EP2438367A1 - Groupe frigorifique à absorption ammoniac-eau - Google Patents

Groupe frigorifique à absorption ammoniac-eau

Info

Publication number
EP2438367A1
EP2438367A1 EP10725024A EP10725024A EP2438367A1 EP 2438367 A1 EP2438367 A1 EP 2438367A1 EP 10725024 A EP10725024 A EP 10725024A EP 10725024 A EP10725024 A EP 10725024A EP 2438367 A1 EP2438367 A1 EP 2438367A1
Authority
EP
European Patent Office
Prior art keywords
water absorption
absorption refrigeration
refrigeration unit
ammonia
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10725024A
Other languages
German (de)
English (en)
Inventor
Wolfgang STÜRZEBECHER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tranter GmbH
Original Assignee
Tranter Solarice GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tranter Solarice GmbH filed Critical Tranter Solarice GmbH
Publication of EP2438367A1 publication Critical patent/EP2438367A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/04Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B37/00Absorbers; Adsorbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to ammonia-water
  • Absorption refrigeration units with at least one arranged in a refrigerant circuit absorber.
  • the present invention relates to a method of minimal complexity for guiding media in at least one cycle of an ammonia water absorption refrigeration unit, taking into account the thermodynamic characteristics of binary two-phase mixtures.
  • an ammonia water absorption refrigeration unit is proposed with at least one arranged in a refrigerant circuit absorber, which is characterized in that the absorber has a fully welded plate package for an inner medium, which in turn is arranged in a jacket tube for an external medium.
  • the invention makes use of the fact that with the exclusive use of fully welded tube plate heat exchangers for the absorber of an ammonia water absorption refrigeration unit with appropriate dimensioning or design cooling temperatures of below 0 ° C even at drive temperatures below 100 ° C are reachable.
  • Ammonia-water absorption refrigeration units according to the invention are particularly suitable for solar thermal cooling systems and are hitherto unknown in the prior art.
  • the present invention is characterized by a new simplified circuit.
  • highly effective heat-transferring components are proposed, which go far beyond the previously known in the prior art solutions in the combinations of the invention.
  • Full-welded plate packs which can be used according to the invention for the absorber are disclosed, for example, on the part of EP 1 559 981 A2 or DE 601 12 767 T2, the disclosures of which are hereby expressly referenced.
  • the absorption takes place in the jacket tube of the absorber of the ammonia-water absorption refrigeration unit according to the invention and the resulting refrigerant-rich solution in the same upstream.
  • the solution collector otherwise customary in the prior art can thus be saved according to the invention.
  • the number of components of an absorption refrigeration unit is so reduced and it also results in a more compact design.
  • an ammonia-water absorption refrigeration unit according to the invention can be implemented as required in numerous different variants and designs.
  • an evaporator is advantageously arranged in the refrigerant circuit of the ammonia-water absorption refrigeration unit, after or behind, followed by the absorber in the refrigerant flow direction.
  • the flow-related pressure losses are reduced and the performance of an ammonia-water absorption refrigeration unit according to the invention further improved.
  • the evaporator on a fully welded plate package for an inner medium which in turn is arranged in a jacket tube for an external medium.
  • a phase change of the liquid refrigerant into the gaseous state preferably takes place in the plate pack.
  • the refrigerant continuously withdraws the heat from the medium in the jacket tube of the brine circulation, which is to be cooled by the absorption refrigeration unit.
  • the flows in the plate pack and in the jacket tube of the evaporator are preferably conducted in countercurrent to one another.
  • Full-welded plate packs which can be used in accordance with the invention for the evaporator are disclosed, for example, by EP 1 559 981 A2 or DE 601 12 767 T2, for example.
  • a desorber is advantageously arranged in the refrigerant circuit of the ammonia-water absorption refrigeration unit, advantageously comprising a fully welded plate pack for an inner medium, which in turn is arranged in a jacket tube for an external medium.
  • a phase change of the refrigerant-containing solution from the liquid to the gaseous state preferably takes place in the plate package.
  • the refrigerant-containing solution is continuously supplied with heat from a medium in the jacket tube of the heating circuit, which drives or is intended to drive the absorption refrigeration unit.
