EP2435664B1 - Spaltkontrollsystem für eine strömungsmaschine - Google Patents

Spaltkontrollsystem für eine strömungsmaschine Download PDF

Info

Publication number
EP2435664B1
EP2435664B1 EP10730045.1A EP10730045A EP2435664B1 EP 2435664 B1 EP2435664 B1 EP 2435664B1 EP 10730045 A EP10730045 A EP 10730045A EP 2435664 B1 EP2435664 B1 EP 2435664B1
Authority
EP
European Patent Office
Prior art keywords
rotor
turbomachine
turbomachine according
segment
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10730045.1A
Other languages
English (en)
French (fr)
Other versions
EP2435664A2 (de
Inventor
Hermann Klingels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Publication of EP2435664A2 publication Critical patent/EP2435664A2/de
Application granted granted Critical
Publication of EP2435664B1 publication Critical patent/EP2435664B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/22Actively adjusting tip-clearance by mechanically actuating the stator or rotor components, e.g. moving shroud sections relative to the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/50Kinematic linkage, i.e. transmission of position

Definitions

  • the invention relates to a turbomachine for adjusting a running gap between a rotor blades comprising rotor blades.
  • the efficiency of a turbomachine depends essentially on the size of the radial running gap between a rotor and static components of the turbomachine.
  • the position of the surge limit-that is to say the limit up to which stable operation of the turbomachine is possible- is also determined essentially by the size of the running gap.
  • the realization of the smallest possible, over the operating life of the turbomachine constant radial clearance gaps is therefore a primary design goal. This is even more important the smaller the dimensions of rotor blades of the rotor. This is the case, for example, in the rear stages of a high-pressure compressor or a turbomachine designed as a high-pressure turbine.
  • Fig. 1 a schematic line diagram of a time- and load-dependent gap change between a rotor disk and a surrounding casing of a turbomachine, as typically occurs during operation of a known as high-pressure compressor, known from the prior art turbomachine for an engine of the class 30 klb.
  • the solid line ⁇ 1 describes a radius of the rotor disk and the solid line ⁇ 2 describes a radius of the casing, whereas the dashed line ⁇ 3 describes the radius of the casing required for setting a running gap L with an optimum size ⁇ r opt .
  • the optimum size ⁇ r opt of the nip L should be able to be adjusted by means of a gap control system of the turbomachine.
  • thermally active gap control systems in which the running gap is optimized by targeted cooling or heating of the relevant components.
  • Examples include the gap control system of the CFM56 engine family, in which the rotor temperature is controlled, or from the US 4,329,114 Known gap control system, by means of which the housing temperature of the turbomachine is controlled. Since these gap control systems only act by influencing the component temperatures, they react relatively slowly and can therefore only significantly improve the stationary clearance gaps. On rapid changes of the nip - as described above in transient operating conditions arise - on an offset between a rotational axis of the rotor and a central axis of the casing as well as on eccentricities, such as occur in Manöverlasten, these gap control systems can not or only very limited react.
  • the sheathing of the rotor should be able to adapt as well as possible to its diameter and relative position at all times.
  • the sheath is often segmented.
  • the GB 2108591 A shows, for example, a gap control system for such a segmented jacket of a turbomachine. Each three segments are coupled together by a lever mechanism. These coupled segments are adjusted uniformly, each with an actuator in response to measurement signals of multiple sensor devices.
  • the running gap in each of these coupled segment groups can hereby be set over the circumferential extent of the segment group to a middle running gap.
  • the gap control system With diameter changes of the rotor and the jacket, the gap control system thus provides comparatively good results.
  • an offset between the axis of rotation of the rotor and the central axis of the casing as well as ovalizations of the casing can not be compensated satisfactorily or not.
  • the segments of the segment group are mounted stationarily in the circumferential direction, crescent-shaped running gaps arise in the case of a displacement of the axis of rotation of the rotor relative to the central axis of the casing since all coupled segments of the casing stir out the same lifting movement.
  • a relatively large number of twelve or more segment groups is required.
  • a corresponding number of actuators and sensor devices is required, which in addition to the manufacturing costs and the space requirement and susceptibility to errors increase.
  • each segment for adjusting the running gap by a gap control system is movable.
  • the segments are moved between wedge-shaped spring members, wherein a disc spring stack can move the segments radially outwardly with respect to the axis of rotation of the rotor and the gap control system can move the segments radially toward the rotor.
  • a high number of actuators and Sensor devices required, whereby the gap maintenance system is not only expensive and difficult, but also has a relatively high probability of failure.
  • the US 5,104,287 describes a gap maintenance system for a segmented casing of a rotor blades comprising a rotor of a turbomachine.
  • Each segment of the casing can be moved radially with respect to the axis of rotation of the rotor by means of two associated adjusting screws of the gap holding system comprising threaded spindles.
  • the adjusting gear are coupled in pairs with a designed as a ring and concentrically arranged around the rotor adjusting.
  • the adjustment of the running gap is made by turning the ring, whose rotational movement is converted by the adjusting gear in a uniform radial movement of the segments away from the rotor.
  • Shaft-shaped flat springs are arranged between the segments and a supporting housing of the casing, which press the segments radially inward, that is to say in the direction of the rotor.
  • a disadvantage is the fact that the segments of the shell can only be moved radially together, so that only a few of the above influencing variables can be counteracted. In particular, ovalizations of the casing or an offset between the axis of rotation of the rotor and the central axis of the casing can not be compensated. Furthermore, it is disadvantageous that the flat springs and the adjusting mechanism come into direct contact with the high rotor chamber temperatures during operation of the turbomachine.
  • the temperatures can be so high that the spring action of the flat springs is lost or the carrying capacity of the adjusting is no longer sufficient.
  • the gap maintenance system has a high complexity and a relatively high weight, which in addition to the manufacturing and maintenance costs, especially the default probability of the entire gap maintenance system is increased.
  • Object of the present invention is therefore to provide a gap control system of the type mentioned, which in a structurally simple way compensating as many influencing factors and thus a reliable and reliable adjustability of the running gap under different operating conditions of the associated Turbomachine allows.
  • Another object is to provide a turbomachine with such a gap control system and a corresponding method for adjusting a running gap of a turbomachine.
  • the invention relates to a turbomachine, in particular a gas turbine, comprising a rotor comprising rotor blades, a casing enclosing the same at least in sections, comprising at least two segments, and a gap control system by means of which a running gap between the rotor and the casing can be adjusted.
  • the gap control system which allows in a structurally simple way a compensation of as many influencing factors and thus a reliable and reliable adjustability of the running gap under different operating conditions of the associated turbomachine erfingdungsconce created by the adjusting element for adjusting the running gap axially relative to the axis of rotation of the rotor and slidably / or is pivotable relative to the rotor and that the at least one adjusting mechanism is adapted to convert an at least predominantly axial movement of the adjusting element into an at least predominantly radial movement of the associated segment of the casing.
  • the gap control system makes it possible, on the one hand, to move the segments uniformly over the circumference of the rotor by axial movement of the adjusting element and to achieve a correspondingly uniform change of the running gap.
  • a non-uniform movement of the segments over the circumference of the rotor can be produced, whereby ovalization of the casing due to maneuvering and compressive forces and any offset between the axis of rotation of the rotor and the Central axis of the sheath can be easily considered and compensated.
  • the adjusting element is at least substantially formed as a ring.
  • the adjusting element comprising a plurality of sub-sections, which are preferably connected to one another in an articulated manner.
  • the adjusting element has additional degrees of freedom of movement, so that an additionally improved adjustability of the running gap during pivoting of the adjusting element is made possible.
  • a buckling of the adjusting element i.
  • an ovalization of the shell due to maneuvers and compressive forces are particularly easy to compensate.
  • the gap control system comprises a support housing (24) and at least one adjusting gear is fixed to the support housing.
  • the support housing may be formed, for example, as an outer housing of the turbomachine or be arrangeable within a separate outer housing.
  • the support housing is annular and / or the outer circumference of the sheath and / or concentric with the axis of rotation of the rotor can be arranged.
  • the casing comprises at least one vane and / or is preferably supported by means of a push rod relative to the support housing.
  • the guide vanes are usually fastened to the support housing, so that no influence can be exerted on the inner running gap.
  • the casing comprising the at least one vane-for example by the vane being fixed to the casing-the vane can advantageously be moved during the adjustment of the rotor's nip, whereby the internal gap of the turbomachine can also be adjusted.
  • the at least one guide vane is supported in the circumferential and / or axial direction on the support housing.
  • the at least one adjusting is supported by means of the push rod relative to the support housing.
  • the sensor device can basically operate according to different physical principles, for example capacitive, inductive, optical, with microwaves or with eddy current.
  • a plurality of sensor devices are provided which, preferably uniformly, are arranged at a distance from one another and / or can be arranged on the outer circumference of the sheathing.
  • the running gap can thus be determined in a particularly precise and spatially resolved manner, so that correspondingly different stroke movements of the segments can be executed and a uniform running gap can be generated.
  • At least one actuator coupled to the adjusting element is provided, by means of which the adjusting element is axially displaceable relative to the axis of rotation of the rotor or pivotable relative to the rotor.
  • the adjusting element can be moved in a particularly simple and precise manner.
  • the actuator can function according to different physical principles, for example hydraulically, pneumatically, electrically, piezoelectrically or magnetically.
  • the at least one actuator is arranged in the region of at least one variable transmission.
  • the actuator is arranged in the region of a sensor device.
  • a simplified and particularly precise adjustability of the running gap is ensured due to the small spatial distance between the sensor device and the actuator.
  • a further improvement of the adjustability of the nip is given in a further embodiment in that at least one control and / or regulating unit is provided, which is coupled to at least one sensor device and at least one actuator and is designed to at least one actuator in dependence of the To control or regulate at least one sensor device determined size of the running gap.
  • a plurality of adjusting gears are provided, which are arranged axially with respect to the axis of rotation of the rotor and together can be actuated by means of the adjusting element. Since the rotors of several stages of a turbomachine designed as a high-pressure compressor show a similar expansion behavior over time - especially if the coefficients of thermal expansion of the materials used are similar - running columns of several stages can be set with the same movement of the adjusting element. It may optionally be provided that - for example, by different lever lengths on the adjusting - different strokes on the segments of the multi-part casing of different levels can be achieved. In addition, if required, a different gap size can be created or set at each stage.
  • At least one adjusting gear coupled to the adjusting element actuating lever and / or a thrust bearing and / or a recirculating ball screw and / or a spindle drive and / or an eccentric shaft and / or a bending spring and / or a spring element and / or a toggle lever and / or a toggle pin which can be coupled to at least one segment of the casing and / or a grid.
  • a backlash-free power transmission from the adjusting element to the at least one adjusting mechanism can be ensured in a particularly simple manner, and a likewise backlash-free and optionally rastered movement of the respective segment can be generated.
  • the at least one adjusting mechanism thereby makes it possible, in a structurally simple way, to convert an at least predominantly axial movement of the adjusting element into a small radial movement of the segment of the casing.
  • At least one adjusting mechanism comprising a sealing element, which is preferably designed as a clamping band and / or bellows seal and / or piston ring and / or C-seal.
  • a sealing element which is preferably designed as a clamping band and / or bellows seal and / or piston ring and / or C-seal.
  • At least one adjusting gear coupled to at least one segment Draw bolt and a coupled to the at least one segment pressure pin comprises, wherein the tension bolt and the pressure pin are movable relative to each other and subjected to a force.
  • the application of force between the tension bolt and the pressure bolt can be generated, for example, with the aid of a spring element, with basically any desired spring designs, such as helical springs, cup spring packs or the like, being able to be provided.
  • Another aspect of the invention relates to a turbomachine, in particular a gas turbine rotor having a rotor blades, at least partially surrounding it, at least two segments comprising sheath, and a gap control system by means of which a running gap between the rotor and the sheath is adjustable.
  • a gap control system is designed according to one of the preceding embodiments.
  • the gap control system is accommodated in a housing and / or forms at least a part of the housing.
  • the inclusion in a housing of the turbomachine allows a mechanically stable, reliable and space-saving arrangement of the gap control system.
  • the gap control system itself forms at least a part of the housing.
