels mechanischer \Verfahren erfolgen.The severing, which is carried out in the abovementioned variants of the method in step b), can, for example by means of a laser, by means of Wire erosion, by water jet, by plasma or ion etching, or by mechanical \ procedure.

Weitere Einzelheiten und bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den Ausführungsbeispielen und den Figuren, wobei die Figuren nicht maßstabsgetreu sind. Es zeigt:

  • Figur 1 einen Vergleich dreier Typen von Klingen, nämlich a) eine Volldiamantklinge aus einkristallinem Diamant (Stand der Technik), b) eine Volldiamantklinge aus polykristallinem Diamant (Stand der Technik), sowie c) eine erfindungsgemäße Volldiamantklinge aus feinkristallinem Diamant (erfindungsgemäß);
  • Figur 2 verschiedene Varianten des erfindungsgemäßen Verfahrens zur Herstellung des erfindungsgemäßen Schneidwerkzeuges;
  • Figur 3 verschiedene Formen erfindungsgemäßer Schneidwerkzeuge;
  • Figuren 4 und 5 zwei Ausführungsformen eines erfindungsgemäßen Schneidwerkzeugs mit unterschiedlichen Geometrien der Schneide.
  • Figur 6 eine weitere Ausführungsform eines erfindungsgemäßen Schneidwerkzeugs mit Einkerbungen.
Further details and preferred embodiments of the invention will become apparent from the embodiments and the figures, wherein the figures are not to scale. It shows:
  • FIG. 1 a comparison of three types of blades, namely a) a monocrystalline diamond solid diamond blade (prior art), b) a polycrystalline diamond solid diamond blade (prior art), and c) a fine diamond diamond solid diamond blade according to the invention;
  • FIG. 2 various variants of the inventive method for producing the cutting tool according to the invention;
  • FIG. 3 various forms of cutting tools according to the invention;
  • FIGS. 4 and 5 two embodiments of a cutting tool according to the invention with different geometries of the cutting edge.
  • FIG. 6 a further embodiment of a cutting tool according to the invention with notches.

Figur 1 zeigt drei verschiedene Varianten aus Klingen, die jeweils komplett aus Diamant gebildet sind. FIG. 1 shows three different variants of blades, each made entirely of diamond.

Figur 1a zeigt eine Klinge, die aus einkristallinem Diamant besteht. Allerdings ist es extrem schwierig, einkristallinen Diamant in makroskopischer Ausbildung, wie beispielsweise Klingen, effizient und reproduzierbar herzustellen, so dass derartige Klingen nur in limitierter Stückzahl erhältlich sind und zudem sehr teuer sind. Ebenso ist der Verrundungsradius r der Schneide angedeutet (Detail D). FIG. 1a shows a blade consisting of single crystal diamond. However, it is extremely difficult to obtain monocrystalline diamond in macroscopic form, such as blades, efficient and reproducible manufacture, so that such blades are available only in limited quantities and are also very expensive. Similarly, the rounding radius r of the cutting edge is indicated (detail D).

Figur 1b zeigt standardmäßig aus dem Stand der Technik bekannte Volldiamantklingen, die auf polykristallinem Diamantmaterial beruhen. In Figur 1b ist die Polymorphie der angeordneten KristallitDomänen des polykristallinen Materials schematisch dargestellt. Bei einem Schneidvorgang an der Kante kann es bei den hier auftretenden hohen Schneidkräften dazu kommen, dass einzelne Kristallite aus der Klinge, insbesondere im Bereich bevorzugt entlang von Korngrenzen der Schneidkante (siehe Detail A), ausbrechen, so dass die Klinge z.B. bereits beim erstmaligen Gebrauch eine erhöhte Schartigkeit aufweist. Hieraus resultiert eine äußerst inhomogen ausgebildete Schneidkante, die die Schneidfähigkeit und die Schneidhaltigkeit einer derartigen Klinge maßgeblich beeinträchtigt. FIG. 1b shows by default known in the art Volldiamantklingen based on polycrystalline diamond material. In FIG. 1b the polymorphism of the arranged crystallite domains of the polycrystalline material is shown schematically. In the case of a cutting operation on the edge, it can occur with the high cutting forces occurring here that individual crystallites break out of the blade, in particular in the region preferably along grain boundaries of the cutting edge (see detail A), so that the blade, for example, already during initial use has an increased pungency. This results in a very inhomogeneous cutting edge, which significantly affects the cutting ability and the cutting edge of such a blade.

