EP2491106A2 - Mehrkammer-photobioreaktor - Google Patents

Mehrkammer-photobioreaktor

Info

Publication number
EP2491106A2
EP2491106A2 EP10766059A EP10766059A EP2491106A2 EP 2491106 A2 EP2491106 A2 EP 2491106A2 EP 10766059 A EP10766059 A EP 10766059A EP 10766059 A EP10766059 A EP 10766059A EP 2491106 A2 EP2491106 A2 EP 2491106A2
Authority
EP
European Patent Office
Prior art keywords
chamber
silicone
photobioreactor
medium
cultivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10766059A
Other languages
English (en)
French (fr)
Inventor
Christoph MÜLLER-REES
Klaus Wenzeis
Florian Sprüderer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP2491106A2 publication Critical patent/EP2491106A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/22Heat exchange systems, e.g. heat jackets or outer envelopes in contact with the bioreactor walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings

Definitions

  • the invention relates to a multi-chamber photobioreactor with at least one cultivation chamber and at least one tempering chamber.
  • Photobioreactors are used for the large-scale production of phototrophic organisms, for example cyanobacteria or microalgae, for example Spirulina, Chlorella, Clamydomonas or Haematococcus. Such microalgae are able to convert light energy, C0 2 and water into biomass.
  • Photobioreactors of the first generation use sunlight as a light source.
  • the reactors consist of large open tank systems of many shapes, such as round tower systems with diameters of up to 45 m and all-round ones
  • reactors are generally made of concrete or plastics. Closed bioreactors are also used in many forms.
  • the closed bioreactors can be plate bioreactors, tube bioreactors, (bubble) column bioreactors or tube bioreactors.
  • This type of reactor is made of transparent or translucent materials, such as glass or plastic, to optimize light exposure.
  • photoreactors are described, which are illuminated with LED plastic moldings in which LED luminous bodies are enclosed in a plastic matrix, preferably a silicone matrix.
  • the temperature of the culture medium is also of great importance for setting optimal cultivation conditions.
  • external heat exchangers are often used.
  • a plate reactor of transparent Materi ⁇ alien such as glass or plastic for the cultivation of phototrophic organisms This plate reactor is flowed through by a culture medium, which is tempered by means of an external heat exchanger.
  • Subject of the DE 202005001733 Ul is a solar reactor for plant algae and microorganisms, wherein the culture medium circulates in a spiral, transparent tube reactor. To warm the culture medium, an external heating module is recommended.
  • the temperature of a plate photo bioreactor with an external heat exchanger is described in US 2008/0293132, wherein for cooling the plates they can also be equipped with cooling channels.
  • a disadvantage of these embodiments is that the temperature regulation does not take place continuously over the volume of the cultivation medium.
  • US 2007/0048848 describes the cultivation of biomasses in troughs which can be covered with insulating materials.
  • a tube reactor for algae cultivation is described with a heating element which is separated by means of insulating material from the algae medium.
  • a disadvantage of the use of insulating materials is that the temperature control can not be actively controlled.
  • WO 2009/039317 describes a photobioreactor, which is surrounded by a double jacket, in which a gaseous or liquid temperature control medium circulates.
  • the subject matter of WO 98/18903 A1 is an actively or passively heatable solar element for solar reactors in the form of multiwall plates permeable by liquid, wherein the reaction medium or temperature medium flows through the spaces formed by the webs, whereby the surface of the compartment filled with reactor medium comes into contact with the surface of the compartment filled with tempering medium.
  • No. 5958761 describes a photobioreactor for algae cultivation consisting of a cylindrical container with an inner, coaxial cylindrical body, which are each made of glass.
  • the inner cylinder is filled with culture medium, which is surrounded by tempering medium, which circulates in the outer cylinder.
  • a disadvantage of these embodiments is the choice of material, which is only costly to remove deposits of microorganisms on the walls of the culture medium enclosing chamber leads.
  • cultures of macroorganisms and microorganisms are very sensitive systems that require as constant a condition as possible for successful cultivation. If the cultivation parameters are not constant during the algae growth phase (light, temperature, flow characteristics), then the quality of the algae changes as a result of the stress-induced conversion of the substance exchange processes. Only by constant production conditions during the entire algae cultivation period can algae be produced with constant and reproducible properties. Allocation of the surfaces in the cultivation chamber with algae alters these production parameters
  • the invention relates to a multi-chamber photobioreactor having at least one cultivation chamber and at least one Temper michshunt, characterized in that at least one outer surface of the cultivation chamber in contact with the tempering in such a way by at least 50% of at least one outer surface of the cultivation chamber with the tempering in Contacting, and that the culture medium coming into contact with the components are made of silicone materials or coated with silicone materials.
  • the multi-chamber photobioreactor is suitable for culturing phototrophic macroorganisms or microorganisms in an aqueous medium.
  • phototrophic organisms while those are referred to which light and carbon dioxide, or optionally another carbon source that needs to grow.
  • phototrophic macroorganisms are macroalgae, plants, mosses, plant cell cultures.
  • phototrophic microorganisms are phototrophic bacteria such as purple bacteria and phototrophic microalgae including cyanobacteria.
  • the multi-chamber photobioreactor of the cultivation of phototrophic microorganisms particularly preferably the cultivation of phototrophic microalgae.
  • Suitable culturing media contain, besides water and macro- or microorganisms preferably nutrient salts and / or growth or product-forming demanding substances, if appropriate, organic or ⁇ organic carbon sources such as bicarbonates or sodium bicarbonate.
  • the culture medium may optionally be additionally buffered with respect to the pH.
  • the temperature control medium used is preferably water.
  • At least one outer surface of the culture chamber comes into contact with the temperature control medium in such a way that the temperature fluctuations in the culture medium are as small as possible.
  • at least 50% of at least one outer surface of the cultivation chamber should come into contact with the tempering medium.
  • An embodiment is preferred in which at least one outer surface of the culture chamber completely comes into contact with the temperature control medium.
  • the shape of the multi-chamber reactor is arbitrary, as long as the multi-chamber principle is met. It can hoses, pipes, plates, bags are used in any desired shape.
  • the multi-chamber photobioreactor with at least one cultivation chamber and at least one tempering chamber may have the shape of a hose or tube, each with a round, oval or polygonal cross-section.
  • hose also includes the
  • Embodiment tube For separation of culture chamber and tempering the hose can be divided by incorporating webs into two or more chambers.
  • the hose can be divided into two chambers by means of a radially extending web. It is also possible to proceed in such a way that the hose has one or more inner hoses arranged in its interior, which are optionally connected to the outer hose with a web.
  • Another alternative is to have one or more tubes with a smaller diameter in an outer tube with a larger diameter
  • Diameter are inserted. Preference is given to a tube which is composed of an outer tube and a coaxially extending inner tube. Particularly preferred is a hose 1 (double hose), which contains a coaxial duri fenden inner hose 2, which is connected via a web 3 with the outer hose 4; as shown in Fig. 1 double tube.
  • hose 1 double hose
  • the tubular reactor when divided into two chambers, one of the chambers is in each case fed with culture medium and the other chamber with tempering medium. In the case of more than two chambers, these are preferably charged alternately with culture medium or temperature control medium.
  • the cultivation medium can be filled into the outer tube and the tempering medium into the inner tube.
  • the inner tube is filled with the cultivation medium and the outer tube with the tempering medium.
  • the multi-chamber photobioreactor having at least one culture chamber and at least one temperature control chamber may also have the shape of a plate reactor, wherein two or more plane-parallel plates are tightly connected by means of webs each set between the plates. For the lateral completion of the plate reactor side plates are provided, which are tightly connected to the plane-parallel plates.