  • the flows in the plate pack and in the jacket tube of the desorber are preferably conducted in countercurrent to one another.
  • the desorber is arranged downstream of the absorber in the direction of refrigerant flow.
  • the performance of an ammonia-water absorption refrigeration unit according to the invention is further improved.
  • Full-welded plate packs which can be used according to the invention for the desorber are disclosed in the manner of example by EP 1 559 981 A2 and DE 601 12 767 T2.
  • a capacitor is advantageously arranged in the refrigerant circuit of the ammonia-water absorption refrigeration unit, advantageously comprising a fully welded plate package for an inner medium, which in turn is arranged in a jacket tube for an external medium.
  • a phase change of a refrigerant-containing vapor from the gaseous to the liquid state preferably takes place in the jacket tube, wherein the resulting refrigerant-containing condensate is stored upstream in the same.
  • the otherwise common in the art in absorption refrigeration units refrigerant accumulator can be saved.
  • the number of components of an ammonia-water absorption refrigeration unit according to the invention is reduced and a more compact design is made possible.
  • the refrigerant-containing vapor continuously dissipates heat to a medium in the plate pack of the recooling circuit, which serves as the heat sink for the ammonia-water absorption refrigeration unit according to the invention.
  • the flows in the plate pack and in the jacket tube of the condenser are preferably conducted in countercurrent to one another.
  • the condenser is arranged in the direction of refrigerant flow in front of the evaporator of an ammonia-water absorption refrigeration unit according to the invention.
  • a solution heat exchanger is advantageously arranged in the refrigerant circuit of the ammonia-water absorption refrigeration unit, advantageously comprising a fully welded plate package for an inner medium, which in turn is arranged in a jacket tube for an external medium.
  • a refrigerant-containing solution to be supplied to the desorber is already internally preheated.
  • the flows in the plate pack and in the jacket tube of the solution heat exchanger are preferably conducted in countercurrent to one another. This reduces the external heat input in the desorber and further improves the performance of an ammonia-water absorption refrigeration unit according to the invention.
  • the solution heat exchanger arranged in the refrigerant flow direction between the absorber and desorber.
  • a dephlegmator in the refrigerant circuit of the ammonia-water absorption refrigeration unit at drive temperatures above 100 0 C advantageously arranged a dephlegmator, advantageously comprising a fully welded plate package for an inner medium, which in turn is arranged in a jacket tube for an external medium.
  • a refrigerant-containing vapor to be supplied to the condenser dissipates heat to a medium in the jacket tube, whereby a portion of the refrigerant-containing vapor is already condensed. This ensures that get with the refrigerant-containing vapor only small amounts of solvent vapor in the condenser.
  • the dephlegmator is arranged upstream of the condenser in the direction of refrigerant flow.
  • Full-welded plate packs which can be used according to the invention for the dephlegmator are disclosed, for example, on the part of EP 1 559 981 A2 or DE 601 12 767 T2.
  • a refrigerant subcooler is arranged in the refrigerant circuit of the ammonia-water absorption refrigeration unit, advantageously comprising a fully welded plate package for an inner medium, which in turn is arranged in a jacket tube for an external medium.
  • the temperature of the condensed refrigerant to be supplied to the evaporator is lowered below the boiling point.
  • the amount of enthalpy of evaporation is increased, which further improves the performance of an ammonia-water absorption refrigeration unit according to the invention.
  • the flows in the plate pack and in the jacket tube of the refrigerant subcooler are preferably conducted in countercurrent to one another.
  • the refrigerant subcooler is arranged in the refrigerant flow direction on the one hand between the evaporator and the condenser and on the other hand between the evaporator and the absorber.
  • Full-welded plate packs which can be used according to the invention for the refrigerant subcooler are disclosed, for example, by EP 1 559 981 A2 or DE 601 12 767 T2, for example.
  • the refrigerant subcooler can be saved, especially because at a cooling capacity of the evaporator of less than 100 kW, the contribution of a refrigerant subcooler to increase the performance of an ammonia water absorption refrigeration unit according to the invention the technical effort - and the associated cost expenditures - not justifiable for efficient use.
  • the refrigerant contained in the refrigeration cycle is ammonia or has ammonia.
