EP2407715A1 - Burner - Google Patents

Burner Download PDF

Info

Publication number
EP2407715A1
EP2407715A1 EP10169632A EP10169632A EP2407715A1 EP 2407715 A1 EP2407715 A1 EP 2407715A1 EP 10169632 A EP10169632 A EP 10169632A EP 10169632 A EP10169632 A EP 10169632A EP 2407715 A1 EP2407715 A1 EP 2407715A1
Authority
EP
European Patent Office
Prior art keywords
burner
groups
modules
passageway
burner according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10169632A
Other languages
German (de)
French (fr)
Other versions
EP2407715B1 (en
Inventor
Matthias Hase
Werner Krebs
Jürgen MEISL
Bernhard Wegner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP20100169632 priority Critical patent/EP2407715B1/en
Publication of EP2407715A1 publication Critical patent/EP2407715A1/en
Application granted granted Critical
Publication of EP2407715B1 publication Critical patent/EP2407715B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D23/00Assemblies of two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2205/00Assemblies of two or more burners, irrespective of fuel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00012Liquid or gas fuel burners with flames spread over a flat surface, either premix or non-premix type, e.g. "Flächenbrenner"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00017Assembled burner modules

Definitions

  • the invention relates to a burner according to the preamble of claim 1.
  • the DE 20 23 060 shows a burner for gaseous fuels with a perforated porous outlet plate which is adjacent to a combustion zone on one side and to a base plate on the other.
  • the base plate is connected to the outlet plate in such a way that the perforations in the outlet plate are congruent to the perforations in the base plate. So air can flow through them.
  • the exit points have such a distance from the base plate between the holes that fuel passageways are formed.
  • the burner as a whole is designed so that during use of the burner gaseous fuel through the fuel passages and from there through the porous Outlet plate flows into the combustion zone, where it burns with the sucked through the perforations air.
  • the EP 1 001 216 A1 shows a disc, with openings passing through the disc. Channels are arranged transversely to the openings through which fuel is passed. Through these channels fuel can be supplied to the openings.
  • the object of the present invention is to provide a burner which avoids the above disadvantage.
  • burner modules in interconnectable groups allows a high flexibility, both in terms of the design of the combustion system, as well as the operation of a gas turbine. Furthermore, the heat can be released distributed in the entire combustion chamber by the selected arrangement, whereby a suppression of combustion vibrations is possible.
  • the fuel supply of the different groups of burner modules can also be switched on depending on the load.
  • the fuel injection can also be assigned a fuel quantity that varies within the control range. Thus, improved control of the amount of lead and thus improved NOx levels can be obtained.
  • the burner modules of a group can be designed differently. Thus, the amount of fuel at different parts of the combustion chamber can be controlled in groups in addition to the interconnection, thus providing additional operational flexibility.
  • the burner has an axial direction and a radial direction.
  • the groups are arranged in the axial direction and / or radial direction on the combustion chamber wall of the burner.
  • the arrangement of the groups is decisive for the burner geometry or if a particular burner geometry is given, the design of the groups can be adapted to them.
  • the groups can be arranged radially and axially staggered.
  • the next outer group of burner modules, viewed in the axial direction, is located downstream of the next inner group of burner modules.
  • the axial staggering allows a uniform distribution of the combustion zones within the combustion chamber.
  • the group with the same axial staggering is combined to a stage that has a common fuel control.
  • the axial stages are switched on, the innermost (relative to the burner axis) being switched on first and the outermost one last.
  • a number of three axial stages are considered ideal.
  • the amount of fuel can be introduced particularly well load-dependent, which in turn has a favorable effect on the formation of NOx.
  • the passageway is substantially round in cross section.
  • a plurality of passage channels are present, which have at least one distance from each other. It is beneficial for flame stability reasons to more closely select the distance to cross-sectional area factor for the groups of burner modules farther from the turbine, and to narrow the distance-to-cross-sectional area factor for the groups of burner modules closer to the turbine. Thus, extinguishing the flame and hot spots can be avoided.
  • Fig. 1 shows a burner module 1.
  • the burner module 1 in this case has a plate 90 with a top 92 and a bottom 91.
  • the burner module 1 has a through-passage 100 for guiding air 102.
  • the air 102 may also be an air-fuel mixture.
  • the passageway 100 extends from the bottom 91 to the top 92 through the plate 90 therethrough.
  • the air flowing through the passageway 100 air 102 forms an air flow direction L, wherein in the air flow direction L downstream of a Combustion chamber 52 ( Fig. 3 ) is provided.
  • the burner module 1 comprises a fuel injection for introducing fuel.
  • the fuel injection thereby comprises at least one distributor channel 5 and a channel 101, which transports fuel from the distributor channel 5 to the through-channel 100.
  • the fuel can be transported by means not described in more detail channels to the distribution channel 5.
  • Fig. 2 shows two passageways 100 which are supplied by a common distribution channel 5 via two channels 101 with fuel.
  • a group 7 of burner modules 1 a number of at least one, but usually more burner modules 7 is referred to.
  • a group 7 encloses several passageways 100, as in FIG Fig. 2
  • a fuel injection may also include a plurality of such channels 101 that provide fuel to multiple passageways 100.
  • the fuel can - as in FIGS. 2 and 1 shown are arranged perpendicular to the passageway 100 channels 101 directly perpendicular to the air flow direction L and thus to the air 102 introduced.
  • a group 7 can consist of a different number of burner modules 1, that is, have different number of through-channels 100 and different numbers of distribution channels 5 and different numbers of channels 101.
  • Air 102 is flowed through the passageway 100.
  • the passageway 100 can be realized as a cylindrical through-hole with a diameter D and a cross-sectional area.
  • the diameter D is in this case preferably 1-12 mm.
  • the turbulence of the airflow 102 may be increased by turbulence generators. These may be, for example, delta vans, or mixing elements, etc. (not shown).
  • an inlet flow device which is arranged, for example, in the air flow direction L in front of the burner module 1 is arranged (not shown), the air 102 are twisted. This gives a better one Mixing of air 102 with fuel and thus a better combustion without hot spots.
  • the channels 101 of the fuel injection fuel in the passageway 100 can be arranged at a distance KL from the exit surface of the air-fuel stream 103 his.
  • the ratio of distance KL to D preferably 0.1-8 is given.
  • these may have a distance S from each other, calculated from the respective center of the cross-sectional area of the through-channel 100. It is preferable to specify the ratio of S to D with 1.5 to 10. This ensures flame stability and avoids hot spots.
  • the burner with a combustion chamber wall 110 comprises a plurality of groups 7, which consist of burner modules 1.
  • the groups 7 are interconnectable with respect to the fuel quantity.
  • the burner modules 1 within a group 7 ( Fig. 3 ) or in different groups 7 can be designed differently, eg different in size.
  • the groups 7 may be attached directly to the combustion chamber wall 110 of the burner or at least partially replace it.
  • the groups 7 can be operated with premixed or partially premixed or not premixed burner modules 1. In a burner also different such groups 7 (premixed, partially premixed, not premixed) may occur.
  • the in Fig. 3 shown burner has an axial direction A and a radial direction R.
  • the groups 7 can be arranged both in the axial direction A and in the radial direction R on the combustion chamber wall 110.
  • the arrangement of the groups 7 is decisive for the burner geometry. However, if a certain burner geometry is given, the design of the groups 7 can be adapted to them.
  • the fuel supply to individual groups 7 can be switched depending on the load and the fuel quantity can be varied within the control range.
  • Fig. 3 the arrangement of groups 7 of burner modules in a tube burner with corresponding combustion chamber 52 is shown.
  • the combustion chamber 52 has a front end face 105.
  • the diameter DS of this end face 105 is 0.05 to 1 of the maximum radial diameter DSmax of the combustion chamber.
  • a pilot burner 115 is provided, with which the gas turbine can be started.
  • the pilot burner 115 can also be replaced by a pilot from burner modules 1 or the pilot function is performed by the furthest downstream group 7 of burner modules 1; downstream means here in the axial direction A after the pilot burner 115.
  • the pilot burner 115 is used primarily when starting the machine to set the combustion targeted in motion and to prevent extinction of flames.
  • the combustion chamber 52 of the embodiment 3 is partially conical.
  • the groups 7 of the burner modules are arranged on the conical surface 120 of the combustion chamber 52.
  • the opening angle ⁇ of the conical surface 120 is preferably 10 degrees. This results in a good inflow angle of the air-fuel mixture 103 in the combustion chamber 52 downstream of the groups 7.
  • the number of this group 7 of burner modules 1 on the conical surface 120 is arbitrary.
  • the groups 7 of burner modules 1 may have a different size and may be of different fuel levels be fed. This allows a very flexible operation of the machine.
  • Fig. 4 shows a combustion chamber 52 in which the groups 7 is aligned so that the outflow direction of the air-fuel mixture 103 is parallel to the axial direction A of the burner.
  • the groups 7 are arranged in the radial direction R of a burner rotation axis M and staggered in the axial direction A.
  • the groups 7 are therefore due to the small combustion time as an axial additional stage, the downstream of the main burner stage (downstream here means in the axial direction A after the pilot burner 115) is mounted.
  • the next outer group 7 of burner modules downstream seen in the axial direction A radially outward than the next inner group 7 of burner modules 1.
  • the groups 7 of burner modules 1 with the same axial staggering are combined into one stage.
  • the axial staging allows distribution of the combustion zones within the combustion chamber 52.
  • the stage has a common fuel control. Depending on the load, the axial stages are switched on, the innermost (distance of the group 7 to the burner rotation axis M being least) being switched on first and the outermost one last. A number of three axial stages is considered optimal.
  • Fig. 3 can also be provided a pilot burner 115.
  • the pilot burner 115 can also be replaced by a group 7 of suitable burner modules 1, or the pilot function is performed by the group 7 of burner modules 1 lying furthest in the axial direction of the burner.
  • FIG. 5 shows very schematically an embodiment of groups 7 of burner modules 1 in a ring burner with a corresponding combustion chamber 52, wherein in the combustion chamber 52 a second combustion zone 160 in the axial direction A downstream of a primary combustion zone 140 by means of groups 7 of burner modules 1 are formed can.
  • the groups 7 of burner modules 1 can be at different Positions on the combustion chamber wall 110, both on the combustion chamber outer wall and a burner hub outer wall (not shown) are attached or replaced the combustion chamber wall 110. Furthermore, a grading of the groups 7 is also possible.
  • the groups 7 of burner modules 1 are then arranged concentrically around the pilot burner 115, wherein the areas between groups 7 of burner modules 1 can be provided with further groups 7 of burner modules 1 or as combustion chamber wall 110 are executed (not shown).

