EP2455556B1 - Isolierendes und Druckkraft übertragendes Anschlusselement - Google Patents

Isolierendes und Druckkraft übertragendes Anschlusselement Download PDF

Info

Publication number
EP2455556B1
EP2455556B1 EP11173639.3A EP11173639A EP2455556B1 EP 2455556 B1 EP2455556 B1 EP 2455556B1 EP 11173639 A EP11173639 A EP 11173639A EP 2455556 B1 EP2455556 B1 EP 2455556B1
Authority
EP
European Patent Office
Prior art keywords
transmitting
insulation body
connection element
compressive force
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11173639.3A
Other languages
English (en)
French (fr)
Other versions
EP2455556A1 (de
Inventor
Georg Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43735991&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2455556(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to EP11173639.3A priority Critical patent/EP2455556B1/de
Priority to EP11184629.1A priority patent/EP2455557B1/de
Priority to SI201130192T priority patent/SI2455557T1/sl
Priority to PL11184629T priority patent/PL2455557T3/pl
Priority to US13/300,597 priority patent/US8590240B2/en
Priority to US13/301,620 priority patent/US8590241B2/en
Publication of EP2455556A1 publication Critical patent/EP2455556A1/de
Publication of EP2455556B1 publication Critical patent/EP2455556B1/de
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • E04B1/161Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material with vertical and horizontal slabs, both being partially cast in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/41Connecting devices specially adapted for embedding in concrete or masonry
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7679Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0243Separate connectors or inserts, e.g. pegs, pins or keys
    • E04B2002/0254Tie rods
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0256Special features of building elements
    • E04B2002/0289Building elements with holes filled with insulating material
    • E04B2002/0293Building elements with holes filled with insulating material solid material