  • the chambers of the plate reactor thus formed can be charged alternately with culture medium and tempering medium.
  • two or more bags can be joined together so that a common
  • the multi-chamber photobioreactor is at least partially, preferably completely, made of transparent or translucent materials.
  • Transparent materials are understood to mean those which transmit at least 80% of the light in the spectral range from 400 nm to 1000 nm.
  • Translucent materials are understood as meaning those which transmit at least 50% of the light in the spectral range from 400 nm to 1000 nm. Preference is given to transparent materials. It is essential that those regions of the multi-chamber photobioreactor, which are arranged between the cultivation medium and the light source (s) for illuminating the culture medium, are made of transparent / translucent materials. If the cultivation medium is located in an outer chamber and the temperature control medium in an inner chamber, which are each surrounded by the cultivation medium, then the chamber containing the temperature control medium can be manufactured from non-transparent or non-translucent materials.
  • Suitable materials are glass and plastics, for example homopolymers or copolymers such as polymethyl methacrylate (Plexiglas), polyesters such as PET, polycarbonate, polyamide, polystyrene, Polyethylene, polypropylene, polyvinyl chloride or silicone mate ⁇ materials such as silicones or copolymers with silicone and organ- ganocopolymer sections.
  • silicone materials such as silicones or copolymers with silicone and organocopolymer sections are used.
  • silicone materials such as silicones or copolymers, with silicone and organocopolymer sections unless they are made from these materials.
  • silicone materials such as silicones or copolymers
  • silicone and organocopolymer sections unless they are made from these materials.
  • Particularly preferred are transparent or translucent Si ⁇ liconmaterialien.
  • Suitable silicone materials are, for example, addition-crosslinking silicones (silicone rubbers), it being possible for the addition crosslinking to be initiated thermally or by means of radiation, and also copolymers having silicone and organocopolymer portions (silicone hybrid polymers).
  • Addition-crosslinking silicone rubber systems contain a) organosilicon compounds, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with aliphatic radicals, the radicals with
  • organosilicon compounds having Si-bonded hydrogen atoms or instead of a) and b) c) organosilicon compounds having radicals with aliphatic carbon-carbon multiple bonds and Si-bonded hydrogen atoms, and in each case
  • Suitable addition reaction-crosslinking silicone rubbers are crosslinking solid silicone rubbers (HTV) when the temperature increases.
  • Addition-crosslinking HTV silicone rubbers are obtained by the crosslinking of multiply ethylenically unsaturated groups, preferably vinyl groups, substituted organopolysiloxanes with organopolysiloxanes substituted several times by Si-H groups in the presence of platinum catalysts.
  • one of the components of the peroxidically or addition-crosslinking HTV-2 silicone rubbers consists of dialkyl polysiloxanes of the structure R 3 SiO [-SiR 2 O] n -SiR 3 with n> 0, generally having 1 to 4 C atoms in the alkyl radical, wherein the alkyl radicals may be wholly or partially replaced by aryl radicals such as the phenyl radical and replaced at one or both ends, one of the terminal radicals R by a polymerizable group such as the vinyl group.
  • aryl radicals such as the phenyl radical and replaced at one or both ends
  • one of the terminal radicals R by a polymerizable group such as the vinyl group.
  • polymers having lateral or terminal and terminal vinyl groups it is also possible to use polymers having lateral or terminal and terminal vinyl groups.
  • the second component is a copolymer of dialkylpolysiloxanes and polyalkylhydrogensiloxanes having the general formula R ' 3 SiO [-SiR 2 O] n - [SiHRO] m -SiR' 3 with m> 0, n> 0 and the proviso in that at least two SiH groups must be present, where R 'can have the meaning of H or R.
  • R 'can have the meaning of H or R.
  • the crosslinking catalysts used are platinum catalysts.
  • HTV silicone rubbers are also processed as a one-component system. Suitable materials are also silicone hybrid polymers. Silicone hybrid polymers are copolymers or graft copolymers of organopolymer blocks, for example polyurethane, polyurea or polyvinyl esters, and silicone blocks, in general mine based on polydialkylsiloxanes of the above specification.
  • thermoplastic silicone hybrid polymers are described in EP 1412416 Bl and EP 1489129 B1, the disclosure of which should also be the subject of this application. Such silicone hybrid polymers are described as
  • TPSE Thermoplastic silicone elastomers
  • Suitable materials are also (condensation or radiation) crosslinkable silicone hybrid materials, as described in WO 2006/058656.
  • Essential for the inhibition or prevention of the growth of microorganisms is the morphology of the surface of the silicone tubes.
  • the morphology of the surface is determined by the contact angle of this surface to water. Surfaces with contact angles between 100 ° and 120 °, particularly preferably surfaces with contact angles between 100 ° and 115 °, and very particularly preferably surfaces with contact angles between 100 ° and 113 ° are preferred.
  • the contact angle is set by the choice of silicone materials. Further measures for increasing the contact angle, for example roughening of the surface (for example imitation of the so-called lotus effect), are preferably dispensed with. Namely, such roughening may interfere with the cultivation of the phototrophic microorganisms.
  • the determination of the contact angle of the surface of the silicone tubing to water can be carried out by methods known to those skilled in the art, for example according to DIN 55660-2, using commercially available measuring devices for determining the contact angle, for example the contact angle measuring systems available from Krüss.
  • said addition-crosslinked silicones may contain conventional additives for adhesion promotion or conventional fillers or fiber materials for improving the mechanics. These additives are preferably used at most in amounts such that the silicone molding remains transparent or translucent. It is also possible to add light-conducting additives and light-wave-shifting additives. It is also preferred to use silicone materials for coating the components which come into contact with the culture medium, in particular if the components are not made of the silicone materials mentioned.
  • Silicone materials which are preferred as coating materials are, in addition to the silicone materials already mentioned for the preparation of the components, silicone resins which cure by condensation at room temperature, addition-crosslinking silicone rubbers at room temperature, and silicone resins and silicone gels.
  • Suitable as coating materials, condensation-curing silicone rubbers at room temperature, are crosslinking 1-component systems, so-called RTV-1, at room temperature.
  • the RTV-1 silicone rubbers are organopolysiloxanes having condensable end groups which crosslink in the presence of catalysts under condensation at room temperature.
  • the most common are dialkyl kylpolysiloxane the structure RsSiO [-SiR 2 0] n -SiR 3 with a Ket ⁇ tenate of n> 2.
  • the alkyl radicals R can be identical or different and generally have 1 to 4 carbon atoms and may optionally be substituted.
  • alkyl radicals R Kgs ⁇ NEN also be partially replaced by other groups, managed primarily by aryl radicals, which are optionally substituted, and wherein the alkyl (aryl) groups R are replaced in part by the condensation crosslinkable groups, for example alcohol ( Alkoxy system), acetate (acetic acid system), amine (amine system) or oxime radicals (oxime system).
  • the crosslinking is catalyzed by means of suitable catalysts, for example tin or titanium catalysts.
  • RTV-2 silicone rubbers are obtained by condensation crosslinking of organopolysiloxanes substituted several times by hydroxy groups in the presence of Selklareestern.
  • crosslinking agents also can alkylsilanes with Al alkoxy- (alkoxy system), oxime (oxime system), amine (amine system) or acetate (acetic acid system) are used, wel ⁇ che in the presence of suitable condensation catalysts, such as tin or titanium catalysts with crosslink the hydroxy-terminated polydialkylsiloxanes.
  • Examples of contained ⁇ requested in RTV-1, and RTV-2 silicone rubber polydialkylsiloxanes are those of the formula (OH) R 2 SiO [- SiR 2 0] n -SiR 2 (OH) with a chain length of n> 2, wherein the Al - Cyl radicals R may be the same or different, generally contain 1 to 4 carbon atoms and may optionally be substituted.