  • the casing comprises at least one vane. If the at least one vane is provided on the casing or on a segment, the running gaps on the casing are advantageously also provided Ring space inner contour, that is, the gap between the rotor and the at least one vane, set by the gap control system. The forces generated by the at least one vane during operation of the turbomachine then act on the segments.
  • the at least two segments of the casing are coupled together.
  • a coupling by means of at least one adjusting gear adjacent regions of two segments can advantageously be moved radially together.
  • a steady transition from one segment to the adjacent segment is ensured so that the emergence of crescent-shaped running gaps is particularly reliably prevented.
  • thereby a high backlash is achieved at the junction between the segments and the at least one adjusting.
  • At least one segment of the casing comprises a stiffening element, by means of which a curvature of the segment is adjustable in dependence on the size of the running gap.
  • a stiffening element by means of which a curvature of the segment is adjustable in dependence on the size of the running gap.
  • the gap control system in the region of a low-pressure compressor stage and / or a high-pressure compressor stage and / or a low-pressure turbine stage and / or a High-pressure turbine stage of the turbomachine is arranged.
  • Such an arrangement allows a particularly variable embodiment of the turbomachine and a particularly high, at least largely wholesomesstandsunabphaserigigen efficiency.
  • sheath comprising two segments formed as half-rings and / or at most eight, more preferably at most six segments.
  • the number of components and thus the potential leakage points is kept small.
  • the ease of assembly and maintenance is considerably improved.
  • each segment of the casing is coupled to at least two and preferably three spaced-apart adjusting the gap control system. Since the segments are designed for a certain diameter, crescent-shaped running gaps can generally result from the radial movement of the segments due to the occurrence of curvatures. In addition, in unsteady operating states of the fluid machine with a radial temperature gradient, which could change the curvature uncontrolled, as well as with mechanical stress (for example, by gas loads) must be expected. In order for the segments to have the desired constant curvature independent of the operating state, each segment is coupled to at least two and preferably to three circumferential locations, each with one adjusting gear and thus forced to a circular path with the current rotor diameter plus the adjustable running gap. If a segment is coupled to only two variable speed drives, it has been found to be advantageous if the two variable speed drives engage the segment edges of the segment to force it to the desired circular segment path.
  • a cross-sectional contour of each segment can be selected so that the second derivative of the bending line results in a constant value and accordingly there is a constant curvature.
  • a further aspect relates to a method for adjusting a running gap between a rotor comprising a rotor blades of a turbomachine, in particular a gas turbine, and a casing which surrounds the latter at least in sections, comprising at least two segments.
  • the method comprises at least the steps of determining a size of the running gap by means of at least one sensor device and transmitting the variable to a control and / or to compensate for as many influencing factors as possible and thus a reliable and reliable adjustment of the running gap under different operating conditions of the turbomachine Control unit, controlling or regulating at least one actuator by means of the control and / or regulating unit as a function of the determined size of the running gap, axial displacement and / or pivoting with respect to a rotational axis of the rotor of an adjusting element arranged around the rotor by means of the at least one actuator, actuating at least an adjusting mechanism by means of the adjusting element and radial movement relative to the axis of rotation of the rotor of at least one segment of the casing by means of the at least one adjusting gear.
  • the size of the running gap is determined by means of the control and / or regulating unit on the basis of the transmitted size of a further sensor device and the at least one actuator is controlled as a function of the determined variable or is regulated.
  • Fig. 1 shows a schematic line diagram of a time- and load-dependent radius change of a rotor and a surrounding casing of a turbomachine and has already been explained above.
  • ⁇ r opt the actual radius of the jacket of the rotor characterized by the line .phi.2
  • a gap control system to measure the actual radius of the jacket of the rotor characterized by the line .phi.2 by means of a gap control system to the line shown by the dashed line ⁇ 3 characterized SollRadius adapt.
  • Fig. 2 shows a schematic perspective view of a gap control system according to a first embodiment.
  • the gap control system serves to set the running gap L between a rotor blades 10 (s. Fig. 10 ) comprehensive rotor 12 (s. Fig. 3 ) of a turbomachine 14 (s. Fig. 10 ), in particular a gas turbine, and a surrounding this at least partially sheathing 18.
  • a turbomachine 14 s. Fig. 10
  • the sheath 18 in the present embodiment four segments 16a-d (liner), which are at least largely independently movable.
  • the gap control system here comprises eight adjusting gear 20, which are each coupled to at least one segment 16 of the casing 18.
  • the segments 16a-d for adjusting the running gap can be moved radially relative to a rotational axis D of the rotor 12.
  • the gap control system comprises an adjusting element 22 which can be arranged around the rotor 12 and which in the present case is designed essentially as a ring and comprises two half rings connected to one another in an articulated manner as partial sections 22a, 22b.
  • the adjusting element 22 is coupled to the adjusting gear 20 and can be moved axially relative to the axis of rotation D of the rotor 12 or pivoted relative to the rotor 12 for actuating the adjusting gear 20 and thus for adjusting the running gap L.
  • the adjusting gear 20 are designed to convert an at least predominantly axial movement of the adjusting element 22 into an at least predominantly radial movement of the respectively associated segments 16a-d of the casing 18.
  • the segments 16a-d are arranged within a ring-shaped support housing 24 arranged concentrically with the axis of rotation D of the rotor 12.
  • the support housing 24 may be formed as an outer housing of the turbomachine 14 or lie within a separate outer housing.
  • the adjusting 20 - and thus indirectly the adjusting element 22 - are fixed to the support housing 24.
  • a total of four sensor devices 26a-d are uniformly spaced from one another on the support housing 24 in the vicinity of each second adjusting gear 20, by means of which a size of the running gap L at different circumferential positions can be determined.
  • the sealing elements may be formed as sealing flakes (so-called "leaf seals"), wherein other types of seals, such as brush seals or C-rings, may be provided.
  • the sealing elements 40 prevent a carrying-housing-side flow around the segments 16a-d in the axial direction.
  • the gap control system further comprises four actuators 28a-d coupled to the adjusting element 22, by means of which the adjusting element 22 is displaceable axially relative to the axis of rotation D of the rotor 12 or pivotable relative to the rotor 12.
  • the actuators 28a-d are arranged uniformly spaced from each other on the outer circumference of the casing 18 and in each case in the region of an adjusting gear 20.
  • the gap control system has control and / or regulating unit 30, which is coupled to the sensor devices 26a-d and the actuators 28a-d.
  • the control and / or regulating unit 30 is designed to control or regulate the actuators 28a-d as a function of the size ⁇ r of the running gap L determined by means of the sensor devices 26a-d.
  • the control signals supplied by the sensor devices 26a-d are processed in the control and / or regulating unit 30.
  • the respective actuator 26a-d associated with the relevant sensor device 26a-d normally receives a signal to move the adjusting element axially until the optimum size ⁇ r opt of the sensor device 26a-d in question Run gap L can be determined. The same happens at the other sensor positions. This makes it possible to perform different strokes of the segments 16a-d at different circumferential positions.
  • the sensor devices 26a-d can operate according to various physical principles, for example, capacitively, inductively, optically, with microwaves or with eddy current.
  • the actuator 26a-d whose normally assigned sensor device 26a-d has failed, can nevertheless be activated via a corresponding error logic by the preferably redundantly designed control and / or regulating unit 30.
  • a corresponding control signal can be derived from the signals of the remaining functional sensor device 26a-d.
  • the adjusting element 22 of all actuators 28a-d axially with respect to the axis of rotation D of the rotor 12 is moved.
  • the adjusting element 22 With an offset of the center axis M of the support housing 24 with respect to the axis of rotation D, the adjusting element 22, however, is moved differently to the individual Aktuatorpositioneri in the axial direction.
  • the adjusting element 22 thereby performs a spatial pivotal movement relative to the rotor 12 and its axis of rotation D (wobble). In this way, a constant running gap L over the entire circumference of the sheath 18 can be adjusted.
  • a particular advantage of the adjusting mechanism 20 lies in the fact that they can convert relatively large movements of the actuators 28a-d into comparatively small movements of the segments 16a-d, as a result of which the running gap L can be set particularly precisely.
  • a point on a tip of a rotor blade 10 describes an ideal circular path.
  • a circle is uniquely determined when three points in space are known that lie at different circumferential positions in the circle plane. If one neglects first the case of an ovalization of the casing 18, a total of three sensor devices 26 and three actuators 28 are connected to a one-piece adjusting element 22 in order to set a running gap L which is constant over the circumference of the casing 18 in different operating states of the turbomachine.
  • Fig. 3 shows a schematic sectional view of the in Fig. 2 shown gap control system, wherein in addition to a change in the diameter ⁇ and the radius of the rotor 12 in addition an offset between the central axis M and the axis of rotation D and an ovalization of the sheath 18 occurs.
  • the casing 18 in turn has a minimum diameter ⁇ min and a maximum diameter ⁇ max , whereby the running gap L varies over the circumference and has different sizes ⁇ r ad .
  • the ovalization can also be completely compensated by "bending" of the adjustment element 22, ie by relative pivoting of the sections 22a, 22b, when the articulated connection of the sections 22a, 22b of the adjustment element 22 in a through the engine axis T and a major axis H of the resulting cross-sectional ellipse formed plane lie.
  • the ovalization is only partially compensated. If the ovalization is to be at least approximately completely compensated even in any position of the cross-sectional ellipses, then a further subdivision of the adjusting element 22, for example into three subsections or the use of six actuators 28, has proven to be advantageous.
  • the gap control system according to the invention is able to adjust the running gap L over the circumference of the sheath 18 with different adjustment paths. As a result, it is possible to react both to changes in the diameter ⁇ or the radius r of the rotor 12 and to an offset between the center axis M of the casing 18 and the axis of rotation D of the rotor 12 and also to an ovalization of the casing 18.
  • Fig. 4 shows a schematic perspective view of three segments 16a-c of in Fig. 2 shown sheath 18, wherein each segment 16a-c is coupled to a plurality of Verstellgetrieben 20 of the gap control system.
  • the segments 16a-c are usually made for a certain diameter. If the relatively large segments 16a-d simply shifted to a different radius, would arise due to their curvature, crescent-shaped running column L.
  • in unsteady operating conditions of the turbomachine with a radial temperature gradient which changes the curvature uncontrolled, as well as with mechanical stress (eg by gas loads) can be expected.
  • each segment 16a-d is coupled at three circumferential points with an adjusting gear 20 and forced by this on a circular path with the current rotor diameter plus the desired running gap L.
  • an adjusting 20 20 two segments 16 is assigned.
  • the segments 16a-d are positively connected in the radial direction with their respective adjacent segments 16 at the segment edges.
  • the positive connection is generated by a tension bolt 31 and a spring-loaded pressure plate 33 of the adjusting 20. This is achieved at the junction of the segments 16a-d with the respective adjustment gears 20 backlash.
  • the segments 16a-d are mutually displaceable, which is necessary on the one hand because of the occurring during operation different temperatures between the segments 16a-d and the support housing 24 and on the other hand due to the ability to move the segments 16a-d radially (a radial displacement of all Segments 16a-d, for example, 0.5 mm results in a change in the circumferential length of 3.14 mm).
  • the stiffness distribution is selected such that a constant curvature is present under all operating conditions.
  • Fig. 5 shows for this purpose several embodiments of each provided with stiffening elements 32 segments 16. With the help of the stiffening elements 32 is maintained at a variation of the radial position of the segments 16a-d almost an ideal circular shape.
  • the stiffening elements 32 may be formed integrally with the segments 16. Possible embodiments of the stiffening elements 32 include, for example, variation of the radial height of the segment 16 or ribs of decreasing width towards the segment edges. In this way, the stiffness distribution of the segments 16 can be optimally adapted.
  • Fig. 6 shows a schematic perspective view of a plurality of vanes 34 comprising segment 16, which is indirectly supported by means of a hinged at its ends push rod 36 relative to the support housing 24 (not shown) of the turbomachine.
  • a fastening element of the adjusting gear 20 simultaneously acts as a support element for the push rod 36, so that occurring forces are introduced into the support housing.
  • the LeitSufeln 34 may be formed as separate components or as an integral part of the segments 16. Alternatively or additionally, the guide vanes 34 may be fixed to the support housing 24.
  • Fig. 7 shows an embodiment of the variable speed 20 in a schematic perspective and side view.
  • the adjusting mechanism 20 also allows the conversion of a predominantly axial movement of the adjusting element 22 in a small radial movement of the associated segment 16.
  • the adjusting 20 includes a bending spring 38 which is mounted on the support housing 24 and deformed by a coupled to the adjusting element 22 toggle mechanism 42 can be.
  • a traverse 44 attached to the bending spring 38 transmits the movement to the segment 16.
  • variable speed transmission 20 is shown in schematic perspective and side view in FIG Fig. 8 shown.