Definitions

  • thermally insulating brick is from the EP 2 151 531 A2 known, the pressure elements are constructed, for example, cement mortar and the heat-insulating body is preferably made of glass or stone foam, in which case serves as a means for transverse force transmission a structured, optionally applied with chippings surface.
  • the pressure elements are constructed, for example, cement mortar and the heat-insulating body is preferably made of glass or stone foam, in which case serves as a means for transverse force transmission a structured, optionally applied with chippings surface.
  • Such a brick can undoubtedly be convincing in terms of thermal insulation and in terms of compressive force transmission, but in view of the transverse force transmission assets can not convince excited in this document technical features.
  • a likewise generic Kragplattenan gleichelement is from the EP 0 338 972 A1 known, with the help of particular balconies as examples of cantilever plates can be attached to an adjacent ground cover plate.
  • the known Kragplattenan gleichelement comprises a cuboid insulating body, which is crossed by pairs superposed, the insulating body horizontally passing through pressure bars.
  • the insulating body horizontally passing through pressure bars.
  • a curable material such as a plastic-coated Mortar, filled.
  • this also has transverse force transmitting elements, however, pull through the insulation body spatially separated from the pressure rods.
  • connection element for building connections, in which an insulating body is crossed by obliquely extending at an angle to the vertical between 1 ° and 89 °, in pairs connected to a reinforcing plate reinforcing bars.
  • the known connection element thus seems to have exclusively lateral force-transmitting elements, since the stiffening plate is suitable as a pressure element neither in terms of its construction nor with regard to its introduction within this document.
  • the Scriptures are to be taken to the same extent no suggestions for the design of any Druckverteiletti.
  • thermal insulation element for heat flow decoupling between wall part and floor panels.
  • the known thermal insulation element may have columnar support elements with an interstices between these support elements aus slaughterdem insulating.
  • transverse and tensile force transmission anchoring projections are to serve, which are applied in the form of dowels plan on the outer sides of the proposed thermal insulation element.
  • the thermal insulation element known in this type may be convincing in terms of its thermal insulation, and perhaps even slight transverse forces that may arise during the transport of such a known structure, an approach for a convincing solution to the problem of interception of larger lateral forces, such as from planned Earth pressure or wind stabilization - while in a possible order of magnitude at least above 10 kN / m - may occur, but the font can not be removed.
  • FIG. 1 On the basis of a conventional concrete construction (11) the usual elevation of a concrete wall (15) on a concrete floor slab (13).
  • the concrete floor plate (13) and the concrete wall (15) are monolithic, non-positively and uninsulated connected to each other.
  • the thermal insulation (5, 7) is provided on the outside both below the concrete floor panel (13) and on the outside of the concrete wall (15).
  • the thermal insulation (7), which is arranged under the concrete floor slab (13) must be static-resistant, depending on the load height, pressure-resistant, aging-resistant and resistant to rotting.
  • the required compressive strength of the thermal insulation (7) under the floor slab usually has to be> 150 kN / m 2 .
  • the materials usually used for this purpose are XPS boards, foam glass blocks or foam glass gravel. These materials are high quality and pressure resistant materials. Due to high compressive strengths, lower thermal insulation values result with a lambda> 40 mW / mK.
  • the comparatively high thermal conductivity leads with constant thermal insulation performance to higher layer thicknesses and thus to higher material consumption than comparable solutions with internal insulation. Due to the high consumption of technically complex materials (gray energy), the ecology of the building is also adversely affected. Nevertheless, such a design, for lack of alternatives, for low-energy and passive house concepts is applied.
  • the concrete structure (11) according to FIG. 2 is monolithic, non-positive and insufficiently insulated.
  • the thermal insulation (5, 9) is arranged on the outer wall (15) lying outside, while it is arranged resting on the concrete floor plate (13).
  • the use of the internal insulation (9) offers enormous cost savings, as well as a reduction in the required gray energy, but it is obviously disadvantageous in this embodiment that an existing cold bridge between the concrete floor plate (13) and the concrete wall (15) is present.
  • FIGS. 3 and 4 is a non-pressure-resistant thermal insulation (9) below and / or above a concrete (cellar) ceiling (29) arranged, as it finds application for unheated basements.
  • a concrete structure (11) is also monolithic, non-positive and insufficiently insulated.
  • Such systems are not suitable for low-energy or passive houses due to the local energy loss and the risk of mold fungus formation (constructive cold bridge).
  • the public a connecting element for two interconnected, cast components, which are preferably on the one hand concrete floor or ceiling and the other concrete wall to propose, which largely eliminates the usually resulting, constructive cold bridges in concrete structures and which is as it is capable of large pressure forces and to absorb large lateral forces.
  • the goal is still to propose a solution that allows concrete structures to meet the new and future energy standards with little financial and technical effort.
  • Another object of the present invention is to propose to the public a concrete structure with an optimum flow of force with simultaneously optimized thermal insulation.
  • the first molded component (13, 29) is preferably an element selected from the list comprising concrete floor slab and concrete slab.
  • the second molded component (15) is a concrete wall.
  • the connecting element (17) transmitting the at least one compressive force can be connected in a force-locking manner to the concrete components (13, 15, 29) by continuous transverse force-transmitting elements (35), by these connection elements (17) transmitting on one or both sides to the pressure force. to be poured on.
  • the formation of the at least one pressure distribution element (51) on at least one end face of the at least one pressure element (33) is a decisive advantage it is a preferred embodiment, if at least one pressure distribution element (51) is formed both on one and on the other of the two end faces of the at least one pressure element (33).
  • the connection element (17) according to the invention between a concrete floor plate (13) and a concrete wall (15) or between a concrete ceiling slab (29) and a concrete wall (15) is arranged, whereby an effective thermal separation between the two concrete parts is guaranteed.
  • the two molded components (13, 15, 29) are layered one above the other with the connection element (17) according to the invention positioned therebetween.
  • the at least one pressure distribution element (51) is exactly one pressure distribution plate per support surface (39, 41) delimiting the insulation body (31), for example concrete, steel and / or plastic reinforced concrete, in particular plastic-enclosed steel or carbon fiber reinforcement Plastic formed.
  • the insulation body (31) for example concrete, steel and / or plastic reinforced concrete, in particular plastic-enclosed steel or carbon fiber reinforcement Plastic formed.
  • a multiplicity of pressure elements (33) within the connection element (17) which transmits the proposed compressive force such a connection element which connects exactly one pressure distribution plate and increases the statics constitutes a connecting element.
  • the at least one pressure distribution element (51) is formed as a multiplicity of side by side, possibly interlocked Druckverteilplatten in which each pressure element (33) within the proposed pressure force transmitting connection element (17) is assigned to exactly one pressure distribution plate and in the each pressure element (33) is closed by a pressure distribution plate assigned to it preferably at both end-face ends, in particular upwards and downwards.
  • the pressure element (33) penetrating the insulating body (31) from its first bearing surface (39) to its second bearing surface (41) is advantageously made of steel, stainless steel, fiber plastic, concrete, fiber reinforced concrete or another pressure-resistant, ie.
  • the inventors have made a special preference for concrete, fiber-reinforced concrete and fiber-reinforced plastics, because here too the at least one pressure element (33) ensures good thermal insulation between the two bearing surfaces (39, 41) delimiting the insulating body (31) ) guaranteed.
  • the pressure element (33) in the insulating body (31) is inserted without slip. This has the advantage that the at least one pressure element (33) receives additional stability through the surrounding insulation body (31).
  • the at least one pressure element (33) can at its ends according to the in FIG. 11 , A to e, embodiments shown therein basically different bases (34) such as square (a), rectangular (b), cross-profile (c), round (d), oval or elliptical (e), etc. have.
  • the pressure elements (33) according to FIG. 12 also have different body shapes (45).
  • the body (45) of the pressure elements (33) between its base surfaces (34) at both ends may be tapered cylindrically (A) relative to one (C, E) or both bases (B, D, F, G) (F) or curved outwards (I).
  • a particular preference of the invention lies in the embodiment (F) according to FIG. 12 according to which the cross section of the at least one pressure element (33) tapers towards the middle.
  • the pressure elements (33) are preferably arranged relative to one another such that the force-resultant of the transferable compressive force again lies approximately on the longitudinal central axis (A) (symmetrical arrangement).
  • the arrangement is very particularly preferably so that the pressure force resulting maximum 1/3 of the cross-sectional width of the connection element (17) off-center sitting.
  • the proposed pressure force transmitting connection element (17) as means for transverse force transmission at least one continuous element passing through the connecting element (17), transverse force transmitting element (35) which is non-positively connected to the at least one pressure element (33).
  • the lateral force transmitting element (35) passes through the connecting element (17) without material gap.
  • the transverse force transmitting element (35) can consist of several individual pieces, which are glued together before insertion into the connecting element (17), welded or otherwise permanently connected to each other.
  • the lateral force transmitting element (35) passes through the connecting element (17) in one piece, which means that the transverse force transmitting element (35) consists of a single, non-composite, but continuously uninterrupted workpiece.
  • the lateral force transmitting element (35) can be at least partially enclosed by the at least one pressure element (33) according to this last proposal in the previous paragraph, which means for the purposes of the present specification that at least one-eighth of the circumference of the lateral force transmitting element (35) over at least 25% of the length of the pressure element (33), dimensioned between the two bearing surfaces (39, 41) of the insulating body (31), directly adjacent to and frictionally connected to and / or sheathed by the pressure element (33).
  • the lateral force transmitting element (35) of the at least one pressure element (33) at least quarter, even better semi-circumferentially enclosed, which means in the context of the present specification that at least half of the circumference of the lateral force transmitting element (35) at least 25% of the length of the pressure element (33), dimensioned between the two bearing surfaces (39, 41) of the insulating body (31), immediately adjacent to and frictionally connected to and / or sheathed by the pressure element (33).
  • the lateral force-transmitting element (35) of the at least one pressure element (33) fully enclosed, which means in the context of the present document that the lateral force transmitting element (35) then over the full length of the pressure element (33) within this Pressure element (33) is formed and with the pressure element (33) is positively and materially connected.
  • the lateral force transmitting element (35) both rod-shaped elements (e.g., rectilinear or bent reinforcing bars) and plate-shaped elements, as well as various other profile constructions may be used.
  • the at least one lateral force transmitting element (35) is rod-shaped and passes through the connecting element (17) in a straight line. It is further provided as a preferred embodiment that the lateral force transmitting element (35) both on the one hand the first cast component (13, 29) facing the first bearing surface (39) and on the other hand, the second cast component (15) facing the second bearing surface (41 ), in each case more preferably by a length in a range of 2 to 100 cm, further limited in a range of 4 to 70 cm, and even further restricted in a range of 4 to 50 cm. It can be made possible in a particularly convincing measure a non-positive connection of the transverse force transmitting elements (35) with the possible reinforcement in the middle of the first molded component (13, 29) and the second molded component (15).
  • the means for transmitting transverse force comprise at least one pair of elements (35) which transmit two rod-shaped transverse force and which are in each case positively connected to the at least one pressure element (33).
  • the lateral force transmitting elements (35) at least for the most part in pairs with at least one pressure element (33) are positively connected. It is a possible embodiment, if in each case a pair of two, preferably rod-shaped transverse force transmitting elements (35) of a pressure element (33), at least partially, even more preferably even completely enclosed.
  • Such an angling of the projections (60) has in particular the advantage that the means according to the invention for transverse force transmission also ensure a tensile force transmission, which is why such a construction enables a particularly stable building construction, in particular concrete structures (11) with which connections of the first cast component (FIG. 13, 29) are made possible with the second molded component (15), in which the transverse force can be ablated in diametrically opposite directions.
  • these two lateral force transmitting elements (35) are either directly non-positively connected at the intersection, for which a bond as well as a weld offer.
  • the elements (35) which transmit transverse forces are connected to each other indirectly by force-locking connection with at least one common pressure element (33). It is also conceivable and is just as preferred when the two transverse force transmitting elements (35) are fixed in the crossing point exclusively on the material of the, the two lateral force transmitting elements (35) at least partially enclosing pressure element (33).
  • the transverse force transmitting elements (35) each consist, without limitation, of possible embodiments, of a material selected from the list comprising: steel, structural steel, stainless steel, fiber plastic (GRP, CFRP), using mild steel and stainless steel very preferably apply.
  • the elements (35) transmitting the at least one pair of transverse force are at least simply connected to each other at a distance outside the insulating body (31).
  • Such a connection of the transverse force-transmitting elements (35) outside of the insulating body (31) can very particularly preferably be combined with the embodiment in which the transverse force-transmitting elements (35) are indirectly connected by at least one common pressure element (33) are positively connected with each other.
  • connection of the lateral force-transmitting elements (35) outside the insulating body (31) can be combined with the embodiment according to which the transverse force-transmitting elements (35) are formed centrally crossing within the at least one pressure element (33), as well as with a design according to which the pairs formed transverse force transmitting elements (35) to their mutual outside of the insulation body (31) spaced connection are rectilinear and thereby penetrate the insulation body (31) in particular straight and parallel to each other.
  • the connecting element (17) according to the invention can be designed as a polygonal body in cross section (eg hexagonal, octagonal) with two opposite and mutually parallel first and second flat sides, which the two opposing and the insulating body (31) limiting bearing surfaces (39, 41). correspond or at more than the bearing surfaces (39, 41) protruding Druckverteilplatten (51) parallel to the two bearing surfaces (39, 41) are located.
  • the connection element (17) according to the invention is advantageously designed as a parallelepiped body. This has the advantage that the side surfaces of the connecting element (17) can be aligned with the concrete walls (15) resting on it.
  • the invention is also directed to the use of the here proposed compressive force-transmitting connection element (17) in all its possible embodiments and variants as a thermally insulating and at the same time stiffening connection component between two preferably superposed cast components (13, 15, 29).
  • FIG. 5 reproduced inventive embodiment, which reproduces a comparable construction situation as shown in FIG. 2 , Is to be arranged on a soil concrete floor slab (13) - as an example of a horizontal concrete component - a concrete wall (15) - as an example of a vertical concrete component - between which an inventive, compressive force transmitting connection element (17) is positioned.
  • the thus positioned connecting element (17) is a cuboid body with a low heat transfer coefficient of less than 60 mW / mK, which within the shown concrete structure (11) which is able to thermally separate a concrete part (15) from an adjacent concrete part (13).
  • the concrete structure (11) shown here is thermally completely separated from the environment.
  • the concrete structure (11) according to the invention corresponds to this FIG. 5 the thermally optimal construction according to FIG. 1 , as there is also no constructive cold bridge.
  • FIG. 6 it is a concrete structure (11) in which a basement (25) from an overlying floor (27) by means of a concrete basement ceiling (29) is separated. Similar to the concrete structure (11) according to FIG. 5 is the upstanding concrete wall (15) at the level of the floor (27) on a pressure-force transmitting connecting element according to the invention (17) turned off, and the inner insulation (23) is arranged on the basement ceiling (29).
  • the outer insulation (21) covers the connection element (17) largely and preferably completely outside, so that even in this construction, the floor (27) from the basement (25) and the environment is largely thermally insulated.
  • the concrete structure (11) according to the in FIG. 7 reproduced embodiment of the invention differs from the concrete structure (11) FIG. 6 in that now the basement ceiling (29) rests on a connection element (17) according to the invention which transmits compressive force. Accordingly, the inner insulation (23) is not above, but below the basement ceiling (29). Again, it can be seen that the basement (25) is thermally insulated from the overlying structure by the connection element (17) and the internal insulation (23).
  • FIG. 8 is, detached from possible installation situations, an inventive, compressive force transmitting connection element (17) in a characteristic, but not limiting and thus freely selected embodiment shown, as for the above-described concrete constructions according to the FIGS. 5 to 7 is usable.
  • the connecting element (17) which transmits compressive force in this case has an insulating body (31) which is parallelepiped and in the present case made, for example, of XPS, the upper side of the first planar bearing surface (39) and the lower side of the second, planar and parallel to the first bearing surface (39 ) aligned bearing surface (41) is limited, which in the installed state of the connection element (17) the two molded components (13, 15, 29), not shown here, facing.
  • the insulating body (31) in the case shown by two hatched rectangular upwardly oriented plate-shaped printing elements (33) penetrated in the present case made of steel or fiber-reinforced, wherein the pressure elements (33) at their upper end faces each have a pressure distribution element (51) , which in the present case are flush with the outer surface of the, the insulating body (31) upwardly bounding support surface (39).
  • the two pressure elements (33) cutting centrally in the longitudinal center axis (A) of the connection element (17) are each bounded on the outside by a pair of elements (35) which form two rod-shaped rectilinear transverse force and connected to them non-positively.
  • the lateral force transmitting elements (35) protrude both from the first upper bearing surface (39) as well as from the second lower bearing surface (41) in each case by a length of 35 cm here. In one case, it.
  • FIG. 8 in the front of the two cases, the two transverse force transmitting elements (35) spaced outside of the insulating body (31) are simple, here below the connecting element (17) connected to each other.
  • FIG. 10 are first shown in section two possible embodiments of rectangular edgewise to be oriented plate-shaped printing elements (33), each with a pair of two rod-shaped rectilinear transverse force transmitting elements (35), the lateral force transmitting elements (35) on the outside limit the plate-shaped pressure elements (33) and are connected to these non-positively.
  • the case (a) of FIG. 10 corresponds to the plate-shaped pressure elements (33) FIG. 8 where only at the upper end faces of the pressure elements (33) each have a pressure distribution element (51) is formed.
  • pressure distribution elements (51) are formed at both end faces, both above and below.
  • Figure 10 (c) puts the arrangements out of the FIGS. 10 (a) and (b) in plan (view from above).
  • FIG. 9 an inventive, compressive force transmitting connection element (17) in a characteristic, but not limiting and thus freely selected embodiment, as it for the above-described concrete constructions It FIGS. 5 to 7 also usable.
  • the connecting element (17) which transmits compressive force again has a parallelepiped-shaped insulating body (31), for example made of XPS on the upper side of the first planar support surface (39) and on the underside of the second, planar and parallel to the first support surface (39 ) aligned bearing surface (41) is limited, which in the installed state of the connection element (17) the two molded components (13, 15, 29), not shown here, facing.
  • the insulating body (31) is penetrated by two cylindrical pressure elements (33) made of concrete or fibrous plastic, in which a hexagonal pressure distribution element (51) is formed at least in the direction of the first flat support surface (39).
  • the two adjacent Druckverteilimplantation (51) are interlinked in the illustrated case by the hexagonal design with interlocking boundary sides.
  • FIG. 13 shows three different embodiments of each with the at least one, the insulating body (31) of the first bearing surface (39) to its second bearing surface (41) penetrating the pressure element (33) non-positively connected transverse force transmitting elements (35), preferably from rods Structural steel or stainless steel are formed.
  • a lateral force transmitting element (35) comprises a central piece (59), which outside of the in FIG. 13a insulation body (31), not shown, is angled at least in regions, wherein the angled regions are characterized here as extensions (60).
  • FIG. 13 shows three different embodiments of each with the at least one, the insulating body (31) of the first bearing surface (39) to its second bearing surface (41) penetrating the pressure element (33) non-positively connected transverse force transmitting elements (35), preferably from rods Structural steel or stainless steel are formed.
  • such a lateral force transmitting element (35) comprises a central piece (59), which outside of the in FIG. 13a insulation body (31), not shown, is
  • the transverse force-transmitting element (35) may also consist of two rods crossing each other in their respective center piece (59), which rods are extended at one end by projections (60) projecting at an angle.
  • the crossing point of the rods is approximately in the middle of the insulating body (31).
  • the other ends are extended so that they are connected to each other in the installed state, spaced outside the insulating body (31).
  • the transverse force transmitting elements (35) according to FIG. 13c has the lateral force transmitting elements (35) has the shape of an angled "U”.
  • the transverse force-transmitting elements (35) are preferably installed in the insulating body (31) such that the center piece (59) angled to the extensions (60) extends approximately transversely to the longitudinal central axis (A) of the connecting element (17).