  • the alkyl radicals R can also be partially replaced by other radicals, preferably by aryl radicals, which are optionally substituted.
  • Room temperature addition-crosslinking silicone rubbers which are crosslinking at room temperature are crosslinking 1-component systems, so-called addition-crosslinking RTV-1 silicone rubbers, room temperature crosslinking 2-component systems, so-called addition-crosslinking RTV-2. Silicone rubbers or multi-component systems which crosslink at room temperature.
  • the crosslinking reaction can be cationic, by means of appropriate catalysts, or free radical, by means of peroxides or by radiation, in particular ⁇ sondere UV radiation, or thermally initiated.
  • Addition-crosslinking RTV-2 silicone rubbers are obtained by crosslinking Pt-catalysts with crosslinking of multiply ethylenically unsaturated groups, preferably vinyl groups, of substituted organopolysiloxanes with organopolysiloxanes substituted several times by Si-H groups in the presence of platinum catalysts.
  • one of the components consists of dialkylpolysiloxanes of the structure R 3 SXO [-SiR 2 O] n -SiR. 3 with n> 0, in general having 1 to 4 C atoms in the alkyl radical, where the alkyl radicals can be replaced wholly or partly by aryl radicals such as the phenyl radical, and at one or both ends of one of the terminal radicals R by a polymerizable Group as the vinyl group is replaced.
  • radicals R in the siloxane chain also in combination with the radicals R of the end groups, can be replaced by polymerizable groups. Preference is given to vinyl end-blocked polydimethylsiloxanes of the structure used.
  • the second component contains a Si-H functional crosslinker.
  • the polyalkylhydrogensiloxanes commonly used are copolymers of dialkylpolysiloxanes and Polyalkylhydro- gensiloxanen having the general formula R '3 S1O [-SiR 2 0] n - [SiHRO] m -SiR' 3, with m> 0, n> 0, and the proviso that Minim - Must contain at least two SiH groups, where R 'can have the Be ⁇ interpretation of H or R.
  • There are therefore crosslinkers with pendant and terminal SiH groups, while siloxanes with R ' H, which have only terminal SiH groups, are also used for chain extension.
  • the crosslinking catalyst contains small amounts of an organoplatinum compound.
  • silicone rubbers are commercially available, which are crosslinked via the described addition reaction by special platinum complexes or platinum / inhibitor systems are thermally and / or photochemically activated and thus catalyze the crosslinking reaction.
  • Silicone resins are also suitable materials for the preparation of the transparent or translucent coating.
  • the silicone resins contain units of the general formula R b (RO) c SiO (4_ b - c) / 2 wherein b is 0, 1, 2 or 3, c is 0, 1, 2 or 3, with the Provided that b + c ⁇ 3, and R in the meaning given above, which build a highly cross-linked organosilicone Net zwerk.
  • Silicone resins can be used solvent-free, solvent-based or as aqueous systems.
  • functionalized silicone resins functionalized for example, with epoxy or amine groups.
  • Silicone gels are also suitable materials for the preparation of the transparent or translucent coating. Silicone gels are made from two castable components which crosslink at room temperature in the presence of a catalyst.
  • One of the components generally consists of dialkylpolysiloxanes of the structure R 3 SiO [-SiR 2 O] n -SiR 3 with n> 0, generally having 1 to 4 C atoms in the alkyl radical, the alkyl radicals being wholly or partly be replaced by aryl radicals such as the phenyl radical, and is replaced at one or both ends of one of the terminal radicals R by a polymerizable group such as the vinyl group.
  • radicals R in the siloxane chain also in combination with the radicals R of the end groups, can be replaced by polymerizable groups.
  • Vinyl end-blocked polydimethylsiloxanes of the structure CH 2 CHCH 2 -R 2 SiO [-SiR 2 O] n -SiR 2 -CH 2 CHCH 2 are preferably used.
  • the second component contains a Si-H functional crosslinker.
  • the polyalkylhydrogensiloxanes commonly used are copolymers of dialkylpolysiloxanes and polyalkylhydrogensiloxanes having the general formula R ' 3 SiO [-SiR 2 O] n - [SiHRO] j n -SiR' 3 with m> 0, n> 0 and with the proviso that At least two SiH groups must be included, where R 'may have the meaning of H or R.
  • R ' may have the meaning of H or R.
  • As crosslinking catalyst small amounts of an organoplatinum compound are included. By mixing the components, the crosslinking reaction is triggered and the gel is formed. This crosslinking reaction can be accelerated by the action of heat and / or by electromagnetic radiation, preferably UV radiation.
  • the materials for the multi-chamber photobioreactor may contain conventional additives such as fillers or fiber materials for improving the mechanics. These additives are preferably used in maximum amounts such that the material remains transparent or translucent additions of light wave shifting additives may be added to optimize the useful radiation yield Suitable additives are also wavelength blocking additives, for example for blocking infrared radiation.
  • the chambers of the multi-chamber photobioreactor can also have geometric structures, for example for improving the flow properties or for light scattering. Examples of this are knobs or imprints in the material of the chambers.
  • thermoplastic silicones thermoplastic injection molding
  • elastomeric silicones elastomer injection molding
  • thermosetting silicones thermosetting silicones
  • the silicones are in liquid form, either pure, as a solution or in aqueous
  • Emulsion applied The viscosity of the liquid to be applied for coating is preferably from 10 mPas to 300,000 mPas.
  • the application can be carried out by the usual techniques, preferably brushing, spraying, dipping, roasting, pouring. Particularly preferred in this case is the dipping and spraying.
  • other methods such as e.g. Sponge application, spin, extrusion or cross head extrusion can be applied, as well as for flat surfaces additionally application by roller coating, roller coating or patting.
  • the thickness of the coating is 10 nm to 1000 ⁇ , preferably 1 ⁇ to 100 ⁇ .
  • the reactor parts to be coated, to improve the adhesion of the silicones can be pretreated, for example by means of corona treatment.
  • the silicones may contain conventional adhesion promoting additives or conventional engineered fillers. These additives are preferably used maximally in amounts such that the silicone coating remains transparent or translucent.
  • the lighting is generally provided by means of sunlight, which can be supplemented if necessary by artificial light (artificial light sources).
  • artificial light artificial light sources
  • lighting means containing LEDs are used for the artificial lighting.
  • other artificial light sources such as fluorescent fluorescent lamps, neon lamps, metal vapor lamps, inert gas lamps, halogen lamps, welding plasma lamps are also suitable.
  • the cultivation conditions can be optimized by the use of light sources with defined wavelengths, defined intensity and possibly by means of pulsating light sources become. It is also conceivable to insert or install the artificial light sources, for example in the form of LED chains, in one or more chambers of the multi-chamber photobioreactor.
  • the culture medium containing the phototrophic organisms is generally delivered from a reservoir into the respective chambers of the multi-chamber photobioreactor.
  • the promotion can be done mechanically by means of a pump.
  • the promotion of the culture medium can also by means of airlift, that is, by means of air or by means of an air / C0 2 mixture or nitrogen as carrier gas, take place, which simultaneously ensures the supply of the culture medium with C0 2 .
  • the supply of CO 2 can also be carried out separately and pulsed and thus serve to adjust the pH in the culture medium.
  • the separation of the cultured organisms is carried out in a Separator Anlagen, for example by means of centrifugation, filtration or sedimentation.
  • the tempering medium is introduced into the corresponding chambers.
  • the promotion preferably takes place pneumatically by means of a pump, in cocurrent or in countercurrent to the culture medium.
  • the circulation of the tempering medium may include a heat exchanger unit for regulating the temperature of the tempering medium.
  • the temperature of the Temper michsmediums depends essentially on the ambient temperature and can be adjusted accordingly.
  • the operation of the multi-chamber photobioreactor is organized with automation technology.
  • automation technology include the automated monitoring and adjustment of specific process parameters such as flow rates, temperature, gas exchange, fluid exchange, density or viscosity, salinity of the culture medium, given all light in artificial lighting (intensity, wavelength, light / dark cycle, temporal adaptation / change ).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