  • the radial movement of the cross member 44 and thus of the segment 16 is generated by rotating eccentric shafts 46 coupled to the adjusting element 22.
  • Fig. 9 shows a schematic perspective view of the gap control system according to a second embodiment.
  • the present gap control system comprises a plurality of groups of three each, via a Coupling rod 48 coupled to each other adjusting gears 20 which are each arranged axially relative to the axis of rotation D of the rotor 12 and actuated jointly by means of the adjusting element 22.
  • the sheath 18 comprises a plurality of groups of segments 16, which are also arranged along the axis of rotation D of the rotor 12.
  • the gap maintenance system is therefore particularly suitable for multi-stage turbomachinery.
  • Fig. 10 shows a schematic and partial sectional side view of a with the in Fig. 9
  • the flow machine 14 or the gap control system will be described below in conjunction with Fig. 11 and Fig. 12 be explained.
  • Fig. 11 shows a schematic and partially cutaway perspective view of an in Fig. 10 shown adjusting gear 20, while in Fig. 12
  • a schematic side sectional view of the variable speed according to a further exemplary embodiment is shown.
  • the general structure of the turbomachine 14 is known from the prior art.
  • the three in Fig. 10 Recognizable adjusting gear 20 are arranged along the axis of rotation D of the rotor 12 and fixed to a support housing 24 of the turbomachine 14. Due to a comparable expansion behavior, the three adjusting 20 are controlled or regulated together.
  • the adjusting gears 20 are controlled or regulated individually or in groups.
  • the gap control system can in principle be arranged both in compressor and in turbine stages. Special benefits arise When the gap control system is arranged in the region of the rear stages of the turbomachine, because of the small blades, the ratio between running gap and blade size is particularly relevant.
  • Each adjusting gear 20 is sealed with sealing elements 52: Two liner segments 16a, 16b are pressed by a spring element 54 (eg helical spring, disc spring package, etc.) via a pressure sleeve 80 and the pressure plate 33 radially inwards in the direction of the rotor 12. So that no segment 16 is moved into the rotor 12, each segment 16 via a thread 58, which in the in Fig. 11 shown embodiment as a ball screw and im in Fig. 12 shown embodiment is designed as a movement thread, are moved radially away from the rotor 12. The power transmission takes place in each case via a thrust bearing 60 to an armature plate 62 and the tension bolt 31.
  • a spring element 54 eg helical spring, disc spring package, etc.
  • This tension bolt 31 is positively connected to the segment 16 or the segments 16a, 16b, wherein in Fig. 12 a sliding between the segment 16b and the tie bolt 31 is exemplified by arrow XII.
  • the described arrangement has the advantage that the entire adjusting mechanism 20 is braced by the spring elements 54 and thus free of play.
  • the thread 58 in combination with the thrust bearing 60 has the advantage that the adjusting gear 20 has a low wear and a low internal friction.
  • the spring elements 54 are presently integrated in the adjusting 20 and outside of the outer housing 50 and thus arranged in the relatively cold region of the turbomachine 14. Between the outer housing 50 and the adjusting gear 20, and within the adjusting gear 20 different sealing elements 52 are arranged. These give the components the necessary movement possibilities (lifting movement and thermal expansion) and at the same time seal spaces with different pressures against each other.
  • sealing elements 52 designed as piston rings, C-seals, bellows or the like may also be provided.
  • Fig. 12 is an actuating lever 66 of the adjusting 20 recognizable, which coupled on the one hand with the adjusting element 22 and on the other hand rotationally fixed to the Thread 58 is connected to convert the at least substantially axial movement of the adjusting element 22 in a smaller radial movement.
  • the adjusting mechanism 20 functions according to the embodiment shown in the manner of a spindle drive.
  • the adjusting mechanism 20 is fastened to the supporting housing 24 of the turbomachine by screwing, welding or the like
  • connection sleeve 82 can be seen.
  • the spring element 54 (coil spring, cup spring package, etc.) presses the segments 16a, 16b via a pressure pin 80 and the pressure plate 33 at the segment edges or in the middle of the segment (not shown) radially in the direction of the engine axis, wherein the spring element 54 on the bolt part of the thread 58 supported.
  • the nut part 58a of the thread 58 acts on the armature plate 62 via a thrust bearing and on the segments 16a, 16b via the tension bolt 31 or on a single segment 16 in the middle of a segment.
  • the tension bolt 31 counteracts the pressure pin 80, as a result the entire adjusting 20 is biased in and thus free of play.
  • the rotation of the nut member 58a causes a radial displacement of the armature plate 62 and the indirectly connected thereto segments 16a, 16b.
  • different sealing elements 52 are provided at the sliding points (arrow XII) between the adjusting gear 20 and housings (outer housing 50 and the support housing 24) and within the variable transmission 20 different sealing elements 52 (piston rings, C-rings, bellows, etc.) are provided.
  • the connecting sleeve 82, the thread 58 and the anchor plate 62 form a Verstellgetriebegephinuse 90 here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft eine Strömungsmaschine zum Einstellen eines Laufspalts zwischen einem Rotorschaufeln umfassenden Rotor.
  • Der Wirkungsgrad einer Strömungsmaschine, beispielsweise eines Verdichters oder einer Turbine, hängt wesentlich von der Größe des radialen Laufspalts zwischen einem Rotor und statischen Bauteilen der Strömungsmaschine ab. Bei Verdichtern wird zusätzlich die Lage der Pumpgrenze - das heißt die Grenze, bis zu der ein stabiler Betrieb der Strömungsmaschine möglich ist - wesentlich durch die Größe des Laufspalts bestimmt. Die Verwirklichung von möglichst kleinen, über die Betriebsdauer der Strömungsmaschine konstant bleibenden radialen Laufspalten ist daher ein vorrangiges Auslegungsziel. Dies ist umso wichtiger, je kleiner die Abmessungen von Rotorschaufeln des Rotors sind. Dies ist beispielsweise in hinteren Stufen eines Hochdruckverdichters bzw. einer als Hochdruckturbine ausgebildeten Strömungsmaschine der Fall.
  • Betrachtet man das Laufspaltverhalten einer Strömungsmaschine, so stellt man fest, dass der Laufspalt aufgrund unterschiedlicher zeitlicher Dehnverhalten des Rotors und seiner Ummantelung, welche beispielsweise als Gehäuse oder Gehäuseteil ausgebildet sein kann, relativ stark varüert. Zur näheren Erläuterung zeigt Fig. 1 ein schematisches Liniendiagramm einer zeit- und lastabhängigen Spaltänderung zwischen einer Rotorscheibe und einer diese umgebenden Ummantelung einer Strömungsmaschine, wie sie typischerweise während des Betriebs einer als Hochdruckverdichter ausgebildeten, aus dem Stand der Technik bekannten Strömungsmaschine für ein Triebwerk der 30 klb Schubklasse auftritt. Dabei beschreiben die durchgezogene Linie φ1 einen Radius der Rotorscheibe und die durchgezogene Linie φ2 einen Radius der Ummantelung, wohingegen die gestrichelte Linie φ3 den zum Einstellen eines Laufspalts L mit einer optimalen Größe Δropt geforderten Radius der Ummantelung beschreibt.
  • Die optimale Größe Δropt des Laufspalts L soll dabei mit Hilfe eines Spaltkontrollsystems der Strömungsmaschine eingestellt werden können. Im gezeigten Ausführungsbeispiel wird ein zumindest annähernd konstanter Laufspalt L mit der Größe Δropt=0,1 -0,2 mm angestrebt. Beim Beschleunigen (Phase Ib) aus einer Leerlaufphase Ia, in welcher der Laufspalt L die Anfangsgröße Δr1 besitzt, erfährt der Radius des Rotors bzw. der Rotorscheibe im Bereich B1 - proportional zur Drehzahländerung - eine Radiusänderung aufgrund der wirkenden Fliehkräfte. Demgegenüber erfolgt eine thermisch bedingte Dehnung der Rotorscheibe aufgrund ihrer vergleichsweise großen radialen Erstrcckung und großen Masse deutlich langsamer (Bereich B2). Die Ummantelung mit ihrer im Vergleich zum Rotor geringeren Masse reagiert in der Regel thermisch wesentlich schneller (Bereich B3). Beim Beschleunigen gemäß Phase Ib verringert sich daher der ursprünglich vorhandene Laufspalt L=Δr1 zunächst wegen der sehr schnell wirkenden Fliehkraftdehnung des Rotors und wird dann deutlich größer, weil die Ummantelung thermisch schneller reagiert. Der Laufspalt L erreicht im Bereich B4 seinen Maximalwert Δrmax - z.B. Δrmax=0,8 mm - über welchen der mit Pfeil I markierte geforderte Verstellbereich der Ummantelung bzw. der Segmente der Ummantelung definiert ist.
  • Nachdem auch der Rotor durchgeheizt ist, wird in Phase Ic die stationäre Laufspaltgröße Δrstat - z.B. Δrstat=0,4 mm - erreicht. Beim Verzögern in Phase Id vergrößert sich zunächst der Laufspalt L wegen der geringer werdenden Fliehkraftbelastung des Rotors. Anschließend wird der Laufspalt L wieder kleiner und erreicht seinen Minimalwert Δrmin, da die Ummantelung schneller abkühlt als der Rotor. Beim Abkühlen der Strömungsmaschine stellt sich nach einer gewissen Zeit wieder die Anfangsgröße Δr1 des Laufspalts L ein. Aus Fig. 1 ist ersichtlich, dass der erforderliche Verstellhub der Ummantelung relativ klein ist und weniger als 1,0 mm beträgt. Um eine deutliche Verbesserung zu erzielen, sind daher Spaltkontrollsysteme mit Verstellgetrieben erforderlich, die möglichst präzise und spielfrei arbeiten.
  • Das beschriebene transiente Spaltverhalten eines rein passiven Spaltkontrollsystems und die Forderung, dass ein "hartes" Anstreifen der Rotorschaufeln an der Ummantelung unbedingt zu vermeiden ist, führt insbesondere im Hochdruckbereich von modernen Strömungsmaschinen zu stationären Laufspaltgrößen Δrstat im Bereich von etwa 2-3% der Höhe der Rotorschaufeln. Die maximalen Laufspaltgrößen Δrmax, die während des transienten Betriebes auftreten, können dabei jedoch mehr als die doppelten Werte erreichen. Die Größe des Laufspalts einer Strömungsmaschine hängt zusammenfassend von verschiedenen Einflussgrößen ab:
    • Dehnungen des Rotors aufgrund von Fliehkraftwirkungen;
    • Thermische Dehnungen des Rotors und der Ummantelung;
    • Dehnungen und Ovalisierung der Ummantelung aufgrund von Manöverlasten und Druckkräften;
    • Versatz zwischen der Drehachse des Rotors und der Mittelachse der Ummantelung aufgrund von Manöverlasten; sowie
    • Fertigungstoleranzen, beispielsweise Unrundheiten oder Exzentrizitäten.
  • Bei den aus dem Stand der Technik bekannten passiven Spaltkontrollsystemen wird versucht, anhand der Masse des Rotors und der Ummantelung bzw. deren Masseverteilung, durch geeignete Führung von Sekundärluftströmen sowie durch Beeinflussung des Wärmeflusses mithilfe geometrisch optimierter Gestaltung und Wärmedämmschichten das Dehnverhalten der Strömungsmaschinenbauteile derart zu optimieren, dass geringstmögliche Differenzdehnungen zwischen dem Rotor und dem Stator bzw. der Ummantelung erzielt werden.
  • Alternativen stellen thermisch aktive Spaltkontrollsysteme dar, bei denen der Laufspalt durch gezieltes Kühlen bzw. Aufheizen der relevanten Bauteile optimiert wird. Beispiele hierfür sind das Spaltkontrollsystem der CFM56-Triebwerksfamilie, bei der die Rotortemperatur geregelt wird, oder das aus der US 4,329,114 bekannte Spaltkontrollsystem, mittels welchem die Gehäusetemperatur der Strömungsmaschine geregelt wird. Da diese Spaltkontrollsysteme nur über die Beeinflussung der Bauteiltemperaturen wirken, reagieren sie relativ langsam und können daher nur die stationären Laufspalte signifikant verbessern. Auf schnelle Änderungen des Laufspalts - wie sie wie vorstehend beschrieben bei transienten Betriebszuständen entstehen -, auf einen Versatz zwischen einer Drehachse des Rotors und einer Mittelachse der Ummantelung sowie auf Exzentrizitäten, wie sie bei Manöverlasten entstehen, können diese Spaltkontrollsysteme jedoch nicht bzw, nur sehr eingeschränkt reagieren.
  • Als weitere Alternative sind mechanisch aktive Spaltkontrollsysteme bekannt. Um einen möglichst kleinen Laufspalt unter Berücksichtigung der genannten Einflussgrößen erzielen zu können, sollte sich die Ummantelung des Rotors zu jedem Zeitpunkt möglichst gut an dessen Durchmesser und relative Lage anpassen können. Zu diesem Zweck wird die Ummantelung häufig segmentiert. Die GB 2108591 A zeigt beispielsweise ein Spaltkontrollsystem für eine derartige, segmentierte Ummantelung einer Strömungsmaschine. Jeweils drei Segmente sind dabei durch einen Hebelmechanismus miteinander gekoppelt. Diese zusammengekoppelten Segmente werden mit jeweils einem Aktuator in Abhängigkeit von Messsignalen mehrerer Sensoreinrichtungen gleichförmig verstellt. Der Laufspalt bei jeder dieser zusammengekoppelten Segmentgruppe kann hierdurch über die Umfangsersteckung der Segmentgruppe auf einen mittleren Laufspalt eingestellt werden. Bei Durchmesseränderungen des Rotors und der Ummantelung liefert das Spaltkontrollsystem damit vergleichsweise gute Ergebnisse. Ein Versatz zwischen der Drehachse des Rotors und der Mittelachse der Ummantelung sowie Ovalisierungen der Ummantelung können jedoch nicht oder nicht zufrieden stellend ausgeglichen werden. Da die Segmente der Segmentgruppe in Umfangsrichtung ortsfest gelagert sind, entstehen bei einem Versatz der Drehachse des Rotors gegenüber der Mittelachse der Ummantelung sichelförmige Laufspalte, da alle gekoppelten Segmente der Ummantelung die gleiche Hubbewegung ausrühren. Um eine im Vergleich zu einem passiven Spaltkontrollsystem verbesserte Einstellbarkeit des Laufspalts erreichen zu können, ist zudem eine relativ große Anzahl von zwölf oder mehr Segmentgruppen erforderlich. Gleichzeitig wird auch eine entsprechende Anzahl von Aktuatoren und Sensoreinrichtungen benötigt, wodurch neben den Herstellungskosten auch der Bauraumbedarf und die Fehleranfälligkeit steigen.
  • Aus der GB 2099515 A ist ebenfalls eine Strömungsmaschine mit einer segmentierten Ummantelung zu entnehmen, wobei jedes Segment zum Einstellen des Laufspalts durch ein Spaltkontrollsystem bewegbar ist. Die Segmente werden zwischen keilförmigen Fühnmgselementen bewegt, wobei ein Tellerfeder-Stapel die Segmente in Bezug auf die Drehachse des Rotors radial nach außen und das Spaltkontrollsystem die Segmente radial in Richtung Rotor bewegen kann. Um den Laufspalt über den gesamten Umfang der Ummantelung einstellen zu können, sind jedoch eine hohe Anzahl von Aktuatoren und Sensoreinrichtungen erforderlich, wodurch das Spalthaltungssystem nicht nur teuer und schwer ist, sondern auch eine vergleichsweise hohe Ausfallwahrscheinlichkeit besitzt.
  • Die US 5,104,287 beschreibt ein Spalthaltungssystem für eine segmentierte Ummantelung eines Rotorschaufeln umfassenden Rotors einer Strömungsmaschine. Jedes Segment der Ummantelung kann mit Hilfe von zwei zugeordneten, Gewindespindeln umfassenden Verstellgetrieben des Spalthaltungssystems radial in Bezug auf die Drehachse des Rotors bewegt werden. Hierzu sind die Verstellgetriebe jeweils paarweise mit einem als Ring ausgebildeten und konzentrisch um den Rotor angeordneten Verstellelement gekoppelt. Die Einstellung des Laufspalts wird durch Verdrehen des Rings vorgenommen, dessen rotatorische Bewegung durch die Verstellgetriebe in eine gleichmäßige radiale Bewegung der Segmente vom Rotor weg umgewandelt wird. Zwischen den Segmenten und einem Traggehäuse der Ummantelung sind wellenförmige Flachfedern angeordnet, die die Segmente radial nach innen, also in Richtung Rotor drücken. Als nachteilig ist dabei der Umstand anzusehen, dass die Segmente der Ummantelung nur gemeinsam radial bewegt werden können, so dass nur wenigen der oben genannten Einflussgrößen entgegengewirkt werden kann. Insbesondere Ovalisierungen der Ummantelung oder ein Versatz zwischen der Drehachse des Rotors und der Mittelachse der Ummantelung können nicht ausgeglichen werden. Weiterhin ist nachteilig, dass die Flachfedern und die Verstellgetriebe während des Betriebs der Strömungsmaschine unmittelbar mit den hohen Rotorraumtemperaturen in Kontakt treten. Bei modernen, als Gasturbinen ausgebildeten Strömungsmaschinen mit hohen Gesamtdruckverhältnissen können die Temperaturen jedoch so hoch werden, dass die Federwirkung der Flachfedern verloren geht oder die Tragfähigkeit der Verstellgetriebe nicht mehr ausreicht. Zudem besitzt das Spalthaltungssystem eine hohe Komplexität sowie ein vergleichsweise hohes Gewicht, wodurch neben den Herstellungs- und Wartungskosten vor allem die Ausfallwabrscheinlichkeit des gesamten Spalthaltungssystems erhöht ist.
