EP2386746B1 - Kraftstoffinjektor - Google Patents

Kraftstoffinjektor Download PDF

Info

Publication number
EP2386746B1
EP2386746B1 EP20110165102 EP11165102A EP2386746B1 EP 2386746 B1 EP2386746 B1 EP 2386746B1 EP 20110165102 EP20110165102 EP 20110165102 EP 11165102 A EP11165102 A EP 11165102A EP 2386746 B1 EP2386746 B1 EP 2386746B1
Authority
EP
European Patent Office
Prior art keywords
hydraulic
injection valve
fuel injector
valve element
valve member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20110165102
Other languages
English (en)
French (fr)
Other versions
EP2386746A3 (de
EP2386746A2 (de
Inventor
Armin Schuelke
Olaf Ohlhafer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2386746A2 publication Critical patent/EP2386746A2/de
Publication of EP2386746A3 publication Critical patent/EP2386746A3/de
Application granted granted Critical
Publication of EP2386746B1 publication Critical patent/EP2386746B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/701Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/001Control chambers formed by movable sleeves

Definitions

  • the invention relates to a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine with a magnetic actuator for direct control of a preferably needle-shaped injection valve member, via the lifting movement at least one injection port of the fuel injector is releasable and closable, according to the preamble of claim 1.
  • the control is usually indirect.
  • an existing in a control chamber the injection valve member is acted upon in the closing direction control pressure is lowered until the pressure applied to the injection valve member pressure forces cause a movement of the injection valve member in the opening direction due to the proportions of the pressurized surfaces.
  • the indirect control of the injection valve member proves to be disadvantageous because a certain amount of fuel must be supplied to a low-pressure fuel return to reduce the control chamber pressure. It is then necessary to return the amount supplied to the return to high pressure, so that the delivery rate of an upstream high-pressure pump increases.
  • indirectly controlled fuel injectors have a delayed response of the injection valve member compared to directly controlled principle.
  • a fuel injector in which the nozzle needle is moved by means of a piezoelectric actuator, wherein a hydraulic coupler is provided for transmitting power from the piezoelectric actuator to the nozzle needle.
  • the hydraulic coupler has two coupler volumes, which can be hydraulically coupled.
  • the present invention is therefore an object of the invention to provide a fuel injector with direct control of the injection valve member using a Magnetaktors that can be operated without backflow and is also fast switching.
  • the fuel injector should be compact and inexpensive to produce.
  • the proposed fuel injector has a magnetic actuator for direct control of a preferably needle-shaped injection valve member, via the lifting movement at least one injection port is releasable and closable.
  • the magnetic actuator comprises a lifting armature element for controlling the control pressure in a control volume which is delimited in the axial direction by a hydraulic active surface A 1 formed on the injection valve member.
  • the hydraulic active surface A 1 of the injection valve member lies within a guide bore at least partially accommodating the injection valve member both a hydraulic active surface A 2 formed on the anchor element and one on a hydraulic booster formed hydraulic active surface A 3 opposite, which is hydraulically coupled via the control volume with the hydraulic active surface A 1 of the injection valve member.
  • the hydraulic active surface A 3 is also formed at the same time as a stop surface and allows a mechanical coupling of the hydraulic booster with the injection valve member.
  • the hydraulic and / or mechanical coupling of the injection valve member with the anchor member and / or the hydraulic translator is offset in time, so that on the respective hydraulically effective effective area ratio a force or Wegverstärkung or a 1/1 ratio of the actuator force is achieved.
  • the hydraulic active surface A 2 formed on the anchor element is hydraulically coupled to the hydraulic active surface A 1 formed on the injection valve member and causes a force amplification.
  • the hydraulic effective area A 2 is therefore designed smaller than the hydraulic effective area A 1 .
  • the power amplification during a first phase of the opening stroke of the injection valve member allows the use of a conventional magnetic actuator for direct control of the injection valve member, since a sufficiently high force to overcome the voltage applied to the injection valve member high closing force can be effected.
  • the initial high closing force and thus the power required for opening decreases, since now under high pressure fuel also passes under the injection valve member and counteracts the closing force.
  • a power amplification switches to a path gain or a 1/1 ratio. The switching results from a change in the area ratios of the control volume limiting hydraulic active surfaces.
  • the hydraulic effective area A 2 of the armature element is selected to be smaller than the hydraulic effective area A 1 of the injection valve member, so that a coupling leads via the control volume to a power gain, which is Hydraulic effective area A 3 of the hydraulic booster chosen so large that the hydraulic active surfaces A 2 and A 3 are greater than or at least equal to the hydraulic effective area A 1 , so that during a second phase of the opening stroke of the injection valve member a path gain, but at least a first / 1 translation is effected.
  • the hydraulic active surface A 3 of the hydraulic booster is also designed as a stop surface against which the injection valve member strikes after initial opening. By striking the injection valve member on the hydraulic booster, a mechanical coupling is effected, which in turn leads to a change in the area ratios of the hydraulic active surfaces and thus to switch from a power gain to a path gain or a 1/1 ratio.
  • the proviso that the hydraulic active surfaces are formed within a guide bore at least partially receiving the injection valve member, with the result that the diameter of the guide bore determines the maximum diameter of the hydraulic active surfaces.