Description

  • Die vorliegende Erfindung betrifft ein Druckkraft übertragendes Anschlusselement, geeignet zur Druckkraft übertragenden Verbindung eines ersten gegossenen Bauteils mit einem zweiten gegossenen Bauteil. Ein solches Anschlusselement umfasst gattungsgemäß:
    • □ einen durch zwei sich gegenüberliegenden Auflageflächen begrenzten Isolationskörper zur thermischen Trennung des ersten gegossenen Bauteils von dem zweiten gegossenen Bauteil ,
      • wobei die erste den Isolationskörper begrenzende Auflagefläche dem ersten gegossenen Bauteil zugewandt ist,
        und
      • wobei die zweite den Isolationskörper begrenzende Auflagefläche dem zweiten gegossenen Bauteil zugewandt ist,
    • □ mindestens ein Druckelement, das den Isolationskörper von dessen erster Auflagefläche bis zu dessen zweiter Auflagefläche durchdringt,
    • □ Mittel zur Querkraftübertragung,
  • Ein die gattungsgemäßen Merkmale offenbarender wärmedämmender Mauerstein ist aus der EP 2 151 531 A2 bekannt, dessen Druckelemente beispielsweise aus Zementmörtel aufgebaut sind und dessen Wärmedämmkörper bevorzugt aus Glas- oder Steinschaum besteht, wobei hier als Mittel zur Querkraftübertragung eine strukturierte, gegebenenfalls mit Splitt beaufschlagte Oberfläche dient. Ein solcher Mauerstein kann zweifellos hinsichtlich der Wärmedämmung und hinsichtlich der Druckkraftübertragung überzeugend sein, mit Blick auf die Querkraftübertragung vermögen jedoch die in dieser Schrift angeregten technischen Merkmale nicht zu überzeugen.
  • Ein ebenfalls gattungsgemäßes Kragplattenanschlusselement ist aus der EP 0 338 972 A1 bekannt, mit dessen Hilfe insbesondere Balkone als Beispiele für Kragplatten an eine benachbarte Bodendeckplatte angesetzt werden können. Das bekannte Kragplattenanschlusselement umfasst einen quaderförmigen Isolationskörper, der von paarweise übereinander liegenden, den Isolationskörper horizontal durchlaufenden Druckstäben durchzogen ist. Zur Vermeidung eines Rostbefalls dieser aus Kostengründen bevorzugt nicht aus rostfreiem Stahl hergestellten Druckstäbe sind diese jeweils mit Hülsen umgeben, wobei zwischen den Hülsen und den Druckstäben ein aushärtbares Material, beispielsweise ein kunststoffvergüteter Mörtel, eingefüllt ist. In einer möglichen Ausgestaltung des vorgeschlagenen Kragplattenanschlusselements weist dieses auch Querkraft übertragende Elemente auf, die jedoch den Isolationskörper räumlich getrennt von den Druckstäben durchziehen.
  • Gegenstand der nicht gattungsgemäßen WO 2010 / 046 841 A1 ist ein Anschlusselement für Gebäudeverbindungen, bei dem ein Isolierkörper durch schräg in einem Winkel zur Vertikalen zwischen 1 ° und 89° verlaufende, paarweise mit einer Versteifungsplatte verbundene Bewehrungsstäbe durchzogen ist. Das bekannte Anschlusselement scheint somit ausschließlich über Querkraft übertragende Elemente zu verfügen, da die Versteifungsplatte als Druckelement weder hinsichtlich seiner Konstruktion noch hinsichtlich seiner Einführung innerhalb dieser Schrift geeignet ist. Der Schrift sind im gleichen Maße auch keinerlei Anregungen für die Ausgestaltung jedweder Druckverteilelemente zu entnehmen.
  • Aus der DE 94 13 502 U1 ist ebenfalls ein Bauelement für die Wärmedämmung in einem Mauerwerk bekannt. Während als Druckelemente vertikale Tragsäulen aus Zementmörtel offenbart werden, die mittels Stege miteinander verbunden sind, soll das Material für den Wärmedämmkörper aus Polystyrol-Hartschaum bestehen. Hinsichtlich möglicher Mittel zur Querkraftübertragung finden sich in der Schrift jedoch keinerlei Hinweise.
  • Solche Hinweise finden sich hingegen in der EP 1 154 086 A2 , die ein Wärmedämmelement zur Wärmeflussentkopplung zwischen Wandteil und Bodenplatten vorschlägt. Das bekannte Wärmedämmelement kann säulenförmige Tragelemente mit einem die Zwischenräume zwischen diesen Tragelementen ausfüllendem Isolierelement aufweisen. Als Mittel zur Quer- und Zugkraftübertragung sollen Verankerungsvorsprünge dienen, die in der Form von Dübeln plan auf die Außenseiten des vorgeschlagenen Wärmedämmelements aufgebracht sind. Das in dieser Art bekannte Wärmedämmelement mag hinsichtlich seiner Wärmedämmung überzeugen, auch können vielleicht leichte Querkräfte abgefangen werden, die während des Transports eines derart bekannten Baukörpers entstehen können, ein Ansatz für eine überzeugende Lösung auf das Problem des Abfangens größerer Querkräfte, wie sie beispielsweise aus planmäßigem Erddruck oder Windstabilisierung - dabei in einer möglichen Größenordnung mindestens oberhalb von 10 kN/m - auftreten können, kann der Schrift jedoch keineswegs entnommen werden.
  • Schließlich ist aus der EP 2 241 690 A2 ein Anschlusselement für die Fundamentierung von Betonbauteilen bekannt, bei dem in einen Isolationskörper stahlbewehrte Betonsäulen und ein von diesen Säulen getragener Betonquerträger zum dort zu verankernden Anschluss der Geschossdecken eingelassen sind. In einer möglichen Ausführungsform ragen aus den Betonsäulen nach unten Querkraft übertragende Stahldorne heraus.
  • Entsprechend bekannter Konstruktionen zur Wärmedämmung zeigt die Figur 1 an Hand einer üblichen Betonkonstruktion (11) die übliche Aufständerung einer Betonwand (15) auf einer Betonbodenplatte (13). Die Betonbodenplatte (13) und die Betonwand (15) sind monolithisch, kraftschlüssig und ungedämmt miteinander verbunden. Es ist erkennbar, dass die Wärmedämmung (5, 7) außen liegend sowohl unterhalb der Betonbodenplatte (13) als auch außen an der Betonwand (15) vorgesehen ist. Die Wärmedämmung (7), welche unter der Betonbodenplatte (13) angeordnet ist, muss aus statischen Gründen, abhängig von der Belastungshöhe, druckfest, alterungsbeständig und verrottungsresistent sein.
  • Die erforderliche Druckfestigkeit der Wärmedämmung (7) unter der Bodenplatte muss in der Regel > 150 kN/m2 sein. Die dafür üblicherweise eingesetzten Materialien sind XPS-Platten, Schaumglasblöcke oder Schaumglasschotter. Bei diesen Materialien handelt es sich um hochwertige und druckfeste Materialien. Auf Grund hoher Druckfestigkeiten ergeben sich geringere Wärmedämmwerte mit einem Lambda > 40 mW/mK. Die vergleichsweise hohe Wärmeleitfähigkeit führt bei gleichbleibender thermischer Dämmleistung zu höheren Schichtdicken und damit zu höherem Materialverbrauch als vergleichbare Lösungen mit innen liegenden Dämmungen. Durch den hohen Verbrauch von technisch aufwendigen Materialien (graue Energie) wird die Ökologie des Gebäudes zudem negativ beeinflusst. Trotzdem wird eine solche Konstruktion, mangels Alternativen, für Niedrigenergie- und Passivhaus-Konzepte angewandt.
  • Die Betonkonstruktion (11) gemäß Figur 2 ist monolithisch, kraftschlüssig und nur unzureichend gedämmt. Die Wärmedämmung (5, 9) ist an der Außenwand (15) außen liegend angeordnet, während sie bei der Betonbodenplatte (13) aufliegend angeordnet ist. Die Nutzung der innenliegenden Dämmung (9) bietet enorme Kostenersparnisse, sowie eine Reduzierung der benötigten grauen Energie, jedoch ist es offensichtlich nachteilig an dieser Ausführung, dass eine bestehende Kältebrücke zwischen der Betonbodenplatte (13) und der Betonwand (15) vorhanden ist.
  • In den Figuren 3 und 4 ist eine nicht druckfeste Wärmedämmung (9) unterhalb und/oder oberhalb einer Beton(keller)decke (29) angeordnet, wie es beispielsweise Anwendung findet für nicht beheizte Kellerräume. Eine solche Betonkonstruktion (11) ist ebenfalls monolithisch, kraftschlüssig und nur unzureichend gedämmt. Auch bei dieser Lösung besteht eine Kältebrücke zwischen der Betonwand (15) und der Beton(keller)decke (29). Solche Systeme sind nicht tauglich für Niedrigenergie- bzw. Passivhäuser auf Grund des lokalen Energieverlustes sowie der Gefahr der Schimmelpilzbildung (konstruktive Kältebrücke).
  • Ausgehend von dem zuvor gewürdigten druckschriftlichen und mittels der Figuren 1 bis 4 wiedergegebenem Stand der Technik (SdT) ist es Aufgabe der hier vorliegenden Erfindung, der Öffentlichkeit ein Verbindungselement für zwei miteinander zu verbindende, gegossene Bauteile, das sind bevorzugt einerseits Betonboden bzw. -decke und andererseits Betonwand, vorzuschlagen, welches die üblicherweise entstehenden, konstruktiven Kältebrücken bei Betonkonstruktionen weitgehend eliminiert und welches gleichsam in der Lage ist, große Druckkräfte und große Querkräfte abzufangen. Ziel ist es weiterhin, eine Lösung vorzuschlagen, mit deren Hilfe Betonkonstruktionen mit geringem finanziellem und technischem Aufwand die neuen und zukünftigen Energiestandards erfüllen können. Elementares Element innerhalb der Aufgabe für die hier vorliegende Erfindung ist es vor diesem Hintergrund, eine möglichst große Freiheit hinsichtlich der Auswahl des Materials für den Isolationskörper (31) zu erhalten, ohne übermäßig hinsichtlich der Höhe der Frischbetonierung oberhalb des erfindungsgemäßen Anschlusselements (17) eingeschränkt zu sein. Ein weiteres Ziel der vorliegenden Erfindung ist es, der Öffentlichkeit eine Betonkonstruktion mit einem optimalen Kraftfluss bei gleichzeitig optimierter Wärmedämmung vorzuschlagen.
  • Die Aufgabe wird gelöst mittels eines Druckkraft übertragenden Anschlusselements (17) zur Druckkraft übertragenden Verbindung eines ersten gegossenen Bauteils (13, 29) mit einem zweiten gegossenen Bauteil (15), wobei das zweite gegossene Bauteil eine Betonwand ist, mindestens aufweisend
    • □ einen durch zwei sich gegenüberliegenden Auflageflächen (39, 41) begrenzten Isolationskörper (31) zur thermischen Trennung des ersten gegossenen Bauteils (13, 29) von dem zweiten gegossenen Bauteil (15),
      • wobei die erste den Isolationskörper (31) begrenzende Auflagefläche (39) dem ersten gegossenen Bauteil (13, 29) zugewandt ist,
        und
      • wobei die zweite den Isolationskörper (31) begrenzende Auflagefläche (41) dem zweiten gegossenen Bauteil (15) zugewandt ist,
    • □ mindestens ein den Isolationskörper (31) von dessen erster Auflagefläche (39) zu dessen zweiter Auflagefläche (41) durchdringendes Druckelement (33),
    • □ Mittel zur Querkraftübertragung,
    wobei das vorgeschlagene Anschlusselement (17) gekennzeichnet wird dadurch, dass
    • □ die Mittel zur Querkraftübertragung mindestens ein das Druckkraft übertragende Anschlusselement (17) - in Richtung von der ersten Auflagefläche (39) des Isolationskörpers (31) zu der zweiten Auflagefläche (41) des Isolationskörpers (31) - durchgängig durchlaufendes Querkraft übertragendes Element (35) umfassen,
    • □ das mindestens eine Druckelement (33) mit dem mindestens einen Querkraft übertragendes Element (35) kraftschlüssig verbunden ist,
    • □ an mindestens einem stirnflächigen Ende des mindestens einen Druckelements (33) mindestens ein Druckverteilelement (51) ausgebildet ist.