  • the solvent contained in the refrigeration cycle is water or has water.
  • the feed and / or discharge lines are provided in the refrigerant flow direction to the condenser and / or absorber with a pressure equalization line. This will be Reduces pressure losses and allows a more even heat transfer. As a result of this measure, which is otherwise not customary in the state of the art, the efficiency of the absorption of refrigerant into the sorbent and hence the mode of action of an ammonia-water absorption refrigeration unit according to the invention are further improved overall.
  • the invention further relates to ammonia-water absorption refrigeration units having an absorption refrigeration process of minimal complexity for guiding media in at least one refrigerant circuit using heat exchangers comprising a fully welded inner medium plate package, which in turn is disposed in a jacket tube for an outer medium.
  • Fully welded plate packs which can be used according to the invention are disclosed in the manner of example by EP 1 559 981 A2 and DE 601 12 767 T2.
  • the plate geometry with special consideration of the thermodynamics of mixtures of substances for the guidance of the media for the purpose of particularly efficient heat and mass transfer, be tuned to turbulent flow conditions with pressure losses below 0.1 MPa.
  • Absorption refrigeration units Depending on the particular application and required performance, the inventive design can be implemented in numerous different variants, as needed.
  • the method can be used due to the present invention carried out modular grading and tuning fully welded tube-plate heat exchanger with cooling power from the kilowatt range into the megawatt range inside, and thus advantageously contribute significantly to the rational use of energy.
  • the invention consequently also relates to the embodiment of an absorber as a fully welded plate pack for an internal medium, which in turn is arranged in a jacket tube for an external medium, in a refrigerant circuit of an ammonia-water mixture according to the invention.
  • Absorption refrigeration units in particular with one or more of the aforementioned features.
  • FIG. 1 shows a block diagram of an embodiment of an inventive ammonia water absorption refrigeration unit.
  • FIG. 1 shows an ammonia-water absorption refrigeration unit 1 with an absorber 10, evaporator 20, condenser 30, desorber 40, solution heat exchanger 50, dephlegmator 60 and a refrigerant subcooler 70 arranged in a refrigerant circuit 2. Further, pressure compensation lines 80, 90 establish a connection in FIG Refrigerant flow direction 3 between inlet and outlet of the absorber 10 and condenser 30 ago to reduce pressure losses and to allow a more uniform heat transfer.
  • the refrigerant contained in the refrigerant circuit 2 flows into the refrigerant flow direction 3 symbolically represented by an arrow and is conveyed by a pump 100 into the desorber 40.
  • the basic mode of operation of an absorption refrigeration unit is assumed to be known in the present case (cf., in particular, Handbook of Refrigeration, Volume 7, Sorption Refrigeration Machines, Wilhelm Niebergall, 1959).
  • the drive energy is via a heating medium in the desorber 40 through the terminals 41 and 42 and derived.
  • the cooling capacity is transmitted by means of a refrigerant medium in the evaporator 20 through the terminals 21 and 22.
  • the cooling of the ammonia water absorption chiller 1 is carried out by a heat transfer medium in the absorber 10 through the terminals 11 and 12 and in the condenser through the terminals 31 and 32.
  • the execution of the heat exchanger with a fully welded plate package for an inner medium, which in turn a jacket tube for an external medium is arranged, in principle follows the disclosures of EP 1 559 981 A2 and DE 601 12 767 T2, the disclosures of which are hereby expressly referenced.
  • the plate geometry for a fully welded plate package according to the invention is advantageously with particular consideration of the thermodynamics of mixtures for the guidance of the media for particularly efficient heat and mass transfer to turbulent flow conditions at flow rates between 0.05 m / s and 1 m / s at pressure drops below 0, 1 MPa tuned.
  • the development of the invention relates in the present case to a hitherto in the prior art not considered possible or feasible held reduction of components of an absorption refrigeration unit, which have been considered necessary and necessary according to the prior art.
  • the results and calculations of the present invention show that the dephlegmator 60 can be saved at drive temperatures below 100 ° C.
  • ammonia-water absorption refrigeration units 1 of minimal complexity, which allow economical application of the cooling principle for cooling capacities below 100 kW, at drive temperatures below 100 0 C and cooling temperatures below 0 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