Mehrkammer-Photobioreaktor mit mindestens einer Kultivierungskammer und mindestens einer Temperierungskammer, dadurch gekennzeichnet, dass zumindest eine Außenfläche der Kultivierungskammer mit dem Temperierungsmedium in der Weise in Kontakt tritt, indem mindestens 50 % von zumindest einer Außenfläche der Kultivierungskammer mit dem Temperierungsmedium in Kontakt treten, und dass die mit dem Kultivierungsmedium in Kontakt tretenden Bauelemente aus Siliconmaterialien gefertigt sind oder mit Siliconmaterialien beschichtet sind.

Description

Mehrkämme -Pho obioreaktor
Die Erfindung betrifft einen Mehrkammer-Photobioreaktor mit mindestens einer Kultivierungskammer und mindestens einer Tem- perierungskammer .
Photobioreaktoren werden zur großtechnischen Produktion von phototrophen Organismen, z.B. Cyanobakterien oder Mikroalgen, beispielsweise Spirulina, Chlorella, Clamydomonas oder Haema- tococcus eingesetzt. Derartige Mikroalgen sind in der Lage, Lichtenergie, C02 und Wasser in Biomasse umzuwandeln.
Photobioreaktoren der ersten Generation nutzen das Sonnenlicht als Lichtquelle. Die Reaktoren bestehen aus großen offenen Beckenanlagen in vielerlei Formgestalt, beispielsweise Rund- beckenanlagen mit Durchmessern bis zu 45 m und umlaufenden
Mischarmen. Diese Reaktoren sind im Allgemeinen aus Beton oder Kunststoffen gefertigt. Geschlossene Bioreaktoren werden ebenfalls in vielerlei Formen eingesetzt. Bei den geschlossenen Bioreaktoren kann es sich um Plattenbioreaktoren, Rohrbioreak- toren, (Blasen) Säulenbioreaktoren oder Schlauchbioreaktoren handeln. Dieser Reaktortyp wird zur Optimierung der Lichteinstrahlung aus transparenten oder transluzenten Materialien gefertigt, wie Glas oder Kunststoff. In der WO 2008/145719 werden Photoreaktoren beschrieben, welche mit LED-Kunststoff- Formteilen ausgeleuchtet werden, in denen LED-Leuchtkörper in einer Kunststoffmatrix, vorzugsweise einer Siliconmatrix, eingeschlossen sind.
Neben der Lichteinstrahlung ist auch die Temperatur des Kulti- vierungsmediums von großer Bedeutung zur Einstellung optimaler Kultivierungsbedingungen. Zur Temperaturkontrolle werden deshalb häufig externe Wärmetauscher eingesetzt. In der DE
4134813 AI ist ein Plattenreaktor aus transparenten Materi¬ alien wie Glas oder Kunststoff zur Kultivierung von photo- trophen Organismen beschrieben. Dieser Plattenreaktor wird von einem Kultivierungsmedium durchströmt, welches mittels eines externen Wärmetauschers temperiert wird. Gegenstand der DE 202005001733 Ul ist ein Solarreaktor für pflanzliche Algen und Mikroorganismen, worin das Kultivierungsmedium in einem spiralförmigen, transparenten Rohrreaktor zirkuliert. Zur Erwärmung des Kultivierungsmediums wird ein externes Heizmodul empfohlen. Die Temperierung eines Plattenphotobioreaktors mit einem externen Wärmetauscher ist in der US 2008/0293132 beschrieben, wobei zur Kühlung der Platten diese auch mit Kühlkanälen ausgestattet werden können. Nachteilig an diesen Ausführungsformen ist, dass die Temperaturregulierung nicht kon- tinuierlich über das Volumen des Kultivierungsmediums erfolgt. Es können daher Temperaturgradienten und Temperaturschwankungen im Kultivierungsmedium auftreten. Die US 2007/0048848 beschreibt die Kultivierung von Biomassen in Trögen, welche mit Isoliermaterialien abgedeckt werden können. In der NL 9100715 A wird ein Rohrreaktor zur Algenkultivierung beschrieben mit einem Heizelement, welches mittels Isoliermaterial vom Algenmedium abgetrennt ist. Nachteilig bei der Verwendung von Isoliermaterialien ist, dass die Temperaturkontrolle nicht aktiv geregelt werden kann.
Die WO 2009/039317 beschreibt einen Photobioreaktor, welcher mit einem Doppelmantel umgeben ist, in welchem ein gasförmiges oder flüssiges Temperierungsmedium zirkuliert. Gegenstand der WO 98/18903 AI ist ein aktiv oder passiv temperierbares Solar- element für Solarreaktoren in Form von flüssigkeitsdurchström- baren Stegmehrfachplatten, wobei die durch die Stege gebildeten Räume von Reaktionsmedium bzw. Temperiermedium durchströmt werden, wodurch die Oberfläche des mit Reaktormedium befüllten Kompartiments mit der Oberfläche des mit Temperier- medium befüllten Kompartiments in Kontakt kommt. Die US
5958761 beschreibt einen Photobioreaktor zur Algenkultivierung bestehend aus einem zylindrischen Behältnis mit einem innenliegenden, koaxial verlaufenden zylindrischen Körper, welche jeweils aus Glas gefertigt sind. Der innenliegende Zylinder ist mit Kultivierungsmedium befüllt, welches von Temperierungsmedium umgeben ist, welches im äußeren Zylinder zirkuliert. Nachteilig bei diesen Ausführungsformen ist die Materialwahl, welche zu nur aufwändig zu entfernenden Anlagerungen von Mikroorganismen an den Wänden der das Kultivierungsmedium umschließenden Kammer führt.
Weiter ist zu beachten, dass es sich bei Kulturen von Makro- und Mikroorganismen um sehr sensible Systeme handelt, welche möglichst konstante Bedingungen für eine erfolgreiche Kultivierung benötigen. Wenn nämlich die Kultivierungsparameter während der Algenwachstumsphase nicht konstant sind (Licht, Temperatur, Strömungscharakteristik) , dann verändert sich die Qualität der Algen infolge stressbedingter Umstellung der Stoff echselvorgänge . Nur durch konstante Produktionsbedingungen während der gesamten Algenkultivierungsperiode können Algen mit konstanten und reproduzierbaren Eigenschaften erzeugt werden. Eine Belegung der Oberflächen in der Kultivierungskammer mit Algen verändert diese Produktionsparameter
unkontrollierbar .
Es bestand daher die Aufgabe, einen geschlossenen Photobioreaktor zu konstruieren, welcher zum Einen die gleichmäßige und kontrollierte Temperierung des Kultivierungsmediums sicherstellt und zum Anderen der Anlagerung von Mikroorganismen vorbeugt bzw. die Abreinigung von Anlagerungen erleichtert.
Gegenstand der Erfindung ist ein Mehrkammer-Photobioreaktor mit mindestens einer Kultivierungskammer und mindestens einer Temperierungskammer, dadurch gekennzeichnet, dass zumindest eine Außenfläche der Kultivierungskammer mit dem Temperierungsmedium in der Weise in Kontakt tritt, indem mindestens 50 % von zumindest einer Außenfläche der Kultivierungskammer mit dem Temperierungsmedium in Kontakt treten, und dass die mit dem Kultivierungsmedium in Kontakt tretenden Bauelemente aus Siliconmaterialien gefertigt sind oder mit Siliconmaterialien beschichtet sind.
Der Mehrkammer-Photobioreaktor eignet sich zur Kultivierung von phototrophen Makro- oder Mikroorganismen in wässrigem Medium. Als phototrophe Organismen werden dabei solche bezeichnet, welche Licht und Kohlendioxid, oder gegebenenfalls noch eine weitere Kohlenstoffquelle, zum Wachstum benötigen. Beispiele für phototrophe Makroorganismen sind Makroalgen, Pflanzen, Moose, Pflanzenzellkulturen . Beispiele für phototrophe Mikroorganismen sind phototrophe Bakterien wie Purpurbakterien und phototrophe Mikroalgen einschließlich Cyanobakterien . Bevorzugt dient der Mehrkammer-Photobioreaktor der Kultivierung von phototrophen Mikroorganismen, besonders bevorzugt der Kultivierung phototropher Mikroalgen. Geeignete Kultivierungsmedien enthalten neben Wasser und Makro- oder Mikroorganismen vorzugweise noch Nährsalze und/oder Wachstums- oder Produkt- bildungs-fordernde Stoffe, gegebenenfalls organische oder an¬ organische Kohlenstoffquellen wie beispielsweise Bicarbonate oder Natriumhydrogencarbonat . Das Kultivierungsmedium kann bezüglich des pH-Wertes gegebenenfalls zusätzlich abgepuffert werden.
Als Temperierungsmedium wird vorzugsweise Wasser eingesetzt.
Wesentlich ist, dass zumindest eine Außenfläche der Kultivie- rungskammer mit dem Temperierungsmedium in der Weise in Kontakt tritt, dass die Temperaturschwankungen im Kultivierungsmedium möglichst gering ausfallen. Dazu sollten mindestens 50 % von zumindest einer Außenfläche der Kultivierungskammer mit dem Temperierungsmedium in Kontakt treten. Bevorzugt wird eine Ausführungsform, bei der zumindest eine Außenfläche der Kultivierungskammer vollständig mit dem Temperierungsmedium in Kontakt tritt. Bei Ausführungsformen, bei welchen eine Außenfläche der Kultivierungskammer nicht vollständig mit dem Temperierungsmedium in Kontakt tritt, kann auch so vorgegangen wer- den, dass die Kontaktfläche nicht durchgehend gestaltet ist, sondern unterbrochen. Beispielsweise mittels Kühlrippen ähnelnden konstruktiven Elementen.
