EP2412943B1 - Device and method for generating hot gas with integrated heating of a heat distribution medium - Google Patents

Device and method for generating hot gas with integrated heating of a heat distribution medium Download PDF

Info

Publication number
EP2412943B1
EP2412943B1 EP11172633.7A EP11172633A EP2412943B1 EP 2412943 B1 EP2412943 B1 EP 2412943B1 EP 11172633 A EP11172633 A EP 11172633A EP 2412943 B1 EP2412943 B1 EP 2412943B1
Authority
EP
European Patent Office
Prior art keywords
steam
flue
steam generator
drying device
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11172633.7A
Other languages
German (de)
French (fr)
Other versions
EP2412943A3 (en
EP2412943A2 (en
Inventor
Georg Obwaller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fritz Egger GmbH and Co OG
Original Assignee
Fritz Egger GmbH and Co OG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fritz Egger GmbH and Co OG filed Critical Fritz Egger GmbH and Co OG
Priority to PL11172633T priority Critical patent/PL2412943T3/en
Publication of EP2412943A2 publication Critical patent/EP2412943A2/en
Publication of EP2412943A3 publication Critical patent/EP2412943A3/en
Application granted granted Critical
Publication of EP2412943B1 publication Critical patent/EP2412943B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/06Returning energy of steam, in exchanged form, to process, e.g. use of exhaust steam for drying solid fuel or plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1869Hot gas water tube boilers not provided for in F22B1/1807 - F22B1/1861
    • F22B1/1876Hot gas water tube boilers not provided for in F22B1/1807 - F22B1/1861 the hot gas being loaded with particles, e.g. dust