  • Ohne auf diese Ausführungsformen beschränkt zu sein, ist dabei das erste gegossene Bauteil (13, 29) bevorzugt ein Element, ausgesucht aus der Liste, umfassend Betonbodenplatte und Betondeckenplatte. Das zweite gegossene Bauteil (15) ist eine Betonwand. Durch diese Ausführungsformen können die das mindestens eine Druckkraft übertragende Anschlusselement (17) durchgängig durchlaufenden Querkraft übertragenden Elemente (35) kraftschlüssig mit den Betonbauteilen (13, 15, 29) verbunden werden, indem diese ein- oder beidseitig an das Druckkraft übertragende Anschlusselement (17) angegossen werden. Gerade bei dem Anguss insbesondere von hoch aufragenden Betonwänden (15) auf dem erfindungsgemäßen Anschlusselement (17) stellt die Ausbildung des mindestens einen Druckverteilelements (51) an mindestens einem stirnflächigen Ende des mindestens einen Druckelements (33) entscheidende Vorteile dar. In einem besonderen Maße stellt es eine bevorzugte Ausführung dar, wenn mindestens ein Druckverteilelement (51) sowohl an dem einen wie auch an dem anderen der beiden stirnflächigen Enden des mindestens einen Druckelements (33) ausgebildet ist. Im eingebauten Zustand ist dann das erfindungsgemäße Anschlusselement (17) zwischen einer Betonbodenplatte (13) und einer Betonwand (15) oder zwischen einer Betondeckenplatte (29) und einer Betonwand (15) angeordnet, wodurch eine effektive thermische Trennung zwischen den beiden Betonteilen gewährleistet ist. Ohne darauf beschränkt zu sein, ist es dabei gemäß sämtlicher hier vorgeschlagener Varianten und Ausführungsformen bevorzugt, wenn im eingebauten Zustand die beiden gegossenen Bauteile (13, 15, 29) mit dem dazwischen positionierten erfindungsgemäßen Anschlusselement (17) geschichtet übereinander gelegen sind.
  • Das mindestens eine Druckverteilelement (51) an dem mindestens einem stirnflächigen Ende des mindestens einen Druckelements (33) bzw. gleichsam bevorzugt das mindestens ein Druckverteilelement (51) sowohl an dem einen wie auch an dem anderen der beiden stirnflächigen Enden des mindestens einen Druckelements (33) ist bevorzugt wahlweise
    • außenflächig bündig mit den, den Isolationskörper (31) begrenzenden Auflageflächen (39,41) oder
    • überstehend bezogen auf die, den Isolationskörper (31) begrenzenden Auflageflächen (39,41)
    ausgestaltet.
  • Sofern bei dem hier vorgeschlagenen Anschlusselement (17) angrenzend an die erste den Isolationskörper (31) begrenzende Auflagefläche (39) und/oder an die zweite den Isolationskörper (31) begrenzende Auflagefläche (41)
    • □ genau ein Druckverteilelement (51) ausgebildet ist, gilt es als bevorzugt, wenn die Fläche dieses Druckverteilelements (51)
    • □ eine Vielzahl von Druckverteilelementen (51) ausgebildet sind, gilt es als bevorzugt, wenn die Gesamtfläche dieser Druckverteilelemente (51)
    einen Anteil von 3% bis 100%, bevorzugt von 20% bis 100% und ganz besonders bevorzugt einen Anteil von 35% bis 100%, bezogen wahlweise auf die erste den Isolationskörper (31) begrenzende Auflagefläche (39) oder auf die zweite den Isolationskörper (31) begrenzende Auflagefläche (41), ausmacht. Während das mindestens eine Druckverteilelement (51) entscheidend für die Höhe der Frischbetonierung oberhalb des erfindungsgemäßen Anschlusselements (17) und entscheidend für die Freiheit in der Auswahl des Materials für den Isolationskörper (31) ist, gewährleisten die Druckelemente (33) hauptsächlich, dass das auf dem Anschlusselement (17) ruhende Bauteil nach seinem Aushärten die aus dem Gebäude stammende resultierende Druckkraft überträgt.
  • Im Rahmen einer ersten bevorzugten Ausbildungsvariante ist das mindestens eine Druckverteilelement (51) als genau eine Druckverteilplatte pro den Isolationskörper (31) begrenzende Auflagefläche (39, 41) beispielsweise aus Beton, Stahl- und/oder Kunststoff bewehrter Beton, insbesondere Kunststoff umschlossener Stahl oder Kohlenfaserverstärkter Kunststoff ausgebildet. Bei einer Vielzahl an Druckelementen (33) innerhalb des vorgeschlagenen Druckkraft übertragenden Anschlusselements (17) stellt eine solche genau eine Druckverteilplatte ein verbindendes und die Statik steigerndes Verbindungselement dar.
  • Im Rahmen einer zweiten bevorzugten Ausbildungsvariante ist das mindestens eine Druckverteilelement (51) als eine Vielzahl nebeneinander, gegebenenfalls miteinander verzahnter Druckverteilplatten ausgebildet, bei der jedem Druckelement (33) innerhalb des vorgeschlagenen Druckkraft übertragenden Anschlusselements (17) bevorzugt genau eine Druckverteilplatte zugeordnet ist und bei der jedes Druckelement (33) durch eine ihm zugeordnete Druckverteilplatte bevorzugt an beiden stirnflächigen Enden insbesondere nach oben und nach unten abgeschlossen wird.
  • Neben den in den beiden vorherigen Absätzen vorgeschlagenen Druckverteilplatten als bevorzugte Ausbildungsvarianten der erfindungsgemäßen Druckverteilelemente (51) sind auch die folgenden Beispiele für solche Druckverteilelement (51) vorstellbar und gelten überdies als bevorzugt:
    • ■ geradlinige Stäbe, insbesondere aus Metall oder kunststoffummanteltem Metall, parallel verlaufend zu den den Isolationskörper (31) begrenzenden Auflageflächen (39, 41),
    • ■ geschwungene oder spiralförmig gebogen Stäbe, insbesondere aus Metall oder kunststoffummanteltem Metall, verlaufend in einer Ebene, parallel zu den den Isolationskörper (31) begrenzenden Auflageflächen (39, 41),
    • ■ Gitter, insbesondere aus Metall, kunststoffummanteltem Metall, Faserkunststoffe oder Kunststoffe, verlaufend in einer Ebene, parallel zu den den Isolationskörper (31) begrenzenden Auflageflächen (39, 41).
  • Der für die thermische Trennung des ersten gegossenen Bauteils (13, 29) von dem zweiten gegossenen Bauteil (15) vorgesehene Isolationskörper (31) weist bevorzugt ein Steifemodul von größer 80 N/mm2, vorzugsweise größer 100 N/mm2 und ganz besonders bevorzugt größer 150 N/mm2. Dies hat den Vorteil, dass das mindestens eine Druckelement (33) oder die ausgebildete Vielzahl an Druckelementen (33) durch das umgebende Material des Isolationskörpers (31) gestützt ist/sind und keinen oder nur besonders geringen Scherkräften ausgesetzt ist/sind. Als Materialien für den Isolationskörper (31) bieten sich, ohne abschließend darauf beschränkt zu sein,
    • □ Schaumglas,
    • □ expandierter Polstyrol-Hartschaumstoff (EPS) und
    • □ XPS
    an. Ein ganz besonders bevorzugtes Material für die Herstellung des Isolationskörpers ist dabei Schaumglas. Dieses hat neben einer Druckfestigkeit von größer 200 kN/m2 insbesondere ein Steifemodul von größer 80 N/mm2.
  • Aufgrund der exponierten Lage des Anschlusselementes (17) ist der Isolationskörper (31) aus einem Material herausgearbeitet, das zweckmäßigerweise wasserdicht und besonders bevorzugt wasserdampfdicht, vorzugsweise alterungsbeständig und resistent hinsichtlich Schädlingsbefall und Verrottung ist. Auch diese Anforderungen erfüllt das diesseits ganz besonders bevorzugte Schaumglas in hervorragendem Maße.
  • Erfindungsgemäß ist der Isolationskörper (31) mindestens von genau einem Druckelement (33) durchdrungen. Zur notwendigen Übernahme der vorgesehenen Druck- und Scherkräfte weist in einem solchen Fall dieses Druckelement (33) im Fall seiner Singularität eine größere Ausdehnung in Längs- und Querachse auf als es der Fall ist, wenn mehrere voneinander beabstandet ausgebildete Druckelemente (33) den Isolationskörper (31) durchdringen. Dabei gilt es als bevorzugt, wenn
    • bei genau einem den Isolationskörper (31) durchdringenden Druckelement (33) die Querschnittsfläche des Druckelements (33)
    • bei einer Mehrzahl von den Isolationskörper (31) durchdringenden Druckelementen (33) die Summe der Querschnittsflächen der Druckelemente (33)
    einen prozentualen Anteil von 0,3% bis 62,5%, ganz besonders bevorzugt- insbesondere bei Beton als Material für die den Isolationskörper (31) durchdringenden Druckelemente (33) - von 4% bis 25% und noch besser von 4% bis 15%, bezogen wahlweise auf die erste den Isolationskörper (31) begrenzende Auflagefläche (39) oder auf die zweite den Isolationskörper (31) begrenzende Auflagefläche (41), ausmacht. Bei einer Wahl von Stahl bzw. von Materialien ähnlicher Festigkeit als Material für die den Isolationskörper (31) durchdringenden Druckelemente (33) gilt ein prozentualer Anteil von 0,3% bis 4,5%, bezogen wahlweise auf die erste den Isolationskörper (31) begrenzende Auflagefläche (39) oder auf die zweite den Isolationskörper (31) begrenzende Auflagefläche (41), als ganz besonders bevorzugt. Bei dem einen Druckelement (33) oder bei den mehreren Druckelementen (33) mit über dessen/deren Länge variierender Querschnittsfläche gilt als jeweilige Querschnittsfläche das diesbezügliche Minimum als zu berücksichtigende Größe, bestimmt an der Position des jeweiligen Druckelements (33), wo dessen Querschnittsfläche den geringst möglichen Wert annimmt.
  • Das erfindungsgemäß mindestens eine den Isolationskörper (31) von dessen erster Auflagefläche (39) zu dessen zweiter Auflagefläche (41) durchdringende Druckelement (33) ist vorteilhaft aus Stahl, Edelstahl, Faserkunststoff, Beton, Faserbeton oder einem anderen druckfesten, d.h. im Wesentlichen nicht kompressiblen Material hergestellt, wobei seitens der Erfinderschaft eine besondere Präferenz auf Beton, Faserbeton und Faserkunststoff liegt, weil hier auch das mindestens eine Druckelement (33) eine gute thermische Isolation zwischen den beiden den Isolationskörper (31) begrenzende Auflagefläche (39, 41) garantiert. Zweckmässigerweise ist das Druckelement (33) in den Isolationskörper (31) schlupffrei eingesetzt. Dies hat den Vorteil, dass das mindestens eine Druckelement (33) durch den umgebenden Isolationskörper (31) zusätzliche Stabilität erhält.
  • Das mindestens eine Druckelement (33) kann an seinen Enden gemäß der in der Figur 11 , dort a bis e, gezeigten Ausführungsbeispielen grundsätzlich unterschiedliche Grundflächen (34) wie quadratisch (a), rechteckig (b), Kreuz-Profil (c), rund (d), oval oder elliptisch (e), etc. aufweisen.
  • Im Längsschnitt können die Druckelemente (33) gemäß Figur 12 ebenfalls unterschiedliche Körperformen (45) aufweisen. Der Körper (45) der Druckelemente (33) zwischen seinen Grundflächen (34) an den beiden Enden kann zylindrisch (A), relativ zu einer (C, E) oder beiden Grundflächen (B,D,F,G) verjüngt, nach innen (F) oder nach außen (I) gewölbt sein.
  • Eine besondere Präferenz der Erfinderschaft liegt dabei in dem Ausführungsbeispiel (F) gemäß Figur 12, wonach der Querschnitt des mindestens einen Druckelements (33) zur Mitte hin verjüngt ist.
  • Bevorzugt ist das mindestens eine Druckelement (33) oder sind bei eine Vielzahl an Druckelementen (33) mindestens eine Mehrheit dieser Druckelemente (33) auf der Längsmittelachse (A) des Anschlusselements (17) (im Fachjargon auch als Systemachse bezeichnet), vgl. Figuren 8 und 9 , oder in Abstand zu dieser angeordnet. Im letzteren Fall sind die Druckelemente (33) vorzugsweise so zueinander angeordnet, dass die Kraftresultierende der übertragbaren Druckkraft wiederum ungefähr auf der Längsmittelachse (A) liegt (symmetrische Anordnung). Bei unsymmetrischer Anordnung der Druckelemente (33) außerhalb der Längsmittelachse des Anschlusselements (17), beispielsweise aus Gründen der Optimierung des Kraftflusses, erfolgt die Anordnung ganz besonders bevorzugt so, dass die Druckkraftresultierende maximal 1/3 der Querschnitts-Breite des Anschlusselements (17) außermittig sitzt.