Abstract

The burner has burner modules (1) with passage channels (100) extending from a lower side (91) to an upper side (92) of a plate (90). The channels form an air flow direction (L) for air (102) flowing through the channels. The modules are divided in two groups (7), and the channels have distances (S) measured from a central point of a cross sectional surface (D). A ratio of the distances of the channels of one of the groups arranged remote from a turbine to the surface is larger than that of the channels of the other group arranged proximate to the turbine.

Description

Die Erfindung betrifft einen Brenner gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a burner according to the preamble of claim 1.

Um möglichst geringe Stickoxidemissionen bei steigenden Verbrennungstemperaturen zu erzielen, sind moderne Gasturbinenverbrennungssysteme durch ein kompaktes Design gekennzeichnet. Damit die geforderten thermischen Leistungen erreicht werden, sind in der Regel eine größere Anzahl an Brennern, in denen der Brennstoff zugemischt und der Brennstoff mit der Luft vorgemischt wird, parallel geschaltet. Durch Verringerung der Verweilzeit in kompakten Anordnungen können die Stickoxidemissionen weiter verringert werden. Eine weitere Verringerung der Verweilzeit über den gegenwärtigen Stand der Technik, der bei stationären Gasturbinenverbrennungssystemen ca. 15 ms beträgt, kann durch Einführung sogenannter Mikroflammen oder Brennermodulen erzielt werden. Aufgrund der dadurch bedingten hohen Leistungsdichten neigen diese Verbrennungssysteme jedoch zu thermoakustisch induzierten Verbrennungsschwingungen, die den Betriebsbereich der Gasturbine einschränken. Eine Vermeidung dieses Nachteils wäre daher wünschenswert.In order to achieve the lowest possible nitrogen oxide emissions with increasing combustion temperatures, modern gas turbine combustion systems are characterized by a compact design. In order for the required thermal performances to be achieved, a larger number of burners, in which the fuel is admixed and the fuel is premixed with the air, are usually connected in parallel. By reducing the residence time in compact arrangements, nitrogen oxide emissions can be further reduced. A further reduction in dwell time over the current state of the art, which is about 15 ms in stationary gas turbine combustion systems, can be achieved by introducing so-called micro-flames or burner modules. Due to the resulting high power densities, however, these combustion systems tend to thermoacoustically induced combustion oscillations, which limit the operating range of the gas turbine. Avoiding this disadvantage would therefore be desirable.