Definitions

  • the invention relates to a steam generator comprising a first train with a combustion chamber and an evaporator and at least a second train with at least one superheater and / or at least one economizer. Furthermore, the invention relates to a plant for steam generation and a steam power plant.
  • Such steam generators are from the publications US7229833 B1 . US2003 / 185718 A1 . DE202007005195 U1 and US2008 / 251952 A1 known.
  • Steam generators are used in various industrial applications where steam is needed to drive machinery, generate electrical energy, heat transfer medium or process steam. In a steam generator pressure, temperature and amount of steam produced are designed so that they can be applied to the steam consumer, z. As a power plant turbine are tuned.
  • a known steam generator includes a first train with a combustion chamber with grate firing and evaporator arranged above. The upward flowing through the evaporator flue gases of grate firing to 180 ° in the second train of the steam generator deflected ("Leeryak"), they flow through downwards.
  • the steam generator described above has a total of technically very complicated to implement construction.
  • it is not possible with the proposed Umlenkabscheider in addition to coarse ash particles also deposit aerosols from the flue gases that condense predominantly on the tubes / harden and thus pollute them in a problematic way (caking, glazing, ..).
  • the non-deposited fine ash particles have to be removed from the flue gas stream consuming, for example, by arranged downstream of the steam generator in the flow direction.
  • the components present in the steam generator such as superheaters and economizers, are permanently exposed to the damaging effect of non-deposited aerosols.
  • the present invention seeks to provide a steam generator of the type mentioned above, which is characterized by a simplified construction as well as the ability to remove even the smallest particles, especially aerosols and fine fly ash particles from the flue gas stream, characterized.
  • the object is achieved with a steam generator according to claim 1.
  • the particular advantage of the steam generator according to the invention is that it is possible by the integration of a cyclone between the first and the second train, coarse as well as very fine particles or aerosols already deposited in the steam generator from the flue gas and thus an approximately particle-free gas for more Applications, such as use in a dryer, provide.
  • the almost complete cleaning of the flue gases also proves to be advantageous in that, for example, in the second train built evaporator, superheater, economizer and Heilvor Suiterbündel which use the heat of the flue gases for feedwater and / or air preheating, in ribbed construction and thus can be made much more compact, since the cleaned flue gases do not burden the surfaces of the superheater and / or economizer.
  • the steam generator according to the invention is characterized by a very simple and compact and thus inexpensive to be realized construction.
  • the evaporator of the first train of the steam generator comprises a water / steam-permeable pipe-web-pipe construction.
  • the steam generator according to the invention can be realized, for example, that the first and the second train of the steam generator with the interposed separator take the form of an inverted U, such that the first train is flowed through by the flue gases from the grate furnace and the second train of the flue gases are flowed through downwards.
  • the outflow region of the second train is connected via a Rezirkulationsgastechnisch with the combustion chamber, so that at least a portion of the cooled in the second train of the steam generator flue gases is recirculated as recirculation gas in the combustion chamber of the first train.
  • This allows a precise adjustment of the combustion chamber temperature and thus an optimized combustion process.
  • the combustion performance of the steam generator this is preferably designed such that the firing capacity is ⁇ 100 MW.
  • steam generators known from the prior art are usually operated with a fluidized bed furnace, in which such a "hot gas" cyclone belongs to the process concept.
  • the grate firing of the steam generator is supplied during operation with combustion air, preferably with primary and secondary combustion air.
  • At least one heat exchanger for preheating the combustion air is preferred thermal energy of the steam generated in the steam generator and / or provided to the steam generator recycled feedwater. This achieves a further increase in efficiency through optimized process heat utilization.
  • Another aspect of the present invention relates to a plant for generating steam comprising at least one steam generator according to one of claims 1 to 6.
  • the above-mentioned advantages apply in an analogous manner to the plant for generating steam.
  • the system comprises a drying device.
  • the residual heat of the purified flue gases for drying for example, granular, fibrous or generally particulate material, in particular of chopped wood, sawdust, wood shavings, wood fibers, animal feed, cereals and the like can be used optimally.
  • the outflow region of the second train of the steam generator is preferably connected to the drying device via a flue gas line.
  • a task unit for discharging solid, particulate or fibrous fuel into the flue gas stream flowing into the drying device is provided on the hot gas line in front of the inlet opening of the drying device.
  • the discontinued in the flue gas fuel is thus transported by this through the drying device and thereby dried.
  • the residual heat of the flue gases is used to pre-dry the fuels used in the grate furnace and thus to optimize the energy input during operation of the plant for steam generation, as for the necessary drying of the fuel no separate energy must be expended.
  • a second separation device in particular a cyclone, for separating the dried fuel and also a conveyor is provided, by means of which the dried fuel for grate firing of the steam generator can be transported.
  • the conveyor may be formed for example as a pneumatic conveyor.
  • the system comprises a condenser heat exchanger in which a further heat transfer medium, in particular thermal oil, is heated. This also contributes to optimized process heat utilization.
  • Another aspect of the present invention relates to a steam power plant comprising at least one steam turbine and a connected generator and a plant for generating steam according to one of claims 7 to 12.
  • a steam power plant comprising at least one steam turbine and a connected generator and a plant for generating steam according to one of claims 7 to 12.
  • the steam power plant additionally comprises at least one drying device of particulate material, in particular wood fibers and chips, wherein the at least one drying device can be heated by at least one heat exchanger through which steam can flow, in particular a condenser heat exchanger.
  • the heat contained in the steam for example the residual heat of the steam partially expanded in the turbine of the steam power plant, optimally used and the process efficiency thus further increased.
  • the in Fig. 1 Steam generator shown in schematic form comprises a first train 1 and a second train 2.
  • the first train 1 comprises a combustion chamber 11, which in turn has a grate furnace 12, and an evaporator 13.
  • the evaporator 13 is present - as in the prior art known - as a water / steam flowed pipe-web-pipe construction executed in what Fig. 1 is schematically represented by a plurality of parallel tubes 13a.
  • the feed water flowing through the tubes 13a is partly vaporized ( ⁇ 20%) and passed into a steam drum 14, where separation takes place between water and steam.
  • Steam traversed lines are each shown as dashed lines, while the Feedwater flowing through lines are shown as solid lines.
  • the second train 2 of the steam generator the Fig. 1
  • it comprises two steam superheaters 21 arranged one below the other and two economizers 22 arranged underneath. It is understood that the number of superheaters 21 and economizers 22 can be varied depending on the particular application.
  • the steam generated in the evaporator is overheated by the flue gases flowing through the second train 2 of the steam generator to a temperature of typically 450 ° C - 540 ° C depending on the fuel quality.
  • a separating device is arranged for the particulate-laden flue gases flowing out of the first train 1 of the steam generator, which in the present case is designed as a separating cyclone 3.
  • the separation cyclone With the help of the separation cyclone, not only coarse particles but also aerosols can be effectively removed (up to 98%) from the flue gases, and the cyclone has a positive effect on burnout of co-flowing, unburnt particles and carbon monoxide (CO).
  • the load on the heat exchanger surfaces of the superheater 21 and economizer 22 drops significantly during operation, resulting in a significantly increased service life of the components used.
  • the proportion of unburned fuel in the ash decreases as well as the CO emissions.
  • the separation cyclone 3 is arranged between the upper outlet end of the first train 1 and the upper inlet of the second train 2, so that the first and the second train 1, 2 of the steam generator are interposed therebetween arranged Abscheidezyklon 3 take the form of an inverted U. Accordingly, the first train 1 flows through the flue gases of the grate firing upwards and the second train 2 flows through the flue gases downwards.
  • the combustion chamber 11 of the first train 1 comprises a grate furnace 12 for solid fuels. These are fed via the line 7 into the combustion chamber 11.
  • the combustion air necessary for the combustion is injected as primary air via a line 15 into the combustion chamber 11 below the grate of the grate furnace 12 and introduced as secondary air via a line 16 into the combustion chamber 11 above the grate.
  • 15 heat exchangers 15a, b are provided in the primary air line, by means of which the primary air can be preheated.
  • the residual heat energy of the steam power plant connected downstream of the steam generator cf. Fig.
  • condensed feed water can be used, while in the heat exchanger 15 b, the heat energy of a partial flow of utztspannten steam is used to heat the primary air flow.
  • a (not shown in detail) burner is provided in the first train 1 of the steam generator, which is arranged in the region of the evaporator 13 and is fed via the line 13b with gaseous fuel. Likewise, a supply of this burner with dusty fuel is possible.
  • two lines 23, 24 are attached, via which by means of the blower 23a, 24a of the cooled to typically below 160 ° C flue gas stream from the second train 2 can be discharged.
  • Via line 24 it is possible to supply the flue gases to further applications, as described below in connection with FIG Fig. 2 will be described in detail.
  • Fig. 2 shows a plant for steam generation in a schematic representation. This first comprises a steam generator, as described above in detail. As in Fig. 2 recognizable, the steam generated in the evaporator 13 is passed in part through the superheater 21, but in the present case supplied to another part of a heat exchanger 4, in which the steam, another heat transfer medium, in particular thermal oil, heated, wherein it condenses. The backflowing under very high pressure (eg 90 bar) standing water is then fed back to the steam drum 14.
  • very high pressure eg 90 bar
  • the flue gases flowing out of the second train 2 of the steam generator via the line 24 in the present case flow through a drying device 5.
  • the particulate solid fuel provided for the grate firing 12 is conveyed via a Fig. 2 abandoned only as an arrow 5a task unit in the flue gas stream, whereupon it flows through the drying device 5 together with the flue gas stream and while releasing its residual moisture.
  • the now optimally dried fuel passes together with the flue gas stream in another cyclone separator 6, where it is separated from the flue gas stream and collected in a container 6 a.
  • the separated dried fuel passes by means of a, preferably pneumatic, promotion (arrow 7) to the combustion chamber 11 to be abandoned there on the grate of the grate furnace 12.
  • a, preferably pneumatic, promotion arrow 7
  • the energy input during operation of the plant for steam generation can be further reduced because the necessary drying of the fuel no longer has to be done with separate energy input, but is carried out by utilizing the residual heat of the flue gases.
  • the effluent from the cyclone 6 to typically cooled below 90 ° C flue gases are then a wet electrostatic filter 8 (see. Fig. 3 ).
  • Fig. 3 shows a steam power plant using the plant for steam generation described above in a schematic view.
  • the superheated steam from the superheaters 21 of the steam generator flows to a steam turbine 9, which is driven by the very hot steam (about 470 ° C, 85 bar).
  • the rotational energy of the steam turbine 9 is converted in a known manner via a connected generator 9a into electrical energy.
  • the completely relaxed wet steam (0.2 bar, 60 ° C) is fed to an air condenser 90, where it condenses. Subsequently, the condensate passes into a feedwater tank 92.
  • a heat exchanger 91 is arranged, in which the residual energy of the wet steam to a hot water flow (55 ° C) is discharged.
  • This hot water flow can be used to heat the primary and Secondary air for the grate furnace 12 of the steam generator via the heat exchangers 15a, 16a serve, as in connection with Fig. 1 already described.
  • the feedwater is finally returned via pumps 92a to the economizers 22 of the steam generator to be introduced from there into the evaporator, whereby the water vapor cycle is closed.
  • partially expanded steam (255 ° C., 12 bar) can be taken off from the turbine 9, which is fed via a line 94 to the heat exchangers 95a, 95b of further drying devices 95 (in FIG Fig. 3 For the sake of clarity, only one is shown).
  • the partially expanded steam condenses in the heat exchangers of the drying devices 95 and is subsequently fed back to the feedwater tank 12 via heat exchanger / expander registers 96, 97.
  • a conveying air stream which transports particulate material to be dried through the drying devices 95, preferably flows through the drying devices 95, the dried material then being fed to a separator column 98.
  • the overheated steam flowing from the superheaters 21 can also be passed bypassing the turbine 9 in the heat exchangers 95a, 95b of the drying devices 95, where it must pass an expansion valve 940, for example, by a pressure of 85 bar to 12 bar relaxed to become. From the relaxed steam of the line 94, finally, a further partial flow can be branched off (not shown), which can be used to heat the feedwater in a further heat exchanger 93.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Air Supply (AREA)