  • Erfindungsgemäß weist das vorgeschlagene Druckkraft übertragende Anschlusselement (17) als Mittel zur Querkraftübertragung mindestens ein das Anschlusselement (17) durchgängig durchlaufendes, Querkraft übertragendes Element (35) auf, das mit dem mindestens einen Druckelement (33) kraftschlüssig verbunden ist. Durchgängig im Sinne der vorliegenden Schrift bedeutet, dass das Querkraft übertragendes Element (35) das Anschlusselement (17) ohne Materiallücke durchläuft. Das Querkraft übertragendes Element (35) kann dabei aus mehreren Einzelstücken bestehen, die vor Einfügung in das Anschlusselement (17) miteinander verklebt, verschweißt oder sonst wie dauerhaft miteinander verbunden worden sind. Besonders bevorzugt im Sinne der vorliegenden Schrift durchläuft das Querkraft übertragendes Element (35) das Anschlusselement (17) einstückig, was bedeutet, dass das Querkraft übertragende Element (35) aus einem einzigen, nicht zusammengesetzten, sondern fortlaufend ununterbrochenen Werkstück besteht.
  • Die kraftschlüssige Verbindung zwischen dem mindestens einen Druckelement (33) mit dem mindestens einen Querkraft übertragenden Element (35) ist bevorzugt ausgebildet als eine Verbindung, ausgesucht aus der Liste, umfassend: Verklebung, Verschweißung, Hartverlötung, Anguss, zumindest teilumfangliche Umschließung. Dabei können Verklebung, Verschweißung und Hartverlötung nur punkt- oder strichweise erfolgen, ganz besonders bevorzugt geschieht diese Art der kraftschlüssigen Verbindung jedoch, indem das mindestens eine Druckelement (33) mit dem mindestens einen Querkraft übertragendes Element (35) über die volle Kontaktfläche zwischen ihnen verklebt, verschweißt oder hartverlötet wird. Eine weitere bevorzugte Form der kraftschlüssige Verbindung zwischen dem mindestens einen Druckelement (33) mit dem mindestens einen Querkraft übertragenden Element (35) ist die zumindest teilumfangliche Umschließung entweder
    • des mindestens einen Druckelements (33) durch das mindestens eine Querkraft übertragende Element (35) oder ganz besonders bevorzugt
    • des mindestens einen Querkraft übertragenden Element (35) durch das mindestens eine Druckelement (33).
    Auch Kombinationen der genannten Verbindungsarten sind möglich und gelten als bevorzugt im Sinne der vorliegenden Erfindung.
  • Das Querkraft übertragende Element (35) kann gemäß dieses letzten Vorschlags im vorherigen Absatz von dem mindestens einen Druckelement (33) zumindest teilumfanglich umschlossen werden, was im Sinne der vorliegenden Schrift bedeutet, dass zumindest ein Achtel des Umfangs von dem Querkraft übertragenden Element (35) über mindestens 25 % der Länge des Druckelements (33), bemessen zwischen den beiden Auflageflächen (39, 41) des Isolationskörpers (31), direkt benachbart zu und kraftschlüssig verbunden mit und/oder ummantelt von dem Druckelement (33) ist. Besonders bevorzugt ist das Querkraft übertragende Element (35) von dem mindestens einen Druckelement (33) zumindest viertel-, noch besser halbumfanglich umschlossen, was im Sinne der vorliegenden Schrift bedeutet, dass zumindest die Hälfte des Umfangs von dem Querkraft übertragenden Element (35) über mindestens 25 % der Länge des Druckelements (33), bemessen zwischen den beiden Auflageflächen (39, 41) des Isolationskörpers (31), unmittelbar benachbart zu und kraftschlüssig verbunden mit und/oder ummantelt von dem Druckelement (33) ist. Ganz besonders bevorzugt ist das Querkraft übertragendes Element (35) von dem mindestens einen Druckelement (33) vollumfanglich umschlossen, was im Sinne der vorliegenden Schrift bedeutet, dass das Querkraft übertragende Element (35) dann über die volle Länge des Druckelements (33) innerhalb dieses Druckelements (33) ausgebildet ist und mit dem Druckelement (33) so kraft- und stoffschlüssig verbunden ist. Für das Querkraft übertragende Element (35) können sowohl stabförmige Elemente (z.B. geradlinig oder gebogen ausgebildete Armierungsstäbe) und plattenförmige Elemente, wie auch diverse weitere Profilkonstruktionen angewendet werden.
  • Bevorzugt ist das mindestens eine Querkraft übertragende Element (35) stabförmig ausgebildet und durchläuft das Anschlusselement (17) geradlinig. Es ist ferner als bevorzugte Ausführung vorgesehen, dass das Querkraft übertragende Element (35) sowohl einerseits die dem ersten gegossenen Bauteil (13, 29) zugewandte erste Auflagefläche (39) wie auch andererseits die dem zweiten gegossenen Bauteil (15) zugewandte zweite Auflagefläche (41) jeweils überragt, dabei besonders bevorzugt um eine Länge in einem Bereich von 2 bis 100 cm, weitergehend eingeschränkt in einem Bereich von 4 bis 70 cm, und noch weitergehend eingeschränkt in einem Bereich von 4 bis 50 cm. Es kann so in einem besonders überzeugenden Maße eine kraftschlüssige Verbindung der Querkraft übertragenden Elemente (35) mit der möglichen Armierung inmitten des ersten gegossenen Bauteils (13, 29) bzw. des zweiten gegossenen Bauteils (15) ermöglicht werden.
  • Im Rahmen einer weiteren bevorzugten Ausführungsform ist es vorgesehen, dass die Mittel zur Querkraftübertragung mindestens ein Paar aus zwei stabförmig ausgebildeten Querkraft übertragenden Elementen (35) umfassen, die jeweils mit dem mindestens einen Druckelement (33) kraftschlüssig verbunden sind. Bei einer Vielzahl an Druckelementen (33) und einer Vielzahl an Querkraft übertragenden Elementen (35) innerhalb des vorgeschlagenen Anschlusselements (17) ist es ganz besonders bevorzugt, wenn die Querkraft übertragenden Elemente (35) zumindest größtenteils jeweils paarweise mit mindestens einem Druckelement (33) kraftschlüssig verbunden sind. Dabei ist es eine mögliche Ausführungsform, wenn jeweils ein Paar aus zwei, bevorzugt stabförmig ausgebildeten Querkraft übertragenden Elementen (35) von einem Druckelement (33), zumindest teilumfanglich, ganz besonders bevorzugt sogar vollständig umschlossen ist.
  • Sowohl im Rahmen der vorgenannten Ausführungsform wie auch generell gilt es als bevorzugt, wenn die das mindestens eine Paar bildenden Querkraft übertragenden Elemente (35), bzw. generell wenn die Querkraft übertragenden Elemente (35), außerhalb des Isolationskörpers (31) mindestens bereichsweise abgewinkelt sind, wobei die abgewinkelten Bereiche auch als Fortsätze (60) bezeichnet werden. Eine solche Abwinkelung der Fortsätze (60) weist insbesondere den Vorteil auf, dass die erfindungsgemäß vorgesehenen Mittel zur Querkraftübertragung auch eine Zugkraftübertragung gewährleisten, weshalb eine solche Konstruktion eine besonders stabile Baukonstruktion, insbesondere Betonbaukonstruktionen (11) ermöglicht, mit denen Verbindungen des ersten gegossenen Bauteils (13, 29) mit dem zweiten gegossenen Bauteil (15) ermöglicht werden, bei denen die Querkraft auch in diametral gegenüberliegenden Richtungen abtragbar sind.
  • Im Rahmen der Ausführungsformen mit paarweise ausgebildeten Querkraft übertragenden Elementen (35) gilt es weiterhin als bevorzugt, wenn sich die das mindestens eine Paar bildenden Querkraft übertragenden Elemente (35) mittig innerhalb des mindestens einen Druckelements (33) kreuzend ausgebildet sind. Dabei ist es insbesondere vorstellbar, dass bei einer Mehrzahl von den Isolationskörper (31) durchdringenden Druckelementen (33) diese Druckelemente (33)
    • teilweise von einem Paar aus mindestens zwei, bevorzugt aus genau zwei stabförmig ausgebildeten Querkraft übertragenden Elementen (35) durchzogen sind, die zumindest bereichsweise abgewinkelt und sich innerhalb der jeweiligen Druckelemente (33) kreuzend ausgebildet sind,
    • teilweise von einem Paar aus mindestens zwei, bevorzugt aus genau zwei stabförmig ausgebildeten Querkraft übertragenden Elementen (35) durchzogen sind, die geradlinig über ihre vollständige Länge ausgebildet sind.
  • Bei den sich stabförmig kreuzend ausgebildeten Querkraft übertragenden Elementen (35) ist es bevorzugt, wenn diese beiden Querkraft übertragenden Elemente (35) im Kreuzungspunkt entweder direkt kraftschlüssig miteinander verbunden sind, wofür sich eine Verklebung wie auch eine Verschweißung anbieten. Genauso gilt es als bevorzugt, wenn die sich kreuzenden Querkraft übertragenden Elemente (35) durch jeweils kraftschlüssige Verbindung mit mindestens einem gemeinsamen Druckelement (33) indirekt kraftschlüssig miteinander verbunden sind. Auch vorstellbar ist es und gilt genauso als bevorzugt, wenn die beiden Querkraft übertragenden Elemente (35) im Kreuzungspunkt ausschließlich über das Material des, die beiden Querkraft übertragenden Elemente (35) zumindest teilumfanglich umschließenden Druckelements (33) fixiert sind. In allen vorstehend dargelegten Fällen bestehen die Querkraft übertragenden Elemente (35) jeweils und ohne Beschränkung auf mögliche Ausführungsformen bevorzugt aus einem Material, ausgesucht aus der Liste, umfassend: Stahl, Baustahl, Edelstahl, Faserkunststoff (GFK, CFK), wobei Baustahl und Edelstahl als ganz bevorzugt gelten.
  • Im Rahmen der Ausführungsformen mit paarweise ausgebildeten Querkraft übertragenden Elementen (35) gilt es des weiteren als bevorzugt, wenn die das mindestens eine Paar bildenden Querkraft übertragenden Elemente (35) beabstandet außerhalb des Isolationskörpers (31) mindestens einfach miteinander verbunden sind. Eine solche Verbindung der Querkraft übertragenden Elemente (35) außerhalb des Isolationskörpers (31) kann ganz besonders bevorzugt kombiniert werden mit der Ausführung, bei der sich die kreuzenden Querkraft übertragenden Elemente (35) durch jeweils kraftschlüssige Verbindung mit mindestens einem gemeinsamen Druckelement (33) indirekt kraftschlüssig miteinander verbunden sind. Eine solche Verbindung der Querkraft übertragenden Elemente (35) außerhalb des Isolationskörpers (31) kann genauso zum einen besonders bevorzugt kombiniert werden mit der Ausführung, nach der die Querkraft übertragenden Elemente (35) mittig innerhalb des mindestens einen Druckelements (33) kreuzend ausgebildet sind, wie auch mit einer Ausführung, nach der die paarweise ausgebildeten Querkraft übertragenden Elemente (35) bis zu ihrer gegenseitigen außerhalb des Isolationskörpers (31) beabstandeten Verbindung geradlinig ausgebildet sind und dabei den Isolationskörper (31) insbesondere geradlinig und zueinander parallel durchdringen.
  • Gemäß einer bevorzugten Ausführungsvariante ist das Verhältnis
    • zwischen übertragbarer Druckkraft, hauptsächlich beeinflusst seitens der Druckelemente (33),
    • zu übertragbarer Querkraft, hauptsächlich beeinflusst seitens der Querkraft übertragenden Elemente (35) und ihrer kraftschlüssigen Verbindung zu den Druckelemente (33), jeweils gemessen in übertragbaren Krafteinheiten,