Die Formgestalt des Mehrkammer-Reaktors ist beliebig, solange das Mehrkammer-Prinzip eingehalten wird. Es können Schläuche, Rohre, Platten, Beutel jeweils beliebiger Formgestalt eingesetzt werden. Der Mehrkammer-Photobioreaktor mit mindestens einer Kultivierungskammer und mindestens einer Temperierungskammer kann die Formgestalt eines Schlauches oder Rohres aufweisen, jeweils mit rundem, ovalem oder polygonalem Querschnitt. In der nach- folgenden Beschreibung umfasst der Begriff Schlauch auch die
Ausführungsform Rohr. Zur Trennung von Kultivierungskammer und Temperierungskammer kann der Schlauch durch Einbau von Stegen in zwei oder mehr Kammern unterteilt werden. Beispielsweise kann der Schlauch mittels eines radial verlaufenden Steges in zwei Kammern aufgeteilt werden. Es kann auch so vorgegangen werden, dass der Schlauch einen oder mehrere in dessen Innerem angeordnete Innenschläuche aufweist, welche gegebenenfalls mit dem äußeren Schlauch mit einem Steg verbunden sind. Eine weitere Alternative ist, dass in einen äußeren Schlauch mit grö- ßerem Durchmesser ein oder mehrere Schläuche mit geringerem
Durchmesser eingelegt werden. Bevorzugt wird ein Schlauch, der aus einem äußeren Schlauch und einem koaxial verlaufenden inneren Schlauch zusammengesetzt ist. Besonders bevorzugt wird ein Schlauch 1 (Doppelschlauch) , welcher einen koaxial verlau- fenden Innenschlauch 2 enthält, der über einen Steg 3 mit dem äußeren Schlauch 4 verbunden ist; wie der in Fig. 1 abgebildete Doppelschlauch.
Bei dem schlauchförmigen Reaktor werden bei Aufteilung in zwei Kammern jeweils eine der Kammern mit Kultivierungsmedium beschickt und die andere Kammer mit Temperierungsmedium. Bei mehr als zwei Kammern werden diese vorzugsweise alternierend mit Kultivierungsmedium bzw. Temperierungsmedium beschickt. Bei den Ausführungsformen mit einem oder mehreren Innenschläu- chen in einem Außenschlauch kann das Kultivierungsmedium in den Außenschlauch gefüllt werden und das Temperierungsmedium in den Innenschlauch. Vorzugsweise wird der Innenschlauch mit dem Kultivierungsmedium befüllt und der Außenschlauch mit dem Temperierungsmedium.
Der Mehrkammer-Photobioreaktor mit mindestens einer Kultivierungskammer und mindestens einer Temperierungskammer kann auch die Formgestalt eines Plattenreaktors aufweisen, wobei zwei oder mehr planparallele Platten mittels jeweils zwischen den Platten gesetzten Stegen im Abstand dicht verbunden sind. Für den seitlichen Abschluss des Plattenreaktors sind Seitenplatten vorgesehen, welche mit den planparallelen Platten dicht verbunden sind. Die so gebildeten Kammern des Plattenreaktors können alternierend mit Kultivierungsmedium und Temperierungsmedium beschickt werden.
Bei Photobioreaktoren in Form von Beuteln können zwei oder mehr Beutel so zusammengefügt werden, dass eine gemeinsame
Fläche die Beutel jeweils trennt. Auch hier werden die Beutel vorzugsweise alternierend mit Kultivierungsmedium und Temperierungsmedium beschickt. Der Mehrkammer-Photobioreaktor ist zumindest teilweise, vorzugsweise vollständig, aus transparenten oder transluzenten Materialien gefertigt. Unter transparenten Materialien werden solche verstanden, welche mindestens 80 % des Lichtes im Spektralbereich von 400 nm bis 1000 nm hindurchlassen. Unter transluzenten Materialien werden solche verstanden, welche mindestens 50 % des Lichtes im Spektralbereich von 400 nm bis 1000 nm hindurchlassen. Bevorzugt werden transparente Materialien . Wesentlich ist, dass diejenigen Bereiche des Mehrkammer- Photobioreaktors, welche zwischen dem Kultivierungsmedium und der/den Lichtquellen zur Beleuchtung des Kultivierungsmediums angeordnet sind, aus transparenten /transluzenten Materialien gefertigt sind. Befindet sich das Kultivierungsmedium in einer außen liegenden und das Temperierungsmedium in einer innen liegenden Kammer, welche jeweils vom Kultivierungsmedium umgeben werden, so kann die das Temperierungsmedium enthaltende Kammer aus nicht-transparenten bzw. nicht-transluzenten Materialien gefertigt werden.
Geeignete Materialien sind Glas und Kunststoffe, beispielsweise Homo- oder Copolymerisate wie Polymethylmethacrylat (Plexiglas) , Polyester wie PET, Polycarbonat , Polyamid, Polystyrol, Polyethylen, Polypropylen, Polyvinylchlorid oder Siliconmate¬ rialien wie Silicone oder Copolymerisate mit Silicon- und Or- ganocopolymer-Abschnitten . Für die Bauelemente des Mehrkammer-Photobioreaktor, welche mit dem Kultivierungsmedium in Berührung kommen, werden Siliconmaterialien wie Silicone oder Copolymerisate mit Silicon- und Organocopolymer-Äbschnitten eingesetzt. Es kann auch so vorgegangen werden, dass die Bauelemente des Mehrkammer-Photobio- reaktor, welche mit dem Kultivierungsmedium in Berührung kommen, mit Siliconmaterialien wie Siliconen oder Copolymerisaten mit Silicon- und Organocopolymer-Äbschnitten beschichtet werden, sofern sie nicht aus diesen Materialien gefertigt sind. Besonders bevorzugt werden transparente oder transluzente Si¬ liconmaterialien. Geeignete Siliconmaterialien sind beispielsweise additionsvernet zende Silicone (Siliconkautschuke) , wobei die Additionsvernetzung thermisch oder mittels Strahlung eingeleitet werden kann, sowie Copolymerisate mit Silicon- und Organocopolymer-Äbschnitten (Siliconhybridpolymere).
Additionsvernetzende Siliconkautschuk-Systeme enthalten a) Organosiliciumverbindungen, die Reste mit aliphatischen
Kohlenstoff-Kohlenstoff-Mehrfachbindungen aufweisen,
b) gegebenenfalls Organosiliciumverbindungen mit Si- gebundenen Wasserstoffatomen oder anstelle von a) und b) c) Organosiliciumverbindungen, die Reste mit aliphatischen Kohlenstoff-Kohlenstoff-Mehrfachbindungen und Si-gebundene Wasserstoff tome aufweisen, und jeweils
d) die Anlagerung von Si-gebundenen Wasserstoff an aliphatische Mehrfachbindung fördernde Katalysatoren und
e) gegebenenfalls die Anlagerung von Si-gebundenem Wasserstoff an aliphatische Mehrfachbindung bei Raumtemperatur verzögernde Mittel.
Geeignete durch Additionsreaktion vernetzende Siliconkautschuke sind bei Temperaturerhöhung vernetzende Festsiliconkautschuke (HTV) . Additionsvernetzende HTV-Siliconkautschuke erhält man durch die Vernetzung von mehrfach ethylenisch ungesättigten Gruppen, vorzugsweise Vinylgruppen, substituierten Organopolysiloxanen mit mehrfach mit Si-H-Gruppen substituierten Organopolysiloxanen in Gegenwart von Platinkatalysatoren.
Vorzugsweise besteht eine der Komponenten der peroxidisch oder additionsvernetzenden HTV-2-Siliconkautschuke aus Dialkylpoly- siloxanen der Struktur R3SiO [-SiR20] n-SiR3 mit n > 0, im allgemeinen mit 1 bis 4 C-Atomen im Alkylrest, wobei die Alkylreste ganz oder teilweise durch Arylreste wie den Phenylrest ersetzt werden können und an einem oder an beiden Enden, einer der endständigen Reste R durch eine polymerisierbare Gruppe wie die Vinylgruppe ersetzt ist. Es können aber auch Polymere mit seitenständigen bzw. mit Seiten- und endständigen Vinylgruppen verwendet werden. Bevorzugt werden vinylendblockierte Polydi- alkylsiloxane der Struktur CH2=CH2-R2SiO [ -SiR20] n-SiR2-CH2=CH2 eingesetzt, sowie vinylendblockierte Polydimethylsiloxane der genannten Struktur, welche noch seitenständige Vinylgruppen tragen. Bei additionsvernetzenden HTV-Siliconkautschuken ist die zweite Komponente ein Copolymer aus Dialkylpolysiloxanen und Polyalkylhydrogensiloxanen mit der allgemeinen Formel R' 3SiO [-SiR20] n- [SiHRO]m-SiR'3 mit m > 0, n > 0 und der Maßgabe, dass mindestens zwei SiH-Gruppen enthalten sein müssen, wobei R' die Bedeutung von H oder R haben kann. Es gibt demnach Vernetzer mit seitenständigen und endständigen SiH-Gruppen, während Siloxane mit R ' = H, die nur endständige SiH-Gruppen be- sitzen, auch noch zur Kettenverlängerung verwendet werden. Als Vernetzungskatalysatoren kommen Platinkatalysatoren zum Einsatz. HTV-Siliconkautschuke werden auch als Einkomponentensystem verarbeitet. Geeignete Materialien sind auch Siliconhybridpolymere. Siliconhybridpolymere sind Copolymerisate oder Pfropfcopolymerisa- te von Organopolymerblöcken, beispielsweise Polyurethan, Poly- harnstoff oder Polyvinylestern, und Siliconblöcken, im allge- meinen auf Basis von Polydialkylsiloxanen der obengenannten Spezifikation. Beispielsweise werden thermoplastische Siliconhybridpolymere in EP 1412416 Bl und EP 1489129 Bl beschrieben, deren diesbezügliche Offenbarung auch Gegenstand dieser Anmel- dung sein soll. Derartige Siliconhybridpolymere werden als