Description

Die Erfindung betrifft einen Dampferzeuger umfassend einen ersten Zug mit einer Brennkammer und einem Verdampfer und wenigstens einen zweiten Zug mit wenigstens einem Überhitzer und/oder wenigstens einem Economiser. Ferner betrifft die Erfindung eine Anlage zur Dampferzeugung sowie ein Dampfkraftwerk. Solche Dampferzeuger sind aus den Druckschriften US7229833 B1 , US2003/185718 A1 , DE202007005195 U1 und US2008/251952 A1 bekannt. Dampferzeuger kommen bei verschiedenen industriellen Anwendungen zum Einsatz, bei denen Dampf zum Antrieb von Maschinen, zur Erzeugung elektrischer Energie, als Wärmeträgermedium oder als Prozessdampf benötigt wird. Bei einem Dampferzeuger sind Druck, Temperatur und Menge des produzierten Dampfes so ausgelegt, dass sie auf den Dampfverbraucher, z. B. eine Kraftwerksturbine, abgestimmt sind. Wesentliche Komponenten eines Dampferzeugers sind der Verdampfer zur Erzeugung des Dampfes, der Überhitzer, in dem der Dampf auf die für den Verbraucher benötigte Temperatur erhitzt wird, der Speisewasser- und Luftvorwärmer, in denen Wasser und Verbrennungsluft vorgewärmt werden sowie die Feuerung, die die für den Verbraucher benötigte Wärme mit Brennstoffen wie Kohle, Öl oder Gas erzeugt.
Aus der Praxis sind verschiedene Konstruktionen für Dampferzeuger bekannt. Ein bekannter Dampferzeuger umfasst einen ersten Zug mit einer Brennkammer mit Rostfeuerung und darüber angeordnetem Verdampfer. Die aufwärts durch den Verdampfer strömenden Rauchgase der Rostfeuerung werden um 180° in den zweiten Zug des Dampferzeugers umgelenkt ("Leerzug"), den sie abwärts durchströmen. An dessen unterem Ende werden die Rauchgase in einem Umlenkabscheider, in welchem grobe Partikel abgeschieden werden, erneut um 180° in einen dritten Zug des Dampferzeugers umgelenkt. In diesem strömen die Rauchgase aufwärts durch eine Mehrzahl von Überhitzern und werden anschließend ein letztes Mal um 180° in einen vierten Zug des Dampferzeugers umgelenkt, wo sie in Abwärtsrichtung eine Mehrzahl von Economisern durchströmen.
The invention relates to a steam generator comprising a first train with a combustion chamber and an evaporator and at least a second train with at least one superheater and / or at least one economizer. Furthermore, the invention relates to a plant for steam generation and a steam power plant. Such steam generators are from the publications US7229833 B1 . US2003 / 185718 A1 . DE202007005195 U1 and US2008 / 251952 A1 known. Steam generators are used in various industrial applications where steam is needed to drive machinery, generate electrical energy, heat transfer medium or process steam. In a steam generator pressure, temperature and amount of steam produced are designed so that they can be applied to the steam consumer, z. As a power plant turbine are tuned. Essential components of a steam generator are the evaporator for generating the steam, the superheater, in which the steam is heated to the temperature required for the consumer, the feedwater and air preheater, in which water and combustion air are preheated and the firing, the for the Consumers needed heat generated with fuels such as coal, oil or gas.
From practice, various designs for steam generators are known. A known steam generator includes a first train with a combustion chamber with grate firing and evaporator arranged above. The upward flowing through the evaporator flue gases of grate firing to 180 ° in the second train of the steam generator deflected ("Leerzug"), they flow through downwards. At the lower end of the flue gases are redirected in a Umlenkabscheider, in which coarse particles are deposited, again by 180 ° in a third train of the steam generator. In this, the flue gases flow upwards through a plurality of superheaters and are then redirected a final 180 ° in a fourth train of the steam generator, where they flow through a plurality of economizers in the downward direction.

Der vorstehend beschriebene Dampferzeuger weist eine insgesamt technisch sehr aufwändig zu realisierende Konstruktion auf. Insbesondere ist es nicht möglich, mit dem vorgesehenen Umlenkabscheider neben groben Aschepartikeln auch Aerosole aus den Rauchgasen abzuscheiden, die vorwiegend an den Rohren auskondensieren/aushärten und diese damit in problematischer Weise verschmutzen (Anbackungen, Verglasungen, ..). Die nicht abgeschiedenen feinen Aschepartikel müssen aufwändig, beispielsweise durch in Strömungsrichtung hinter dem Dampferzeuger angeordnete Abscheider, aus dem Rauchgasstrom entfernt werden. Die im Dampferzeuger vorhandenen Komponenten, wie Überhitzer und Economiser, sind hingegen der schädigenden Wirkung nicht abgeschiedener Aerosole permanent ausgesetzt.The steam generator described above has a total of technically very complicated to implement construction. In particular, it is not possible with the proposed Umlenkabscheider in addition to coarse ash particles also deposit aerosols from the flue gases that condense predominantly on the tubes / harden and thus pollute them in a problematic way (caking, glazing, ..). The non-deposited fine ash particles have to be removed from the flue gas stream consuming, for example, by arranged downstream of the steam generator in the flow direction. By contrast, the components present in the steam generator, such as superheaters and economizers, are permanently exposed to the damaging effect of non-deposited aerosols.

Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, einen Dampferzeuger der eingangs genannten Art anzugeben, welcher sich durch eine vereinfachte Konstruktion ebenso wie durch die Möglichkeit, auch kleinste Partikel, insbesondere Aerosole und feine Flugaschepartikel, aus dem Rauchgasstrom zu entfernen, auszeichnet.Proceeding from this, the present invention seeks to provide a steam generator of the type mentioned above, which is characterized by a simplified construction as well as the ability to remove even the smallest particles, especially aerosols and fine fly ash particles from the flue gas stream, characterized.

Die Aufgabe wird erfindungsgemäß mit einem Dampferzeuger nach dem Patentanspruch 1 gelöst. Der besondere Vorteil des erfindungsgemäßen Dampferzeugers besteht darin, dass es durch die Integration eines Zyklons zwischen den ersten und den zweiten Zug möglich ist, grobe ebenso wie sehr feine Partikel bzw. Aerosole bereits im Dampferzeuger aus dem Rauchgas abzuscheiden und somit ein annähernd partikelfreies Gas für weitere Anwendungen, wie den Einsatz in einem Trockner, bereitzustellen. Weiterhin erweist sich die annähernd vollständige Reinigung der Rauchgase auch dahingehend als vorteilhaft, dass beispielsweise in den zweiten Zug eingebaute Verdampfer-, Überhitzer-, Economiser- und Luftvorwärmerbündel, welche die Wärme der Rauchgase zur Speisewasser- und/oder Luftvorwärmung nutzen, in Rippenbauweise und somit wesentlich kompakter ausgeführt werden können, da die abgereinigten Rauchgase die Flächen der Überhitzer und/oder Economiser nicht belasten.
Insgesamt zeichnet sich der erfindungsgemäße Dampferzeuger durch eine sehr einfache und kompakte und somit kostengünstig zu realisierende Konstruktion aus.
Nach einer ersten Ausgestaltung der Erfindung umfasst der Verdampfer des ersten Zuges des Dampferzeugers eine Wasser-/Dampf-durchströmbare Rohr-Steg-Rohr-Konstruktion. Diese auch als "Membranwand" bezeichnete Konstruktion ermöglicht eine effiziente Ausnutzung der maximalen Temperatur der Rauchgase, so dass eine maximale Speisewassermenge in Dampf umgesetzt werden kann.
Konstruktiv lässt sich der erfindungsgemäße Dampferzeuger beispielsweise dadurch realisieren, dass der erste und der zweite Zug des Dampferzeugers mit der dazwischen angeordneten Abscheidevorrichtung die Form eines umgedrehten U annehmen, derart, dass der erste Zug von den Rauchgasen der Rostfeuerung aufwärts durchströmt wird und der zweite Zug von den Rauchgasen abwärts durchströmt wird.
The object is achieved with a steam generator according to claim 1. The particular advantage of the steam generator according to the invention is that it is possible by the integration of a cyclone between the first and the second train, coarse as well as very fine particles or aerosols already deposited in the steam generator from the flue gas and thus an approximately particle-free gas for more Applications, such as use in a dryer, provide. Furthermore, the almost complete cleaning of the flue gases also proves to be advantageous in that, for example, in the second train built evaporator, superheater, economizer and Luftvorwärmerbündel which use the heat of the flue gases for feedwater and / or air preheating, in ribbed construction and thus can be made much more compact, since the cleaned flue gases do not burden the surfaces of the superheater and / or economizer.
Overall, the steam generator according to the invention is characterized by a very simple and compact and thus inexpensive to be realized construction.
According to a first embodiment of the invention, the evaporator of the first train of the steam generator comprises a water / steam-permeable pipe-web-pipe construction. This construction, also referred to as "membrane wall", allows efficient utilization of the maximum temperature of the flue gases, so that a maximum amount of feed water can be converted to steam.
Constructively, the steam generator according to the invention can be realized, for example, that the first and the second train of the steam generator with the interposed separator take the form of an inverted U, such that the first train is flowed through by the flue gases from the grate furnace and the second train of the flue gases are flowed through downwards.