    größer 2:1, vorzugsweise größer 4:1 und besonders bevorzugt größer 5:1. Das bedeutet, dass das erfindungsgemäße Anschlusselement (17) It. bevorzugter Ausführungsvariante mehr, besonders bevorzugt wesentlich mehr Druckkraft als Querkraft zu übertragen in der Lage ist. Die durch ein Element übertragbaren Krafteinheiten können bestimmt werden, indem die Elemente jeweils bis zum Bruch belastet werden.
  • Das erfindungsgemäße Anschlusselement (17) kann als im Querschnitt polygoner Körper (z.B. hexagonal, octagonal) mit zwei einander gegenüberliegenden und zueinander parallelen ersten und zweiten Flachseiten ausgebildet sein, die den zwei sich gegenüberliegenden und den Isolationskörper (31) begrenzenden Auflageflächen (39, 41) entsprechen bzw. bei über die Auflageflächen (39, 41) hinausragenden Druckverteilplatten (51) parallel zu den beiden Auflageflächen (39, 41) gelegen sind. Vorteilhaft ist das erfindungsgemäße Anschlusselement (17) jedoch als quaderförmiger Körper ausgebildet. Dies hat den Vorteil, dass die Seitenflächen des Anschlusselements (17) mit den auf ihm ruhenden Betonwänden (15) fluchten können.
  • Die Erfindung ist gleichsam auch auf die Verwendung des hier vorgeschlagenen Druckkraft übertragenden Anschlusselements (17) in all seinen möglichen Ausführungsformen und Varianten als thermisch isolierende und gleichzeitig statisch versteifende Verbindungskomponente zwischen zwei bevorzugt übereinander positionierten gegossenen Bauteilen (13, 15, 29) gerichtet.
  • Die nachfolgenden Figuren werden die Erfindung weitergehend erläutern:
  • Mit dem in Figur 5 wiedergegebenen erfindungsgemäßen Ausführungsbeispiel, welches eine vergleichbare Bausituation wiedergibt wie dargestellt in Figur 2, soll auf einer auf Erdreich angeordneten Betonbodenplatte (13) - als Beispiel für ein horizontales Betonbauteil - eine Betonwand (15) - als Beispiel für ein vertikales Betonbauteil - angeordnet sein, zwischen welchen ein erfindungsgemäßes, Druckkraft übertragendes Anschlusselement (17) positioniert ist. Das derart positionierte Anschlusselement (17) stellt einen quaderförmigen Körper mit einem niedrigen Wärmeleitkoeffizient von hier kleiner 60 mW/mK dar, welcher innerhalb der gezeigten Betonkonstruktion (11) das eine Betonteil (15) von einem angrenzenden Betonteil (13) thermisch abzutrennen vermag. An der Außenseite (19) der Betonwand (15) ist eine dem Stand der Technik entsprechende Außendämmung (21) angebracht, welche auch das Anschlusselement (17) größtenteils und vorzugsweise vollständig außenseitig abdeckt. Vorliegend überragt die Betonbodenplatte (13) die Betonwand (15) um ein bestimmtes Maß, und die Außendämmung (21) ist bis zur Betonbodenplatte (13) geführt. Auf der Betonbodenplatte (13) ist im Innenhausbereich eine Innendämmung (23) vorgesehen. Offensichtlich ist die hier dargestellte Betonkonstruktion (11) thermisch von der Umgebung vollständig getrennt. Somit entspricht die erfindungsgemäße Betonkonstruktion (11) gemäß dieser Figur 5 der thermisch optimalen Konstruktion gemäß Figur 1, da ebenfalls keine konstruktive Kältebrücke vorhanden ist.
  • Beim erfindungsgemäßen Ausführungsbeispiel von Figur 6 handelt es sich um eine Betonkonstruktion (11), bei welcher ein Kellergeschoss (25) von einem darüberliegenden Stockwerk (27) mittels einer Betonkellerdecke (29) getrennt ist. Ähnlich der Betonkonstruktion (11) gemäß Figur 5 ist die aufragende Betonwand (15) in Höhe des Stockwerks (27) auf einem erfindungsgemäßen, Druckkraft übertragenden Anschlusselement (17) abgestellt, und die Innendämmung (23) ist auf der Kellerdecke (29) angeordnet. Die Außendämmung (21) deckt auch das Anschlusselement (17) größtenteils und vorzugsweise vollständig außenseitig ab, sodass auch bei dieser Konstruktion das Stockwerk (27) vom Kellergeschoss (25) und der Umgebung weitestgehend thermisch isoliert ist.
  • Die Betonkonstruktion (11) gemäß des in Figur 7 wiedergegebenen erfindungsgemäßen Ausführungsbeispiels unterscheidet sich von der Betonkonstruktion (11) aus Figur 6 dadurch, dass nunmehr die Kellerdecke (29) auf einem erfindungsgemäßen, Druckkraft übertragenden Anschlusselement (17) ruht. Entsprechend ist die Innendämmung (23) nicht oberhalb, sondern unterhalb der Kellerdecke (29) angeordnet. Es ist wiederum ersichtlich, dass das Kellergeschoss (25) durch das Anschlusselement (17) und die Innendämmung (23) von der darüberliegenden Baukonstruktion thermisch isoliert ist.
  • In Figur 8 wird, losgelöst von möglichen Einbausituationen, ein erfindungsgemäßes, Druckkraft übertragendes Anschlusselement (17) in einer charakteristischen, aber nicht beschränkenden und insofern frei ausgesuchten Ausführungsform dargestellt, so wie es für die oben beschriebenen Betonkonstruktionen lt. den Figuren 5 bis 7 verwendbar ist. Das Druckkraft übertragende Anschlusselement (17) weist dabei einen hier quaderförmigen und im vorliegenden Fall beispielsweise aus XPS gefertigten Isolationskörper (31) auf, der oberseitig von der ersten ebenen Auflagefläche (39) und unterseitig von der zweiten, ebenen und parallel zur ersten Auflagefläche (39) ausgerichteten Auflagefläche (41) begrenzt ist, welche im eingebauten Zustand des Anschlusselements (17) den beiden gegossenen Bauteilen (13, 15, 29), hier nicht dargestellt, zugewandt sind.
  • Der Isolationskörper (31) ist im dargestellten Fall von zwei schraffiert dargestellten rechteckig hochkant orientierten plattenförmigen Druckelementen (33) im vorliegenden Fall aus Stahl bzw. aus Faserkunststoff durchdrungen, wobei die Druckelemente (33) an ihren oberen stirnflächigen Enden jeweils ein Druckverteilelement (51) aufweisen, die im vorliegenden Fall außenflächig bündig mit der, den Isolationskörper (31) nach oben begrenzenden Auflagefläche (39) abschließen.
  • Die zwei mittig die Längsmittelachse (A) des Anschlusselements (17) schneidenden Druckelemente (33) sind jeweils von einem Paar aus zwei stabförmig ausgebildeten geradlinigen Querkraft übertragenden Elementen (35) außenseitig begrenzt und mit diesen kraftschlüssig verbunden. Die Querkraft übertragenden Elemente (35) ragen sowohl aus der ersten oberen Auflagefläche (39) wie auch aus der zweiten unteren Auflagefläche (41) jeweils um eine Länge hier von 35 cm heraus. In einem Fall, It. Figur 8 im vorderen der beiden Fälle, sind die zwei Querkraft übertragenden Elemente (35) beabstandet außerhalb des Isolationskörpers (31) einfach, hier unterhalb des Anschlusselements (17) miteinander verbunden.
  • In Figur 10 werden zunächst im Schnitt zwei mögliche Ausgestaltungen von rechteckig hochkant zu orientierenden plattenförmigen Druckelementen (33) mit jeweils einem Paar aus zwei stabförmig ausgebildeten geradlinigen Querkraft übertragenden Elementen (35) dargestellt, wobei die Querkraft übertragenden Elementen (35) außenseitig die plattenförmigen Druckelemente (33) begrenzen und mit diesen kraftschlüssig verbunden sind. Der Fall (a) von Figur 10 entspricht den plattenförmigen Druckelementen (33) aus Figur 8, wo nur an den oberen stirnflächigen Enden der Druckelemente (33) jeweils ein Druckverteilelement (51) ausgebildet ist. Im Fall (b) sind Druckverteilelemente (51) an beiden stirnflächigen Enden, hier sowohl oben wie auch unten, ausgebildet. Figur 10(c) stellt die Arrangements aus den Figuren 10 (a) und (b) im Grundriss (Blick von oben) dar.
  • Alternativ zu der Darstellung in Figur 8 zeigt Figur 9 ein erfindungsgemäßes, Druckkraft übertragendes Anschlusselement (17) in einer charakteristischen, aber nicht beschränkenden und insofern frei ausgesuchten Ausführungsform, so wie es für die oben beschriebenen Betonkonstruktionen It. den Figuren 5 bis 7 auch verwendbar ist. Das Druckkraft übertragende Anschlusselement (17) weist hier erneut einen quaderförmigen und im vorliegenden Fall beispielsweise aus XPS gefertigten Isolationskörper (31) auf, der oberseitig von der ersten ebenen Auflagefläche (39) und unterseitig von der zweiten, ebenen und parallel zur ersten Auflagefläche (39) ausgerichteten Auflagefläche (41) begrenzt ist, welche im eingebauten Zustand des Anschlusselements (17) den beiden gegossenen Bauteilen (13, 15, 29), hier nicht dargestellt, zugewandt sind.
  • Der Isolationskörper (31) ist im dargestellten Fall von zwei zylinderförmigen Druckelementen (33) im vorliegenden Fall aus Beton oder Faserkunststoff durchdrungen, bei denen zumindest in Richtung der ersten ebenen Auflagefläche (39) jeweils ein sechseckiges Druckverteilelement (51) ausgebildet ist. Die beiden benachbarten Druckverteilelemente (51) sind im dargestellten Fall durch die sechseckige Ausführung mit ineinander greifenden Begrenzungsseiten miteinander verzahnt.
  • Figur 13 zeigt drei verschiedene Ausführungsformen für die jeweils mit dem mindestens einen, den Isolationskörper (31) von dessen erster Auflagefläche (39) zu dessen zweiter Auflagefläche (41) durchdringenden Druckelement (33) kraftschlüssig verbundenen Querkraft übertragenden Elemente (35), die bevorzugt aus Stäben aus Baustahl oder Edelstahl ausgebildet sind. Gemäß einer ersten, in Figur 13a dargestellten Ausführungsform umfasst ein solches Querkraft übertragende Element (35) ein Mittelstück (59), das außerhalb des in Figur 13a nicht dargestellten Isolationskörpers (31) mindestens bereichsweise abgewinkelt ist, wobei die abgewinkelten Bereiche hier als Fortsätze (60) gekennzeichnet sind. Gemäß Figur 13b kann das Querkraft übertragende Element (35) auch aus zwei sich in deren jeweiligem Mittelstück (59) kreuzenden Stäben bestehen, die an den einen Enden durch in einem Winkel abstehende Fortsätze (60) verlängert sind. Im eingebauten Zustand befindet sich der Kreuzungspunkt der Stäbe ungefähr in der Mitte des Isolationskörpers (31). Die anderen Enden sind derart verlängert, dass sie im eingebauten Zustand, beabstandet außerhalb des Isolationskörpers (31), miteinander verbunden sind. Bei einer weiteren zweckmäßigen Ausführungsform für das Querkraft übertragende Elemente (35) gemäß Figur 13c hat das Querkraft übertragende Elemente (35) die Gestalt eines abgewinkelten "U". Die Querkraft übertragenden Elemente (35) sind vorzugsweise so im Isolationskörper (31) eingebaut, dass sich das zu den Fortsätzen (60) abgewinkelte Mittelstück (59) ungefähr quer zur Längsmittelachse (A) des Anschlusselements (17) erstreckt.
  • Begriffsliste:
  • 5
    außenliegende Wanddämmung (SdT)
    7
    außenliegende Bodendämmung (SdT)
    9
    innenliegende Bodendämmung (SdT)
    11
    Betonkonstruktion
    13
    Betonbodenplatte (horizontales (Beton)Bauteil)
    15
    Betonwand (vertikales (Beton)Bauteil)
    17
    Anschlusselement
    19
    Außenseite der Betonwand
    21
    Außendämmung
    23
    Innendämmung
    25
    Kellergeschoss
    27
    Stockwerk oberhalb des Kellergeschosses
    29
    Decke, Kellerdecke
    31
    Isolationskörper
    33
    Druckelement
    34
    Grundfläche des Druckelements
    35
    Querkraft übertragendes Element
    39
    erste Auflagefläche
    41
    zweite Auflagefläche
    45
    Körperformen des Druckelements
    49
    Druckelementkopf
    51
    Druckverteilelement
    59
    Mittelstück des Querkraft übertragenden Elements
    60
    Fortsätze