Die DE 20 23 060 zeigt einen Brenner für gasförmige Brennstoffe mit einer durchlöcherten porösen Austrittsplatte, die an einer Seite an eine Verbrennungszone und an der anderen an eine Grundplatte angrenzt. Die Grundplatte ist mit der Austrittsplatte so verbunden, dass die Perforationen in der Austrittsplatte den Perforationen in der Grundplatte deckungsgleich gegenüberliegen. So kann Luft durch sie strömen. Die Austrittspunkte haben von der Grundplatte einen solchen Abstand zwischen den Löchern, dass Brennstoffdurchgänge gebildet werden. Der Brenner ist insgesamt so ausgebildet, dass während des Gebrauchs des Brenners gasförmiger Brennstoff durch die Brennstoffdurchgänge und von dort durch die poröse Austrittsplatte in die Verbrennungszone strömt, wo er mit der durch die Perforationen angesaugten Luft verbrennt.The DE 20 23 060 shows a burner for gaseous fuels with a perforated porous outlet plate which is adjacent to a combustion zone on one side and to a base plate on the other. The base plate is connected to the outlet plate in such a way that the perforations in the outlet plate are congruent to the perforations in the base plate. So air can flow through them. The exit points have such a distance from the base plate between the holes that fuel passageways are formed. The burner as a whole is designed so that during use of the burner gaseous fuel through the fuel passages and from there through the porous Outlet plate flows into the combustion zone, where it burns with the sucked through the perforations air.

Die EP 1 001 216 A1 zeigt eine Scheibe, mit durch die Scheibe hindurchführende Öffnungen. Quer zu den Öffnungen sind Kanäle angeordnet, durch welche Brennstoff geführt wird. Über diese Kanäle kann Brennstoff den Öffnungen zugeführt werden.The EP 1 001 216 A1 shows a disc, with openings passing through the disc. Channels are arranged transversely to the openings through which fuel is passed. Through these channels fuel can be supplied to the openings.

Die Aufgabe der vorliegenden Erfindung ist die Angabe eines Brenners, welcher den obigen Nachteil vermeidet.The object of the present invention is to provide a burner which avoids the above disadvantage.

Die Aufgabe wird durch die Angabe eines Brenners mit einer Brennkammerwand, umfassend mehrere Brennermodule nach Anspruch 1 gelöst. Weitere vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.The object is achieved by specifying a burner with a combustion chamber wall, comprising a plurality of burner modules according to claim 1. Further advantageous embodiments will be apparent from the dependent claims.

Die Verwendung derartiger vieler Brennermodule in verschaltbaren Gruppen ermöglicht eine hohe Flexibilität, sowohl hinsichtlich der Auslegung des Verbrennungssystems, als auch beim Betrieb einer Gasturbine. Weiterhin kann durch die gewählte Anordnung die Wärme in der gesamten Brennkammer verteilt freigesetzt werden, womit eine Unterdrückung von Verbrennungsschwingungen möglich ist. Die Brennstoffversorgung der unterschiedlichen Gruppen von Brennermodulen kann zudem lastabhängig zugeschaltet werden. Der Brennstoffeindüsung kann zudem eine Brennstoffmenge zugewiesen werden, die im Regelbereich variiert. So kann eine verbesserte Kontrolle der Eindüsemenge und somit verbesserte NOx-Werte erhalten werden. Die Brennermodule einer Gruppe können unterschiedlich ausgelegt sein. Somit kann die Brennstoffmenge an unterschiedlichen Teilen der Brennkammer zusätzlich zu der Verschaltung in Gruppen gesteuert werden und bietet somit zusätzliche Betriebsflexibilität.The use of such many burner modules in interconnectable groups allows a high flexibility, both in terms of the design of the combustion system, as well as the operation of a gas turbine. Furthermore, the heat can be released distributed in the entire combustion chamber by the selected arrangement, whereby a suppression of combustion vibrations is possible. The fuel supply of the different groups of burner modules can also be switched on depending on the load. The fuel injection can also be assigned a fuel quantity that varies within the control range. Thus, improved control of the amount of lead and thus improved NOx levels can be obtained. The burner modules of a group can be designed differently. Thus, the amount of fuel at different parts of the combustion chamber can be controlled in groups in addition to the interconnection, thus providing additional operational flexibility.

Der Brenner weist eine axiale Richtung und eine radiale Richtung auf. Die Gruppen sind in axialer Richtung und/oder radialer Richtung an der Brennkammerwand des Brenners angeordnet. Die Anordnung der Gruppen ist bestimmend für die Brennergeometrie oder falls eine bestimmte Brennergeometrie vorgegeben ist, kann das Design der Gruppen an diese angepasst werden. Die Gruppen können dabei radial angeordnet und axial gestaffelt sein. Die jeweils nächste äußere Gruppe von Brennermodulen liegt in axialer Richtung gesehen stromabwärts der nächsten inneren Gruppe von Brennermodulen. Die axiale Staffelung erlaubt eine gleichmäßige Verteilung der Verbrennungszonen innerhalb der Brennkammer. Die Gruppe mit gleicher axialer Staffelung wird zu einer Stufe zusammengefasst, die eine gemeinsame Brennstoffregelung besitzt. Abhängig von der Last werden die axialen Stufen zugeschaltet, wobei die innerste (bezogen auf die Brennerachse) zuerst und die äußerste zuletzt zugeschaltet wird. Eine Anzahl von drei axialen Stufen wird als ideal angesehen. Somit kann die Brennstoffmenge besonders gut lastabhängig eingebracht werden, was sich wiederum günstig auf die NOx-Entstehung auswirkt.The burner has an axial direction and a radial direction. The groups are arranged in the axial direction and / or radial direction on the combustion chamber wall of the burner. The arrangement of the groups is decisive for the burner geometry or if a particular burner geometry is given, the design of the groups can be adapted to them. The groups can be arranged radially and axially staggered. The next outer group of burner modules, viewed in the axial direction, is located downstream of the next inner group of burner modules. The axial staggering allows a uniform distribution of the combustion zones within the combustion chamber. The group with the same axial staggering is combined to a stage that has a common fuel control. Depending on the load, the axial stages are switched on, the innermost (relative to the burner axis) being switched on first and the outermost one last. A number of three axial stages are considered ideal. Thus, the amount of fuel can be introduced particularly well load-dependent, which in turn has a favorable effect on the formation of NOx.