In Figur 1c ist eine erfindungsgemäße Klinge aus nano- oder feinkristallinem Diamantmaterial dargestellt. Im Vergleich zur in Figur 1b dargestellten polykristallinen Diamantklinge fällt auf, dass die mittlere Größe, d.h. der Durchmesser d50 der jeweiligen Kristallitdomänen, um ein Vielfaches kleiner ausgebildet ist als bei polykristallinem Diamant (vgl. insbesondere Detail A und B). Besonders vorteilhaft ist dabei, dass das Ausbrechen der Klinge im Schneidbereich im Vergleich zur Ausprägungsform des polykristallinen Diamants gemäß Figur 1b wesentlich verringert ist, da die Kristallite, die gegebenenfalls herausbrechen können, wesentlich kleiner ausgeprägt sind. Somit sind Schädigungen der Klinge im Vergleich zur Figur 1b lediglich auf mikroskopischem Maßstab feststellbar, so dass die makroskopische Struktur der Schneidkante der Klinge gemäß Figur 1c im Wesentlichen unbeeinträchtigt bleibt. Insofern ist eine deutLiche Steigerung der Schneidhaltigkeit (konstante Schärfe), auch bei längerem Gebrauch der Klinge, beobachtbar. Die nanokristallinen Kristallitdomänen einer Klinge gemäß Figur 1c liegen dabei unterhalb 500 nm, während polykristalline Diamantkristalldomänen eine durchschnittliche Größenordnung der Kristallitdomäne d50 zwischen 2 und 100 µm aufweisen.In Figure 1c a blade according to the invention of nano or fine crystalline diamond material is shown. Compared to in FIG. 1b It is noticeable that the average size, that is to say the diameter d 50 of the respective crystallite domains, is smaller by a factor of a few than in the case of polycrystalline diamond (see in particular detail A and B). It is particularly advantageous that the breaking of the blade in the cutting area in comparison to the form of the polycrystalline diamond according to FIG. 1b is significantly reduced, since the crystallites, which may possibly break out, much smaller pronounced are. Thus, damage to the blade compared to FIG. 1b detectable only on a microscopic scale, so that the macroscopic structure of the cutting edge of the blade according to Figure 1c essentially unimpaired. In this respect, a significant increase in the cutting edge (constant sharpness), even with prolonged use of the blade, observable. The nanocrystalline crystallite domains of a blade according to Figure 1c lie below 500 nm, while polycrystalline diamond crystal domains have an average order of the crystallite domain d 50 between 2 and 100 microns.

Figur 2 zeigt drei alternative Varianten zur Herstellung des erfindungsgemäßen Schneidwerkzeugs mittels des erfindungsgemäßen Verfahrens, die jeweils in der Figurenabfolge 2a) bis 2c), 2d) bis 2f) und 2g) bis 2i) dargestellt sind. FIG. 2 shows three alternative variants for the production of the cutting tool according to the invention by means of the method according to the invention, which are each shown in the figure sequence 2a) to 2c), 2d) to 2f) and 2g) to 2i).

In der Verfahrensvariante, wie sie in der Figurenfolge 2a) bis 2c) dargestellt ist, wird von einer fertig gestellten feinkristallinen Diamantschicht 2 ausgegangen, Diese feinkristalline Diamantschicht kann über aus dem Stand der Technik bekannte Verfahren, beispielsweise wie vorstehend exemplarisch beschrieben, hergestellt werden.In the process variant, as shown in the sequence of figures 2a) to 2c), it is assumed that a finely crystalline diamond layer 2 is finished. This fine-crystalline diamond layer can be produced by processes known from the prior art, for example as described above by way of example.