Claims (14)

  1. Druckkraft übertragendes Anschlusselement (17) zur Druckkraft übertragenden Verbindung eines ersten gegossenen Bauteils (13, 29) mit einem zweiten gegossenen Bauteil (15), wobei das zweite gegossene Bauteil eine Betonwand ist, mindestens auweisend
    - einen durch zwei sich gegenüberliegenden Auflageflächen (39, 41) begrenzten Isolationskörper (31) zur thermischen Trennung des ersten gegossenen Bauteils (13, 29) von dem zweiten gegossenen Bauteil (15),
    - wobei die erste den Isolationskörper (31) begrenzende Auflagefläche (39) dem ersten gegossenen Bauteil (13, 29) zugewandt ist,
    und
    - wobei die zweite den Isolationskörper (31) begrenzende Auflagefläche (41) dem zweiten gegossenen Bauteil (15) zugewandt ist,
    - mindestens ein Druckelement (33), das den Isolationskörper (31) von dessen erster Auflagefläche (39) bis zu dessen zweiter Auflagefläche (41) durchdringt,
    - Mittel zur Querkraftübettragung,
    dadurch gekennzeichnet, dass
    - die Mittel zur Querkraftübertragung mindestens ein das Druckkraft übertragende Anschlusselement (17) - in Richtung von der ersten Auflagefläche (39) des Isolationskörpers (31) zu der zweiten Auflagefläche (41) des Isolationskörpers (31) - durchgängig durchlaufendes Querkraft übertragendes Element (35) umfassen,
    - das mindestens eine Druckelement (33) mit dem mindestens einen Querkraft übertragendes Element (35) kraftschlüssig verbunden ist,
    - an mindestens einem stirnflächigen Ende des mindestens einen Druckelements (33) mindestens ein Druckvertellelement (51) ausgebildet ist.
  2. Druckkraft übertragendes Anschlusselement (17) nach Patentanspruch 1, dadurch gekennzeichnet, dass das erste gegossene Bauteil (13, 29) ein Element ist, ausgesucht aus der Liste, umfassen:
    - Betonbodenplatte,
    - Betondeckenplatte.
  3. Druckkraft übertragendes Anschlusselement (17) nach einem der Patentansprüche 1 und 2, dadurch gekennzeichnet, dass das mindestens eine Druckverteilelement (51) wahlweise
    - außenflächig bündig mit den, den Isolationskörper (31) begrenzenden Auflageflächen (39, 41)
    - überstehend bezogen auf die, den Isolationskörper (31) begrenzenden Auflageflächen (39, 41)
    ausgestaltet ist.
  4. Druckkraft übertragendes Anschlusselement (17) nach einem der Patentansprüche 1 bis 3, dadurch gekennzeichnet, dass die Gesamtfläche des mindestens einen Druckverteilelements (51) einen Anteil von 3% bis 100%, bezogen wahlweise auf die erste den Isolationskörper (31) begrenzende Auflagefläche (39) oder auf die zweite den Isolationskörper (31) begrenzende Auflagefläche (41), ausmacht.
  5. Druckkraft übertragendes Anschlusselement (17) nach einem der Patentansprüche 1 bis 4, dadurch gekennzeichnet, dass die kraftschlüssige Verbindung zwischen dem mindestens einen Druckelement (33) mit dem mindestens einen Querkraft übertragendes Element (35) ausgebildet ist als eine Verbindung, ausgesucht aus der Liste, umfassend: Verklebung, Verschweißung, Hartverlötung, Anguss, zumindest teilumfangliche Umschließung.
  6. Druckkraft übertragendes Anschlusselement (17) nach Patentanspruch 5, dadurch gekennzeichnet, dass das mindestens eine Druckelement (33) das mindestens eine Querkraft übertragende Element (35) vollumfanglich umschließt.
  7. Druckkraft übertragendes Anschlusselement (17) nach einem der Patentansprüche 1 bis 6, dadurch gekennzeichnet, dass das Querkraft übertragende Element (35) stabförmig ausgebildet ist und das Anschlusselement (17) geradlinig durchläuft.
  8. Druckkraft übertragendes Anschlusselement (17) nach einem der Patentansprüche 1 bis 7, dadurch gekennzeichnet, dass die Mittel zur Querkraftübertragung mindestens ein Paar aus zwei stabförmig ausgebildeten Querkraft übertragenden Elementen (35) umfassen, die jeweils mit dem mindestens einen Druckelement (33) kraftschlüssig verbunden sind.
  9. Druckkraft übertragendes Anschlusselement (17) nach einem der Patentansprüche 7 und 8, dadurch gekennzeichnet, dass die Querkraft übertragenden Elemente (35) außerhalb des Isolationskörpers (31) mindestens bereichsweise abgewinkelt sind.
  10. Druckkraft übertragendes Anschlusselement (17) nach einem der Patentansprüche 8 und 9, dadurch gekennzeichnet, dass sich die das mindestens eine Paar bildenden Querkraft übertragenden Elemente (35) mittig innerhalb des mindestens einen Druckelements (33) kreuzend ausgebildet sind.
  11. Druckkraft übertragendes Anschlusselement (17) nach einem der Patentansprüche 8 bis 10, dadurch gekennzeichnet, dass die das mindestens eine Paar bildenden Querkraft übertragenden Elemente (35) beabstandet außerhalb des Isolationskörpers (31) mindestens einfach miteinander verbunden sind.
  12. Druckkraft übertragendes Anschlusselement (17) nach einem der Patentansprüche 1 bis 11, dadurch gekennzeichnet, dass
    - bei genau einem den Isolationskörper (31) durchdringenden Druckelement (33) die Gluerschnittsfläche des Druckelements (33)
    - bei einer Mehrzahl von den Isolationskörper (31) durchdringenden Druckelementen (33) die Summe der Querschnittsflächen der Druckelemente (33) einen prozentualen Anteil von 0,3% bis 62,5%, bezogen wahiweise auf die erste den Isolationskörper (31) begrenzende Auflagefläche (39) oder auf die zweite den Isolationskörper (31) begrenzende Auflagefläche (41), ausmacht.
  13. Druckkraft übertragendes Anschlusselement (17) nach einem der Patentansprüche 1 bis 12, dadurch gekennzeichnet, dass das Verhältnis zwischen übertragbarer Druck- und Querkraft, gemessen in übertragbaren Krafteinheiten, größer 2:1, bevorzugt größer 5:1 ist.
  14. Druckkraft übertragendes Anschlusselement (17) nach einem der Patentansprüche 1 bis 13, dadurch gekennzeichnet, dass der Querschnitt des mindestens einen Druckelements (33) zur Mitte hin verjüngt ist.
EP11173639.3A 2010-11-19 2011-07-12 Isolierendes und Druckkraft übertragendes Anschlusselement Active EP2455556B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11173639.3A EP2455556B1 (de) 2010-11-19 2011-07-12 Isolierendes und Druckkraft übertragendes Anschlusselement
EP11184629.1A EP2455557B1 (de) 2010-11-19 2011-10-11 Druckkraft übertragendes Anschlusselement
SI201130192T SI2455557T1 (sl) 2010-11-19 2011-10-11 Priključni element, ki prenaša tlačno silo
PL11184629T PL2455557T3 (pl) 2010-11-19 2011-10-11 Przenoszący siłę ściskającą element przyłączeniowy
US13/300,597 US8590240B2 (en) 2010-11-19 2011-11-20 Compressive force transmitting connection element
US13/301,620 US8590241B2 (en) 2010-11-19 2011-11-21 Compressive force transmitting connection element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10191914.0A EP2405065B1 (de) 2010-11-19 2010-11-19 Druckkraft übertragendes und isolierendes Anschlusselement
EP11173639.3A EP2455556B1 (de) 2010-11-19 2011-07-12 Isolierendes und Druckkraft übertragendes Anschlusselement

Publications (2)

Publication Number Publication Date
EP2455556A1 EP2455556A1 (de) 2012-05-23
EP2455556B1 true EP2455556B1 (de) 2014-09-10

Family

ID=43735991

Family Applications (3)

Application Number Title Priority Date Filing Date
EP10191914.0A Active EP2405065B1 (de) 2010-11-19 2010-11-19 Druckkraft übertragendes und isolierendes Anschlusselement
EP11173639.3A Active EP2455556B1 (de) 2010-11-19 2011-07-12 Isolierendes und Druckkraft übertragendes Anschlusselement
EP11184629.1A Active EP2455557B1 (de) 2010-11-19 2011-10-11 Druckkraft übertragendes Anschlusselement