Bevorzugt ist der Durchgangskanal im Wesentlichen im Querschnitt rund. Bevorzugt sind mehrere Durchgangskanäle vorhanden, welche zumindest einen Abstand zueinander aufweisen. Es ist aus Flammenstabilitätsgründen günstig, den Faktor Abstand zu Querschnittsfläche bei den von der Turbine weiter entfernten Gruppen von Brennermodulen, größer zu wählen und den Faktor Abstand zu Querschnittsfläche bei den näher zur Turbine befindlichen Gruppen von Brennermodulen, enger zu wählen. Somit kann ein Verlöschen der Flamme und Hot Spots vermieden werden.Preferably, the passageway is substantially round in cross section. Preferably, a plurality of passage channels are present, which have at least one distance from each other. It is beneficial for flame stability reasons to more closely select the distance to cross-sectional area factor for the groups of burner modules farther from the turbine, and to narrow the distance-to-cross-sectional area factor for the groups of burner modules closer to the turbine. Thus, extinguishing the flame and hot spots can be avoided.

Weitere Merkmale, Eigenschaften und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Figuren.

Fig. 1
zeigt ein Brennermodul.
Fig. 2
zeigt ein Brennermodul mit zwei Durchgangskanälen und einer Brennstoffeindüsung.
Fig. 3
zeigt ein erstes Ausführungsbeispiel von Gruppen von Brennermodulen in einem Rohrbrenner mit Brennkammer.
Fig. 4
zeigt ein weiteres Ausführungsbeispiel von Gruppen von Brennermodulen in einem Rohrbrenner mit Brennkammer.
Fig. 5
zeigt ein Ausführungsbeispiel von Gruppen von Brennermodulen in einem Ringbrenner mit Brennkammer.
Further features, properties and advantages of the present invention will become apparent from the following description of embodiments with reference to the accompanying figures.
Fig. 1
shows a burner module.
Fig. 2
shows a burner module with two through channels and a fuel injection.
Fig. 3
shows a first embodiment of groups of burner modules in a tube burner with combustion chamber.
Fig. 4
shows a further embodiment of groups of burner modules in a tube burner with combustion chamber.
Fig. 5
shows an embodiment of groups of burner modules in a ring burner with combustion chamber.

Um möglichst geringe Stickoxidemissionen bei steigenden Verbrennungstemperaturen zu erzielen, sind moderne Gasturbinenverbrennungssysteme durch ein kompaktes Design gekennzeichnet. Damit die geforderten thermischen Leistungen erreicht werden, wird in der Regel eine größere Anzahl an Brennern, in denen der Brennstoff zugemischt und der Brennstoff mit der Luft vorgemischt wird, parallel geschaltet. Durch Verringerung der Verweilzeit in kompakten Anordnungen können die Stickoxidemissionen weiter verringert werden. Eine weitere Verringerung der Verweilzeit über den gegenwärtigen Stand der Technik, der bei stationären Gasturbinenverbrennungssystemen ca. 15 ms beträgt, kann durch Einführung sogenannter Brennermodule (Mikroflammenbrenner) erzielt werden. Aufgrund der dadurch bedingten hohen Leistungsdichten neigen diese Verbrennungssysteme jedoch zu thermoakustisch induzierten Verbrennungsschwingungen, die den Betriebsbereich der Gasturbine stark einschränken. Dies wird mit Hilfe der Erfindung nun vermieden.In order to achieve the lowest possible nitrogen oxide emissions with increasing combustion temperatures, modern gas turbine combustion systems are characterized by a compact design. In order for the required thermal performances to be achieved, a larger number of burners, in which the fuel is mixed in and the fuel is premixed with the air, are usually connected in parallel. By reducing the residence time in compact arrangements, nitrogen oxide emissions can be further reduced. A further reduction in dwell time over the current state of the art, which is about 15 ms in stationary gas turbine combustion systems, can be achieved by introducing so-called burner modules (micro flame burners). Due to the resulting high power densities, however, these combustion systems tend to thermoacoustically induced combustion oscillations, which severely limit the operating range of the gas turbine. This is now avoided by means of the invention.

Fig. 1 zeigt ein Brennermodul 1. Das Brennermodul 1 weist dabei eine Platte 90 mit einer Oberseite 92 und einer Unterseite 91 auf. Zudem weist das Brennermodul 1 ein Durchgangskanal 100 zur Führung von Luft 102 auf. Dabei kann die Luft 102 auch ein Luft-Brennstoffgemisch sein. Der Durchgangskanal 100 erstreckt sich von der Unterseite 91 zur Oberseite 92 durch die Platte 90 hindurch. Die durch den Durchgangskanal 100 hindurchströmende Luft 102 bildet eine Luftströmungsrichtung L aus, wobei in Luftströmungsrichtung L nachgeschaltet eine Brennkammer 52 (Fig. 3) vorgesehen ist. Zudem umfasst das Brennermodul 1 eine Brennstoffeindüsung zur Einbringung von Brennstoff. Die Brennstoffeindüsung umfasst dabei zumindest einen Verteilerkanal 5 und einen Kanal 101, der Brennstoff vom Verteilerkanal 5 zu dem Durchgangskanal 100 transportiert. Der Brennstoff kann dabei mittels nicht näher beschriebener Kanäle zu dem Verteilerkanal 5 transportiert werden. Fig. 1 shows a burner module 1. The burner module 1 in this case has a plate 90 with a top 92 and a bottom 91. In addition, the burner module 1 has a through-passage 100 for guiding air 102. In this case, the air 102 may also be an air-fuel mixture. The passageway 100 extends from the bottom 91 to the top 92 through the plate 90 therethrough. The air flowing through the passageway 100 air 102 forms an air flow direction L, wherein in the air flow direction L downstream of a Combustion chamber 52 ( Fig. 3 ) is provided. In addition, the burner module 1 comprises a fuel injection for introducing fuel. The fuel injection thereby comprises at least one distributor channel 5 and a channel 101, which transports fuel from the distributor channel 5 to the through-channel 100. The fuel can be transported by means not described in more detail channels to the distribution channel 5.