Die Diamantschicht 1 wird in einem in Fig, 2b) dargestellten Schritt durchtrennt, dabei wird ein zweimaliger Schneidvorgang, jeweils unter einem Winkel α zur Flächennormalen (dargestellt als Pfeil in Fig. 2b) durchgeführt. Es entsteht dabei eine symmetrische Klinge, die in einem in Fig. 2c) dargestellten Schritt einem Plasmaschärfverfahren unterzogen wird. Ersichtlich ist dabei, dass die Beziehung α + γ = 90° mit γ = β/2 gilt. Dabei stellt α den Winkel zur Flächennormalen der Diamantschicht dar, unter der die Diamantschicht von beiden Seiten her durchtrennt wird, und β den Schneidwinkel.The diamond layer 1 is in an in Fig. 2b In this case, a two-time cutting process, in each case at an angle α to the surface normal (shown as arrow in FIG Fig. 2b ) carried out. This results in a symmetrical blade, which in an in Fig. 2c ) is subjected to a plasma curing process. It can be seen that the relationship α + γ = 90 ° with γ = β / 2. Where α represents the angle to the surface normal the diamond layer under which the diamond layer is cut from both sides, and β the cutting angle.

Gemäß einer alternativen Ausführung des Verfahrens (in Fig. 2d) bis 2f) dargestellte Schrittfolge) wird analog zu den in Fig. 2a bis 2c dargestellten Schritten verfahren, es wird jedoch eine asymmetrische Klinge gebildet. Hier gilt α + β = 90°.According to an alternative embodiment of the method (in Fig. 2d) to 2f ) is analogous to the in Fig. 2a to 2c However, an asymmetric blade is formed. Here, α + β = 90 °.

In einem in Figur 2e) dargestellten Schritt erfolgt ein Durchtrennen der Diamantschicht 2, beispielsweise kann das Verfahren mittels eines Lasers durchgeführt werden. Bezüglich der Flächennormalen, die mit dem Pfeil in Figur 2e) angedeutet ist, erfolgt eine Durchtrennung der Diamantschicht 2 unter einem Winkel α. Dabei wird eine Schneidkante in beiden entstehenden Fragmenten erzeugt, die Schneidkante weist dabei den Schneidwinkel β auf, der über die Beziehung α + β = 90° mit dem Winkel α korrespondiert. Wie im Detail A ersichtlich ist, ist nach dem erfolgten Schneidprozess die erzeugte Schneidkante noch nicht ausreichend scharf. In einem in Figur 2f) dargestellten Schritt findet ein Nachschärfen der Schneidkante über ein Plasma- bzw. Ionenätzverfahren statt. Wie im Detail B ersichtlich ist, ist nach Abschluss des Schärfvorganges die Schneidkante, wesentlich schäfer als vor dem Prozess. Diese Ausführungen gelten ebenso für die in den Figuren 2a) bis 2c) dargestellte Schrittfolge.In an in FIG. 2e ), the diamond layer 2 is cut through, for example, the method can be carried out by means of a laser. Regarding the surface normals, which are marked with the arrow in FIG. 2e ) is indicated, a separation of the diamond layer 2 takes place at an angle α. In this case, a cutting edge is generated in both resulting fragments, the cutting edge in this case has the cutting angle β, which corresponds to α via the relationship α + β = 90 ° with the angle α. As can be seen in detail A, the cutting edge produced is not sufficiently sharp after the cutting process has taken place. In an in FIG. 2f ) step, resharpening of the cutting edge takes place via a plasma or ion etching process. As can be seen in detail B, after completion of the sharpening process, the cutting edge is substantially sheerer than before the process. These explanations also apply to those in the FIGS. 2a) to 2c ) illustrated step sequence.