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10191914.0A Active EP2405065B1 (de) 2010-11-19 2010-11-19 Druckkraft übertragendes und isolierendes Anschlusselement

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11184629.1A Active EP2455557B1 (de) 2010-11-19 2011-10-11 Druckkraft übertragendes Anschlusselement

Country Status (5)

Country Link
US (3) US8590240B2 (de)
EP (3) EP2405065B1 (de)
ES (1) ES2478045T3 (de)
PL (2) PL2405065T3 (de)
SI (2) SI2405065T1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140182221A1 (en) * 2013-01-03 2014-07-03 Tony Hicks Thermal Barrier For Building Foundation Slab
ITTO20130151A1 (it) * 2013-02-25 2013-05-27 Torino Politecnico Elemento strutturale isolante per costruzioni edili.
CN103352569A (zh) * 2013-07-31 2013-10-16 清远新绿环建筑材料有限公司 一体化浇注的建筑房屋施工方法
CZ2013715A3 (cs) * 2013-09-18 2015-05-06 Vysoké Učení Technické V Brně Tepelně izolační modul pro tlakem namáhané konstrukce
WO2016007479A1 (en) * 2014-07-07 2016-01-14 Composite Technologies Corporation Compression transfer member
WO2018045451A1 (en) * 2016-09-12 2018-03-15 Jk Worldwide Enterprises Inc. Thermal break for use in construction
US10787809B2 (en) * 2015-03-23 2020-09-29 Jk Worldwide Enterprises Inc. Thermal break for use in construction
DE102015106296A1 (de) 2015-04-23 2016-10-27 Schöck Bauteile GmbH Wärmedämmelement
DE102015106294A1 (de) 2015-04-23 2016-10-27 Schöck Bauteile GmbH Vorrichtung und Verfahren zur Wärmeentkopplung von betonierten Gebäudeteilen
DE102015109887A1 (de) 2015-06-19 2016-12-22 Schöck Bauteile GmbH Wärmedämmsystem zur vertikalen, lastabtragenden Verbindung von aus Beton zu erstellenden Gebäudeteilen
CN105178472B (zh) * 2015-10-19 2017-11-17 哈尔滨鸿盛房屋节能体系研发中心 Eps模块夹心保温墙体结构
PL3202991T3 (pl) 2016-02-03 2022-01-24 Halfen Gmbh Termoizolacyjny element budowlany
DE102016106032A1 (de) 2016-04-01 2017-10-05 Schöck Bauteile GmbH Anschlussbauteil zur Wärmeentkopplung von vertikal verbundenen Gebäudeteilen
DE102016106036A1 (de) 2016-04-01 2017-10-05 Schöck Bauteile GmbH Anschlussbauteil zur Wärmeentkopplung zwischen einem vertikalen und einem horizontalen Gebäudeteil
EP3296478B1 (de) 2016-09-16 2023-09-06 Schöck Bauteile GmbH Anordnung zum verbinden einer gebäudewand mit einer boden- oder deckenplatte und formbaustein für eine solche anordnung
EP3296477A1 (de) 2016-09-16 2018-03-21 Tebetec AG Formbaustein zum anordnen auf einer boden- oder auf oder unter einer deckenplatte und verfahren zum herstellen des formbausteins
EP3296476A1 (de) 2016-09-16 2018-03-21 Tebetec AG Anordnung zum verbinden einer gebäudewand mit einer boden- oder deckenplatte und formbaustein für eine solche anordnung
CN107761985B (zh) * 2017-09-09 2021-03-19 洛阳丹赫节能科技有限公司 后置型加气混凝土墙体保温结构及施工工艺
EP3467222A1 (de) 2017-10-09 2019-04-10 Schöck Bauteile GmbH Formbaustein zum anordnen zwischen einer gebäudewand und einer boden- oder deckenplatte und gebäudeabschnitt mit einem solchen formbaustein
EP3467221A1 (de) 2017-10-09 2019-04-10 Schöck Bauteile GmbH Formbaustein zum anordnen zwischen einer gebäudewand und einer boden- oder deckenplatte und gebäudeabschnitt mit einem solchen formbaustein
HUE062862T2 (hu) 2017-10-09 2023-12-28 Schoeck Bauteile Gmbh Épületszakasz és eljárás egy ilyen épületszakasz elõállítására
EP3492666A1 (de) 2017-11-30 2019-06-05 RUWA Drahtschweisswerk AG Lastelement im hochbau
DE102018130844A1 (de) 2018-12-04 2020-06-04 Schöck Bauteile GmbH Vorrichtung zur Wärmeentkopplung zwischen einer betonierten Gebäudewand und einer Geschossdecke sowie Herstellverfahren
DE102018130843A1 (de) 2018-12-04 2020-06-04 Schöck Bauteile GmbH Vorrichtung zur Wärmeentkopplung zwischen einer betonierten Gebäudewand und einer Geschossdecke sowie Herstellverfahren

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH670853A5 (de) * 1985-10-17 1989-07-14 Reto Martinelli
CH676615A5 (de) * 1988-04-22 1991-02-15 Bau Box Ewiag
CH678076A5 (en) * 1988-10-27 1991-07-31 Erico Products S A Insulating collar for reinforced concrete joints - has steel sleeves welded to one side with plastic collars on the other
CH689022A5 (de) 1994-08-16 1998-07-31 Beletto Ag Bauelement fuer die Waermedaemmung in einem Mauerwerk.
DE29714081U1 (de) * 1997-06-24 1997-09-25 Frank Gmbh & Co Kg Max Isolierstein
DE20008570U1 (de) 2000-05-12 2001-09-27 Schoeck Bauteile Gmbh Mauersteinförmiges Wärmedämmelement
US7461488B2 (en) * 2003-02-10 2008-12-09 Integrated Structures, Inc. Internally braced straw bale wall and method of making same
DE202008010803U1 (de) 2008-08-05 2008-10-09 Mostafa, Kamal, Dr. Wärmedämmender Mauerstein
CH699781B1 (de) * 2008-10-23 2013-11-15 Basys Ag Anschlusselement für Gebäudeverbindungen.
US8132388B2 (en) * 2008-12-31 2012-03-13 The Spancrete Group, Inc. Modular concrete building
EP2241690B8 (de) * 2009-02-25 2015-02-25 Hibe A/S Isoliertes Fundamentelement zum montieren auf ein Fertigteilfundament

Also Published As

Publication number Publication date
SI2455557T1 (sl) 2014-07-31
EP2455557B1 (de) 2014-03-26
US20120159884A1 (en) 2012-06-28
EP2405065B1 (de) 2014-04-23
US8733050B2 (en) 2014-05-27
ES2478045T3 (es) 2014-07-18
PL2455557T3 (pl) 2014-08-29
US20120144772A1 (en) 2012-06-14
SI2405065T1 (sl) 2014-08-29
EP2455556A1 (de) 2012-05-23
US20120186176A1 (en) 2012-07-26
US8590241B2 (en) 2013-11-26
EP2405065A1 (de) 2012-01-11
PL2405065T3 (pl) 2014-09-30
US8590240B2 (en) 2013-11-26
EP2455557A1 (de) 2012-05-23

Similar Documents

Publication Publication Date Title
EP2455556B1 (de) Isolierendes und Druckkraft übertragendes Anschlusselement
EP3690159A1 (de) Gebäudeteil und verfahren zur wärmeentkopplung von betonierten gebäudeteilen
EP1231329B1 (de) Mauersteinförmiges Wärmedämmelement
EP3191657B1 (de) Doppelwand aus hochfestem oder ultrahochfestem stahlbeton
EP2281959B1 (de) Kragplattenanschlusselement
EP3225758B1 (de) Anschlussbauteil zur wärmeentkopplung zwischen einem vertikalen und einem horizontalen gebäudeteil
CH707053B1 (de) Bausatz zur Bildung einer Tragkonstruktion.
EP3296478B1 (de) Anordnung zum verbinden einer gebäudewand mit einer boden- oder deckenplatte und formbaustein für eine solche anordnung
EP3106581B1 (de) Wärmedämmsystem zur vertikalen, lastabtragenden verbindung von aus beton zu erstellenden gebäudeteilen
EP3663474B1 (de) Vorrichtung zur wärmeentkopplung zwischen einer betonierten gebäudewand und einer geschossdecke sowie herstellverfahren
DE10163994A1 (de) Verfahren zur Herstellung eines wärmedämmenden, mehrschaligen Mauersteins sowie Mauerstein als solcher
EP3296476A1 (de) Anordnung zum verbinden einer gebäudewand mit einer boden- oder deckenplatte und formbaustein für eine solche anordnung
EP1887155B1 (de) Thermisch isolierendes Bauelement
EP0086751A2 (de) Auf Zug beanspruchbarer Anker
EP3225759B1 (de) Anschlussbauteil zur wärmeentkopplung von vertikal verbundenen gebäudeteilen
EP1229176A2 (de) Kragplattenanschlusselement
EP2360321A2 (de) Gebäude in Skelettbauweise sowie Herstellungsverfahren
DE202006000144U1 (de) Wärmeisolierende Schalungsform
EP3467220B1 (de) Gebäudeabschnitt und verfahren zum herstellen eines solchen gebäudeabschnitts
AT523024B1 (de) Gebäudekonstruktion und Verfahren zur Bildung derselben
EP3663475A2 (de) Vorrichtung zur wärmeentkopplung zwischen einer betonierten gebäudewand und einer geschossdecke sowie herstellverfahren
EP1593792A2 (de) Gross-Wandbauplatte
DE102004003366A1 (de) Verfahren zum Herstellen eines Einfamilien-oder Mehrfamilienhauses, Betonfertigteil-Trogplatte für eine Gebäudedecke sowie Fertighaus
DE202004020656U1 (de) Schalungssystem
WO2012119167A1 (de) Bauelement zur herstellung von mauerwerk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121123

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: E04B 1/78 20060101ALI20131022BHEP

Ipc: E04B 1/76 20060101ALI20131022BHEP

Ipc: E04B 1/16 20060101AFI20131022BHEP

Ipc: E04B 2/02 20060101ALI20131022BHEP

Ipc: E04B 2/84 20060101ALI20131022BHEP

INTG Intention to grant announced

Effective date: 20131126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140411

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 686781

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011004316

Country of ref document: DE

Effective date: 20141023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140910

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150112

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011004316

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

26N No opposition filed

Effective date: 20150611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150712

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110712

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140910

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011004316

Country of ref document: DE

Owner name: SCHOECK BAUTEILE GMBH, DE

Free format text: FORMER OWNER: KOCH, GEORG, 57399 KIRCHHUNDEM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011004316

Country of ref document: DE

Representative=s name: EISENFUEHR SPEISER PATENTANWAELTE RECHTSANWAEL, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190117 AND 20190123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SCHOECK BAUTEILE GMBH, DE

Free format text: FORMER OWNER: TEBETEC AG, CH

Ref country code: CH

Ref legal event code: PUE

Owner name: TEBETEC AG, CH

Free format text: FORMER OWNER: KOCH, GEORG, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 686781

Country of ref document: AT

Kind code of ref document: T

Owner name: SCHOECK BAUTEILE GMBH, DE

Effective date: 20190509

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230724

Year of fee payment: 13

Ref country code: CH

Payment date: 20230801

Year of fee payment: 13

Ref country code: AT

Payment date: 20230718

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 13

Ref country code: DE

Payment date: 20230808

Year of fee payment: 13