  • Aufgabe der vorliegenden Erfindung ist es daher ein Spaltkontrollsystem der eingangs genannten Art zu schaffen, welches auf konstruktiv einfache Weise eine Kompensierung möglichst vieler Einflussgrößen und damit eine zuverlässige und betriebssichere Einstellbarkeit des Laufspalts unter verschiedenen Betriebszuständen der zugeordneten Strömungsmaschine ermöglicht. Eine weitere Aufgabe besteht darin, eine Strömungsmaschine mit einem derartigen Spaltkontrollsystem sowie ein entsprechendes Verfahren zum Einstellen eines Laufspalts einer Strömungsmaschine zu schaffen.
  • Die Aufgaben werden erfindungsgemäß durch eine Strömungsmaschine mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den jeweiligen Unteransprachen angegeben.
  • Die Erfindung betrifft eine Strömungsmaschine, insbesondere Gasturbine, mit einem Rotorschaufeln umfassenden Rotor, einer diesen zumindest abschnittsweise umgebenden, wenigstens zwei Segmente umfassenden Ummantelung, und einem Spaltkontrollsystem, mittels welchem ein Laufspalt zwischen dem Rotor und der Ummantelung einstellbar ist. Das Spaltkontrollsystem, welches auf konstruktiv einfache Weise eine Kompensierung möglichst vieler Einflussgrößen und damit eine zuverlässige und betriebssichere Einstellbarkeit des Laufspalts unter verschiedenen Betriebszuständen der zugeordneten Strömungsmaschine ermöglicht, ist erfingdungsgemäß dadurch geschaffen, dass das Verstellelement zum Einstellen des Laufspalts axial bezüglich der Drehachse des Rotors verschiebbar und/oder gegenüber dem Rotor verschwenkbar ist und dass das wenigstens eine Verstellgetriebe ausgebildet ist, eine zumindest überwiegend axiale Bewegung des Verstellelements in eine zumindest überwiegend radiale Bewegung des zugeordneten Segments der Ummantelung umzuwandeln. Im Gegensatz zum Stand der Technik ermöglicht es das erfindungsgemäße Spaltkontrollsystem einerseits durch axiales Bewegen des Verstellelements eine über den Umfang des Rotors gleichmäßige Bewegung der Segmente und eine entsprechend gleichmäßige Veränderung des Laufspalts. Alternativ oder zusätzlich kann durch Verschwenken bzw. Verkippen des Verstellelements gegenüber der Drehachse des Rotors eine über den Umfang des Rotors ungleichmäßige Bewegung der Segmente erzeugt werden, wodurch auch Ovalisierung der Ummantelung aufgrund von Manöverlasten und Druckkräften sowie ein etwaiger Versatz zwischen der Drehachse des Rotors und der Mittelachse der Ummantelung problemlos berücksichtigt und ausgeglichen werden können. Mit Hilfe des wenigstens einen Verstellgetriebes können weiterhin vergleichsweise große Bewegungen des Verstellelements in vergleichsweise kleine Bewegungen des zugeordneten Segments und umgekehrt umgewandelt werden. Der Laufspalt kann somit unabhängig vom Betriebszustand der zugeordneten Strömungsmaschine optimal eingestellt werden, wodurch der Wirkungsgrad der Strömungsmaschine erhöht und deren Kraftstoffbedarf entsprechend gesenkt wird. Aufgrund des konstruktiv einfachen Aufbaus des erfindungsgemäßen Spaltkontrollsystems ergeben sich im Vergleich zu bekannten Spaltkontrollsystemen zudem erhebliche Kosten- und Clewichtseinsparungen sowie eine vorteilhaft gesteigerte Zuverlässigkeit und Wartungsfreundlichkeit. Das Spaltkontrollsystem eignet sich sowohl für eine Einzelstufe als auch für mehrere Stufen einer Strömungsmaschine. Ferner ist erfindungsgemäß das Verstellelement zumindest im Wesentlichen als Ring ausgebildet. Hierdurch ist eine konstruktiv einfache, kostengünstige und bauraumsparende Anordnung des Verstellelements im Bereich des Rotors bzw. der Ummantelung ermöglicht. Zudem können beim Bewegen bzw. Verschwenken des Verstellelements auftretende Kräfte gut verteilt werden, wodurch die mechanische Stabilität und Lebensdauer des Verstellelements entsprechend verlängert wird.
  • Weitere Vorteile ergeben sich, indem das Verstellelement mehrere Teilabschnitte umfasst, die vorzugsweise gelenkig miteinander verbunden sind. Hierdurch besitzt das Verstellelement zusätzliche Bewegungsfreiheitsgrade, so dass eine zusätzlich verbesserte Einstellbarkeit des Laufspalts beim Verschwenken des Verstellelements ermöglicht ist. So kann beispielsweise durch ein Verknicken des Verstellelements, d.h. durch ein relatives Verschwenken der Teilabschnitte zueinander, eine Ovalisierung der Ummantelung aufgrund von Manöverlasten und Druckkräften besonders einfach ausgeglichen werden.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass das Spaltkontrollsystem ein Traggehäuse (24) aufweist und wenigstens ein Verstellgetriebe an dem Traggehäuse festgelegt ist. Hierdurch ergibt sich eine besonders stabile und betriebssichere Anordnung des Verstellgetriebes. Das Traggehäuse kann dabei beispielsweise als Außengehäuse der Strömungsmaschine ausgebildet sein oder innerhalb eines separaten Außengehäuses anordenbar sein.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass das Traggehäuse ringförmig ausgebildet ist und/oder außenumfänglich der Ummantelung und/oder konzentrisch zur Drehachse des Rotors anordenbar ist. Hierdurch können die mechanischen und konstruktiven Eigenschaften des Traggehäuses optimal an die Anforderungen der Strömungsmaschine angepasst werden.
  • Weitere Vorteile ergeben sich, indem wenigstens ein Dichtelement vorgesehen ist, mittels welchem das Traggehäuse gegenüber der Ummantelung abzudichten ist Hierdurch kann ein unerwünschtes Entweichen oder Rückströmen des Arbeitsmediums der Strömungsmaschine verhindert werden, wodurch ein entsprechend hoher Wirkungsgrad sichergestellt ist.
  • In weiterer Ausgestaltung hat es sich als vorteilhaft gezeigt, wenn die Ummantelung wenigstens eine Leitschaufel umfasst und/oder vorzugsweise mittels einer Schubstange gegenüber dem Traggehäuse abgestützt ist. Bei bekannten Spaltkontrollsystemen und Strömungsmaschinen sind die Leitschaufeln üblicherweise am Traggehäuse befestigt, so dass auf den inneren Laufspalt kein Einfluss genommen werden kann. Indem die Ummantelung die wenigstens eine Leitschaufel umfasst - z.B. indem die Leitschaufel an der Ummantelung festgelegt ist - kann die Leitschaufel demgegenüber vorteilhaft beim Einstellen des Laufspalts des Rotors mitbewegt werden, wodurch auch der innere Spalt der Strömungsmaschine einstellbar ist. Durch eine Anordnung der wenigstens einen Leitschaufel an der Ummantelung werden zudem während des Betriebs der Strömungsmaschine auftretende Kräfte besonders gut abgeleitet und verteilt. Vorteilhaft kann vorgesehen sein, dass die wenigstens eine Leitschaufel in Umfang- und/oder Axialrichtung am Traggehäuse abgestützt ist. Weiterhin kann vorgesehen sein, dass das wenigstens eine Verstellgetriebe mittels der Schubstange gegenüber dem Traggehäuse abgestützt ist.
  • Weitere Vorteile ergeben sich, indem wenigstens eine Sensoreinrichtung vorgesehen ist, mittels welcher eine Größe des Laufspalts ermittelbar ist. Dies erlaubt eine besonders einfache, schnelle und präzise Ermittlung der Größe des Laufspalts, wodurch eine entsprechend verbesserte Einstellung des Laufspalts ermöglicht ist. Die Sensoreinrichtung kann grundsätzlich nach unterschiedlichen physikalischen Prinzipen arbeiten, beispielsweise kapazitiv, induktiv, optisch, mit Mikrowellen oder mit Wirbelstrom.
  • Indem die Sensoreinrichtung im Bereich wenigstens eines Verstellgetriebes angeordnet ist, ist eine zusätzliche Verbesserung der Einstellbarkeit des Laufspalts gegeben, da Bewegungen der Ummantelung bzw. des jeweiligen, dem Verstellgetriebe zugeordneten Segments mittels der Sensoreinrichtung nahe des Ankoppelbereichs des Verstellgetriebes erfolgen können.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung sind mehrere Sensoreinrichtungen vorgesehen, welche, vorzugsweise gleichmäßig, voneinander beabstandet angeordnet sind und/oder außenumfänglich der Ummantelung anordenbar sind. Auf diese Weise ist es möglich, den Laufspalt mittels der mehreren Sensoreinrichtungen an verschiedenen Umfangspositionen des Rotors zu ermitteln. Der Laufspalt kann somit besonders präzise und ortsaufgelöst ermittelt werden, so dass gezielt entsprechend unterschiedliche Hubbewegungen der Segmente ausführbar sind und ein gleichmäßiger Laufspalt erzeugbar ist.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass wenigstens ein mit dem Verstellelement gekoppelter Aktuator vorgesehen ist, mittels welchem das Verstellelement axial bezüglich der Drehachse des Rotors verschiebbar oder gegenüber dem Rotor verschwenkbar ist. Mit Hilfe wenigstens eines Aktuators kann das Verstellelement besonders einfach und präzise bewegt werden. Zusammen mit dem wenigstens einen Verstellgetriebe können dabei vorteilhafterweise große Bewegungen des wenigstens einen Aktuators in kleine Bewegungen der Segmente umgewandelt werden. Der Aktuator kann grundsätzlich nach unterschiedlichen physikalischen Prinzipien funktionieren, beispielsweise hydraulisch, pneumatisch, elektrisch, piezoelektrisch oder magnetisch.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass der wenigstens eine Aktuator im Bereich wenigstens eines Verstellgetriebes angeordnet ist. Hierdurch sind über das Verstellelement ein besonders kurzer Kräftübertragurigsweg und eine entsprechend präzise Einstellbarkeit des Laufspalts gegeben. Alternativ oder zusätzlich kann vorgesehen sein, dass der Aktuator im Bereich einer Sensoreinrichtung angeordnet ist. Hierdurch wird aufgrund der geringen räumlichen Distanz zwischen der Sensoreinrichtung und dem Aktuator eine vereinfachte und besonders präzise Einstellbarkeit des Laufspalts sichergestellt.
  • Weitere Vorteile ergeben sich, indem mehrere Aktuatoren vorgesehen sind, welche, vorzugsweise gleichmäßig, voneinander beabstandet angeordnet sind und/oder außenumfänglich der Ummantelung anordenbar sind. Mit Hilfe mehrerer Aktuatoren an verschiedenen Umfangspositionen kann das Verstellelement besonders einfach axial bewegt oder verschwenkt werden, wodurch gezielt gleiche oder unterschiedliche Hubbewegungen der Segmente zum Einstellen des Laufspalts ausgeführt werden können. Indem die Aktuatoren im Bereich jeweils zugeordneter Sensoreinrichtungen angeordnet sind, können weiterhin etwaige gegenseitige Beeinflussungen mehrerer Aktuatoren und Sensoreinrichtungen vorteilhaft unterdrückt bzw. verunmöglicht werden.
  • Eine weitere Verbesserung der Einstellbarkeit des Laufspalts ist in weiterer Ausgestaltung dadurch gegeben, dass wenigstens eine Steuer- und/oder Regeleinheit vorgesehen ist, welche mit wenigstens einer Sensoreinrichtung und wenigstens einem Aktuator gekoppelt ist und ausgelegt ist, den wenigstens einen Aktuator in Abhängigkeit der mittels der wenigstens einen Sensoreinrichtung ermittelten Größe des Laufspalts zu steuern bzw. zu regeln.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung sind mehrere Verstellgetriebe vorgesehen, welche axial bezüglich der Drehachse des Rotors angeordnet und gemeinsam mittels des Verstellelements betätigbar sind. Da die Rotoren mehrerer Stufen einer als Hochdruckverdichter ausgebildeten Strömungsmaschine ein ähnliches zeitliches Dehnungsverhalten zeigen - speziell wenn die Wärmeausdehnungskoeffizienten der verwendeten Werkstoffe ähnlich sind -, können Laufspalte mehrerer Stufen mit der gleichen Bewegung des Verstellelements eingestellt werden. Dabei kann gegebenenfalls vorgesehen sein, dass - beispielsweise durch unterschiedliche Hebellängen an den Verstellgetrieben - unterschiedliche Hubbewegungen an den Segmenten der mehrteiligen Ummantelung verschiedener Stufen erzielbar ist. Zudem kann bei Bedarf an jeder Stufe eine unterschiedliche Laufspaltgröße erzeugt bzw. eingestellt werden.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass wenigstens ein Verstellgetriebe einen mit dem Verstellelement gekoppelten Betätigungshebel und/oder ein Drucklager und/oder ein Kugelumlaufgewinde und/oder einen Spindeltrieb und/oder eine Exzenterwelle und/oder eine Biegefeder und/oder ein Federelement und/oder einen Kniehebel und/oder einen mit wenigstens einem Segment der Ummantelung koppelbaren Zugbolzen und/oder eine Rasterung umfasst. Auf diese Weise kann besonders einfach eine spielfreie Kraftübertragung vom Verstellelement auf das wenigstens eine Verstellgetriebe sichergestellt und eine ebensolche spielfreie und gegebenenfalls gerasterte Bewegung des jeweiligen Segments erzeugt werden. Zudem ermöglicht das wenigstens eine Verstellgetriebe hierdurch auf konstruktiv einfache Weise, dass eine zumindest überwiegend axiale Bewegung des Verstellelements in eine kleine radiale Bewegung des Segments der Ummantelung umgesetzt wird.
  • Weitere Vorteile ergeben sich, indem wenigstens ein Verstellgetriebe ein Dichtelement umfasst, welches vorzugsweise als Spannband und/oder Balgdichtung und/oder Kolbenring und/oder C-Dichtung ausgebildet ist. Mit Hilfe eines derartigen Dichtelements kann einerseits die erforderliche Bewegungsmöglichkeit, beispielsweise eine Hubbewegung oder thermische Differenzdehnung, bereitgestellt werden, andererseits können zugleich Räume unterschiedlichen Druckes gegeneinander abgedichtet werden.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass wenigstens ein Verstellgetriebe einen mit zumindest einem Segment gekoppelten Zugbolzen und einen mit dem zumindest einen Segment gekoppelten Druckbolzen umfasst, wobei der Zugbolzen und der Druckbolzen relativ zueinander bewegbar und gegeneinander kraftbeaufschlagt sind. Hierdurch wird vorteilhaft erreicht, dass das gesamte Verstellgetriebe in sich vorgespannt und damit spielfrei ist, so dass eine besonders präzise Spalteinstellung realisierbar ist. Die Kraftbeaufschlagung zwischen Zug- und Druckbolzen kann beispielsweise mit Hilfe eines Federelements erzeugt sein, wobei grundsätzlich beliebige Federbauformen wie Schraubenfedern, Tellerfederpackete oder dergleichen vorgesehen sein können.
  • Ein weiterer Aspekt der Erfindung betrifft eine Strömungsmaschine, insbesondere eine Gasturbine, mit einem Rotorschaufeln umfassenden Rotor, einer diesen zumindest abschnittsweise umgebenden, wenigstens zwei Segmente umfassenden Ummantelung, und einem Spaltkontrollsystem, mittels welchem ein Laufspalt zwischen dem Rotor und der Ummantelung einstellbar ist. Um auf konstruktiv einfache Weise eine Kompensierung möglichst vieler Einflussgrößen und damit eine zuverlässige und betriebssichere Einstellbarkeit des Laufspalts unter verschiedenen Betriebszuständen der Strömungsmaschine zu ermöglichen, ist erfindungsgemäß vorgesehen, dass das Spaltkontrollsystem gemäß einem der vorhergehenden Ausführungsbeispiele ausgebildet ist. Die sich hieraus ergebenden Vorteile sind aus den entsprechenden Beschreibungsteilen zu entnehmen und - soweit anwendbar - als Vorteile der Strömungsmaschine anzusehen.
  • In weiterer Ausgestaltung ist vorgesehen, dass das Spaltkontrollsystem in einem Gehäuse aufgenommen ist und/oder zumindest einen Teil des Gehäuses bildet. Die Aufnahme in einem Gehäuse der Strömungsmaschine erlaubt eine mechanisch stabile, betriebssichere und bauraumsparende Anordnung des Spaltkontrollsystems. Alternativ oder zusätzlich kann dabei vorgesehen sein, dass das Spaltkontrollsystem selbst zumindest einen Teil des Gehäuses bildet. Hierdurch werden aufgrund von Synergieeffekten erhebliche Kosten- und Gewichtssenkungen erzielt.