In der dritten in Figur 2 dargestellten Verfahrensvariante (Schrittfolge gemäß Figuren 2g) bis 2i)) wird von einer Diamantschicht 2 ausgegangen, die auf einem Substrat 1 aufgebracht ist. Zwischen Substrat 1 und Diamantschicht 2 können weitere Schichten angeordnet sein, wie z.B. die im Detail c dargestellte Haftvermittlerschicht 3. Dieser Verbund wird in der Schrittfolge in Figur 2h) ebenso unter einem Winkel α zur Flächennormalen durchtrennt, so dass zwei Fragmente A und B entstehen. Dabei entsteht in Fragment A ebenso bereits eine - noch nicht ausreichend scharfe - Schneidkante in der Diamantschicht 2, die analog zu dem Schritt gemäß Figur 2f) in einem sich anschließenden Schärfverfahren (Schritt gemäß Figur 2i)) mittels Plasma- bzw. Ionenätzprozessen nachgeschärft werden kann. Um auch im im Schritt gemäß Figur 2h) erzeugten Fragment B eine Schneidkante in der Diamantschicht 2 ausbilden zu können, muss der Schnittüberstand der Substratschicht 1 noch entfernt werden (nicht dargestellt). Dies kann beispielsweise durch einen neuen Schneidprozess erfolgen, so dass nach entsprechender Verarbeitung ein weiteres Fragment vorliegt, das dem Fragment A, wie in Figur 2h) dargestellt, entspricht.In the third in FIG. 2 illustrated method variant (step sequence according to FIGS. 2g) to 2i )) is based on a diamond layer 2, which is applied to a substrate 1. Between substrate 1 and diamond layer 2 further layers may be arranged, such as the adhesive layer shown in detail c 3. This compound is in the step sequence in FIG. 2h ) is also severed at an angle α to the surface normal, so that two fragments A and B are formed. This results in fragment A also already - not sufficiently sharp - cutting edge in the diamond layer 2, which analogous to the step according to FIG. 2f ) in a subsequent sharpening process (step according to FIG. 2i )) can be resharpened by plasma or ion etching. In order also in the step according to FIG. 2h ) fragment B to be able to form a cutting edge in the diamond layer 2, the cutting projection of the substrate layer 1 still has to be removed (not shown). This can be done for example by a new cutting process, so that after appropriate processing, a further fragment is present, the fragment A, as in FIG. 2h ), corresponds.

Figur 3 zeigt verschiedene Ausführungsformen des erfindungsgemäßen Schneidwerkzeugs, beispielsweise in Form eines Maschinenmessers a), eines Küchenmessers b) bzw. verschieden ausgestalteter Klingen c) bzw. d). Ebenso sind Rasierklingen (siehe e)) möglich. FIG. 3 shows various embodiments of the cutting tool according to the invention, for example in the form of a machine knife a), a kitchen knife b) or differently designed blades c) or d). Also razor blades (see e)) are possible.

Figur 4 zeigt eine spezielle Ausführungsform, bei der das Schneidwerkzeug auf einer feinkristallinen Diamantschicht 2 basiert. Dieses Schneidwerkzeug stellt eine Volldiamantklinge dar. Auf der Diamantschicht 2 sind eine Haftvermittlerschicht 3 sowie eine auf der Haftvermittlerschicht 3 aufgebrachte Gleitschicht 4 ausgebildet. Die Haftvermittlerschicht 3 kann dabei bevorzugt aus Metallen, wie beispielsweise Chrom, Platin, Titan, Silizium oder Wolfram, bestehen. Diese Metalle können z.B. durch CVD- oder PVD-Prozesse auf die Diamantschicht 2, die die Klinge bildet, aufgedampft bzw. aufgesputtert werden. Für die Gleitschicht 4 kommen insbesondere polymere Materialien, z.B. PTFE, in Frage. Es sind aber auch kohlenstoffbasierte Gleitschichten, wie z.B. DLC oder Graphit möglich. In Figur 4 ist eine Ausführungsform des Schneidwerkzeugs dargestellt, wobei die Schneidkante asymmetrisch ausgebildet ist. FIG. 4 shows a special embodiment in which the cutting tool is based on a fine crystalline diamond layer 2. This cutting tool represents a solid diamond blade. On the diamond layer 2, an adhesion promoter layer 3 and a lubricant layer 4 applied to the adhesion promoter layer 3 are formed. The bonding agent layer 3 may preferably consist of metals, such as chromium, platinum, titanium, silicon or tungsten. These metals may, for example, by CVD or PVD processes on the diamond layer 2, which forms the blade deposited or sputtered on. For the sliding layer 4 are in particular polymeric materials, such as PTFE, in question. But there are also carbon-based sliding layers, such as DLC or graphite possible. In FIG. 4 an embodiment of the cutting tool is shown, wherein the cutting edge is formed asymmetrically.