Fig. 2 zeigt zwei Durchgangkanäle 100 die von einem gemeinsamen Verteilerkanal 5 über zwei Kanäle 101 mit Brennstoff versorgt werden. Als eine Gruppe 7 von Brennermodulen 1 wird eine Anzahl von mindestens einem, üblicherweise aber mehreren Brennermodulen 7 bezeichnet. Umschließt eine Gruppe 7 mehrere Durchgangskanäle 100, wie in Fig. 2 gezeigt, so kann eine Brennstoffeindüsung auch mehrere solcher Kanäle 101 umfassen, die mehrere Durchgangskanäle 100 mit Brennstoff versorgen. Der Brennstoff kann dabei - wie in Fig. 2 und 1 gezeigt - über senkrecht zu dem Durchgangskanal 100 angeordnete Kanäle 101 direkt senkrecht zur Luftströmungsrichtung L und damit zur Luft 102 eingebracht werden. Zudem kann - je nach Brennerbauart - auch eine Einbringung unter einem Winkel erfolgen. Eine Gruppe 7 kann aus einer unterschiedlichen Anzahl von Brennermodulen 1 bestehen, das heißt unterschiedlich viele Durchgangskanäle 100 und unterschiedlich viele Verteilerkanäle 5 und unterschiedlich viele Kanäle 101 aufweisen. Fig. 2 shows two passageways 100 which are supplied by a common distribution channel 5 via two channels 101 with fuel. As a group 7 of burner modules 1, a number of at least one, but usually more burner modules 7 is referred to. A group 7 encloses several passageways 100, as in FIG Fig. 2 As shown, a fuel injection may also include a plurality of such channels 101 that provide fuel to multiple passageways 100. The fuel can - as in FIGS. 2 and 1 shown are arranged perpendicular to the passageway 100 channels 101 directly perpendicular to the air flow direction L and thus to the air 102 introduced. In addition, depending on the type of burner, it can also be introduced at an angle. A group 7 can consist of a different number of burner modules 1, that is, have different number of through-channels 100 and different numbers of distribution channels 5 and different numbers of channels 101.

Luft 102 wird durch den Durchgangskanal 100 hindurchgeströmt. Der Durchgangskanal 100 kann dabei als zylindrische Durchgangsbohrung mit einem Durchmesser D und einer Querschnittsfläche realisiert sein. Der Durchmesser D beträgt hierbei bevorzugt 1-12 mm. Die Turbulenz der Luftströmung 102 kann durch Turbulenzgeneratoren erhöht werden. Dies können beispielsweise Deltawings, oder Mischelemente etc. sein (nicht gezeigt). Darüber hinaus kann durch eine Einlaufströmungsvorrichtung, die beispielsweise in Luftströmungsrichtung L gesehen vor dem Brennermodul 1 angeordnet wird (nicht gezeigt), die Luft 102 verdrallt werden. Dies ergibt eine bessere Durchmischung von Luft 102 mit Brennstoff und somit eine bessere Verbrennung ohne Hot Spots. Durch die Kanäle 101 der Brennstoffeindüsung wird Brennstoff in dem Durchgangskanal 100, und damit in die Luft 102 eingedüst und vermischt sich mit diesem zu einem Luft-Brennstoffstrom 103. Die Kanäle 101 können dabei in einem Abstand KL von der Austrittsfläche des Luft-Brennstoffstroms 103 angeordnet sein. Dabei wird das Verhältnis von Abstand KL zu D, bevorzugt mit 0.1-8 angegeben. Bei einem Brennermodul 1 mit mehreren Durchgangskanälen 100 können diese einen Abstand S voneinander aufweisen, gerechnet vom jeweiligen Mittelpunkt der Querschnittsfläche des Durchgangskanals 100 an. Dabei ist bevorzugt das Verhältnis von S zu D mit 1.5 bis 10 anzugeben. Somit werden Flammenstabilität gewährleistet und Hot Spots vermieden.Air 102 is flowed through the passageway 100. The passageway 100 can be realized as a cylindrical through-hole with a diameter D and a cross-sectional area. The diameter D is in this case preferably 1-12 mm. The turbulence of the airflow 102 may be increased by turbulence generators. These may be, for example, delta vans, or mixing elements, etc. (not shown). In addition, by an inlet flow device, which is arranged, for example, in the air flow direction L in front of the burner module 1 is arranged (not shown), the air 102 are twisted. This gives a better one Mixing of air 102 with fuel and thus a better combustion without hot spots. Through the channels 101 of the fuel injection fuel in the passageway 100, and thus injected into the air 102 and mixes with this to an air-fuel stream 103. The channels 101 can be arranged at a distance KL from the exit surface of the air-fuel stream 103 his. The ratio of distance KL to D, preferably 0.1-8 is given. In a burner module 1 with a plurality of through channels 100, these may have a distance S from each other, calculated from the respective center of the cross-sectional area of the through-channel 100. It is preferable to specify the ratio of S to D with 1.5 to 10. This ensures flame stability and avoids hot spots.

Darüber hinaus ist es aus Flammenstabilitätsgründen günstig, das Verhältnis von S zu D bei den von der Turbine 8 (Fig. 3) weiter entfernten Gruppen 7 von Brennermodulen 1 größer zu wählen und das Verhältnis von S zu D bei den näher zur Turbine 8 befindlichen Gruppen 7 von Brennermodulen 1 enger zu wählen.Moreover, for reasons of flame stability, it is beneficial to have the ratio of S to D at those of the turbine 8 (FIG. Fig. 3 ) to select more distant groups 7 of burner modules 1 larger and to choose the ratio of S to D in the closer to the turbine 8 groups 7 of burner modules 1 closer.

Wie Fig. 3 zeigt, umfasst der Brenner mit einer Brennkammerwand 110 mehrere Gruppen 7, welche aus Brennermodulen 1 bestehen. Erfindungsgemäß sind mindestens zwei der Gruppen 7 verschaltbar in Bezug auf die Brennstoffmenge.As Fig. 3 shows, the burner with a combustion chamber wall 110 comprises a plurality of groups 7, which consist of burner modules 1. According to the invention, at least two of the groups 7 are interconnectable with respect to the fuel quantity.

Die Brennermodule 1 innerhalb einer Gruppe 7 (Fig. 3) oder in verschiedenen Gruppen 7 können unterschiedlich ausgelegt sein, z.B. unterschiedlich in der Größe. Die Gruppen 7 können direkt an der Brennkammerwand 110 des Brenners angebracht sein oder diese zumindest teilweise ersetzen.The burner modules 1 within a group 7 ( Fig. 3 ) or in different groups 7 can be designed differently, eg different in size. The groups 7 may be attached directly to the combustion chamber wall 110 of the burner or at least partially replace it.

Die Gruppen 7 können mit vorgemischten bzw. teilvorgemischten oder gar nicht vorgemischten Brennermodulen 1 betrieben werden. In einem Brenner können auch unterschiedliche solcher Gruppen 7 (vorgemischt, teilvorgemischt, nicht vorgemischt) vorkommen.The groups 7 can be operated with premixed or partially premixed or not premixed burner modules 1. In a burner also different such groups 7 (premixed, partially premixed, not premixed) may occur.