Nach dem erfindungsgemäßen Dampferzeuger ist der Ausströmbereich des zweiten Zuges über eine Rezirkulationsgasleitung mit der Brennkammer verbunden, so dass zumindest ein Teil der im zweiten Zug des Dampferzeugers abgekühlten Rauchgase als Rezirkulationsgas in die Brennkammer des ersten Zuges rückführbar ist. Dies erlaubt eine präzise Einstellung der Brennkammertemperatur und somit einen optimierten Verbrennungsprozess.
Hinsichtlich der Verbrennungsleistung des Dampferzeugers ist dieser bevorzugt derart ausgelegt, dass die Feuerungsleistung ≤ 100 MW beträgt. Oberhalb dieses Leistungsbereichs werden aus dem Stand der Technik bekannte Dampferzeuger üblicherweise mit einer Wirbelschichtfeuerung betrieben, in denen ein derartiger "Heißgas"-Zyklon zum Verfahrenskonzept gehört.
Die Rostfeuerung des Dampferzeugers wird im Betrieb mit Verbrennungsluft, bevorzugt mit primärer und sekundärer Verbrennungsluft, versorgt. Bevorzugt ist in der Verbrennungsluftzuführung für die Rostfeuerung wenigstens ein Wärmetauscher zur Vorwärmung der Verbrennungsluft über die thermische Energie des im Dampferzeuger erzeugten Dampfes und/oder des zum Dampferzeuger rückgeführten Speisewassers vorgesehen. Hierdurch wird eine weitere Effizienzsteigerung durch eine optimierte Prozesswärmeausnutzung erreicht.
According to the steam generator according to the invention, the outflow region of the second train is connected via a Rezirkulationsgasleitung with the combustion chamber, so that at least a portion of the cooled in the second train of the steam generator flue gases is recirculated as recirculation gas in the combustion chamber of the first train. This allows a precise adjustment of the combustion chamber temperature and thus an optimized combustion process.
With regard to the combustion performance of the steam generator this is preferably designed such that the firing capacity is ≤ 100 MW. Above this power range, steam generators known from the prior art are usually operated with a fluidized bed furnace, in which such a "hot gas" cyclone belongs to the process concept.
The grate firing of the steam generator is supplied during operation with combustion air, preferably with primary and secondary combustion air. In the combustion air supply for grate firing, at least one heat exchanger for preheating the combustion air is preferred thermal energy of the steam generated in the steam generator and / or provided to the steam generator recycled feedwater. This achieves a further increase in efficiency through optimized process heat utilization.

Ein weiterer Aspekt der vorliegenden Erfindung betrifft eine Anlage zur Dampferzeugung umfassend wenigstens einen Dampferzeuger nach einem der Ansprüche 1 bis 6. Die vorstehend genannten Vorteile gelten in analoger Weise auch für die Anlage zur Dampferzeugung.Another aspect of the present invention relates to a plant for generating steam comprising at least one steam generator according to one of claims 1 to 6. The above-mentioned advantages apply in an analogous manner to the plant for generating steam.

Nach einer Ausgestaltung umfasst die Anlage eine Trocknungsvorrichtung. Mit dieser kann in optimaler Weise die Restwärme der gereinigten Rauchgase zur Trocknung von beispielsweise granularen, faserförmigen oder allgemein partikelförmigem Gut, insbesondere von gehacktem Holz, Sägespänen, Hobelspänen, Holzfasern, Tierfutter, Getreide und dgl. genutzt werden. Bevorzugt ist hierzu der Ausströmbereich des zweiten Zuges des Dampferzeugers über eine Rauchgasleitung mit der Trocknungsvorrichtung verbunden.According to one embodiment, the system comprises a drying device. With this, the residual heat of the purified flue gases for drying, for example, granular, fibrous or generally particulate material, in particular of chopped wood, sawdust, wood shavings, wood fibers, animal feed, cereals and the like can be used optimally. For this purpose, the outflow region of the second train of the steam generator is preferably connected to the drying device via a flue gas line.

Nach einer besonders vorteilhaften Ausgestaltung ist an der Heißgasleitung vor der Eintrittsöffnung der Trocknungsvorrichtung eine Aufgabeeinheit zur Aufgabe von festem, partikel- oder faserförmigem Brennstoff in den in die Trocknungsvorrichtung einströmenden Rauchgasstrom vorgesehen. Der in den Rauchgasstrom aufgegebene Brennstoff wird somit von diesem durch die Trocknungsvorrichtung transportiert und dabei getrocknet. Hierdurch wird die Restwärme der Rauchgase genutzt, um die in der Rostfeuerung eingesetzten Brennstoffe vorzutrocknen und somit den Energieeinsatz beim Betrieb der Anlage zur Dampferzeugung zu optimieren, da für die notwendige Trocknung des Brennstoffes keine separate Energie aufgewendet werden muss.According to a particularly advantageous embodiment, a task unit for discharging solid, particulate or fibrous fuel into the flue gas stream flowing into the drying device is provided on the hot gas line in front of the inlet opening of the drying device. The discontinued in the flue gas fuel is thus transported by this through the drying device and thereby dried. As a result, the residual heat of the flue gases is used to pre-dry the fuels used in the grate furnace and thus to optimize the energy input during operation of the plant for steam generation, as for the necessary drying of the fuel no separate energy must be expended.

Praktisch umgesetzt werden kann dies dadurch, dass in Strömungsrichtung der Rauchgase gesehen hinter der Trocknungsvorrichtung eine zweite Abscheidevorrichtung, insbesondere ein Zyklon, zur Abscheidung des getrockneten Brennstoffes angeordnet ist und ferner eine Fördereinrichtung vorgesehen ist, mittels derer der getrocknete Brennstoff zur Rostfeuerung des Dampferzeugers transportierbar ist. Die Fördereinrichtung kann beispielsweise als pneumatische Fördereinrichtung ausgebildet sein.This can be practically implemented by the fact that, viewed in the flow direction of the flue gases behind the drying device, a second separation device, in particular a cyclone, for separating the dried fuel and also a conveyor is provided, by means of which the dried fuel for grate firing of the steam generator can be transported. The conveyor may be formed for example as a pneumatic conveyor.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung umfasst die Anlage einen Kondensator-Wärmetauscher, in welchem ein weiteres Wärmeträgermedium, insbesondere Thermalöl, erwärmt wird. Auch dies trägt zu einer optimierten Prozesswärmeausnutzung bei.According to a further advantageous embodiment of the invention, the system comprises a condenser heat exchanger in which a further heat transfer medium, in particular thermal oil, is heated. This also contributes to optimized process heat utilization.

Ein weiterer Aspekt der vorliegenden Erfindung betrifft ein Dampfkraftwerk umfassend wenigstens eine Dampfturbine und einen angeschlossenen Generator und eine Anlage zur Dampferzeugung nach einem der Ansprüche 7 bis 12. Für das erfindungsgemäße Dampfkraftwerk gelten die vorstehend genannten Vorteile in analoger Weise.Another aspect of the present invention relates to a steam power plant comprising at least one steam turbine and a connected generator and a plant for generating steam according to one of claims 7 to 12. For the steam power plant according to the invention, the advantages mentioned above apply in an analogous manner.