Figur 5 zeigt im Wesentlichen die gleiche Ausführungsform wie Figur 4, nur dass hier lediglich das Schneidwerkzeug hinsichtlich der Schneidkante symmetrisch ausgebildet ist. FIG. 5 shows essentially the same embodiment as FIG. 4 , only that here only the cutting tool is symmetrical with respect to the cutting edge.

In Figur 6 ist eine weitere Ausführungsform der Diamantklinge dargestellt, die Einkerbungen in der Schneide aufweist. Die Einkerbungen sind dabei durchgehend durch die Diamantklinge ausgebildet und können beispielsweise, wie in Figur 6a dargestellt, in regelmäßigen Abständen ausgebildet sein. Der hier dargestellte regelmäßige Abstand kann beispielsweise weniger als 10 mm, z.B. 5 mm, betragen. Figur 6b zeigt eine weitere Variante der Klinge, bei der die Einkerbung breiter ausgebildet ist, die Breite einer derartigen Einkerbung kann beispielsweise zwischen 0,01 und 1 mm liegen und zur Führung der Klinge relativ zum Schneidgut dienen.In FIG. 6 another embodiment of the diamond blade is shown having notches in the cutting edge. The notches are formed throughout by the diamond blade and can, for example, as in FIG. 6a shown to be formed at regular intervals. The regular spacing shown here may be, for example, less than 10 mm, for example 5 mm. FIG. 6b shows a further variant of the blade, wherein the notch is formed wider, the width of such a notch may for example be between 0.01 and 1 mm and serve to guide the blade relative to the cutting material.

Claims (15)