  • Weitere Vorteile ergeben sich, indem die Ummantelung wenigstens eine Leitschaufel umfasst, Wenn die wenigstens eine Leitschaufel an der Ummantelung bzw. an einem Segment vorgesehen ist, werden vorteilhaft auch die Laufspalte an der Ringrauminnenkontur, das heißt dem Spalt zwischen dem Rotor und der wenigstens einen Leitschaufel, durch das Spaltkontrollsystem eingestellt. Die während des Betriebs der Strömungsmaschine von der wenigstens einen Leitschaufel erzeugten Kräfte wirken dann auf die Segmente.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass die wenigstens zwei Segmente der Ummantelung, vorzugsweise mittels wenigstens eines Verstellgetriebes des Spaltkontrollsystems, miteinander gekoppelt sind. Auf diese Weise werden eine hohe Dichtigkeit der Ummantelung und ein entsprechend hoher Wirkungsgrad der Strömungsmaschine sichergestellt. Durch eine Kopplung mittels wenigstens eines Verstellgetriebes können benachbarte Bereiche zweier Segmente vorteilhaft gemeinsam radial bewegt werden. Auf diese Weise wird zudem ein stetiger Übergang von einem Segment zum benachbarten Segment sichergestellt, so dass das Entstehen sichelförmiger Laufspalte besonders zuverlässig verhindert wird. Zudem wird hierdurch auch an der Verbindungsstelle zwischen den Segmenten und dem wenigstens einen Verstellgetriebe eine hohe Spielfreiheit erreicht.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass wenigstens ein Segment der Ummantelung ein Versteifungselement umfasst, mittels welchem eine Krümmung des Segments in Abhängigkeit der Größe des Laufspalts einstellbar ist. Mit Hilfe eines derartigen Versteifungselements kann die Steifigkeitsverteilung des Segments so gewählt werden, dass unter allen Betriebzuständen der Strömungsmaschine eine konstante Krümmung vorliegt. Damit wird bei der Einstellung der Radialposition des Segments zumindest nahezu eine ideale Kreisform beibehalten. Das Versteifungselement kann dabei als Rippe mit über variabler radialer Bauhöhe oder durch Rippen mit abnehmender Breite zu den Segmenträndern hin ausgebildet sein, wodurch die Steifigkeitsverteilung konstruktiv einfach und kostengünstig an das jeweilige Anforderungsprofil der Strömungsmaschine anpassbar ist.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass das Spaltkontrollsystem im Bereich einer Niederdruckverdichterstufe und/oder einer Hochdruckverdichterstufe und/oder einer Niederdruckturbinenstufe und/oder einer Hochdruckturbinenstufe der Strömungsmaschine angeordnet ist. Eine derartige Anordnung erlaubt eine besonders variable Ausgestaltung der Strömungsmaschine sowie einen besonders hohen, zumindest weitgehend betriebzustandsunabhärigigen Wirkungsgrad.
  • Weitere Vorteile ergeben sich, indem die Ummantelung zwei als Halbringe ausgebildete Segmente und/oder höchstens acht, besonders bevorzugt höchstens sechs Segmente umfasst. Auf diese Weise wird im Gegensatz zum Stand der Technik die Anzahl der Bauteile und dadurch der potenziellen Leckagestellen klein gehalten. Neben einer Verringerung der Herstellungskosten der Strömungsmaschine wird hierdurch auch die Montage- und Wartungsfreundlichkeit erheblich verbessert.
  • In weiterer Ausgestaltung ist vorgesehen, dass jedes Segment der Ummantelung mit wenigstens zwei und vorzugsweise drei voneinander beabstandeten Verstellgetrieben des Spaltkontrollsystems gekoppelt ist. Da die Segmente auf einen bestimmten Durchmesser ausgelegt sind, können sich beim radialen Bewegen der Segmente aufgrund auftretender Krümmungen grundsätzlich sichelförmige Laufspalte ergeben. Zudem muss bei instationären Betriebszuständen der Strömungsmaschine mit einem radialen Temperaturgradienten, der die Krümmung unkontrolliert verändern könnte, sowie mit Verformungen durch mechanische Beanspruchung (z.B. durch Gaslasten) gerechnet werden. Damit die Segmente betriebszustandsunabhängig die gewünschte konstante Krümmung aufweisen, wird jedes Segment mindestens an zwei und vorzugsweise an drei Umfangsstellen mit jeweils einem Verstellgetriebe gekoppelt und somit auf eine Kreisbahn mit dem aktuellen Rotordurchmesser zuzüglich des einstellbaren Laufspalts gezwungen. Wenn ein Segment nur mit zwei Verstellgetrieben gekoppelt ist, hat es sich als vorteilhaft gezeigt, wenn die beiden Verstellgetriebe an den Segmenträndern des Segments angreifen, um dieses auf die gewünschte Kreissegmentbahn zu zwingen.
  • Dabei kann vorgesehen sein, dass die Einstellbarkeit einer konstanten Krümmung durch eine entsprechende geometrische Gestaltung und/oder eine Steifigkeitsverteilung der Segmente gefördert wird. Hierzu kann beispielsweise eine Querschnittskontur jedes Segments so gewählt sein, dass die zweite Ableitung der Biegelinie einen konstanten Wert ergibt und dementsprechend eine konstante Krümmung vorliegt.
  • Weitere Vorteile ergeben sich, indem mehrere Ummantelungen unter Ausbildung mehrerer Laufspalte entlang der Drehachse des Rotors angeordnet und die Laufspalte mittels des Spaltkontrollsystems zwischen dem Rotor und den Ummantelungen gemeinsam einstellbar sind. Hierdurch können die Laufspalte mehrerer Stufen der Strömungsmaschine vorteilhaft gemeinsam mittels des Spaltkontrollsystems eingestellt werden, wodurch signifikante Kosten- und Gewichtseinsparungen gegeben sind.
  • Ein weiterer Aspekt betrifft ein Verfahren zum Einstellen eines Laufspalts zwischen einem Rotorschaufeln umfassenden Rotor einer Strömungsmaschine, insbesondere einer Gasturbine, und einer diesen zumindest abschnittsweise umgebenden, wenigstens zwei Segmente umfassenden Ummantelung. Um eine Kompensierung möglichst vieler Einflussgrößen und damit eine zuverlässige und betriebssichere Einstellbarkeit des Laufspalts unter verschiedenen Betriebszuständen der Strömungsmaschine zu ermöglichen, umfasst das Verfahren erfindungsgemäß zumindest die Schritte Ermitteln einer Größe des Laufspalts mittels wenigstens einer Sensoreinrichtung und Übermitteln der Größe an eine Steuer- und/oder Regeleinheit, Steuern bzw. Regeln wenigstens eines Aktuators mittels der Steuer- und/oder Regeleinheit in Abhängigkeit der ermittelten Größe des Laufspalts, axiales Verschieben und/oder Verschwenken bezüglich einer Drehachse des Rotors eines um den Rotor angeordneten Verstellelements mittels des wenigstens einen Aktuators, Betätigen wenigstens eines Verstellgetriebes mittels des Verstellelements und radiales Bewegen bezüglich der Drehachse des Rotors wenigstens eines Segments der Ummantelung mittels des wenigstens einen Verstellgetriebes. Die sich hieraus ergebenden Vorteile sind bereits aus den vorhergehenden Beschreibungsteilen des Spaltkontrollsystems bzw. der Strömungsmaschine zu entnehmen und - soweit anwendbar - als Vorteile des erfindungsgemäßen Verfahrens anzusehen.
  • In einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass die Größe des Laufspalts im Fall einer fehlerhaften Sensoreinrichtung mittels der Steuer- und/oder Regeleinheit anhand der übermittelten Größe einer weiteren Sensoreinrichtung ermittelt und der wenigstens eine Aktuator in Abhängigkeit der ermittelten Größe gesteuert bzw. geregelt wird. Hierdurch kann durch eine entsprechende Steuer- bzw. Regellogik eine erhöhte Ausfallsicherheit erzielt werden, indem der wenigstens eine Aktuator in Abhängigkeit der Messsignale der weiteren, intakten Sensoreinrichtung gesteuert wird.
  • Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in den Ausführungsbeispielen genannten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen. Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich anhand der nachfolgenden Beschreibung von Ausführungsbeispielen sowie anhand der Zeichnungen, in welchen gleiche oder funktionsgleiche Elemente mit identischen Bezugszeichen versehen sind. Dabei zeigen:
  • Fig. 1
    ein schematisches Liniendiagramm einer zeit- und lastabhängigen Radiusänderung eines Rotors und einer diesen umgebenden Ummantelung, einer Strömungsmaschine;
    Fig. 2
    eine schematische Perspektivansicht eines Spaltkontrollsystems gemäß einem ersten Ausführungsbeispiel;
    Fig. 3
    eine schematische Schnittansicht des in Fig. 2 gezeigten Spaltkontrollsystems, wobei neben einer Durchmesseränderung und einem Mittelachsenversatz zusätzlich eine Ovalisierung der Ummantelung auftritt;
    Fig. 4
    eine schematische Perspektivansicht dreier Segmente der in Fig. 2 gezeigten Ummantelung, wobei jedes Segment mit mehreren Verstellgetrieben des Spaltkontrollsystems gekoppelt ist;
    Fig. 5
    mehrere Ausführungsbeispiele von mit Versteifungselementen versehenen Segmenten der Ummantelung;
    Fig. 6
    eine schematische Perspektivansicht eines mehrere Leitschaufeln umfassenden Segments, welches mittels einer Schubstange gegenüber einem Traggehäuse abgestützt ist;
    Fig. 7
    ein Ausführungsbeispiel des Verstellgetriebes in schematischer Perspektiv- und Seitenansicht;
    Fig. 8
    ein weiteres Ausführungsbeispiel des Verstellgetriebes in schematischer Perspektiv- und Seitenansicht;
    Fig. 9
    eine schematische Perspektivansicht des Spaltkontrollsystems gemäß einem zweiten Ausführungsbeispiel;
    Fig. 10
    eine schematische und ausschnittsweise seitliche Schnittansicht einer mit dem in Fig. 9 gezeigten Spaltkontrollsystem versehenen Strömungsmaschine;
    Fig. 11
    eine schematische und teilgeschnittene Perspektivansicht eines in Fig. 9 gezeigten Verstellgetriebes; und
    Fig. 12
    eine schematische seitliche Schnittansicht des Verstellgetriebes gemäß einem weiteren Ausführungsbeispiel.
  • Fig. 1 zeigt ein schematisches Liniendiagramm einer zeit- und lastabhängigen Radiusänderung eines Rotors und einer diesen umgebenden Ummantelung einer Strömungsmaschine und wurde bereits vorstehend erläutert. Um unabhängig vom Betriebszustand der Strömungsmaschine stets die optimale Laufspaltgröße Δropt und damit einen optimalen Wirkungsgrad zu erzielen, ist es wie beschrieben erforderlich, den mit der Linie φ2 charakterisierten Ist-Radius der Ummantelung des Rotors mit Hilfe eines Spaltkontrollsystems an den mit der gestrichelt dargestellte Linie φ3 charakterisierten SollRadius anzupassen.
  • Fig. 2 zeigt eine schematische Perspektivansicht eines Spaltkontrollsystems gemäß einem ersten Ausfiihrungsbeispiel. Das Spaltkontrollsystem dient dabei zum Einstellen des Laufspalts L zwischen einem Rotorschaufeln 10 (s. Fig. 10) umfassenden Rotor 12 (s. Fig. 3) einer Strömungsmaschine 14 (s. Fig. 10), insbesondere einer Gasturbine, und einer diesen zumindest abschnittsweise umgebenden Ummantelung 18. Um einen möglichst kleinen Laufspalt L unter Berücksichtigung aller relevanten Einflussgrößen zu erzielen, ist es notwendig, dass sich die Ummantelung 18 über dem Rotor 12 zu jedem Zeitpunkt an den Durchmesser bzw. den Radius und die Lage des Rotors 12 bzw. seiner Drehachse D anpassen kann. Zu diesem Zweck weist die Ummantelung 18 im vorliegenden Ausführungsbeispiel vier Segmente 16a-d (Liner) auf, die zumindest weitgehend unabhängig voneinander bewegbar sind. Das Spaltkontrollsystem umfasst vorliegend acht Verstellgetriebe 20, welche jeweils mit wenigstens einem Segment 16 der Ummantelung 18 gekoppelt sind. Mittels der Verstellgetriebe 20 können die Segmente 16a-d zum Einstellen des Laufspalts radial bezüglich einer Drehachse D des Rotors 12 bewegt werden. Weiterhin umfasst das Spaltkontrollsystem ein um den Rotor 12 anordenbares Verstellelement 22, welches vorliegend im Wesentlichen als Ring ausgebildet ist und zwei gelenkig miteinander verbundene Halbringe als Teilabschnitte 22a, 22b umfasst. Das Verstellelement 22 ist mit den Verstellgetrieben 20 gekoppelt und kann zum Betätigen der Verstellgetriebe 20 und damit zum Einstellen des Laufspalts L axial bezüglich der Drehachse D des Rotors 12 verschoben oder gegenüber dem Rotor 12 verschwenkt werden. Entsprechend sind die Verstellgetriebe 20 ausgebildet, eine zumindest überwiegend axiale Bewegung des Verstellelements 22 in eine zumindest überwiegend radiale Bewegung der jeweils zugeordneten Segmente 16a-d der Ummantelung 18 umzuwandeln. Die Segmente 16a-d sind innerhalb eines konzentrisch zur Drehachse D des Rotors 12 angeordneten, ringförmig ausgebildeten Traggehäuses 24 angeordnet. Das Traggehäuse 24 kann dabei als Außengehäuse der Strömungsmaschine 14 ausgebildet sein oder innerhalb eines separaten Außengehäuses liegen. Die Verstellgetriebe 20 - und damit mittelbar das Verstellelement 22 - sind am Traggehäuse 24 festgelegt. Zusätzlich sind im Nahbereich jedes zweiten Verstellgetriebes 20 insgesamt vier Sensoreinrichtungen 26a-d gleichmäßig voneinander beabstandet am Traggehäuse 24 festgelegt, mittels welchen eine Größe des Laufspalts L an unterschiedlichen Umfangspositionen ermittelbar ist. Zwischen dem Traggehäuse 24 und den radial verschiebbaren Segmenten 16a-d sind Dichtelemente (nicht gezeigt) angeordnet. Die Dichtelemente können als Dichtungsplättchen (sogenannte "Leaf Seals") ausgebildet sein, wobei auch andere Dichtungstypen, beispielsweise Bürstendichtungen oder C-Ringe, vorgesehen sein können. Die Dichtelemente 40 verhindern eine traggehäuseseitige Umströmung der Segmente 16a-d in axialer Richtung.
  • Das Spaltkontrollsystem umfasst weiterhin vier mit dem Verstellelement 22 gekoppelte Aktuatoren 28a-d, mittels welchem das Verstellelement 22 axial bezüglich der Drehachse D des Rotors 12 verschiebbar oder gegenüber dem Rotor 12 verschwenkbar ist. Die Aktuatoren 28a-d sind dabei gleichmäßig voneinander beabstandet außenumfänglich der Ummantelung 18 sowie jeweils im Bereich eines Verstellgetriebes 20 angeordnet. Das Spaltkontrollsystem weist Steuer- und/oder Regeleinheit 30 auf, welche mit den Sensoreinrichtungen 26a-d und den Aktuatoren 28a-d gekoppelt ist. Die Steuer- und/oder Regeleinheit 30 ist ausgelegt, die Aktuatoren 28a-d in Abhängigkeit der mittels der Sensoreinrichtungen 26a-d ermittelten Größe Δr des Laufspalts L zu steuern bzw. zu regeln. Die von den Sensoreinrichtungen 26a-d gelieferten Steuersignale werden hierzu in der Steuer- und/oder Regeleinheit 30 verarbeitet.
  • Von der Steuer- und/oder Regeleinheit 30 erhält der jeweilige, der betreffenden Sensoreinrichtung 26a-d zugeordnete Aktuator 26a-d im Normalfall ein Signal, das Verstellelement solange axial zu bewegen, bis durch die betreffende Sensoreinrichtung 26a-d die optimale Größe Δropt des Laufspalts L ermittelt werden kann. Das Gleiche geschieht an den anderen Sensorpositionen. Dadurch wird es möglich, an verschiedenen Umfangspositionen unterschiedliche Hubbewegungen der Segmente 16a-d auszuführen. Die Sensoreinrichtungen 26a-d können nach verschieden physikalischen Prinzipen arbeiten, beispielsweise kapazitiv, induktiv, optisch, mit Mikrowellen oder mit Wirbelstrom. Gleiches gilt für die Aktuatoren 28a-d, die beispielsweise hydraulisch, pneumatisch, elektrisch, piezoelektrisch oder magnetisch betreibbar sein können:
  • Im Fehlerfall, z.B. beim Ausfall einer Sensoreinrichtung 26a-d, kann über eine entsprechende Fehlerlogik durch die vorzugsweise redundant ausgebildete Steuer- und/oder Regeleinheit 30 derjenige Aktuator 26a-d, dessen normalerweise zugeordnete Sensoreinrichtung 26a-d ausgefallen ist, dennoch angesteuert werden. Hierzu kann beispielsweise aus den Signalen der verbliebenen funktionsfähigen Sensoreinrichtung 26a-d ein entsprechendes Steuersignal abgeleitet werden.