Der in Fig. 3 gezeigte Brenner weist dabei eine axiale Richtung A und eine radiale Richtung R auf. Die Gruppen 7 können sowohl in axialer Richtung A als auch in radialer Richtung R an der Brennkammerwand 110 angeordnet werden. Die Anordnung der Gruppen 7 ist bestimmend für die Brennergeometrie. Falls jedoch eine bestimmte Brennergeometrie vorgegeben ist, kann das Design der Gruppen 7 an diese angepasst werden. Die Brennstoffversorgung zu einzelnen Gruppen 7 kann lastabhängig zugeschaltet werden und die Brennstoffmenge kann innerhalb des Regelbereiches variiert werden.The in Fig. 3 shown burner has an axial direction A and a radial direction R. The groups 7 can be arranged both in the axial direction A and in the radial direction R on the combustion chamber wall 110. The arrangement of the groups 7 is decisive for the burner geometry. However, if a certain burner geometry is given, the design of the groups 7 can be adapted to them. The fuel supply to individual groups 7 can be switched depending on the load and the fuel quantity can be varied within the control range.

In Fig. 3 wird die Anordnung von Gruppen 7 von Brennermodulen in einem Rohrbrenner mit entsprechender Brennkammer 52 gezeigt. Die Brennkammer 52 weist dabei eine vordere Stirnseite 105 auf. Der Durchmesser DS dieser Stirnseite 105 beträgt 0.05 bis 1 vom maximalen radialen Durchmesser DSmax der Brennkammer. An der Stirnseite 105 ist ein Pilotbrenner 115 vorgesehen, mit dem die Gasturbine gestartet werden kann. Der Pilotbrenner 115 kann dabei auch durch einen Piloten aus Brennermodulen 1 ersetzt werden oder die Pilotfunktion wird von der am weitesten stromabwärts liegenden Gruppe 7 von Brennermodulen 1 wahrgenommen; stromabwärts bedeutet hier in axialer Richtung A nach dem Pilotbrenner 115. Der Pilotbrenner 115 wird vor allem beim Starten der Maschine eingesetzt, um die Verbrennung gezielt in Gang zu setzen und ein Verlöschen von Flammen zu verhindern. Die Brennkammer 52 des Ausführungsbeispiels 3 ist dabei teilweise kegelförmig. In dem Ausführungsbeispiel der Fig. 3 werden die Gruppen 7 der Brennermodule auf der Kegelfläche 120 der Brennkammer 52 angeordnet. Der Öffnungswinkel α der Kegelfläche 120 beträgt dabei bevorzugt 10 Grad. Dadurch ergibt sich ein guter Einströmwinkel des Luft-Brennstoffgemisches 103 in die den Gruppen 7 nachgeschaltete Brennkammer 52. Die Anzahl dieser Gruppe 7 von Brennermodulen 1 auf der Kegelfläche 120 ist beliebig. Die Gruppen 7 von Brennermodulen 1 können eine unterschiedliche Größe besitzen und können aus verschiedenen Brennstoffstufen gespeist werden. Dies ermöglicht einen sehr flexiblen Betrieb der Maschine.In Fig. 3 the arrangement of groups 7 of burner modules in a tube burner with corresponding combustion chamber 52 is shown. The combustion chamber 52 has a front end face 105. The diameter DS of this end face 105 is 0.05 to 1 of the maximum radial diameter DSmax of the combustion chamber. On the front side 105, a pilot burner 115 is provided, with which the gas turbine can be started. The pilot burner 115 can also be replaced by a pilot from burner modules 1 or the pilot function is performed by the furthest downstream group 7 of burner modules 1; downstream means here in the axial direction A after the pilot burner 115. The pilot burner 115 is used primarily when starting the machine to set the combustion targeted in motion and to prevent extinction of flames. The combustion chamber 52 of the embodiment 3 is partially conical. In the embodiment of Fig. 3 The groups 7 of the burner modules are arranged on the conical surface 120 of the combustion chamber 52. The opening angle α of the conical surface 120 is preferably 10 degrees. This results in a good inflow angle of the air-fuel mixture 103 in the combustion chamber 52 downstream of the groups 7. The number of this group 7 of burner modules 1 on the conical surface 120 is arbitrary. The groups 7 of burner modules 1 may have a different size and may be of different fuel levels be fed. This allows a very flexible operation of the machine.

Fig. 4 zeigt eine Brennkammer 52 in der die Gruppen 7 so ausgerichtet ist, dass die Ausströmrichtung des Luft-Brennstoffgemisches 103 parallel zur axialen Richtung A des Brenners erfolgt. Die Gruppen 7 sind in radialer Richtung R von einer Brennerrotationsachse M angeordnet und in axialer Richtung A gestaffelt. Die Gruppen 7 eignen sich daher aufgrund der kleinen Verbrennungszeit auch als axiale Zusatzstufe, die stromabwärts der Hauptbrennerstufe (stromabwärts bedeutet hier in axialer Richtung A nach dem Pilotbrenner 115) angebracht ist. Die jeweils nächste äußere Gruppe 7 von Brennermodulen liegt stromabwärts gesehen in axialer Richtung A radial weiter nach außen als die nächste innere Gruppe 7 von Brennermodulen 1. Die Gruppen 7 von Brennermodulen 1 mit gleicher axialer Staffelung werden zu einer Stufe zusammengefasst. Die axiale Stufung erlaubt eine Verteilung der Verbrennungszonen innerhalb der Brennkammer 52. Die Stufe besitzt eine gemeinsame Brennstoffregelung. Abhängig von der Last werden die axialen Stufen zugeschaltet, wobei die innerste (Abstand der Gruppe 7 zu der Brennerrotationsachse M ist am geringsten) zuerst und die äußerste zuletzt zugeschaltet wird. Eine Anzahl von drei axialen Stufen wird als optimal angesehen. Wie in Fig. 3 kann auch ein Pilotbrenner 115 vorgesehen sein. Der Pilotbrenner 115 kann dabei auch durch einen Gruppe 7 von geeigneten Brennermodulen 1 ersetzt werden oder die Pilotfunktion wird von der am weitesten in axialer Richtung des Brenners liegenden Gruppe 7 von Brennermodulen 1 wahrgenommen. Fig. 4 shows a combustion chamber 52 in which the groups 7 is aligned so that the outflow direction of the air-fuel mixture 103 is parallel to the axial direction A of the burner. The groups 7 are arranged in the radial direction R of a burner rotation axis M and staggered in the axial direction A. The groups 7 are therefore due to the small combustion time as an axial additional stage, the downstream of the main burner stage (downstream here means in the axial direction A after the pilot burner 115) is mounted. The next outer group 7 of burner modules downstream seen in the axial direction A radially outward than the next inner group 7 of burner modules 1. The groups 7 of burner modules 1 with the same axial staggering are combined into one stage. The axial staging allows distribution of the combustion zones within the combustion chamber 52. The stage has a common fuel control. Depending on the load, the axial stages are switched on, the innermost (distance of the group 7 to the burner rotation axis M being least) being switched on first and the outermost one last. A number of three axial stages is considered optimal. As in Fig. 3 can also be provided a pilot burner 115. The pilot burner 115 can also be replaced by a group 7 of suitable burner modules 1, or the pilot function is performed by the group 7 of burner modules 1 lying furthest in the axial direction of the burner.