Nach einer Ausgestaltung umfasst die Dampfkraftanlage zusätzlich wenigstens eine Trocknungsvorrichtung von partikelförmigem Gut, insbesondere Holzfasern und -späne, wobei die wenigstens eine Trocknungsvorrichtung durch wenigstens einen mit Dampf durchströmbaren Wärmetauscher, insbesondere einen Kondensator-Wärmetauscher, beheizbar ist. Hierdurch wird die im Dampf enthaltene Wärme, beispielsweise die Restwärme des in der Turbine des Dampfkraftwerkes teilentspannten Dampfes, optimal genutzt und die Prozesseffizienz somit weiter gesteigert.According to one embodiment, the steam power plant additionally comprises at least one drying device of particulate material, in particular wood fibers and chips, wherein the at least one drying device can be heated by at least one heat exchanger through which steam can flow, in particular a condenser heat exchanger. As a result, the heat contained in the steam, for example the residual heat of the steam partially expanded in the turbine of the steam power plant, optimally used and the process efficiency thus further increased.

Nachfolgend wird die Erfindung anhand einer ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert. Es zeigen:

Fig. 1
einen Dampferzeuger mit ersten und zweiten Zug sowie zwischen erstem und zweitem Zug angeordnetem Zyklonabscheider in schematisierter Seitenansicht,
Fig. 2
eine Anlage zur Dampferzeugung mit einem Dampferzeuger aus Fig. 1 und
Fig. 3
ein Dampfkraftwerk mit einer Anlage zur Dampferzeugung aus Fig. 2.
The invention will be explained in more detail with reference to a drawing illustrating an exemplary embodiment. Show it:
Fig. 1
a steam generator with first and second train and between the first and second train arranged cyclone separator in a schematic side view,
Fig. 2
a plant for steam generation with a steam generator Fig. 1 and
Fig. 3
a steam power plant with a plant for steam generation Fig. 2 ,

Der in Fig. 1 in schematischer Form dargestellte Dampferzeuger umfasst einen ersten Zug 1 und einen zweiten Zug 2. Der erste Zug 1 umfasst eine Brennkammer 11, die ihrerseits eine Rostfeuerung 12 aufweist, und einen Verdampfer 13. Der Verdampfer 13 ist vorliegend - wie aus dem Stand der Technik an sich bekannt - als eine wasser-/dampfdurchströmte Rohr-Steg-Rohr-Konstruktion ausgeführt, was in Fig. 1 schematisch durch eine Mehrzahl paralleler Rohre 13a dargestellt ist. Durch die im Bereich des Verdampfers 13 aufsteigenden sehr heißen Rauchgase wird das durch die Rohre 13a strömende Speisewasser teilweise (~20%) verdampft und in eine Dampftrommel 14 geleitet, wo eine Abscheidung zwischen Wasser und Dampf erfolgt. In Fig. 1 wie auch in den Fig. 2 und 3 sind dampfdurchströmte Leitungen jeweils als gestrichelte Linien dargestellt, während die speisewasserdurchströmten Linien als durchgezogene Linien dargestellt sind.The in Fig. 1 Steam generator shown in schematic form comprises a first train 1 and a second train 2. The first train 1 comprises a combustion chamber 11, which in turn has a grate furnace 12, and an evaporator 13. The evaporator 13 is present - as in the prior art known - as a water / steam flowed pipe-web-pipe construction executed in what Fig. 1 is schematically represented by a plurality of parallel tubes 13a. As a result of the very hot flue gases rising in the region of the evaporator 13, the feed water flowing through the tubes 13a is partly vaporized (~ 20%) and passed into a steam drum 14, where separation takes place between water and steam. In Fig. 1 as well as in the Fig. 2 and 3 Steam traversed lines are each shown as dashed lines, while the Feedwater flowing through lines are shown as solid lines.

Der zweite Zug 2 des Dampferzeugers der Fig. 1 seinerseits umfasst zwei untereinander angeordnete Dampfüberhitzer 21 sowie zwei darunter angeordnete Economiser 22. Es versteht sich, dass die Anzahl der Überhitzer 21 und Economiser 22 in Abhängigkeit vom jeweiligen Einsatzfall variiert werden kann. In den Überhitzern 21 wird der im Verdampfer erzeugte Dampf durch die durch den zweiten Zug 2 des Dampferzeugers strömenden Rauchgase auf eine Temperatur je nach Brennstoffqualität von typischerweise 450°C - 540°C überhitzt.The second train 2 of the steam generator the Fig. 1 In turn, it comprises two steam superheaters 21 arranged one below the other and two economizers 22 arranged underneath. It is understood that the number of superheaters 21 and economizers 22 can be varied depending on the particular application. In the superheaters 21, the steam generated in the evaporator is overheated by the flue gases flowing through the second train 2 of the steam generator to a temperature of typically 450 ° C - 540 ° C depending on the fuel quality.

Zwischen dem ersten und dem zweiten Zug 1,2 ist eine Abscheidevorrichtung für die aus dem ersten Zug 1 des Dampferzeugers ausströmenden partikelbelasteten Rauchgase angeordnet, der vorliegend als Abscheidezyklon 3 ausgebildet ist. Mithilfe des Abscheidezyklons lassen sich nicht nur grobe Partikel, sondern auch Aerosole wirksam (bis 98 %) aus den Rauchgasen entfernen, und der Zyklon hat einen positiven Effekt zum Ausbrennen von mitströmenden, unverbrannten Partikeln und von Kohlenmonoxid (CO). Hierdurch sinkt die Belastung der Wärmetauscheroberflächen der Überhitzer 21 und Economiser 22 im Betrieb deutlich, was zu einer signifikant erhöhten Standzeit der eingesetzten Komponenten führt. Ferner sinkt der Anteil von unverbranntem Brennstoff in der Asche ebenso wie die CO-Emissionen.Between the first and the second train 1, 2 a separating device is arranged for the particulate-laden flue gases flowing out of the first train 1 of the steam generator, which in the present case is designed as a separating cyclone 3. With the help of the separation cyclone, not only coarse particles but also aerosols can be effectively removed (up to 98%) from the flue gases, and the cyclone has a positive effect on burnout of co-flowing, unburnt particles and carbon monoxide (CO). As a result, the load on the heat exchanger surfaces of the superheater 21 and economizer 22 drops significantly during operation, resulting in a significantly increased service life of the components used. Furthermore, the proportion of unburned fuel in the ash decreases as well as the CO emissions.

Wie in Fig. 1 erkennbar, ist der Abscheidezyklon 3 zwischen dem oberen Auslassende des ersten Zuges 1 und dem oberen Einlass des zweiten Zuges 2 angeordnet, so dass der erste und der zweite Zug 1,2 des Dampferzeugers mit dem dazwischen angeordneten Abscheidezyklon 3 die Form eines umgedrehten U annehmen. Entsprechend wird der erste Zug 1 von den Rauchgasen der Rostfeuerung aufwärts und der zweite Zug 2 von den Rauchgasen abwärts durchströmt.As in Fig. 1 As can be seen, the separation cyclone 3 is arranged between the upper outlet end of the first train 1 and the upper inlet of the second train 2, so that the first and the second train 1, 2 of the steam generator are interposed therebetween arranged Abscheidezyklon 3 take the form of an inverted U. Accordingly, the first train 1 flows through the flue gases of the grate firing upwards and the second train 2 flows through the flue gases downwards.