  • Bei einer über den Umfang gleichmäßigen Änderung des Laufspalts wird das Verstellelement 22 von allen Aktuatoren 28a-d axial bezüglich der Drehachse D des Rotor 12 verschoben. Bei einem Versatz der Mittelachse M des Traggehäuses 24 gegenüber der Drehachse D wird das Verstellelement 22 hingegen an den einzelnen Aktuatorpositioneri unterschiedlich in axialer Richtung bewegt. Das Verstellelement 22 führt dadurch eine räumliche Schwenkbewegung gegenüber dem Rotor 12 bzw. seiner Drehachse D (Taumelbewegung) aus. Hierdurch kann ein konstanter Laufspalt L über den ganzen Umfang der Ummantelung 18 eingestellt werden. Ein besonderer Vorteil der Verstellgetriebe 20 liegt dabei darin, dass sie vergleichsweise große Bewegungen der Aktuatoren 28a-d in vergleichsweise kleine Bewegungen der Segmente 16a-d umwandeln können, wodurch der Laufspalt L besonders präzise einstellbar ist.
  • Grundsätzlich gilt, dass bei einer Rotation des Rotors 12 ein Punkt auf einer Spitze einer Rotorschaufel 10 eine ideale Kreisbahn beschreibt. Ein Kreis ist eindeutig bestimmt, wenn drei Raumpunkte bekannt sind, die auf unterschiedlichen Umfangspositionen in der Kreisebene liegen. Wenn man zunächst den Fall einer Ovalisierung der Ummantelung 18 vernachlässigt, genügen insgesamt drei Sensoreinrichtungen 26 und drei Aktuatoren 28, die mit einem einteiligen Verstellelement 22 verbunden sind, um in unterschiedlichen Betriebszuständen der Strömungsmaschine einen über den Umfang der Ummantelung 18 konstanten Laufspalt L einzustellen.
  • Fig. 3 zeigt eine schematische Schnittansicht des in Fig. 2 gezeigten Spaltkontrollsystems, wobei neben einer Änderung des Durchmessers φ bzw. des Radius des Rotors 12 zusätzlich ein Versatz zwischen der Mittelachse M und der Drehachse D sowie eine Ovalisierung der Ummantelung 18 auftritt. Die Ummantelung 18 weist dadurch ihrerseits einen minimalen Durchmesser φmin sowie einen maximalen Durchmesser φmax auf, wodurch der Laufspalt L über den Umfang variiert und unterschiedliche Größen Δra-d aufweist.
  • Zum Einstellen eines konstanten Laufspalts L umfasst das bereits in Fig. 2 erläuterte Spaltkontrollsystem die vier Aktuatoren 28a-d und die vier Sensoreinrichtungen 26a-d. Jeder der Aktuatoren 28a-d bewegt das Verstellelement 22 unterschiedlich weit entlang der Drehachse D, wodurch eine Schwenkbewegung erzeugt wird. Dies wird durch den mehrteiligen und gelenkigen Aufbau des Verstellelements 22 ermöglicht. Durch ein lineares Verschieben des Verstellelements 22 entlang der Mittelachse M bzw. der Drehachse D kann eine gleichmäßige Radiusänderung der Ummantelung 18 erzielt werden. Durch ein Kippen des Verstellelements 22 gegenüber der Mittelachse M kann ein Mittellinienversatz ausgeglichen werden. Mit den vier Alcuatoren 28a-d kann schließlich auch durch "Verknicken" des Verstellelements 22, d.h. durch relatives Verschwenken der Teilabschnitte 22a, 22b zueinander, die Ovalisierung vollkommen ausgeglichen werden, wenn die gelenkige Verbindung der Teilabschnitte 22a, 22b des Verstellelements 22 in einer durch die Triebwerksachse T und einer Hauptachse H der entstehenden Querschnittsellipse gebildeten Ebene liegen. Bei beliebiger Lage der Hauptachsen H der Querschnittsellipsen wird die Ovalisierung nur teilweise ausgeglichen. Wenn auch bei beliebiger Lage der Querschnittsellipsen die Ovalisierung zumindest annähernd vollkommen ausgeglichen werden soll, so hat sich eine weitere Unterteilung des Verstellelements 22 z.B. in drei Teilabschnitte oder die Verwendung von sechs Aktuatoren 28 als vorteilhaft gezeigt. Da aber die Ovalisierung der Ummantelung 18 normalerweise klein im Vergleich zum Versatz zwischen der Mittelachse M und der Drehachse D ist, hat sich ein Spaltkontrollsystem mit vier Aktuatoren 28 in aller Regel als vollkommen ausreichend gezeigt. Zusammenfassend ist das erfindungsgemäße Spaltkontrollsystem in der Lage, den Laufspalt L über dem Umfang der Ummantelung 18 mit unterschiedlichen Verstellwegen einzustellen. Dadurch kann sowohl auf Änderungen des Durchmessers φ bzw. des Radius' r des Rotors 12 als auch auf einen Versatz zwischen der Mittelachse M der Ummantelung 18 und der Drehachse D des Rotors 12 als auch auf eine Ovalisierung der Ummantelung 18 reagiert werden.
  • Fig. 4 zeigt eine schematische Perspektivansicht dreier Segmente 16a-c der in Fig. 2 gezeigten Ummantelung 18, wobei jedes Segment 16a-c mit mehreren Verstellgetrieben 20 des Spaltkontrollsystems gekoppelt ist. Die Segmente 16a-c werden üblicherweise für einen bestimmten Durchmesser hergestellt. Würden die relativ großen Segmente 16a-d einfach auf einen anderen Radius verschoben, ergäben sich aufgrund ihrer Krümmung, sichelförmige Laufspalte L. Zudem muss bei instationären Betriebszuständen der Strömungsmaschine mit einem radialen Temperaturgradienten, der die Krümmung unkontrolliert verändert, sowie mit Verformungen durch mechanische Beanspruchung (z.B. durch Gaslasten) gerechnet werden. Zur Sicherstellung der geforderten Krümmung der Segmente 16a-d wird daher jedes Segment 16a-d an drei Umfangsstellen mit einem Verstellgetriebe 20 gekoppelt und durch diese auf eine Kreisbahn mit dem aktuellen Rotordurchmesser zuzüglich des gewünschten Laufspalts L gezwungen. Dabei ist jeweils ein Verstellgetriebe 20 zwei Segmenten 16 zugeordnet. Die Segmente 16a-d sind in radialer Richtung mit ihren jeweils benachbarten Segmenten 16 an den Segmenträndern formschlüssig verbunden. Der Formschluss wird durch einen Zugbolzen 31 und eine federbelastete Druckplatte 33 der Verstellgetriebe 20 erzeugt. Damit wird auch an der Verbindungsstelle der Segmente 16a-d mit den jeweiligen Verstellgetrieben 20 Spielfreiheit erreicht. In Umfangsrichtung sind die Segmente 16a-d zueinander verschiebbar, was einerseits wegen der im Betrieb auftretenden unterschiedlichen Temperaturen zwischen den Segmenten 16a-d und dem Traggehäuse 24 und anderseits aufgrund der Möglichkeit die Segmente 16a-d radial zu verschieben notwendig ist (eine radiale Verschiebung aller Segmente 16a-d um z.B. 0,5 mm ergibt eine Änderung der Umfangslänge von 3,14 mm). Zwischen den Angriffspunkten der Verstellgetriebe 20 an den Segmenten 16a-d ist die Steifigkeitsverteilung so gewählt, dass unter allen Betriebzuständen eine konstante Krümmung vorliegt.
  • Fig. 5 zeigt hierzu mehrere Ausführungsbeispiele von jeweils mit Versteifungselementen 32 versehenen Segmenten 16. Mit Hilfe der Versteifungselemente 32 wird bei einer Variation der Radialposition der Segmente 16a-d nahezu eine ideale Kreisform beibehalten. Die Versteifungselemente 32 können dabei einteilig mit den Segmenten 16 ausgebildet sein. Mögliche Ausgestaltungen der Versteifungselemente 32 umfassen beispielsweise Variation der radialen Bauhöhe des Segments 16 oder Rippen mit abnehmender Breite zu den Segmenträndern hin. Auf diese Weise lässt sich die Steifigkeitsverteilung der Segmente 16 optimal anpassen.
  • Fig. 6 zeigt eine schematische Perspektivansicht eines mehrere Leitschaufeln 34 umfassenden Segments 16, welches mittels einer an ihren Enden gelenkig gelagerten Schubstange 36 mittelbar gegenüber dem Traggehäuse 24 (nicht dargestellt) der Strömungsmaschine abgestützt ist. Dabei fungiert vorliegend ein Befestigungselement des Verstellgetriebes 20 gleichzeitig als Stützelement für die Schubstange 36, so dass auftretende Kräfte in das Traggehäuse eingeleitet werden. Die Leitschäufeln 34 können als separate Bauteile oder als integraler Bestandteil der Segmente 16 ausgebildet sein. Alternativ oder zusätzlich können die Leitschaufeln 34 am Traggehäuse 24 festgelegt sein. Wenn die Leitschaufeln 34 wie gezeigt an den Segmenten 16 befestigt sind, werden auch die Laufspalte an der Ringrauminnenkontur, das heißt der Laufspalt zwischen dem Rotor 12 und den Leitschaufeln 34, durch das Spaltkontrollsystem eingestellt. Die von den Leitschaufel 34 erzeugten Kräfte wirken dann auf das Segment 16. Damit das Spaltkontrollsystem nicht nachteilig durch diese Kräfte beeinflusst wird, ist es sinnvoll die Kräfte mittels der Schubstange 36 abzuleiten und zu verteilen.
  • Fig. 7 zeigt ein Ausführungsbeispiel des Verstellgetriebes 20 in schematischer Perspektiv- und Seitenansicht. Das Verstellgetriebe 20 ermöglicht ebenfalls die Umwandlung einer überwiegend axialen Bewegung des Verstellelements 22 in eine kleine radiale Bewegung des zugeordneten Segments 16. Das Verstellgetriebe 20 umfasst eine Biegefeder 38, die auf das Traggehäuse 24 montiert ist und durch einen mit dem Verstellelement 22 gekoppelten Kniehebelmechanismus 42 verformt werden kann. Eine an die Biegefeder 38 angehängte Traverse 44 überträgt die Bewegung auf das Segment 16.
  • Ein weiteres Ausführungsbeispiel des Verstellgetriebes 20 ist in schematischer Perspektiv- und Seitenansicht in Fig. 8 gezeigt. Hierbei wird die radiale Bewegung der Traverse 44 und damit des Segments 16 durch Verdrehen von mit dem Verstellelement 22 gekoppelten Exzenterwellen 46 erzeugt.
  • Fig. 9 zeigt eine schematische Perspektivansicht des Spaltkontrollsystems gemäß einem zweiten Ausführungsbeispiel. Der grundsätzliche Aufbau ist dabei bereits aus der Beschreibung von Fig. 2 bekannt. Im Unterschied zum ersten Ausführungsbeispiel umfasst das vorliegende Spaltkontrollsystem mehrere Gruppen von jeweils drei, über eine Koppelstange 48 miteinander gekoppelten Verstellgetrieben 20, welche jeweils axial bezüglich der Drehachse D des Rotors 12 angeordnet und gemeinsam mittels des Verstellelements 22 betätigbar sind. Entsprechend umfasst die Ummantelung 18 mehrere Gruppen von Segmenten 16, die ebenfalls entlang der Drehachse D des Rotors 12 angeordnet sind. Das Spalthaltungssystem eignet sich daher insbesondere für mehrstufige Strömungsmaschinen. Da die Rotordehnungen der Stufen in einem Hochdruckverdichter ein ähnliches zeitliches Verhalten zeigen - speziell wenn die Wärmeausdehnungskoeffizienten der verwendeten Werkstoffe ähnlich gewählt sind - ist es in Verbindung mit einer Optimierung des zeitlichen Dehnverhaltens des Traggehäuses 24 (geometrische Gestaltung, Masseverteilung, Isolierung und dergleichen) möglich, das Spaltverhalten der Stufen weitestgehend aneinander anzugleichen. Durch unterschiedliche Hebellängen an den Verstellgetrieben 20 lassen sich bei gleicher Axialbewegung des Verstellelements 22 unterschiedliche Hubbewegungen an den Segmenten 16 der verschiedenen Stufen erzielen. Zudem kann an jeder Stufe ein anderer Laufspalt L eingestellt werden. Damit wird es möglich, durch die Laufspaltgrößenermittlung an einer Stufe die Laufspalte L der anderen Stufen mit derselben Aktuatorbewegung einzustellen.
  • Fig. 10 zeigt eine schematische und ausschnittsweise seitliche Schnittansicht einer mit dem in Fig. 9 gezeigten Spaltkontrollsystem versehenen, mehrstufigen Strömungsmaschine 14. Die Strömungsmaschine 14 bzw. das Spaltkontrollsystem werden im Folgenden in Zusammenschau mit Fig. 11 und Fig. 12 erläutert werden. Fig. 11 zeigt hierbei eine schematische und teilgeschnittene Perspektivansicht eines in Fig. 10 gezeigten Verstellgetriebes 20, während in Fig. 12 schließlich eine schematische seitliche Schnittansicht des Verstellgetriebes gemäß einem weiteren Ausfiihrungsbeispiel dargestellt ist. Der allgemeine Aufbau der Strömungsmaschine 14 ist dabei aus dem Stand der Technik bekannt. Die drei in Fig. 10 erkennbaren Verstellgetriebe 20 sind entlang der Drehachse D des Rotors 12 angeordnet und an einem Traggehäuse 24 der Strömungsmaschine 14 festgelegt. Aufgrund eines vergleichbaren Ausdehnungsverhaltens werden die drei Verstellgetriebe 20 gemeinsam gesteuert bzw. geregelt. Grundsätzlich kann jedoch vorgesehen sein, dass die Verstellgetriebe 20 einzeln oder gruppenweise gesteuert bzw. geregelt werden. Das Spaltkontrollsystem kann dabei grundsätzlich sowohl in Verdichter- als auch in Turbinenstufen angeordnet sein. Besondere Vorteile ergeben sich, wenn das Spaltkontrollsystem im Bereich hinterer Stufen der Strömungsmaschine angeordnet ist, da bei diesen aufgrund der kleinen Schaufeln das Verhältnis zwischen Laufspalt und Schaufelgröße besonders relevant ist.
  • Jedes Verstellgetriebe 20 ist mit Dichtelementen 52 abgedichtet: Zwei Liner-Segmente 16a, 16b werden von einem Federelement 54 (z.B. Schraubenfeder, Tellerfederpacket etc.) über eine Druckhülse 80 und die Druckplatte 33 radial nach innen in Richtung Rotor 12 gedrückt. Damit kein Segment 16 in den Rotor 12 bewegt wird, kann jedes Segment 16 über ein Gewinde 58, welches im in Fig. 11 gezeigten Ausführungsbeispiel als Kugelumlaufgewinde und im in Fig. 12 gezeigten Ausführungsbeispiel als Bewegungsgewinde ausgebildet ist, radial vom Rotor 12 wegbewegt werden. Die Kraftübertragung erfolgt jeweils über ein Drucklager 60 auf eine Ankerplatte 62 und den Zugbolzen 31. Dieser Zugbolzen 31 ist formschlüssig mit dem Segment 16 bzw. den Segmenten 16a, 16b verbunden, wobei in Fig. 12 eine Gleitstelle zwischen dem Segment 16b und dem Zugbolzen 31 beispielhaft mit Pfeil XII gekennzeichnet ist. Die beschriebene Anordnung bietet den Vorteil, dass durch die Federelemente 54 das gesamte Verstellgetriebe 20 verspannt und damit spielfrei ist.
  • Das Gewinde 58 bietet in Kombination mit dem Drucklager 60 den Vorteil, dass das Verstellgetriebe 20 einen geringen Verschleiß und eine geringe innere Reibung besitzt. Im Gegensatz zum aus der US 5,104,287 bekannten Spaltkontrollsystem sind die Federelemente 54 vorliegend in das Verstellgetriebe 20 integriert und außerhalb des Außengehäuses 50 und damit im vergleichsweise kalten Bereich der Strömungsmaschine 14 angeordnet. Zwischen dem Außengehäuse 50 und dem Verstellgetriebe 20, sowie innerhalb des Verstellgetriebes 20 sind verschiedene Dichtelemente 52 angeordnet. Diese geben den Bauteilen die erforderliche Bewegungsmöglichkeit (Hubbewegung und thermische Differenzdehnung) und dichten zugleich Räume mit unterschiedlichen Drücken gegeneinander ab. Alternativ können auch als Kolbenringe, C-Dichtungen, Faltenbälge oder dergleichen ausgebildete Dichtelemente 52 vorgesehen sein.
  • In Fig. 12 ist ein Betätigungshebel 66 des Verstellgetriebes 20 erkennbar, welcher einerseits mit dem Verstellelement 22 gekoppelt und andererseits drehfest mit dem Gewinde 58 verbunden ist, um die zumindest im Wesentlichen axiale Bewegung des Verstellelements 22 in eine kleinere radiale Bewegung umzuwandeln. Eine grundsätzlich optionale Rasterung erleichtert in manchen Anwendungen die gewünschte Einstellbarkeit des Laufspalts L. Wie bereits vorstehend erläutert, funktioniert das Verstellgetriebe 20 gemäß dem gezeigten Ausführungsbeispiel in der Art eines Spindeltriebs: Das Verstellgetriebe 20 ist am Traggehäuse 24 der Strömungsmaschine durch Schrauben, Schweißen oder dergleichen befestige
  • In Fig. 12 ist weiterhin eine Verbindungshülse 82 erkennbar. Das Federelement 54 (Schraubenfeder, Tellerfederpacket etc.) drückt die Segmente 16a, 16b über einen Druckbolzen 80 und die Druckplatte 33 an den Segmenträndern oder in der Segmentmitte (nicht gezeigt) radial in Richtung der Triebwerksachse, wobei sich das Federelement 54 am Bolzenteil des Gewindes 58 abstützt. Das Mutterteil 58a des Gewindes 58 wirkt über ein Drucklager auf die Ankerplatte 62 und über den Zugbolzen 31 auf die Segmente 16a, 16b bzw. im Fall einer Anordnung in einer Segmentmitte auf ein einzelnes Segment 16. Der Zugbolzen 31 wirkt dem Druckbolzen 80 entgegen, wodurch das gesamte Verstellgetriebe 20 in sich vorgespannt und damit spielfrei ist. Das Verdrehen des Mutterteils 58a bewirkt eine radiale Verschiebung der Ankerplatte 62 und der mittelbar mit dieser verbundenen Segmente 16a, 16b. An den Gleitstellen (Pfeil XII) zwischen Verstellgetriebe 20 und Gehäusen (Außengehäuse 50 bzw. Traggehäuse 24) sowie innerhalb des Verstellgetriebes 20 sind verschiedene Dichtelemente 52 (Kolbenringe, C-Ringe, Faltenbälge, etc.) vorgesehen. Die Verbindungshülse 82, das Gewinde 58 und die Ankerplatte 62 bilden dabei vorliegend ein Verstellgetriebegehäuse 90.
  • Die in den Unterlagen angegebenen Parameterwerte zur Definition von Prozess- und Messbedingungen für die Charakterisierung von spezifischen Eigenschaften des Erfindungsgegenstands sind auch im Rahmen von Abweichungen - beispielsweise aufgrund von Messfehlern, Systemfehlern, Einwaagefehlern, DIN-Toleranzen und dergleichen - als vom Rahmen der Erfindung mitumfasst anzusehen.