Figur 5 zeigt - sehr schematisch - ein Ausführungsbeispiel von Gruppen 7 von Brennermodulen 1 in einem Ringbrenner mit einer entsprechenden Brennkammer 52, wobei in der Brennkammer 52 eine zweite Verbrennungszone 160 in axialer Richtung A stromabwärts einer primären Verbrennungszone 140 mit Hilfe von Gruppen 7 von Brennermodulen 1 ausgebildet werden kann. Die Gruppen 7 von Brennermodulen 1 können an unterschiedlichen Positionen an der Brennkammerwand 110, sowohl an der Brennkammeraußenwand als auch einer Brennernabenaußenwand (nicht gezeigt) angebracht werden oder die Brennkammerwand 110 ersetzten. Weiterhin ist ebenfalls eine Stufung der Gruppen 7 möglich. Dabei werden die Gruppen 7 von Brennermodulen 1 dann konzentrisch um den Pilotbrenner 115 angeordnet, wobei die Bereiche zwischen Gruppen 7 von Brennermodulen 1 mit weiteren Gruppen 7 von Brennermodulen 1 versehen werden können oder als Brennkammerwand 110 ausgeführt werden (nicht gezeigt). FIG. 5 shows very schematically an embodiment of groups 7 of burner modules 1 in a ring burner with a corresponding combustion chamber 52, wherein in the combustion chamber 52 a second combustion zone 160 in the axial direction A downstream of a primary combustion zone 140 by means of groups 7 of burner modules 1 are formed can. The groups 7 of burner modules 1 can be at different Positions on the combustion chamber wall 110, both on the combustion chamber outer wall and a burner hub outer wall (not shown) are attached or replaced the combustion chamber wall 110. Furthermore, a grading of the groups 7 is also possible. The groups 7 of burner modules 1 are then arranged concentrically around the pilot burner 115, wherein the areas between groups 7 of burner modules 1 can be provided with further groups 7 of burner modules 1 or as combustion chamber wall 110 are executed (not shown).

Die Verwendung vieler Gruppen 7 von Brennermodulen 1 ermöglicht eine hohe Flexibilität sowohl hinsichtlich der Auslegung des Verbrennungssystems als auch beim Betrieb einer Gasturbine. Weiterhin kann durch die gewählte Anordnung die Wärme in der gesamten Brennkammer verteilt freigesetzt werden, womit eine Unterdrückung von Verbrennungsschwingungen ermöglicht wird.The use of many groups 7 of burner modules 1 allows a high flexibility both in terms of the design of the combustion system and in the operation of a gas turbine. Furthermore, the heat can be released distributed in the entire combustion chamber by the selected arrangement, thus enabling a suppression of combustion oscillations.

Claims (13)

Brenner mit einer Brennkammerwand (110) umfassend mehrere Brennermodule (1), wobei die jeweiligen Brennermodule (1) eine Platte (90) mit einer Oberseite (92) und einer Unterseite aufweisen, wobei zudem ein Durchgangskanal (100) vorhanden ist zur Führung von Luft (100), welcher sich von der Unterseite (91) zur Oberseite (92) der Platte (90) hindurch erstreckt, wobei durch die durch den Durchgangskanal (100) hindurchströmende Luft (102) eine Luftströmungsrichtung (L) ausgebildet ist, wobei in Luftströmungsrichtung (L) nachgeschaltet eine Brennkammer (52) vorgesehen ist, sowie einer Brennstoffeindüsung zur Einbringung von Brennstoff in den Durchgangskanal (100),
dadurch gekennzeichnet, dass die mehreren Brennermodule (1) zumindest in zwei unterschiedliche Gruppen (7) von Brennermodulen (1) eingeteilt sind und dass diese Gruppen (7) verschaltbar in Bezug auf die Brennstoffmenge sind.
A combustor having a combustor wall (110) comprising a plurality of combustor modules (1), wherein the respective burner modules (1) include a plate (90) having a top (92) and a bottom, and further including a passageway (100) for conducting air (100) extending from the underside (91) to the top (92) of the plate (90), wherein an air flow direction (L) is formed through the air (102) passing through the passageway (100), in the air flow direction (L) downstream of a combustion chamber (52) is provided, as well as a fuel injection for introducing fuel into the passageway (100),
characterized in that the plurality of burner modules (1) are divided into at least two different groups (7) of burner modules (1) and that these groups (7) are interconnectable with respect to the fuel quantity.
Brenner nach Anspruch 1,
dadurch gekennzeichnet, dass die Gruppen (7) aus einer unterschiedlichen Anzahl von Brennermodulen (1) bestehen.
Burner according to claim 1,
characterized in that the groups (7) consist of a different number of burner modules (1).
Brenner nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die Brennermodule (1) einer Gruppe (7) unterschiedlich ausgelegt sind.
Burner according to claim 1 or 2,
characterized in that the burner modules (1) of a group (7) are designed differently.
Brenner nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Brenner eine axiale Richtung (A) und eine radiale Richtung (R) aufweisen, wobei die Gruppen (7) in axialer Richtung (A) und/oder radialer Richtung (R) an der Brennkammerwand (110) angeordnet sind.
Burner according to one of the preceding claims,
characterized in that the burners have an axial direction (A) and a radial direction (R), wherein the groups (7) in the axial direction (A) and / or radial direction (R) on the combustion chamber wall (110) are arranged.
Brenner nach Anspruch 4,
dadurch gekennzeichnet, dass die Gruppen (7) in axialer Richtung (A) eine Staffelung aufweisen.
Burner according to claim 4,
characterized in that the groups (7) in the axial direction (A) have a staggering.
Brenner nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Durchgangskanal (100) im Querschnitt rund ist.
Burner according to one of the preceding claims,
characterized in that the passageway (100) is round in cross-section.
Brenner nach Anspruch 6,
dadurch gekennzeichnet, dass mehrere Durchgangskanäle (100) vorhanden sind, welche zumindest einen Abstand (S), gemessen von Mittelpunkt der Querschnittsfläche (D) voneinander aufweisen.
Burner according to claim 6,
characterized in that a plurality of through channels (100) are present, which at least one distance (S), measured from the center of the cross-sectional area (D) from each other.
Brenner nach Anspruch 7,
dadurch gekennzeichnet, dass das eine Turbine (8) vorhanden ist und das Verhältnis des Abstandes (S) zu der Querschnittsfläche bei den von der Turbine (8) weiter entfernten Gruppen (7) von Brennermodulen (1) größer gewählt ist als bei den näher zur Turbine (8) befindlichen Gruppen (7) von Brennermodulen (1).
Burner according to claim 7,
characterized in that the one turbine (8) is present and the ratio of the distance (S) to the cross-sectional area at the turbine (8) farther away groups (7) of burner modules (1) is selected to be greater than in the closer to Turbine (8) located groups (7) of burner modules (1).
Brenner nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Durchgangskanal (100) einen Durchmesser (D) von 1-12 mm aufweist.
Burner according to one of the preceding claims,
characterized in that the passageway (100) has a diameter (D) of 1-12 mm.
Brenner nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Durchgangskanal (100) Turbulenzgeneratoren aufweist.
Burner according to one of the preceding claims,
characterized in that the passageway (100) comprises turbulence generators.
Brenner nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Luft (102) vor Einströmung in den Durchgangskanal (100) mittels einer Einlaufströmvorrichtung verdrallt wird.
Burner according to one of the preceding claims,
characterized in that the air (102) before flowing into the passageway (100) is twisted by means of an inlet flow device.
Brenner nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Brennstoffeindüsung zumindest einen Verteilerkanal (5) sowie einen Kanal (101) umfasst, um zumindest einen Durchgangskanal (100) mit Brennstoff zu versorgen.
Burner according to one of the preceding claims,
characterized in that the fuel injection comprises at least one distribution channel (5) and a channel (101) to supply at least one passageway (100) with fuel.
Gasturbine mit einem Verdichter (5), einer Turbine (8) und einem Brenner nach einem der vorhergehenden Ansprüche.Gas turbine with a compressor (5), a turbine (8) and a burner according to one of the preceding claims.
EP20100169632 2010-07-15 2010-07-15 Burner Not-in-force EP2407715B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20100169632 EP2407715B1 (en) 2010-07-15 2010-07-15 Burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20100169632 EP2407715B1 (en) 2010-07-15 2010-07-15 Burner