L'invention concerne un groupe frigorifique à absorption ammoniac-eau (1), pour des températures de fonctionnement également inférieures à 100 °C, présentant au moins un absorbeur (10) agencé dans un circuit de fluide frigorigène (2), l'absorbeur (10) présentant un ensemble de plaques entièrement soudé pour un milieu interne agencé, quant à lui, dans un fourreau pour un milieu externe. En outre, l'invention concerne un procédé peu complexe de guidage des milieux dans au moins un circuit de fluide frigorigène (2) d'un groupe frigorifique à absorption ammoniac-eau (1) selon l'invention (1), à l'aide d'échangeurs de chaleur qui présentent un ensemble de plaques entièrement soudé pour un milieu interne agencé, quant à lui, dans un fourreau pour un milieu externe. En outre, l'invention concerne l'utilisation, dans un circuit de fluide frigorigène (2) d'un groupe frigorifique à absorption ammoniac-eau (1) selon l'invention, d'un absorbeur (10) optimisé selon l'invention, qui présente un ensemble de plaques entièrement soudé pour un milieu interne agencé, quant à lui, dans un fourreau pour un milieu externe.
EP10725024A 2009-06-04 2010-06-01 Groupe frigorifique à absorption ammoniac-eau Withdrawn EP2438367A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009023929A DE102009023929A1 (de) 2009-06-04 2009-06-04 Absorptionskälteaggregat
PCT/EP2010/003301 WO2010139444A1 (fr) 2009-06-04 2010-06-01 Groupe frigorifique à absorption ammoniac-eau