Thermoplastische Siliconelastomere (TPSE) bezeichnet. Geeignete Materialien sind auch (Kondensations- oder Strahlungs-) vernetzbare Siliconhybridmaterialien, wie in WO 2006/058656 beschriebe .
Wesentlich für die Hemmung bzw. Verhinderung des Bewuchses mit Mikroorganismen ist die Morphologie der Oberfläche der Siliconschläuche. Die Morphologie der Oberfläche wird über den Kontaktwinkel dieser Oberfläche zu Wasser bestimmt. Bevorzugt sind Oberflächen mit Kontaktwinkeln zwischen 100° und 120°, besonders bevorzugt Oberflächen mit Kontaktwinkeln zwischen 100° und 115°, und ganz besonders bevorzugt Oberflächen mit Kontaktwinkeln zwischen 100° und 113°. Der Kontaktwinkel wird durch die Auswahl der Siliconmaterialien eingestellt. Auf wei- tere Maßnahmen zur Erhöhung des Kontaktwinkels, beispielweise Aufrauhung der Oberfläche (z.B. Nachahmung des sog. Lotuseffekts), wird vorzugsweise verzichtet. Eine solche Aufrauhung kann nämlich die Kultivierung der phototrophen Mikroorganismen stören. Die Bestimmung des Kontaktwinkels der Oberfläche der Siliconschläuche zu Wasser kann mittels dem Fachmann bekannter Methoden, beispielsweise gemäß DIN 55660-2 erfolgen, unter Einsatz von im Handel erhältlicher Messgeräte zur Bestimmung des Kontaktwinkels, beispielsweise den bei der Fa. Krüss erhältlichen Kontaktwinkel-MessSystemen .
Gegebenenfalls können die genannten additionsvernetzten Sili- cone übliche Additive zur Haftvermittlung oder übliche Füllstoffe oder Fasermaterialien zur Verbesserung der Mechanik enthalten. Diese Additive werden vorzugsweise maximal in sol- chen Mengen eingesetzt, dass das Siliconformteil transparent bzw. transluzent bleibt. Es können auch lichtleitende Additive und lichtwellenverschiebende Additive zugegeben werden. Bevorzugt werden Siliconmaterialien auch zur Beschichtung, der mit dem Kultivierungsmedium in Kontakt tretenden Bauelemente, eingesetzt , insbesondere wenn die Bauelemente nicht aus den genannten Siliconmaterialien gefertigt sind.
Als Beschichtungsmittel bevorzugte Siliconmaterialien sind neben den bereits zur Herstellung der Bauelemente genannten Siliconmaterialien noch bei Raumtemperatur durch Kondensation vernetzende Siliconkautschuke, sowie bei Raumtemperatur addi- tionsvernetzende Siliconkautschuke sowie Siliconharze und Silicongele .
Als Beschichtungsmittel geeignete, bei Raumtemperatur durch Kondensation vernetzende Siliconkautschuke, sind bei Raumtem- peratur vernetzende 1-Komponenten-Systeme, sogenannte RTV-1-
Silikonkautschuke . Bei den RTV-l-Siliconkautschuken handelt es sich um Organopolysiloxane mit kondensationsfähigen Endgruppen, welche in Gegenwart von Katalysatoren unter Kondensation bei Raumtemperatur vernetzen. Am gebräuchlichsten sind Dial- kylpolysiloxane der Struktur RsSiO [-SiR20] n-SiR3 mit einer Ket¬ tenlänge von n > 2. Die Alkylreste R können gleich oder verschieden sein und haben im allgemeinen 1 bis 4 C-Atome und können gegebenenfalls substituiert sein. Die Alkylreste R kön¬ nen auch teilweise durch andere Reste ersetzt sein, vorzugs- weise durch Arylreste, welche gegebenenfalls substituiert sind, und wobei die Alkyl (Aryl ) -Gruppen R teilweise durch zur Kondensations-Vernetzung fähige Gruppen ausgetauscht sind, beispielsweise Alkohol- (Alkoxysystem) , Acetat- (Essigsäuresystem) , Amin- (Aminsystem) oder Oximreste (Oximsystem) . Die Vernetzung wird mittels geeigneter Katalysatoren, beispielsweise Zinn- oder Titankatalysatoren katalysiert.
Als Beschichtungsmittel geeignete bei Raumtemperatur durch Kondensation vernetzende Siliconkautschuke, sind auch bei Raumtemperatur vernetzende 2-Komponenten-Systeme , sogenannte RTV-2-Silikonkautschuke . RTV-2-Siliconkautschuke erhält man mittels Kondensationsvernetzung von mehrfach mit Hydroxygrup- pen substituierten Organopolysiloxanen in Gegenwart von Kie- selsäureestern . Als Vernetzer können auch Alkylsilane mit Al- koxy- (Alkoxysystem) , Oxim- (Oximsystem) , Amin- (Aminsystem) oder Acetatgruppen (Essigsäuresystem) eingesetzt werden, wel¬ che in Anwesenheit von geeigneten Kondensations-Katalysatoren, beispielsweise Zinn- oder Titankatalysatoren mit den Hydro- xygruppen-terminierten Polydialkylsiloxanen vernetzen.
Beispiele für die in RTV-1 und RTV-2 Siliconkautschuk enthal¬ tenen Polydialkylsiloxane sind solche der Formel (OH)R2SiO[- SiR20] n-SiR2 (OH) mit einer Kettenlänge von n > 2, wobei die Al- kylreste R gleich oder verschieden sein können, im allgemeinen 1 bis 4 C-Atome enthalten und gegebenenfalls substituiert sein können. Die Alkylreste R können auch teilweise durch andere Reste ersetzt sein, vorzugsweise durch Arylreste, welche gege- benenfalls substituiert sind. Vorzugsweise enthalten die Polydialkylsiloxane terminale OH-Gruppen, welche mit den Kiesel¬ säureestern bzw. dem System Alkylsilan/Zinn (Titan) katalysator bei Raumtemperatur vernetzen. Beispiele für die in RTV-1 und RTV-2 Siliconkautschuken enthaltenen, hydrolysierbare Gruppen aufweisende Alkylsilane sind solche der Formel RaSi(OX)4-a, mit a = 1 bis 3 (bevorzugt 1), und X in der Bedeutung von R' ' (Alkoxysystem), C(0)R'' (Essig¬ säuresystem), N=CR''2 (Oximsystem) oder NR' ' 2 (Aminsystem) , wobei R' ' einen einwertigen Kohlenwasserstoffrest mit 1 bis 6 Kohlenstoffatomen bedeutet.
Als Beschichtungsmittel geeignete, bei Raumtemperatur durch Addition vernetzende Siliconkautschuke, sind bei Raumtempera- tur vernetzende 1-Komponenten-Systeme, sogenannte additions- vernetzende RTV-l-Siliconkautschuke, bei Raumtemperatur vernetzende 2-Komponenten-Systeme, sogenannte additionsvernetzen- de RTV-2-Silikonkautschuke oder auch bei Raumtemperatur vernetzende Mehrkomponenten-Systeme. Die Vernetzungsreaktion kann dabei kationisch, mittels entsprechender Katalysatoren, oder radikalisch, mittels Peroxiden, oder durch Strahlung, insbe¬ sondere UV-Strahlung, oder thermisch initiiert werden. Additionsvernetzende RTV-2 -Siliconkautschuke erhält man durch mit Pt-Katalysatoren katalysierte Vernetzung von mehrfach ethylenisch ungesättigten Gruppen, vorzugsweise Vinylgruppen, substituierten Organopolysiloxanen mit mehrfach mit Si-H- Gruppen substituierten Organopolysiloxanen in Gegenwart von Platinkatalysatoren .
Vorzugsweise besteht eine der Komponenten aus Dialkylpolysilo- xanen der Struktur R3SXO [-SiR20] n-SiR.3 mit n > 0, im allgemei- nen mit 1 bis 4 C-Atomen im Alkylrest, wobei die Alkylreste ganz oder teilweise durch Arylreste wie den Phenylrest ersetzt werden können, und an einem oder an beiden Enden einer der endständigen Reste R durch eine polymerisierbare Gruppe wie die Vinylgruppe ersetzt ist. Ebenso können teilweise Reste R in der Siloxankette , auch in Kombination mit den Resten R der Endgruppen, durch polymerisierbare Gruppen ersetzt werden. Bevorzugt werden vinylendblockierte Polydimethylsiloxane der Struktur eingesetzt. Die zweite Komponente enthält einen Si-H-funktionellen Vernetzer. Die üblicherweise verwendeten Polyalkylhydrogensiloxane sind Copolymere aus Dialkylpolysiloxanen und Polyalkylhydro- gensiloxanen mit der allgemeinen Formel R' 3S1O [ -SiR20] n- [SiHRO] m-SiR' 3 mit m > 0, n > 0 und der Maßgabe, dass mindes- tens zwei SiH-Gruppen enthalten sein müssen, wobei R' die Be¬ deutung von H oder R haben kann. Es gibt demnach Vernetzer mit seitenständigen und endständigen SiH-Gruppen, während Siloxane mit R'= H, die nur endständige SiH-Gruppen besitzen, auch noch zur Kettenverlängerung verwendet werden. Als Vernet zungskata- lysator sind geringe Mengen einer platinorganischen Verbindung enthalten .