  1. Cutting tool having a synthetic diamond layer having a cutting edge, wherein the cutting edge has a profile with decreasing layer thickness, characterised in that the diamond layer consists of fine crystalline diamond having an average particle size d50 of ≤ 500nm, provided that the proportion of sp- and sp2-bonds lies between 0.5 and 10%.
  2. Cutting tool according to claim 1, characterised in that the rounding radius r of the diamond layer on the cutting edge amounts to between 3 and 100 nm, preferably between 15 and 70 nm, particularly preferably between 20 and 50 nm.
  3. Cutting tool according to one of the preceding claims, characterised in that the cutting angle β amounts to between 10° and 40°, preferably between 10° and 30°, particularly preferably between 15° and 25°.
  4. Cutting tool according to one of the preceding claims, characterised in that the ratio between the rounding radius r of the diamond layer on the cutting edge and the average particle size d50 of the fine crystalline diamond r/d50 lies between 0.03 and 20, preferably between 0.05 and 15, particularly preferably between 0.5 and 10.
  5. Cutting tool according to one of the preceding claims, characterised in that the cutting tool is formed completely from the diamond layer, wherein the diamond layer has a thickness of up to 10 to 1,000 µm, preferably 10 to 500 µm, particularly preferably 20 to 250 µm.
  6. Cutting tool according to one of claims 1 to 4, characterised in that the diamond layer is arranged on a substrate material, wherein the diamond layer has a thickness of up to 1 and 500 µm, preferably 5 to 200 µm.
  7. Cutting tool according to the preceding claim, characterised in that the substrate material is selected from the group consisting of metals, such as titanium, nickel, chromium, niobium, tungsten, tantalum, molybdenum, vanadium, platinum, materials containing iron such as steel and/or germanium; of ceramics containing carbon and/or nitrogen or boron, such as silicon carbide, silicon nitride, boron nitride, tantalum nitride, TiAlN, TiCN, and/or TiB2, glass ceramic; composite materials made from ceramic materials in a metallic matrix (cermets); hard metals; sintered carbide hard metals, such as for example tungsten carbide or titanium carbide bonded with cobalt or nickel; silicon, glass or sapphire; as well as mono- or polycrystalline diamond and/or adamantine carbon layers.
  8. Cutting tool according to one of the preceding claims, characterised in that the gradient of the average particle size of the fine crystalline diamond, measured in the direction of the thickness of the fine crystalline diamond layer, amounts to < 300 %, preferably < 100 %, particularly preferably < 50 %.
  9. Cutting tool according to one of the two preceding claims, characterised in that at least one first adhesion-promoting layer, preferably made from silicon carbide, silicon nitride, tungsten, titanium or silicon, is applied between the substrate and the fine crystalline diamond layer.
  10. Cutting tool according to one of the preceding claims, characterised in that at least one second adhesion-promoting layer, preferably made of Cr, Pt, Ti or W, is applied to the fine crystalline diamond layer, as well as a sliding layer, in particular a polymer layer, preferably a PTFE layer, carbon layer, preferably a graphite layer and/or a DLC layer.
  11. Cutting tool according to one of the preceding claims, characterised in that the diamond layer has an average surface roughness RA of < 5µm, preferably < 2 µm, particularly preferably < 1 µm.
  12. Cutting tool according to one of the preceding claims, characterised in that the cutting edge has notches or cuts at regular distances, preferably at regular distances of less than 10 mm.
  13. Cutting tool according to one of the preceding claims, characterised in that the crystallites of the fine crystalline diamond layer are especially <100>, <110> or <111> textured.
  14. Method to produce a cutting tool according to one of claims 1 to 13, containing the steps:
    a) preparing a synthetic, fine crystalline diamond layer having an average particle size d50 of ≤ 500 nm, provided that the proportion of sp- and sp2-bonds lies in the region of 0.5 to 10 %,
    b) cutting through one or both sides of the fine crystalline diamond layer at an angle α, which lies between 50° and 85°, preferably between 60° and 80°, more preferably between 65° and 75°, to the surface normal of the fine crystalline diamond layer, wherein at least one fragment results having a cutting edge, as well as
    c) re-sharpening the cutting edge by means of a plasma or ionic etching technique.
  15. Use of a cutting tool according to one of claims 1 to 13 as a blade, a knife blade, a razor blade, a razor system, a scalpel, a knife, a machining knife, scissors or as machining scissors.
EP20110001694 2011-03-01 2011-03-01 Cutting tool with blade made from fine-crystalline diamond Active EP2495081B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20110001694 EP2495081B1 (en) 2011-03-01 2011-03-01 Cutting tool with blade made from fine-crystalline diamond
US13/408,093 US8904650B2 (en) 2011-03-01 2012-02-29 Cutting tool with blade made of fine-crystalline diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20110001694 EP2495081B1 (en) 2011-03-01 2011-03-01 Cutting tool with blade made from fine-crystalline diamond

Publications (3)

Publication Number Publication Date
EP2495081A1 EP2495081A1 (en) 2012-09-05
EP2495081A8 EP2495081A8 (en) 2012-10-24
EP2495081B1 true EP2495081B1 (en) 2014-05-07

Family

ID=44310331

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110001694 Active EP2495081B1 (en) 2011-03-01 2011-03-01 Cutting tool with blade made from fine-crystalline diamond

Country Status (2)

Country Link
US (1) US8904650B2 (en)
EP (1) EP2495081B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024056307A1 (en) 2022-09-16 2024-03-21 Wmf Gmbh Cutting blade and method for the production thereof
DE102022213666A1 (en) 2022-12-14 2024-06-20 Wmf Gmbh Cutting blade and method for its manufacture

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2969267C (en) 2014-12-22 2021-07-27 Bic-Violex Sa Razor blade
WO2016109481A2 (en) 2014-12-30 2016-07-07 DePuy Synthes Products, Inc. Coatings for surgical instruments
MX2018003840A (en) * 2015-09-28 2018-06-18 Saint Gobain Abrasives Inc Method and system for removing material from a workpiece.
JP7173026B2 (en) * 2017-09-28 2022-11-16 日立金属株式会社 Cutting tool and manufacturing method thereof
FR3076480B1 (en) * 2018-01-11 2020-01-17 Carbilly MONOBLOCK KNIFE IN TUNGSTEN CARBIDE FOR ULTRASONIC CUTTING
KR102211395B1 (en) * 2019-05-22 2021-02-03 주식회사 도루코 Razor Blade and Manufacturing Method Thereof
CN111185942B (en) * 2020-02-25 2023-10-27 深圳市誉和光学精密刀具有限公司 Cutter and processing method thereof