Publications (1)

Publication Number Publication Date
EP2438367A1 true EP2438367A1 (fr) 2012-04-11

Family

ID=42668438

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10725024A Withdrawn EP2438367A1 (fr) 2009-06-04 2010-06-01 Groupe frigorifique à absorption ammoniac-eau

Country Status (6)

Country Link
US (1) US20120073315A1 (fr)
EP (1) EP2438367A1 (fr)
BR (1) BRPI1010951A2 (fr)
CA (1) CA2763417A1 (fr)
DE (1) DE102009023929A1 (fr)
WO (1) WO2010139444A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3290828A1 (fr) 2016-09-03 2018-03-07 Eco ice Kälte GmbH Machine de froid par absorption d'eau/ammoniac

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023929A1 (de) 2009-06-04 2010-12-09 Stürzebecher, Wolfgang, Dr. Absorptionskälteaggregat
US9285144B2 (en) * 2013-11-27 2016-03-15 King Fahd University Of Petroleum And Minerals Economizer for an intermittent absorption refrigeration system
US10436480B2 (en) * 2014-07-29 2019-10-08 Applied Research Associates, Inc. Thermally driven environmental control unit

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2754626A1 (de) 1976-12-20 1978-06-22 Carrier Corp Absorptionskuehlanlage zur verwendung von sonnenenergie
DE3808257C1 (fr) 1988-03-12 1989-03-02 Tch Thermo-Consulting-Heidelberg Gmbh, 6900 Heidelberg, De
DE19637821A1 (de) * 1996-09-17 1998-03-19 Deutsche Forsch Luft Raumfahrt Wärmetauschverfahren und Wärmetauscher
DE19734131A1 (de) 1997-08-07 1999-02-11 Inst Luft Kaeltetech Gem Gmbh Einrichtung zur Entspannung und Mischung fluider Medien
EP0906712A1 (fr) 1997-03-18 1999-04-07 Drew Daniels Systeme de reproduction stereophonique centree d'instruments de musique
DE19842577A1 (de) 1998-09-17 2000-03-23 Inst Luft Kaeltetech Gem Gmbh Einrichtung zum Dephlegmieren und Rektifizieren von Kältemitteldampf
DE19845361A1 (de) 1998-10-02 2000-04-06 Inst Luft Kaeltetech Gem Gmbh Verfahren zum Betreiben einer kombinierten Energieverbundanlage
DE19921469A1 (de) 1999-05-08 2000-11-09 Ees Erdgas Energiesysteme Gmbh Ammoniak/Wasser-Absorptionskälteanlage
US6158238A (en) 1996-09-04 2000-12-12 Abb Power Oy Arrangement for transferring heating and cooling power
DE10017828A1 (de) 2000-04-10 2001-10-11 Inst Luft Kaeltetech Gem Gmbh Verfahren zum Betreiben einer Sorptionskälteanlage
DE10025530A1 (de) 2000-05-23 2001-11-29 Inst Luft Kaeltetech Gem Gmbh Verfahren zur Abkühlung flüssiger Medien in der Lebensmittel- und Getränkeindustrie
DE10108768A1 (de) 2001-02-23 2002-09-19 Polymer Eng Gmbh Absorptionskälteanlage mit Niedertemperaturnutzung
EP1367339A1 (fr) 2002-04-30 2003-12-03 Hans Dr.-Ing. Förster Procédé et appareil frigorifique à absorption sans gaz d'équilibrage des pressions
EP1559981A2 (fr) 2004-01-30 2005-08-03 Pressko AG Echangeur de chaleur à plaques circulaires profilées
DE102004039997A1 (de) 2004-05-12 2005-12-08 Reth, Anno von, Dr. Arbeitsverfahren einer Sorptionsanlage
DE69922984T2 (de) 1998-10-15 2006-02-23 Ebara Corp. Plattenwärmetauscher
DE102004056484A1 (de) 2004-11-23 2006-05-24 Förster, Hans, Dr. Ing. Kälteerzeugung für Temperaturen unter 0°C im Absorptionskälteverfahren mit hoher Auskühlung des Wärmeträgers
DE10324300B4 (de) 2003-05-21 2006-06-14 Thomas Dr. Weimer Thermodynamische Maschine und Verfahren zur Aufnahme von Wärme
DE102004063211A1 (de) 2004-12-23 2006-07-13 Uli Jakob Koaxialabsorptionskälteaggregat
DE202007007999U1 (de) 2007-06-05 2007-09-13 Wuttke Gesellschaft für Lüftungs- und Klimatechnik mbH Absorptionskälteanlage ohne druckausgleichendem Gas
DE202008011174U1 (de) 2008-08-14 2008-11-06 Makatec Gmbh Kompakte Resorptionsmaschine
DE102009023929A1 (de) 2009-06-04 2010-12-09 Stürzebecher, Wolfgang, Dr. Absorptionskälteaggregat

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441332A (en) * 1982-12-06 1984-04-10 Gas Research Institute Absorption refrigeration and heat pump system
DE19654261A1 (de) * 1996-12-23 1998-06-25 Electrolux Siegen Gmbh Kühlaggregat
DE19721351A1 (de) * 1997-05-22 1998-11-26 Ees Erdgas Energiesysteme Gmbh Verfahren und Anlage zum Erzeugen von Kälte und/oder Wärme
FI114738B (fi) * 2000-08-23 2004-12-15 Vahterus Oy Levyrakenteinen lämmönvaihdin
US20070144711A1 (en) * 2004-11-19 2007-06-28 Eco Lean Research & Development A/S Heat exchanger plate and plate heat exchanger comprising such plates
JP4669964B2 (ja) * 2005-06-28 2011-04-13 国立大学法人佐賀大学 蒸気動力サイクルシステム
DE102005050211B4 (de) * 2005-10-20 2007-10-18 Robert Bosch Gmbh Absorptions- oder Diffusionsabsorptionswärmepumpe