In jüngster Zeit sind zudem noch spezielle Siliconkautschuke im Handel erhältlich, welche über die beschriebene Additions- reaktion vernetzt werden, indem spezielle Platin-Komplexe bzw. Platin-/Inhibitor-Systeme thermisch und/oder photochemisch aktiviert werden und somit die Vernetzungsreaktion katalysieren. Siliconharze sind ebenfalls geeignete Materialien für die Herstellung der transparenten oder transluzenten Beschichtung. Im allgemeinen enthalten die Siliconharze Einheiten der allgemeinen Formel Rb (RO) cSiO(4_b-c) /2, worin b gleich 0, 1, 2 oder 3 ist, c gleich 0, 1, 2 oder 3 ist, mit der Maßgabe, dass b+c < 3 ist, und R in der oben dafür angegebenen Bedeutung, welche ein hoch vernetztes Organosilicon-Net zwerk aufbauen. Siliconharze können lösemittelfrei, lösemittelhaltig oder als wässrige Systeme zum Einsatz kommen. Darüberhinaus können auch funktiona- lisierte, z.B. mit Epoxy- oder Amingruppen funktionalisierte Siliconharze eingesetzt werden.
Silicongele sind ebenfalls geeignete Materialien für die Herstellung der transparenten oder transluzenten Beschichtung. Silicongele werden aus zwei gießbaren Komponenten hergestellt, welche bei Raumtemperatur in Gegenwart eines Katalysators vernetzen. Eine der Komponenten besteht im allgemeinen aus Dial- kylpolysiloxanen der Struktur R3SiO [-SiR20] n-SiR3 mit n > 0, im allgemeinen mit 1 bis 4 C-Atomen im Alkylrest, wobei die Al- kylreste ganz oder teilweise durch Arylreste wie den Phenyl- rest ersetzt werden können, und an einem oder an beiden Enden einer der endständigen Reste R durch eine polymerisierbare Gruppe wie die Vinylgruppe ersetzt ist. Ebenso können teilweise Reste R in der Siloxankette, auch in Kombination mit den Resten R der Endgruppen, durch polymerisierbare Gruppen ersetzt werden. Bevorzugt werden vinylendblockierte Polydi- methylsiloxane der Struktur CH2=CH2-R2SiO [-SiR20] n-SiR2-CH2=CH2 eingesetzt . Die zweite Komponente enthält einen Si-H-funktionellen Vernetzer. Die üblicherweise verwendeten Polyalkylhydrogensiloxane sind Copolymere aus Dialkylpolysiloxanen und Polyalkylhydro- gensiloxanen mit der allgemeinen Formel R' 3SiO [-SiR20] n- [SiHRO]jn-SiR' 3 mit m > 0, n > 0 und der Maßgabe, dass mindes- tens zwei SiH-Gruppen enthalten sein müssen, wobei R' die Bedeutung von H oder R haben kann. Es gibt demnach Vernetzer mit seitenständigen und endständigen SiH-Gruppen, während Siloxane mit R'= H, die nur endständige SiH-Gruppen besitzen, auch noch zur Kettenverlängerung verwendet werden. Als Vernetzungskatalysator sind geringe Mengen einer platinorganischen Verbindung enthalten. Durch das Mischen der Komponenten wird die Vernetzungsreaktion ausgelöst und das Gel gebildet. Diese Vernet- zungsreaktion kann durch das Einwirken von Wärme und/oder durch elektromagnetische Strahlung, vorzugsweise UV-Strahlung, beschleunigt werden.
Eine detaillierte Übersicht über Silicone, ihre Chemie, Formu- lierung und Anwendungseigenschaften findet sich beispielsweise in Winnacker/Küchler, „Chemische Technik: Prozesse und Produkte, Band 5: Organische Zwischenverbindungen, Polymere" , Seite 1095-1213, Wiley-VCH Weinheim (2005) . In einer bevorzugten Ausführungsform können die Materialien für den Mehrkammer-Photobioreaktor übliche Additive wie Füllstoffe oder Fasermaterialien zur Verbesserung der Mechanik enthalten. Diese Additive werden vorzugsweise maximal in solchen Mengen eingesetzt, dass das Material transparent bzw. transluzent bleibt. Es können auch lichtleitende Additive zugegebenen werden, oder lichtwellenverschiebende Additive zur Optimierung der nutzbaren Strahlungsausbeute zugegeben werden. Geeignete Zusätze sind auch Wellenlängen-blockierende Additive, beispielsweise zur Blockierung von Infrarot-Strahlung.
Die Kammern des Mehrkammer-Photobioreaktors können auch geometrische Strukturierungen aufweisen, beispielsweise zur Verbesserung der Strömungseigenschaften oder zur LichtStreuung . Beispiele hierfür sind Noppen oder Prägungen im Material der Kammern.
Die Fertigung kann mit den etablierten Technologien der
Kunststoff erarbeitung erfolgen, die zur Herstellung von Formkörpern eingesetzt werden. Insbesondere bei Siliconen mittels Extrusion oder Spritzgießen zur Formung von
thermoplastischen Siliconen (Thermoplast-Spritzgießen) , elastomeren Siliconen (Elastomer-Spritzgießen) oder duroplastischen Siliconen (Duroplast-Spritzgießen) . Es sind aber auch Kombiverfahren wie z.B. Exjection möglich.
Zur Beschichtung werden die Silicone in flüssiger Form, entweder in Reinsubstanz, als Lösung oder in wässeriger
Emulsion aufgetragen. Vorzugsweise beträgt die Viskosität der zur Beschichtung aufzutragenden Flüssigkeit von 10 mPas bis 300.000 mPas. Die Auftragung kann mittels der üblichen Techniken erfolgen, vorzugsweise Streichen, Sprühen, Tauchen, Ra- kein, Gießen. Besonders bevorzugt ist hierbei das Tauchen und Sprühen. Es können aber zur Beschichtung von Rohren auch noch weitere Verfahren wie z.B. Schwammauftrag, Schleudern, Extru- sion bzw. Querkopfextrusion angewandt werden, sowie für ebene Flächen zusätzlich noch Auftragung mittels Walzenbeschichtung, Rollenbeschichtung oder Pflatschen.
Im Allgemeinen beträgt die Dicke der Beschichtung 10 nm bis 1000 μιη, vorzugsweise 1 μπι bis 100 μπι. Gegebenenfalls können die zu beschichtenden Reaktorteile, zur Verbesserung der Haf- tung der Silicone, vorbehandelt werden, beispielsweise mittels Corona-Behandlung . Gegebenenfalls können die Silicone übliche Additive zur Haftvermittlung oder übliche Füllstoffe zur Verbesserung der Mechanik enthalten. Diese Additive werden vorzugsweise maximal in solchen Mengen eingesetzt, dass die Si- liconbeschichtung transparent bzw. transluzent bleibt.
Die Beleuchtung erfolgt im Allgemeinen mittels Sonnenlicht, welches gegebenenfalls durch Kunstlicht (künstliche Lichtquel- len) ergänzt werden kann. Bevorzugt werden zur künstlichen Beleuchtung LEDs enthaltende Beleuchtungsmittel eingesetzt. Geeignet sind aber auch andere künstliche Lichtquellen wie beispielsweise Fluoreszenz-Leuchtstofflampen, Neonlampen, Metalldampf-Lampen, Edelgas-Lampen, Halogenlampen, Schweielplasma- lampen. Bei der Beleuchtung mit künstlichen Lichtquellen können die Kultivierungsbedingungen durch den Einsatz von Lichtquellen mit definierten Wellenlängen, definierter Intensität und gegebenenfalls mittels pulsierender Lichtquellen optimiert werden. Es ist auch denkbar, die künstlichen Lichtquellen, beispielsweise in Form von LED-Ketten, in eine oder mehrere Kammern des Mehrkammer-Photobioreaktors einzulegen bzw. einzubauen .
Das die phototrophen Organismen enthaltende Kultivierungsmedium wird im Allgemeinen aus einem Vorratsbehälter in die entsprechenden Kammern des Mehrkammer-Photobioreaktors gefördert. Die Förderung kann mechanisch mittels einer Pumpe erfolgen. Im Mehrkammer-Photobioreaktor kann die Förderung des Kultivierungsmediums auch mittels Airlift, das heißt mittels Luft oder mittels eines Luft /C02-Gemisches oder auch Stickstoff als Trägergas, erfolgen, welches simultan die Versorgung des Kultivierungsmediums mit C02 sicherstellt. Die Zuführung von CO2 kann aber auch separat und gepulst erfolgen und damit der Einstellung des pH-Wertes im Kultivierungsmedium dienen.
Die Abtrennung der kultivierten Organismen erfolgt in einer Separatoreinheit, beispielsweise mittels Zentrifugation, Filtration oder Sedimentation.
Das Temperierungsmedium wird in die entsprechenden Kammern eingeleitet. Die Förderung erfolgt vorzugsweise pneumatisch mittels Pumpe, im Gleichstrom oder im Gegenstrom zum Kultivie- rungsmedium. Der Kreislauf des Temperierungsmediums kann gegebenenfalls eine Wärmetauschereinheit zur Regulierung der Temperatur des Temperierungsmediums beinhalten. Die Temperatur des Temperierungsmediums hängt im wesentlichen von der Umgebungstemperatur ab und kann entsprechend eingestellt werden.
Vorzugsweise wird der Betrieb des Mehrkammer-Photobioreaktor mit Automatisierungstechnologie organisiert. Dazu zählen die automatisierte Überwachung und Einstellung von spezifischen Prozessparametern wie Strömungsgeschwindigkeiten, Temperatur, Gasaustausch, Flüssigkeitsaustausch, Dichte bzw. Viskosität, Salzgehalt des Kultivierungsmediums, gegebenen alls Licht bei künstlicher Beleuchtung (Intensität, Wellenlänge, Hell- /Dunkel-Zyklus , zeitliche Anpassung/Wechsel) .