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2359198A (en) * 1944-03-17 1944-09-26 Orville C Bowers Safety razor
US3797110A (en) * 1972-04-21 1974-03-19 G Michelson Razor with guarded razor edge
US4211006A (en) * 1979-01-02 1980-07-08 Warner-Lambert Company Guarded razor blade
US5152810A (en) * 1987-09-14 1992-10-06 Norton Company Bonded abrasive tools with combination of finely microcrystalline aluminous abrasive and a superabrasive
US5129289A (en) * 1988-07-13 1992-07-14 Warner-Lambert Company Shaving razors
US5142785A (en) * 1991-04-26 1992-09-01 The Gillette Company Razor technology
US5232568A (en) * 1991-06-24 1993-08-03 The Gillette Company Razor technology
US5669144A (en) * 1991-11-15 1997-09-23 The Gillette Company Razor blade technology
US5295305B1 (en) * 1992-02-13 1996-08-13 Gillette Co Razor blade technology
EP0757615B1 (en) * 1994-04-25 2004-03-31 The Gillette Company Process of coating a layer of amorphous diamond on blades
EP0752293B1 (en) * 1995-07-05 1999-10-20 Ngk Spark Plug Co., Ltd Diamond coated article and process for its production
US5795648A (en) * 1995-10-03 1998-08-18 Advanced Refractory Technologies, Inc. Method for preserving precision edges using diamond-like nanocomposite film coatings
JP2000515818A (en) 1996-07-30 2000-11-28 ドレッカー・インターナショナル・ベー・ファウ Manufacturing method of cutting tool insert
US5763879A (en) * 1996-09-16 1998-06-09 Pacific Western Systems Diamond probe tip
US7368013B2 (en) * 1997-04-04 2008-05-06 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
US7323049B2 (en) * 1997-04-04 2008-01-29 Chien-Min Sung High pressure superabrasive particle synthesis
DE19859905C2 (en) 1998-01-27 2002-05-23 Gfd Ges Fuer Diamantprodukte M Diamond cutting tool
US6004362A (en) * 1998-02-02 1999-12-21 Lockheed Martin Energy Systems Method for forming an abrasive surface on a tool
ATE390233T1 (en) * 1999-08-06 2008-04-15 Hoya Corp EYEWEAR LENS PROCESSING METHOD AND APPARATUS
JP4741056B2 (en) * 2000-06-05 2011-08-03 株式会社貝印刃物開発センター Blade member and method of manufacturing the blade edge
SE521223C2 (en) * 2000-11-23 2003-10-14 Kapman Ab Saw blades for metal
JP3590579B2 (en) * 2000-12-11 2004-11-17 オーエスジー株式会社 Diamond coated member and method of manufacturing the same
US20050028389A1 (en) 2001-06-12 2005-02-10 Wort Christopher John Howard Cvd diamond cutting insert
US6802423B2 (en) * 2002-02-20 2004-10-12 Trans Global Foods, Inc. Disposable food delivery apparatus
US7387742B2 (en) * 2002-03-11 2008-06-17 Becton, Dickinson And Company Silicon blades for surgical and non-surgical use
GB0212530D0 (en) 2002-05-30 2002-07-10 Diamanx Products Ltd Diamond cutting insert
US7396484B2 (en) * 2004-04-30 2008-07-08 Becton, Dickinson And Company Methods of fabricating complex blade geometries from silicon wafers and strengthening blade geometries
DE102004031956A1 (en) * 2004-06-24 2006-01-12 Wilhelm Stahlecker Gmbh Open-end spinning rotor, having fiber contacting surfaces provided with nickel-diamond coating containing projecting, small diamond particles to optimize roughness
DE102004052068B4 (en) 2004-10-26 2008-04-03 GFD-Gesellschaft für Diamantprodukte mbH Cutting tool and its use
DE102005048691B4 (en) * 2005-01-21 2012-09-13 Siemens Ag Tool and method for machining a workpiece from a rock-like material or a ceramic
US9327416B2 (en) * 2009-07-17 2016-05-03 The Gillette Company Atomic layer deposition coatings on razor components
KR101751562B1 (en) * 2010-01-11 2017-06-27 이스카 엘티디. Coated cutting tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024056307A1 (en) 2022-09-16 2024-03-21 Wmf Gmbh Cutting blade and method for the production thereof
DE102022209741A1 (en) 2022-09-16 2024-03-21 Wmf Gmbh CUTTING BLADE AND METHOD FOR PRODUCING THE SAME
DE102022213666A1 (en) 2022-12-14 2024-06-20 Wmf Gmbh Cutting blade and method for its manufacture
WO2024125857A1 (en) 2022-12-14 2024-06-20 Wmf Gmbh Cutting blade and method for the production thereof