Wie erwähnt, umfasst die Brennkammer 11 des ersten Zuges 1 eine Rostfeuerung 12 für feste Brennstoffe. Diese werden über die Leitung 7 in die Brennkammer 11 aufgegeben. Die für die Verbrennung notwendige Verbrennungsluft wird als Primärluft über eine Leitung 15 in die Brennkammer 11 unterhalb des Rostes der Rostfeuerung 12 eingeblasen und als Sekundärluft über eine Leitung 16 in die Brennkammer 11 oberhalb des Rostes eingeleitet. Wie in Fig. 1 erkennbar, sind in der Primärluftleitung 15 Wärmetauscher 15a,b vorgesehen, mittels derer die Primärluft vorgeheizt werden kann. Beispielsweise kann im Wärmetauscher 15a die Restwärmeenergie des in einem dem Dampferzeuger nachgeschalteten Dampfkraftwerk (vgl. Fig. 3) kondensierten Speisewassers genutzt werden, während im Wärmetauscher 15b die Wärmeenergie eines Teilstroms des teilentspannten Dampfes zur Erwärmung des Primärluftstromes genutzt wird. In ganz analoger Weise kann der Sekundärluftstrom über Wärmetauscher 16a,b, die wiederum durch Wasser bzw. teilentspannten Dampf gespeist werden, erwärmt werden.As mentioned, the combustion chamber 11 of the first train 1 comprises a grate furnace 12 for solid fuels. These are fed via the line 7 into the combustion chamber 11. The combustion air necessary for the combustion is injected as primary air via a line 15 into the combustion chamber 11 below the grate of the grate furnace 12 and introduced as secondary air via a line 16 into the combustion chamber 11 above the grate. As in Fig. 1 Recognizable, 15 heat exchangers 15a, b are provided in the primary air line, by means of which the primary air can be preheated. For example, in the heat exchanger 15a, the residual heat energy of the steam power plant connected downstream of the steam generator (cf. Fig. 3 ) condensed feed water can be used, while in the heat exchanger 15 b, the heat energy of a partial flow of teilentspannten steam is used to heat the primary air flow. In a very similar manner, the secondary air flow through heat exchangers 16a, b, which in turn are fed by water or partially expanded steam, are heated.

Schließlich ist im ersten Zug 1 des Dampferzeugers ein (nicht im Detail dargestellter) Brenner vorgesehen, welcher im Bereich des Verdampfers 13 angeordnet ist und über die Leitung 13b mit gasförmigem Brennstoff gespeist wird. Ebenso ist eine Speisung dieses Brenners mit staubförmigem Brennstoff möglich.Finally, a (not shown in detail) burner is provided in the first train 1 of the steam generator, which is arranged in the region of the evaporator 13 and is fed via the line 13b with gaseous fuel. Likewise, a supply of this burner with dusty fuel is possible.

Am trichterförmigen Ausgang 2a des zweiten Zuges 2 sind zwei Leitungen 23, 24 angesetzt, über welche mittels der Gebläse 23a, 24a der auf typischerweise unter 160° C abgekühlte Rauchgasstrom aus dem zweiten Zug 2 ausgeleitet werden kann. Im Einzelnen ist es möglich, einen Teil des Rauchgasstroms über die Leitung 23 als Rezirkulationsgas in die Brennkammer 11 wieder einzuleiten, um dort präzise die Verbrennungstemperatur einzustellen und insbesondere Überhitzungen zu vermeiden. Über die Leitung 24 ist es möglich, die Rauchgase weiteren Anwendungen zuzuführen, wie im Folgenden im Zusammenhang mit Fig. 2 noch im Detail beschrieben wird.At the funnel-shaped outlet 2a of the second train 2, two lines 23, 24 are attached, via which by means of the blower 23a, 24a of the cooled to typically below 160 ° C flue gas stream from the second train 2 can be discharged. Specifically, it is possible to re-introduce a portion of the flue gas stream via line 23 as recirculation gas into the combustion chamber 11 in order to precisely adjust the combustion temperature there and in particular to avoid overheating. Via line 24 it is possible to supply the flue gases to further applications, as described below in connection with FIG Fig. 2 will be described in detail.

Fig. 2 zeigt eine Anlage zur Dampferzeugung in schematischer Darstellung. Diese umfasst zunächst einen Dampferzeuger, wie er vorstehend im Detail beschrieben ist. Wie in Fig. 2 erkennbar, wird der im Verdampfer 13 erzeugte Dampf zu einem Teil durch die Überhitzer 21 geleitet, vorliegend jedoch zu einem anderen Teil einem Wärmtauscher 4 zugeführt, in welchem der Dampf ein weiteres Wärmeträgermedium, insbesondere Thermalöl, erhitzt, wobei er kondensiert. Das rückströmende unter sehr hohem Druck (bsp. 90 bar) stehende Wasser wird sodann wieder der Dampftrommel 14 zugeführt. Fig. 2 shows a plant for steam generation in a schematic representation. This first comprises a steam generator, as described above in detail. As in Fig. 2 recognizable, the steam generated in the evaporator 13 is passed in part through the superheater 21, but in the present case supplied to another part of a heat exchanger 4, in which the steam, another heat transfer medium, in particular thermal oil, heated, wherein it condenses. The backflowing under very high pressure (eg 90 bar) standing water is then fed back to the steam drum 14.

Die über die Leitung 24 aus dem zweiten Zug 2 des Dampferzeugers ausströmenden Rauchgase durchströmen vorliegend eine Trocknungsvorrichtung 5. Vor der stirnseitigen Einlassöffnung der zylindrischen Trocknungsvorrichtung 5, wird der für die Rostfeuerung 12 vorgesehene partikelförmige Festbrennstoff über eine in Fig. 2 lediglich als Pfeil 5a dargestellte Aufgabeeinheit in den Rauchgasstrom aufgegeben, woraufhin er zusammen mit dem Rauchgasstrom die Trocknungsvorrichtung 5 durchströmt und dabei seine Restfeuchte abgibt. Nach dem Ausströmen aus der Trocknungsvorrichtung 5 gelangt der nunmehr optimal getrocknete Brennstoff zusammen mit dem Rauchgasstrom in einen weiteren Zyklonabscheider 6, wo er aus dem Rauchgasstrom abgeschieden und in einem Behälter 6a gesammelt wird. Sodann gelangt der abgeschiedene getrocknete Brennstoff mittels einer, bevorzugt pneumatischen, Förderung (Pfeil 7) zur Brennkammer 11, um dort auf den Rost der Rostfeuerung 12 aufgegeben zu werden. Mittels dieser Vortrocknung des Brennstoffes kann der Energieeinsatz beim Betrieb der Anlage zur Dampferzeugung weiter reduziert werden, da die notwendige Trocknung des Brennstoffes nicht mehr unter separatem Energieaufwand erfolgen muss, sondern unter Ausnutzung der Restwärme der Rauchgase durchgeführt wird. Die aus dem Zyklon 6 ausströmenden auf typischerweise unter 90° C abgekühlten Rauchgase werden sodann einem nasselektrostatischen Filter 8 (vgl. Fig. 3) zugeführt.The flue gases flowing out of the second train 2 of the steam generator via the line 24 in the present case flow through a drying device 5. In front of the front-side inlet opening of the cylindrical drying device 5, the particulate solid fuel provided for the grate firing 12 is conveyed via a Fig. 2 abandoned only as an arrow 5a task unit in the flue gas stream, whereupon it flows through the drying device 5 together with the flue gas stream and while releasing its residual moisture. After flowing out of the drying device 5, the now optimally dried fuel passes together with the flue gas stream in another cyclone separator 6, where it is separated from the flue gas stream and collected in a container 6 a. Then the separated dried fuel passes by means of a, preferably pneumatic, promotion (arrow 7) to the combustion chamber 11 to be abandoned there on the grate of the grate furnace 12. By means of this predrying of the fuel, the energy input during operation of the plant for steam generation can be further reduced because the necessary drying of the fuel no longer has to be done with separate energy input, but is carried out by utilizing the residual heat of the flue gases. The effluent from the cyclone 6 to typically cooled below 90 ° C flue gases are then a wet electrostatic filter 8 (see. Fig. 3 ).