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2754626A1 (de) 1976-12-20 1978-06-22 Carrier Corp Absorptionskuehlanlage zur verwendung von sonnenenergie
DE3808257C1 (fr) 1988-03-12 1989-03-02 Tch Thermo-Consulting-Heidelberg Gmbh, 6900 Heidelberg, De
US6158238A (en) 1996-09-04 2000-12-12 Abb Power Oy Arrangement for transferring heating and cooling power
DE19637821A1 (de) * 1996-09-17 1998-03-19 Deutsche Forsch Luft Raumfahrt Wärmetauschverfahren und Wärmetauscher
EP0927326B1 (fr) 1996-09-17 2000-11-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Procede d'echange thermique et echangeur de chaleur
EP0906712A1 (fr) 1997-03-18 1999-04-07 Drew Daniels Systeme de reproduction stereophonique centree d'instruments de musique
DE19734131A1 (de) 1997-08-07 1999-02-11 Inst Luft Kaeltetech Gem Gmbh Einrichtung zur Entspannung und Mischung fluider Medien
DE19842577A1 (de) 1998-09-17 2000-03-23 Inst Luft Kaeltetech Gem Gmbh Einrichtung zum Dephlegmieren und Rektifizieren von Kältemitteldampf
DE19845361A1 (de) 1998-10-02 2000-04-06 Inst Luft Kaeltetech Gem Gmbh Verfahren zum Betreiben einer kombinierten Energieverbundanlage
DE69922984T2 (de) 1998-10-15 2006-02-23 Ebara Corp. Plattenwärmetauscher
DE19921469A1 (de) 1999-05-08 2000-11-09 Ees Erdgas Energiesysteme Gmbh Ammoniak/Wasser-Absorptionskälteanlage
DE10017828A1 (de) 2000-04-10 2001-10-11 Inst Luft Kaeltetech Gem Gmbh Verfahren zum Betreiben einer Sorptionskälteanlage
DE10025530A1 (de) 2000-05-23 2001-11-29 Inst Luft Kaeltetech Gem Gmbh Verfahren zur Abkühlung flüssiger Medien in der Lebensmittel- und Getränkeindustrie
DE10108768A1 (de) 2001-02-23 2002-09-19 Polymer Eng Gmbh Absorptionskälteanlage mit Niedertemperaturnutzung
EP1367339A1 (fr) 2002-04-30 2003-12-03 Hans Dr.-Ing. Förster Procédé et appareil frigorifique à absorption sans gaz d'équilibrage des pressions
DE10324300B4 (de) 2003-05-21 2006-06-14 Thomas Dr. Weimer Thermodynamische Maschine und Verfahren zur Aufnahme von Wärme
EP1559981A2 (fr) 2004-01-30 2005-08-03 Pressko AG Echangeur de chaleur à plaques circulaires profilées
DE102004039997A1 (de) 2004-05-12 2005-12-08 Reth, Anno von, Dr. Arbeitsverfahren einer Sorptionsanlage
DE102004056484A1 (de) 2004-11-23 2006-05-24 Förster, Hans, Dr. Ing. Kälteerzeugung für Temperaturen unter 0°C im Absorptionskälteverfahren mit hoher Auskühlung des Wärmeträgers
DE102004063211A1 (de) 2004-12-23 2006-07-13 Uli Jakob Koaxialabsorptionskälteaggregat
DE202007007999U1 (de) 2007-06-05 2007-09-13 Wuttke Gesellschaft für Lüftungs- und Klimatechnik mbH Absorptionskälteanlage ohne druckausgleichendem Gas
DE202008011174U1 (de) 2008-08-14 2008-11-06 Makatec Gmbh Kompakte Resorptionsmaschine
DE102009023929A1 (de) 2009-06-04 2010-12-09 Stürzebecher, Wolfgang, Dr. Absorptionskälteaggregat