Claims

Patentansprüche :
1. Mehrkammer-Photobioreaktor mit mindestens einer Kultivierungskammer und mindestens einer Temperierungskammer, dadurch gekennzeichnet, dass zumindest eine Außenfläche der Kultivierungskammer mit dem Temperierungsmedium in der Weise in Kontakt tritt, indem mindestens 50 % von zumin¬ dest einer Außenfläche der Kultivierungs kammer mit dem Temperierungsmedium in Kontakt treten, und dass die mit dem Kultivierungsmedium in Kontakt tretenden Bauelemente aus Siliconmaterialien gefertigt sind oder mit Siliconmaterialien beschichtet sind.
2. Mehrkammer-Photobioreaktor nach Anspruch 1, dadurch gekennzeichnet, dass zumindest eine Außenfläche der Kultivierungskammer vollständig mit dem Temperierungsmedium in Kontakt tritt.
3. Mehrkammer-Photobioreaktor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kontaktfläche durchgehend oder unterbrochen gestaltet ist.
4. Mehrkammer-Photobioreaktor nach Anspruch 1 bis 3, welcher als Schlauchreaktor, Rohrreaktor, Plattenreaktor oder Beutelreaktor gestaltet ist.
5. Mehrkammer-Photobioreaktor nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass ein Schlauch durch Einbau von Stegen in zwei oder mehr Kammern unterteilt ist.
6. Mehrkammer-Photobioreaktor nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass ein Schlauch einen oder mehrere in dessen Innerem angeordnete Innenschläuche aufweist.
7. Verfahren zur Herstellung von phototrophen Organismen mit einem Mehrkammer-Photobioreaktor gemäß Anspruch 1 bis 6.
EP10766059A 2009-10-20 2010-10-19 Mehrkammer-photobioreaktor Withdrawn EP2491106A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009045853A DE102009045853A1 (de) 2009-10-20 2009-10-20 Mehrkammer-Photobioreaktor
PCT/EP2010/065704 WO2011048086A2 (de) 2009-10-20 2010-10-19 Mehrkammer-photobioreaktor

Publications (1)

Publication Number Publication Date
EP2491106A2 true EP2491106A2 (de) 2012-08-29

Family

ID=43798717

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10766059A Withdrawn EP2491106A2 (de) 2009-10-20 2010-10-19 Mehrkammer-photobioreaktor

Country Status (5)

Country Link
US (1) US20120220020A1 (de)
EP (1) EP2491106A2 (de)
CN (1) CN102575210A (de)
DE (1) DE102009045853A1 (de)
WO (1) WO2011048086A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201521136D0 (en) * 2015-12-01 2016-01-13 Arborea Ltd Device
GB201708940D0 (en) * 2017-06-05 2017-07-19 Arborea Ltd Photo-bioreactor device and methods

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2564854B1 (fr) * 1984-05-28 1986-11-14 Commissariat Energie Atomique Photobioreacteur.
NL9100715A (nl) 1991-04-25 1992-11-16 Bopam B V I O Reactor voor het kweken van algen.
DE4134813C2 (de) 1991-10-22 1994-07-21 Inst Getreideverarbeitung Einrichtung zur Kultivation von phototrophen Mikroorganismen
US5958761A (en) 1994-01-12 1999-09-28 Yeda Research And Developement Co. Ltd. Bioreactor and system for improved productivity of photosynthetic algae
DE19644992C1 (de) 1996-10-30 1998-03-12 Roehm Gmbh Temperierbares Solarelement für Solarreaktoren
DE10137855A1 (de) 2001-08-02 2003-02-27 Consortium Elektrochem Ind Organopolysiloxan/Polyharnstoff/ Polyurethan-Blockcopolymere
US7176024B2 (en) * 2003-05-30 2007-02-13 Biolex, Inc. Bioreactor for growing biological materials supported on a liquid surface
DE10326575A1 (de) 2003-06-12 2005-01-20 Wacker-Chemie Gmbh Organopolysiloxan/Polyharnstoff/Polyurethan-Blockcopolymere
US7351477B2 (en) * 2004-04-07 2008-04-01 Shin-Etsu Chemical Co., Ltd. Antifouling coating compositions and coated articles
TWM264840U (en) 2004-09-21 2005-05-21 Chau-Huei Lu Vegetative algae and microorganisms photosynthesis reactor
US7176273B2 (en) * 2004-11-03 2007-02-13 Porogen Llc Functionalized porous poly(aryl ether ketone) materials and their use
DE102004058193A1 (de) 2004-12-02 2006-06-08 Wacker Chemie Ag Vernetzbare Siloxan-Harnstoff-Copolymere
EP1928994A2 (de) 2005-08-25 2008-06-11 Solix Biofuels, Inc. Verfahren, vorrichtung und system zur biodieselproduktion aus algen
IL184971A0 (en) 2006-08-01 2008-12-29 Brightsource Energy Inc High density bioreactor system, devices and methods
MX2009003668A (es) * 2006-11-02 2009-08-12 Algenol Biofuels Inc Sistema fotobiorreactor cerrado para la produccion, separacion, recoleccion y remocion diaria, continua, in-situ, de etanol a partir de organismos fotosinteticos geneticamente mejorados.
AU2008257494B2 (en) * 2007-06-01 2011-07-07 Wacker Chemie Ag Photoreactor
US20090203067A1 (en) 2007-09-18 2009-08-13 Eckerle Matthew W Photobioreactor Systems and Methods for Growing Organisms
DE102009045851A1 (de) * 2009-10-20 2011-04-21 Wacker Chemie Ag Schlauch-Photobioreaktor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011048086A2 *

Also Published As

Publication number Publication date
WO2011048086A2 (de) 2011-04-28
DE102009045853A1 (de) 2011-04-21
WO2011048086A3 (de) 2011-06-30
US20120220020A1 (en) 2012-08-30
CN102575210A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
EP2491107B1 (de) Schlauch-photobioreaktor
EP2150609B1 (de) Photoreaktor
EP2462218B1 (de) Bioreaktor aus Silikonmaterialien
DE10335130A1 (de) Immobilisierung von Katalysatoren auf porösen Körpern auf Kohlenstoffbasis
EP3383991B1 (de) Photobioreaktorvorrichtung und verfahren
CN104004645A (zh) 一种有机废水水解酸化耦合微藻培养的两相系统与方法
EP2491106A2 (de) Mehrkammer-photobioreaktor
EP2462217B1 (de) Bioreaktor mit siliconbeschichtung
KR101303946B1 (ko) 광산배수를 이용하는 파이프 탈착형 미세조류 배양장치
EP2427541A2 (de) Vorrichtung zur durchführung photochemischer prozesse
DE102009028059A1 (de) Verfahren zur Kultivierung von phototrophen Organismen
CN204185468U (zh) 一种有机废水水解酸化耦合微藻培养的两相系统
DE102014225349B4 (de) Reaktorsystem zur Kultivierung von Mikroorganismen und deren Anwendung für biochemische Photosynthese-Prozesse
Roy Novel bioreactors for culturing marine organisms
DE102007021887B3 (de) Beheizte Festbetten zur Steigerung der Leistungsfähigkeit biologischer Kläranlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120328

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130423