Fig. 3 zeigt ein Dampfkraftwerk unter Einsatz der vorstehend beschriebenen Anlage zur Dampferzeugung in schematischer Ansicht. Wie dargestellt, strömt der überhitzte Dampf aus den Überhitzern 21 des Dampferzeugers zu einer Dampfturbine 9, welche durch den sehr heißen Dampf (ca. 470° C, 85 bar) angetrieben wird. Die Rotationsenergie der Dampfturbine 9 wird in bekannter Weise über einen angeschlossenen Generator 9a in elektrische Energie umgewandelt. Der vollständig entspannte Nassdampf (0,2 bar, 60° C) wird einem Luftkondensator 90 zugeführt, wo er kondensiert. Anschließend gelangt das Kondensat in einen Speisewassertank 92. Parallel zum Kondensator 90 ist ein Wärmetauscher 91 angeordnet, in welchem die Restenergie des Nassdampfes an einen Warmwasserstrom (55° C) abgegeben wird. Dieser Warmwasserstrom kann zur Erwärmung der Primär- und Sekundärluft für die Rostfeuerung 12 des Dampferzeugers über die Wärmetauscher 15a, 16a dienen, wie im Zusammenhang mit Fig. 1 bereits beschrieben. Fig. 3 shows a steam power plant using the plant for steam generation described above in a schematic view. As shown, the superheated steam from the superheaters 21 of the steam generator flows to a steam turbine 9, which is driven by the very hot steam (about 470 ° C, 85 bar). The rotational energy of the steam turbine 9 is converted in a known manner via a connected generator 9a into electrical energy. The completely relaxed wet steam (0.2 bar, 60 ° C) is fed to an air condenser 90, where it condenses. Subsequently, the condensate passes into a feedwater tank 92. Parallel to the condenser 90, a heat exchanger 91 is arranged, in which the residual energy of the wet steam to a hot water flow (55 ° C) is discharged. This hot water flow can be used to heat the primary and Secondary air for the grate furnace 12 of the steam generator via the heat exchangers 15a, 16a serve, as in connection with Fig. 1 already described.

Das Speisewasser wird schließlich über Pumpen 92a zu den Economisern 22 des Dampferzeugers zurückgeführt, um von dort in den Verdampfer eingeleitet zu werden, wodurch der WasserDampf-Kreislauf geschlossen ist.The feedwater is finally returned via pumps 92a to the economizers 22 of the steam generator to be introduced from there into the evaporator, whereby the water vapor cycle is closed.

Wie in Fig. 3 ferner dargestellt, kann an der Turbine 9 ferner teilentspannter Dampf (255° C, 12 bar) entnommen werden, welcher über eine Leitung 94 den Wärmetauschern 95a, 95b weiterer Trocknungsvorrichtungen 95 (in Fig. 3 ist der Übersichtlichkeit halber nur eine dargestellt) zugeführt wird. In den Wärmetauschern der Trocknungsvorrichtungen 95 kondensiert der teilentspannte Dampf und wird anschließend über Wärmetauscher/Entspanner-Register 96,97 wieder dem Speisewassertank 12 zugeführt. Durch die Trocknungsvorrichtungen 95 strömt bevorzugt ein Förderluftstrom, welcher zu trocknendes partikelförmiges Gut durch die Trocknungsvorrichtungen 95 transportiert, wobei das getrocknete Gut anschließend einer Abscheiderkolonne 98 zugeführt wird.As in Fig. 3 Furthermore, partially expanded steam (255 ° C., 12 bar) can be taken off from the turbine 9, which is fed via a line 94 to the heat exchangers 95a, 95b of further drying devices 95 (in FIG Fig. 3 For the sake of clarity, only one is shown). The partially expanded steam condenses in the heat exchangers of the drying devices 95 and is subsequently fed back to the feedwater tank 12 via heat exchanger / expander registers 96, 97. A conveying air stream, which transports particulate material to be dried through the drying devices 95, preferably flows through the drying devices 95, the dried material then being fed to a separator column 98.

Wie in Fig. 3 ebenfalls dargestellt, kann der aus den Überhitzern 21 strömende überhitzte Dampf auch unter Umgehung der Turbine 9 in die Wärmetauscher 95a,95b der Trocknungsvorrichtungen 95 geleitet werden, wobei er ein Entspannungsventil 940 passieren muss, um beispielsweise von einem Druck von 85 bar auf 12 bar entspannt zu werden. Von dem entspannten Dampf der Leitung 94 kann schließlich ein weiterer Teilstrom abgezweigt werden (nicht dargestellt), welcher zur Erwärmung des Speisewassers in einem weiteren Wärmetauscher 93 eingesetzt werden kann.As in Fig. 3 also shown, the overheated steam flowing from the superheaters 21 can also be passed bypassing the turbine 9 in the heat exchangers 95a, 95b of the drying devices 95, where it must pass an expansion valve 940, for example, by a pressure of 85 bar to 12 bar relaxed to become. From the relaxed steam of the line 94, finally, a further partial flow can be branched off (not shown), which can be used to heat the feedwater in a further heat exchanger 93.

Das vorstehend beschriebene Dampfkraftwerk zeichnet sich durch eine hohe Prozesseffizienz infolge einer optimierten Ausnutzung der Prozesswärme aus. Sämtliche angegebenen Prozesskenndaten, insbesondere Druck- und Temperaturangaben, sind dabei jedoch rein beispielhaft zu verstehen. Es versteht sich, dass auch andere Parameterbereiche gewählt werden können, um die beschriebenen Vorteile zu erzielen.The steam power plant described above is characterized by a high process efficiency as a result of optimized utilization of the process heat. All specified process characteristics, in particular pressure and temperature specifications, are to be understood as examples only. It is understood that other parameter ranges can be chosen to achieve the advantages described.

Claims (12)