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DE FRANCISCO A. ET AL: "Development and testing of a prototype of low-power water-ammonia absorption equipment for solar energy applications", RENEWABLE ENERGY, vol. 25, no. 4, 1 April 2002 (2002-04-01), pages 573 - 544, XP004312372
See also references of WO2010139444A1 *
SHAH R.K. ET AL: "Fundamentals of Heat Exchanger Design", FUNDAMENTALS OF HEAT EXCHANGER DESIGN, 1 January 2003 (2003-01-01), pages 1 - 77, XP002397367

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3290828A1 (fr) 2016-09-03 2018-03-07 Eco ice Kälte GmbH Machine de froid par absorption d'eau/ammoniac
DE102016010741A1 (de) 2016-09-03 2018-03-08 Eco ice Kälte GmbH Ammoniak/Wasser- Absorptionskältemaschine

Also Published As

Publication number Publication date
CA2763417A1 (fr) 2010-12-09
DE102009023929A1 (de) 2010-12-09
US20120073315A1 (en) 2012-03-29
WO2010139444A1 (fr) 2010-12-09
BRPI1010951A2 (pt) 2018-03-06

Similar Documents

Publication Publication Date Title
DE3739831C2 (de) Verfahren zur Wärmeabsorption durch eine Absorptionskältemaschine und Vorrichtung für die Verwendung als Absorptionskältemaschine
DE4006287A1 (de) Verfahren zum betreiben einer adsorptionskuehlanlage
DE69129212T2 (de) Absorptionskühl- und wärmepumpenanlage mit enteisung
EP2438367A1 (fr) Groupe frigorifique à absorption ammoniac-eau
DE102014225410A1 (de) Sorptionsmodul
DE3390075T1 (de) Leistungseinheit für ein Absorptionswärmeaustauschsystem
DE3018709A1 (de) Parallel-bivalent als absorber-waermepumpe und heizkessel arbeitende zum erwaermen eines waermetraegermediums
DE3541375C2 (fr)
WO2015055159A1 (fr) Machine frigorifique à absorption
DE102021003800A1 (de) Stoff- und Wärmeübertragungsapparatur für Wärmepumpen mit Lösungskreislauf
DE10248557B4 (de) Diffusionsabsorptionsanlage
WO2013021005A2 (fr) Machine frigorifique à absorption
DE2946076C2 (de) Sorptionswärmepumpe
EP2753886B1 (fr) Procédé pour faire fonctionner un appareil frigorifique et appareil frigorifique
EP2204627A2 (fr) Réchaud pour une installation d'absorption par diffusion
DE20308601U1 (de) Wärmetauscher für kompakte Sorptionskälteanlagen und -wärmepumpen
EP2762800A1 (fr) Système d'absorption pour chauffage ou refroidissement d'un fluid caloporteur
DE2547034A1 (de) Verfahren zur indirekten kuehlung von heissen gasen, insbesondere koksofengasen
DE102009055079B4 (de) Wärmeübertrager, Wärmeübertragungseinheit sowie Verfahren zur Bereitstellung von Heizenergie mittels Wärmeübertragung
DE936931C (de) Absorptions-Kaeltemaschine
DE102011050309A1 (de) Kreisprozess zum Betrieb einer Absorptionskältemaschine und Absorptionskältemaschine
DE10240659B4 (de) Verfahren und Vorrichtung zur solarthermischen Kälteerzeugung
DE2219083B2 (de) Absorptionskälteanlage
DE1751367C (de) Absorptionskälteanlage
DE905979C (de) Einrichtung an Absorptions-Kaeltemaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17Q First examination report despatched

Effective date: 20150203

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20180327