Also Published As

Publication number Publication date
US8904650B2 (en) 2014-12-09
EP2495081A8 (en) 2012-10-24
US20120276826A1 (en) 2012-11-01
EP2495081A1 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
EP2495081B1 (en) Cutting tool with blade made from fine-crystalline diamond
DE60002812T2 (en) Process for producing atomically sharp cutting blades.
DE69717635T2 (en) METHOD FOR PRODUCING A CUTTING INSERT FOR CUTTING TOOL
DE3873286T2 (en) METHOD FOR PRODUCING A DIAMOND-Lined CUTTING INSERT.
DE60110386T2 (en) RAZOR TECHNOLOGY
DE69119902T2 (en) RAZOR BLADE TECHNOLOGY
DE69333176T2 (en) Process for the production of a synthetic diamond layer
DE69131063T2 (en) Super hard material film structure, its manufacturing process and its use
DE69222138T2 (en) DIAMOND-COVERED HARD MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
DE69223075T3 (en) Diamond-coated or diamond-coated carbon-coated hard materials
DE69226640T2 (en) RAZOR BLADE AND METHOD FOR PRODUCING A RAZOR BLADE
DE69504896T2 (en) Synthetic diamond layer with reduced bending and process for its production
DE69602448T2 (en) Treatment of a cemented carbide substrate before the deposition of a diamond film using CVD
DE102013218446A1 (en) Tool and method for cutting fiber reinforced materials
EP0279898A1 (en) Process for applying a protection layer against wear and tear and product manufactured accordingly
DE202006020384U1 (en) razor blades
EP2495080B1 (en) Cutting tool with blade made from fine-crystalline diamond
DE112021002343T5 (en) shaving device
EP2511229A1 (en) Micromechanical component with reinforced flanks
EP3586991B1 (en) Method for producing a steel strip blade and steel strip blade for tools
DE112021002346T5 (en) Cutting knife and hair removal device
DE102013005437A1 (en) Hard material layers with selected thermal conductivity
DE112021002360T5 (en) Cutting knife and hair removal device
DE69512298T2 (en) Process for making a diamond coated article
DE69010293T2 (en) Ceramic-coated cemented carbide tool with high breaking resistance.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GLUCHE, PETER, DR.-ING.

Inventor name: STROBEL, STEFAN

Inventor name: FLOETER, ANDRE, DR.

17Q First examination report despatched

Effective date: 20130717

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 666240

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011002951

Country of ref document: DE

Effective date: 20140618

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140507

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140808

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140907

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011002951

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011002951

Country of ref document: DE

Effective date: 20150210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150301

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150301

REG Reference to a national code

Ref country code: CH

Ref legal event code: AECN

Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 25. JANUAR 2016 REAKTIVIERT WORDEN.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

Effective date: 20160202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: CH

Effective date: 20160125

Ref country code: LI

Effective date: 20160125

REG Reference to a national code

Ref country code: GB

Ref legal event code: S28

Free format text: APPLICATION FILED

REG Reference to a national code

Ref country code: GB

Ref legal event code: S28

Free format text: RESTORATION ALLOWED

Effective date: 20160629

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

Effective date: 20160622

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 666240

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240325

Year of fee payment: 14

Ref country code: GB

Payment date: 20240320

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240327

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 14