  1. Steam generator comprising a first flue (1) with a combustion chamber (11) and a vaporiser (13) and at least one second flue (2) with at least one heat exchanger, in particular a vaporiser, superheater (21), air pre-heater and/or an economiser (22), wherein the combustion chamber (11) has a grate stoker furnace (12) and a separation device (3), in particular a cyclone is arranged between the first and the at least one second flue (1, 2) to separate particles and aerosols, characterised in that the outflow region of the second flue (1) is connected to the combustion chamber (11) via a recirculating gas line (23) such that at least one part of the flue gas cooled in the second flue (2) of the steam generate can be fed back into the combustion chamber (11) of the first flue (1) as recirculation gas.
  2. Steam generator according to Claim 1, characterised in that the vaporiser (13) of the first flue (1) of the steam generator has a tube-web-tube construction (13) through which water/steam can flow.
  3. Steam generator according to Claim 1 or 2, characterised in that the first and second flue (1, 2) of the steam generator adopt the shape of a rotated U with the separation device (3) arranged therebetween such that the flue gases from the grate stoker furnace (12) flow upwards through the first flue (1) and the flue gases flow downwards through the second flue (2).
  4. Steam generator according to any one of Claims 1 to 3, characterised in that at least one heat exchanger (15a, 15b, 16a, 16b) is provided in the combustion air supply line (15, 16) for the grate stoker furnace (12) of the steam generator to pre-heat the combustion air via the thermal energy of the steam generated in the steam generator and/or of the feed water fed back to the steam generator.
  5. Unit for generating steam comprising at least one steam generator according to any one of Claims 1 to 4.
  6. Unit according to Claim 5, characterised in that the unit has a drying device (5).
  7. Unit according to Claim 6, characterised in that the outflow region (2a) of the second flue (2) of the steam generator is connected to the drying device (5) via a flue gas line (24).
  8. Unit according to Claim 7, characterised in that a feeding unit (5a) is provided at the hot gas line before the inlet opening of the drying device (5) to feed solid, particle or fibre-shaped fuel into the flue gas flow flowing into the drying device (5).
  9. Unit according to Claim 8, characterised in that a second separation device (6), in particular a cyclone, is arranged behind the drying device (5) to separate the dried fuel and a delivery device is also provided by means of which the dried fuel can be transported to the grate stoker furnace of the steam generator.
  10. Unit according to any one of Claims 5 to 9, characterised in that the unit has a condenser/heat exchanger (4) in which an additional heat-carrying medium, in particular thermal oil, is heated.
  11. Steam power plant comprising at least one steam turbine (9) and a connected generator (9a) and a unit for generating steam according to any one of Claims 5 to 10.
  12. Steam power plant according to Claim 11, characterised in that the steam power plant also has at least one drying device (95) for particle-shaped products, in particular wood fibres and shaving, wherein the at least one drying device (95) can be heated by at least one heat exchanger (95a, 95b) through which steam can flow, in particular a condenser/heat exchanger.
EP11172633.7A 2010-07-26 2011-07-05 Device and method for generating hot gas with integrated heating of a heat distribution medium Active EP2412943B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11172633T PL2412943T3 (en) 2010-07-26 2011-07-05 Device and method for generating hot gas with integrated heating of a heat distribution medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010032266A DE102010032266A1 (en) 2010-07-26 2010-07-26 Apparatus and method for hot gas production with integrated heating of a heat transfer medium

Publications (3)

Publication Number Publication Date
EP2412943A2 EP2412943A2 (en) 2012-02-01
EP2412943A3 EP2412943A3 (en) 2016-07-13
EP2412943B1 true EP2412943B1 (en) 2018-04-18

Family

ID=44508766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11172633.7A Active EP2412943B1 (en) 2010-07-26 2011-07-05 Device and method for generating hot gas with integrated heating of a heat distribution medium

Country Status (6)

Country Link
EP (1) EP2412943B1 (en)
DE (1) DE102010032266A1 (en)
ES (1) ES2670821T3 (en)
HU (1) HUE037505T2 (en)
PL (1) PL2412943T3 (en)
TR (1) TR201807212T4 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3098397A1 (en) * 2015-05-26 2016-11-30 Alstom Technology Ltd Lignite drying integration with a water/steam power cycle
PL3098549T3 (en) 2015-05-26 2018-12-31 General Electric Technology Gmbh Lignite drying with a heat recovery circuit
EP3098509A1 (en) 2015-05-26 2016-11-30 Alstom Technology Ltd Lignite drying in a lignite fired power plant with a heat pump
EP3098548A1 (en) 2015-05-26 2016-11-30 Alstom Technology Ltd Lignite drying with closed loop heat pump
DE102017010984B4 (en) * 2017-11-28 2020-08-13 Nippon Steel & Sumikin Engineering Co., Ltd. Plant for energy generation in conventional waste incineration and processes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080251952A1 (en) * 2007-04-13 2008-10-16 Vladimir Havlena Steam-generator temperature control and optimization

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833932B1 (en) * 1969-07-16 1973-10-17
GB2155599B (en) * 1984-03-09 1988-10-12 Tsung-Hsien Kuo Improved refuse incineration system
SE515046C2 (en) * 1999-10-12 2001-06-05 Vattenfall Ab Method and apparatus for measuring the concentration of harmful gases in the flue gases by means of photovoltaic spectroscopy
US6960329B2 (en) * 2002-03-12 2005-11-01 Foster Wheeler Energy Corporation Method and apparatus for removing mercury species from hot flue gas
DE202007005195U1 (en) * 2006-10-24 2007-07-05 Fritz Egger Gmbh & Co. Hot gas driven drying device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080251952A1 (en) * 2007-04-13 2008-10-16 Vladimir Havlena Steam-generator temperature control and optimization

Also Published As

Publication number Publication date
ES2670821T3 (en) 2018-06-01
EP2412943A3 (en) 2016-07-13
DE102010032266A1 (en) 2012-01-26
HUE037505T2 (en) 2018-08-28
EP2412943A2 (en) 2012-02-01
TR201807212T4 (en) 2018-06-21
PL2412943T3 (en) 2018-08-31

Similar Documents

Publication Publication Date Title
EP2181248B1 (en) Method for the operation of a steam turbine power plant, and steam generating apparatus
EP2412943B1 (en) Device and method for generating hot gas with integrated heating of a heat distribution medium
DE19518644C2 (en) Method and device for generating steam by burning a solid, dried fuel
DE10001997A1 (en) Composite power plant and method for operating such a composite power plant
EP0558899A1 (en) System for using the heat of the exhaust gases from a coal-fired boiler
DE102009035062A1 (en) Method for operating steam turbine power station, involves utilizing energy of vapor resulting from drying process of brown coal for preliminary heating of combustion air, where energy is coupled into combustion air by heat exchanger
DE102018201172A1 (en) Incinerator with residual heat utilization
EP2702344B1 (en) Method and device for the firing of clinker
EP2545337A1 (en) Method and device for producing cement clinker
WO1994027089A2 (en) Steam power plant for generating electric power
WO2011020767A1 (en) Method and device for utilizing biomass
EP0098481B1 (en) Method for generating electric power in a combined power plant with fluidised bed combustion
EP3017152A2 (en) Combined cycle gas turbine plant having a waste heat steam generator and fuel pre-heating
WO2013023719A2 (en) Method for operating a power plant
DE4441324C1 (en) Heat utilisation system in coal=fired steam generator flue
EP2372239A2 (en) Method for operating a steam turbine power plant with fluidized bed combustion
DE19734862C2 (en) Thermal power plant with a gas turbine and a steam generator for a multi-pressure steam turbine
DE4117192C2 (en) Process for generating energy in a combined gas-steam power plant and plant for carrying out the process
DE102014105477B4 (en) Process and apparatus for drying moist, carbonaceous and particulate fuel
WO2005021935A1 (en) Steam power plant
DE2802361C2 (en) Steam power plant with a fluidized bed steam generator
EP1404947B1 (en) Method for operating a steam power plant and steam power plant for carrying out said method
EP2564117B1 (en) Steam generator
DE4409056C2 (en) Method and arrangement for pre-drying broken raw lignite for a pressure-charged fluidized bed furnace
DD281237B5 (en) Arrangement for drying hydrous solid fuels, in particular crude lignite

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRITZ EGGER GMBH & CO. OG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 17/06 20060101AFI20160606BHEP

Ipc: F22B 1/18 20060101ALI20160606BHEP

17P Request for examination filed

Effective date: 20170105

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20170330

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171030

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011014053

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 990716

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2670821

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180418

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E037505

Country of ref document: HU

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180719

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180820

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011014053

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

26N No opposition filed

Effective date: 20190121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180818

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230524

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230726

Year of fee payment: 13

Ref country code: GB

Payment date: 20230725

Year of fee payment: 13

Ref country code: ES

Payment date: 20230825

Year of fee payment: 13

Ref country code: CH

Payment date: 20230802

Year of fee payment: 13

Ref country code: AT

Payment date: 20230726

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230704

Year of fee payment: 13

Ref country code: HU

Payment date: 20230602

Year of fee payment: 13

Ref country code: FR

Payment date: 20230725

Year of fee payment: 13

Ref country code: DE

Payment date: 20230725

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240625

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240723

Year of fee payment: 14