Publications (2)

Publication Number Publication Date
EP2407715A1 true EP2407715A1 (en) 2012-01-18
EP2407715B1 EP2407715B1 (en) 2012-11-07

Family

ID=43706309

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100169632 Not-in-force EP2407715B1 (en) 2010-07-15 2010-07-15 Burner

Country Status (1)

Country Link
EP (1) EP2407715B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3228939A1 (en) * 2016-04-08 2017-10-11 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion appliance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2023060A1 (en) 1969-05-19 1971-03-11 British Petroleum Co Burners for gaseous fuels
EP0924411A2 (en) * 1997-12-19 1999-06-23 Rolls-Royce Plc Fluid manifold
EP1001216A1 (en) 1998-11-11 2000-05-17 Siemens Aktiengesellschaft Device for injecting a fluid in a channel
US6427447B1 (en) * 2001-02-06 2002-08-06 United Technologies Corporation Bulkhead for dual fuel industrial and aeroengine gas turbines
DE102007046251A1 (en) * 2006-10-02 2008-04-03 General Electric Co. Combustion system for gas turbines comprises combustion chamber, into which air is fed through inlet, fuel being fed into air stream through pair of inlets at angle to it, so that streams cross
DE102009026029A1 (en) * 2008-09-02 2010-03-04 General Electric Co. Multi-pipe arrangement for combustion chamber and method for producing the multi-pipe arrangement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2023060A1 (en) 1969-05-19 1971-03-11 British Petroleum Co Burners for gaseous fuels
EP0924411A2 (en) * 1997-12-19 1999-06-23 Rolls-Royce Plc Fluid manifold
EP1001216A1 (en) 1998-11-11 2000-05-17 Siemens Aktiengesellschaft Device for injecting a fluid in a channel
US6427447B1 (en) * 2001-02-06 2002-08-06 United Technologies Corporation Bulkhead for dual fuel industrial and aeroengine gas turbines
DE102007046251A1 (en) * 2006-10-02 2008-04-03 General Electric Co. Combustion system for gas turbines comprises combustion chamber, into which air is fed through inlet, fuel being fed into air stream through pair of inlets at angle to it, so that streams cross
DE102009026029A1 (en) * 2008-09-02 2010-03-04 General Electric Co. Multi-pipe arrangement for combustion chamber and method for producing the multi-pipe arrangement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3228939A1 (en) * 2016-04-08 2017-10-11 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion appliance
US20170292708A1 (en) * 2016-04-08 2017-10-12 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion appliance

Also Published As

Publication number Publication date
EP2407715B1 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
EP2588805B1 (en) Burner
EP2156095B1 (en) Swirling-free stabilising of the flame of a premix burner
EP1064498B1 (en) Burner for a gas turbine
EP1319895B1 (en) Lean-burn premix burner for gas turbine and its method of operation
DE102009025934A1 (en) Diffusion tip for lean direct injection and associated method
DE102011050864A1 (en) Turbine combustion chamber with fuel nozzles with inner and outer fuel circuits
EP2116766A1 (en) Fuel lance
CH702545A2 (en) A method of operating a secondary fuel nozzle and a secondary fuel nozzle.
EP1734306A1 (en) Burner for premix-type combustion
EP2470834A1 (en) Burner, in particular for gas turbines
DE112013007579T5 (en) Liquid fuel cartridge for a fuel nozzle
WO2012016748A2 (en) Gas turbine combustion chamber
WO2012025427A1 (en) Burner arrangement
EP2439447A1 (en) Fuel nozzle, gas turbine combustion chamber and burner with such a fuel nozzle
DE102012017065A1 (en) Method for operating a lean burn burner of an aircraft gas turbine and apparatus for carrying out the method
DE102004027702A1 (en) Injector for liquid fuel and stepped premix burner with this injector
WO2015062962A1 (en) Gas turbine burner hub with pilot burner
EP2583033B1 (en) Turbine burner
WO1999046540A1 (en) Combustion chamber and method for operating a combustion chamber
EP2407715B1 (en) Burner
EP2295858A1 (en) Stabilising of the flame of a burner
DE102013112162A1 (en) Mikromischerdüse
WO2019020350A1 (en) Gas turbine burner having premixed beam flames
EP3250857B1 (en) Burner arrangement
DE102016118633B4 (en) Burner head, burner system and use of the burner system

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20110704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 583167

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010001586

Country of ref document: DE

Effective date: 20130103

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121107

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130207

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130307

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130307

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130208

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130207

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010001586

Country of ref document: DE

Effective date: 20130808

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130715

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140715

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100715

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130715

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150918

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 583167

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010001586

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107