Claims (17)

  1. Strömungsmaschine (14), insbesondere Gasturbine, mit einem Rotorschaufeln (10) umfassenden Rotor (12), einer diesen zumindest abschnittsweise umgebenden, wenigstens zwei Segmente (16a-d) umfassenden Ummantelung (18), und einem Spaltkontrollsystem, mittels welchem ein Laufspalt (L) zwischen dem Rotor (12) und der Ummantelung (18) einstellbar ist, mit:
    - wenigstens einem Verstellgetriebe (20), welches mit wenigstens einem Segment (16a-d) der Ummantelung (18) koppelbar ist und mittels welchem das wenigstens eine Segment (16a-d) zum Einstellen des Laufspalts (L) radial bezüglich einer Drehachse (D) des Rotors (12) bewegbar ist; und
    - einem um den Rotor (12) anordenbaren Verstellelement (22), welches mit dem wenigstens einen Verstellgetriebe (20) gekoppelt und zum Betätigen des Verstellgetriebes (20) relativ zu diesem bewegbar ist,
    wobei das Verstellelement (22) zum Einstellen des Laufspalts (L) axial bezüglich der Drehachse (D) des Rotors (12) verschiebbar und/oder gegenüber dem Rotor (12) verschwenkbar ist und dass das wenigstens eine Verstellgetriebe (20) ausgebildet ist, eine überwiegend axiale Bewegung des Verstellelements (22) in einer überwiegend radiale Bewegung des zugeordneten Segments (16a-d) der Ummantelung (18) umzuwandeln, dadurch gekenntzeichnet, dass das Verstellelement (22) im Wesentlichen als Ring ausgebildet ist.
  2. Strömungsmaschine nach Anspruch 1, dadurch gekennzeichnet, dass das Verstellelement (22) mehrere Teilabschnitte (22a, 22b) umfasst, die gelenkig miteinander verbunden sind.
  3. Strömungsmaschine nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass das Spaltkontrollsystem ein Traggehäuse (24) aufweist und wenigstens ein Verstellgetriebe (20) an dem Traggehäuse (24) festgelegt ist.
  4. Strömungsmaschine nach Anspruch 3, dadurch gekennzeichnet, dass das Traggehäuse (24) ringförmig ausgebildet ist und/oder außenumfänglich der Ummantelung (18) und/oder konzentrisch zur Drehachse (D) des Rotors (12) anordenbar ist.
  5. Strömungsmaschine nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass wenigstens ein Dichtelement (40) vorgesehen ist, mittels welchem das Traggehäuse (24) gegenüber der Ummantelung (18) abzudichten ist.
  6. Strömungsmaschine nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Ummantelung, (18) wenigstens eine Leitschaufel (34) umfasst und/oder mittels einer Schubstange (36) gegenüber dem Traggehäuse (24) abgestützt ist.
  7. Strömungsmaschine nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass wenigstens eine Sensoreinrichtung (26) vorgesehen ist, mittels welcher eine Größe (Δr) des Laufspalts (L) ermittelbar ist.
  8. Strömungsmaschine nach Anspruch 7, dadurch gekennzeichnet, dass die Sensoreinrichtung (26) im Bereich wenigstens eines Verstellgetriebes (20) angeordnet ist.
  9. Strömungsmaschine nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass mehrere Sensoreinrichtungen (26a-d) vorgesehen sind, welche, vorzugsweise gleichmäßig, voneinander beabstandet angeordnet sind und/oder außenumfänglich der Ummantelung (18) anordenbar sind.
  10. Strömungsmaschine nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass wenigstens ein mit dem Verstellelement (22) gekoppelter Aktuator (28) vorgesehen ist, mittels welchem das Verstellelement (22) axial bezüglich der Drehachse (D) des Rotors (12) verschiebbar oder gegenüber dem Rotor (12) verschwenkbar ist
  11. Strömungsmaschine nach Anspruch 10, dadurch gekennzeichnet, dass der Aktuator (28) im Bereich wenigstens eines Verstellgetriebes (20) angeordnet ist.
  12. Strömungsmaschine nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass mehrere Aktuatoren (28a-d) vorgesehen sind, welche, vorzugsweise gleichmäßig, voneinander beabstandet angeordnet sind und/oder außenumfänglich der Ummantelung (18) anordenbar sind.
  13. Strömungsmaschine nach einem der Ansprüche 7 bits 9 und einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass wenigstens eine Steuer- und/oder Regeleinheit (30) vorgesehen ist, welche mit wenigstens einer Sensoreinrichtung (26a-d) und wenigstens einem Aktuator (28a-d) gekoppelt ist und ausgelegt ist, den wenigstens einen Aktuator (28a-d) in Abhängigkeit der mittels der wenigstens einen Sensoreinrichtung (26a-d) ermittelten Größe (Ar) des Laufspalts (L) zu steuern bzw. zu regeln.
  14. Strömungsmaschine nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass mehrere Verstellgetriebe (20) vorgesehen sind, welche axial bezüglich der Drehachse (D) des Rotors (12) angeordnet und gemeinsam mittels des Verstellelements (22) betätigbar send.
  15. Strömungsmaschine nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass wenigstens ein Verstellgetriebe (20) einen mit dem Verstellelement (22) gekoppelten Betätigungshebel (66) und/oder ein Gewinde (58) und/oder ein Drucklager (60) und/oder einen Spindeltrieb und/oder eine Exzenterwelle (46) und/oder eine Biegefeder (38) und/oder ein Federelement (54) und/oder einen Kniehebel (42) und/oder einen mit wenigstens einem Segment (16a-d) der Ummantelung (18) koppelbaren Zugbolzen (31) und/oder eine Rasterung umfasst.
  16. Strömungsmaschine nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass wenigstens ein Verstellgetriebe (20) ein Dichtelement (52) umfasst, welches als V-Spannband und/oder Balgdichtung und/oder Kolbenring und/oder C-Dichtung ausgebildet ist.
  17. Strömungsmaschine nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass wenigstens ein Verstellgetriebe (20) einen mit zumindest einem Segment (16a, 16b) gekoppelten Zugbolzen (31) und einen mit dem zumindest einen Segment (16a, 16b) gekoppelten Druckbolzen (80) umfasst, wobei der Zugbolzen (31) und der Druckbolzen (80) relativ zueinander bewegbar und gegeneinander kraftbeaufschlagt sind.
EP10730045.1A 2009-05-28 2010-05-18 Spaltkontrollsystem für eine strömungsmaschine Not-in-force EP2435664B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009023062A DE102009023062A1 (de) 2009-05-28 2009-05-28 Spaltkontrollsystem, Strömungsmaschine und Verfahren zum Einstellen eines Laufspalts zwischen einem Rotor und einer Ummantelung einer Strömungsmaschine
PCT/DE2010/000560 WO2010136014A2 (de) 2009-05-28 2010-05-18 Spaltkontrollsystem, strömungsmaschine und verfahren zum einstellen eines laufspalts zwischen einem rotor und einer ummantelung einer strömungsmaschine

Publications (2)

Publication Number Publication Date
EP2435664A2 EP2435664A2 (de) 2012-04-04
EP2435664B1 true EP2435664B1 (de) 2016-08-17

Family

ID=43028447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10730045.1A Not-in-force EP2435664B1 (de) 2009-05-28 2010-05-18 Spaltkontrollsystem für eine strömungsmaschine

Country Status (4)

Country Link
US (1) US9068471B2 (de)
EP (1) EP2435664B1 (de)
DE (1) DE102009023062A1 (de)
WO (1) WO2010136014A2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0910070D0 (en) * 2009-06-12 2009-07-22 Rolls Royce Plc System and method for adjusting rotor-stator clearance
US9039346B2 (en) 2011-10-17 2015-05-26 General Electric Company Rotor support thermal control system
US9228447B2 (en) 2012-02-14 2016-01-05 United Technologies Corporation Adjustable blade outer air seal apparatus
WO2014186002A2 (en) * 2013-04-12 2014-11-20 United Technologies Corporation Rapid response clearance control system with spring assist for gas turbine engine
EP3019707B1 (de) * 2013-07-11 2020-07-29 United Technologies Corporation System und zugehöriges verfahren zur aktiven schaufelspitzenspieleinstellung
US10557367B2 (en) * 2013-12-30 2020-02-11 United Technologies Corporation Accessible rapid response clearance control system
US9567865B2 (en) * 2014-04-08 2017-02-14 Hamilton Sundstrand Corporation Turbomachine blade clearance control system
US9970315B2 (en) * 2015-02-12 2018-05-15 Hamilton Sundstrand Corporation Movable vane control system
US10753223B2 (en) * 2017-10-04 2020-08-25 General Electric Company Active centering control for static annular turbine flowpath structures
US11156455B2 (en) 2018-09-26 2021-10-26 General Electric Company System and method for measuring clearance gaps between rotating and stationary components of a turbomachine
US11008882B2 (en) * 2019-04-18 2021-05-18 Rolls-Royce North American Technologies Inc. Blade tip clearance assembly
CN111058903B (zh) * 2020-02-18 2020-09-29 潍坊联信增压器股份有限公司 一种具有保护功能的涡轮发动机
CN112761736B (zh) * 2021-02-05 2022-07-15 中国航发沈阳发动机研究所 一种模拟态涡轮性能试验用涡轮叶尖间隙可调装置
US12012859B2 (en) * 2022-07-11 2024-06-18 General Electric Company Variable flowpath casings for blade tip clearance control
US12006829B1 (en) 2023-02-16 2024-06-11 General Electric Company Seal member support system for a gas turbine engine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2857093A (en) * 1954-12-02 1958-10-21 Cincinnati Testing & Res Lab Stator casing and blade assembly
US2938705A (en) * 1955-05-26 1960-05-31 Curtiss Wright Corp Lightweight compressor or turbine structure
GB2024336A (en) * 1978-05-30 1980-01-09 Rolls Royce Gas turbine rotor tip clearance control apparatus
GB2050524B (en) * 1979-06-06 1982-10-20 Rolls Royce Turbine stator shroud assembly
US4329114A (en) 1979-07-25 1982-05-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Active clearance control system for a turbomachine
US4395195A (en) * 1980-05-16 1983-07-26 United Technologies Corporation Shroud ring for use in a gas turbine engine
GB2099515B (en) 1981-05-29 1984-09-19 Rolls Royce Shroud clearance control in a gas turbine engine
GB2108591A (en) 1981-11-03 1983-05-18 Rolls Royce Casing of a gas turbine engine rotor
US5104287A (en) 1989-09-08 1992-04-14 General Electric Company Blade tip clearance control apparatus for a gas turbine engine
US5054997A (en) * 1989-11-22 1991-10-08 General Electric Company Blade tip clearance control apparatus using bellcrank mechanism
US5035573A (en) * 1990-03-21 1991-07-30 General Electric Company Blade tip clearance control apparatus with shroud segment position adjustment by unison ring movement
DE50112597D1 (de) * 2001-04-12 2007-07-19 Siemens Ag Gasturbine mit axial verschiebbaren Gehäuseteilen
GB0513654D0 (en) * 2005-07-02 2005-08-10 Rolls Royce Plc Variable displacement turbine liner
GB2440744B (en) 2006-08-09 2008-09-10 Rolls Royce Plc A blade clearance arrangement
US20080063513A1 (en) * 2006-09-08 2008-03-13 Siemens Power Generation, Inc. Turbine blade tip gap reduction system for a turbine engine
DE102007056895A1 (de) * 2007-11-26 2009-05-28 Mtu Aero Engines Gmbh Aktive Spaltregeleinrichtung für Rotorgehäuse

Also Published As

Publication number Publication date
EP2435664A2 (de) 2012-04-04
DE102009023062A1 (de) 2010-12-02
US9068471B2 (en) 2015-06-30
WO2010136014A2 (de) 2010-12-02
US20120057958A1 (en) 2012-03-08
WO2010136014A3 (de) 2011-06-23

Similar Documents

Publication Publication Date Title
EP2435664B1 (de) Spaltkontrollsystem für eine strömungsmaschine
EP2435665B1 (de) Spaltkontrollsystem, strömungsmaschine und verfahren zum einstellen eines laufspalts zwischen einem rotor und einer ummantelung einer strömungsmaschine
EP2960437B1 (de) Leitschaufelvorrichtung für eine gasturbine sowie gasturbine mit einer solchen leitschaufelvorrichtung
EP3283732B1 (de) Leitschaufelverstellvorrichtung und strömungsmaschine
DE69501783T2 (de) Fluidfilmlager
EP2052133B1 (de) Anordnung zur laufspaltoptimierung für turbomaschinen
DE102010016532A1 (de) Turbinengehäuse mit Bolzenlagerung
DE3544392A1 (de) Aerodynamisches gleitlager
EP2466074A1 (de) Gasturbinentriebwerk mit Kolbenringdichtung
EP2853692B1 (de) Dichtelement einer axialen Strömungsmaschine
EP2884054A1 (de) Verstellbare Leitschaufel mit Kegelstumpf in einer Lageranordnung
EP2984295B1 (de) Dichtringsegment für einen stator einer turbine
EP1377729B1 (de) Turbinenanlage, insbesondere dampfturbinenanlage
WO2005052321A1 (de) Gekühlte verbindungs-anordnung für turbinen-rotorschieben
EP2347101B1 (de) Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage
DE112017001730B4 (de) Gehäusestellungsregulierungsvorrichtung
EP3273077A1 (de) Wälzlager mit montageflansch
DE102010003594A1 (de) Turbinenschaufel mit einem Schwingungsdämpfungselement
EP2955336A1 (de) Zwischengehäuse für eine Gasturbine sowie Gasturbine mit einem solchen Zwischengehäuse
DE102013215558B4 (de) Vorrichtung zur Kompensation einer temperaturbedingten radialen Vorspannungsänderung in einer Wälzlageranordnung
DE102004058487A1 (de) Gasturbine
EP3781828B1 (de) Turbinengenerator sowie verfahren zum betrieb eines turbinengenerators
WO2018162306A1 (de) Turbine mit verstellbaren leitschaufeln
DE102009041125B4 (de) Gasdynamische Druckwellenmaschine
DE102007052479A1 (de) Pumpen-Lageranordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111107

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

17Q First examination report despatched

Effective date: 20150317

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160517

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 821305

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010012221

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160817

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161117

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161219

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010012221

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161117

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170518

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170518

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 821305

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180524

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170518

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180523

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180523

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010012221

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190518

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161217