  • the guide diameter thus also has an influence on the control or coupler volume limited in the axial direction by the hydraulic active surfaces. To achieve fast switching times, it is necessary to keep the control or coupler volume small, so that proves to be a small guide diameter advantageous.
  • the proposed fuel injector according to the invention is characterized, on the one hand, by the use of a conventional magnetic actuator which, for example, is more compact and less expensive than a piezoelectric actuator.
  • a direct control of the injection valve member can be realized, whereby the system cost is reduced. Because there is no tax and / or leakage amount, which applies to a return. Consequently, a high-pressure pump with a lower delivery rate can also be used.
  • the minimized control volume formed within a guide bore also ensures fast switching times.
  • the hydraulic translator on a further stop surface, by means of which he during the first Phase of the opening stroke of the injection valve member is supported on the housing side. Due to the support movement of the hydraulic booster is prevented during the first phase of the opening stroke of the injection valve member, which would at least partially compensate for the movement of the anchor element.
  • the stroke of the anchor element causes a magnification of the control volume, so that the control pressure drops.
  • the falling control pressure results in a counter-movement of the hydraulic booster, so that it is pressed against the housing part on which it is supported.
  • only the injection valve member can compensate for the falling control pressure by lifting it from its seat.
  • a spring may be provided, the spring force acts on the hydraulic translator in the direction of the housing part, on which he supported.
  • the hydraulic booster preferably has a central bore through which the anchor element is guided.
  • the anchor element is thus at least partially included in the hydraulic translator. This further ensures that the hydraulic active surfaces formed on the anchor element and on the hydraulic translator of the hydraulic active surface of the injection valve member can be arranged opposite one another.
  • the anchor element has a central bore, in which the hydraulic booster is at least partially accommodated.
  • At least one spring is provided, by means of which the anchor element and / or the hydraulic translator is acted upon in the closing direction of the injection valve member by a pressing force or be.
  • both the anchor element and the hydraulic booster are each acted upon by the pressure force of a separate spring, which causes a return of the anchor element or the hydraulic booster with the completion of the energization of the magnetic actuator.
  • the spring force to return the hydraulic translator provided spring can also be used to hold the hydraulic booster during the first phase of the opening stroke of the injection valve member into contact with the housing part on which the hydraulic booster is supported.
  • the hydraulic booster can be dispensed with a separate spring for resetting the hydraulic booster, if, for example, upon recovery of the anchor element entrainment of the hydraulic booster takes place.
  • the provision of the anchor element can also bring about the entrainment of the injection valve member, so that the injection valve member is returned to its seat via a mechanical coupling with the anchor member. Accordingly, the spring force of the spring is interpreted correspondingly large, by means of which the anchor element is acted upon.
  • at least one other spring can be dispensed with, so that the number of components and thus the manufacturing and tuning costs are reduced.
  • the housing part may in particular be a nozzle body, in which the injection valve member is guided in a liftable manner.
  • the control volume formed within the guide bore is therefore limited in the radial direction by the nozzle body or the respective housing part. Since the control volume in the axial direction is limited not only by the hydraulic active surface A 1 formed on the injection valve member, but also by the hydraulic active surfaces A 2 and A 3 formed on the armature element and the hydraulic translator, this presupposes that the armature element and the hydraulic Translators are at least partially received in the guide bore of the nozzle body and the respective housing part.
  • the guide bore can also be formed in the hydraulic translator.
  • the injection valve member and the anchor member are then at least partially included in the hydraulic translator.
  • the hydraulic booster is designed as a control volume in the radial direction limiting sleeve, in which the injection valve member and the anchor member are at least partially accommodated.
  • the sleeve further preferably has a bottom part with a central bore through which the anchor element is guided. The remaining annular surface of the bottom part forms the hydraulic active surface A 3 , while the diameter of the central bore provided in the bottom part of the sleeve determines the diameter of the hydraulic active surface A 2 formed on the anchor element.
  • An annular end face of the sleeve opposite the bottom part preferably serves as a stop surface, by means of which the hydraulic translator is supported on the housing side, preferably on the nozzle body.
  • a compact design of the fuel injector according to the invention can also be ensured by the fact that the liftable parts injection valve member, anchor member and hydraulic booster are arranged coaxially with each other.
  • a central fuel supply within the fuel injector proves to be advantageous, which makes a laterally arranged separate fuel supply unnecessary. This in turn allows a continuous rotationally symmetrical cross-section of the fuel injector with minimized wall thicknesses, since an equally high fuel pressure rests circumferentially.
  • the hydraulic translator designed as a sleeve has a plurality of circumferentially, preferably equidistant openings, by means of which a centrally located high pressure bore leading to the injection opening is hydraulically connected to a high pressure supply.
  • the perforations may be formed, for example, in the region of the end-side abutment surface, by means of which the sleeve-shaped hydraulic translator on the housing side, preferably on the nozzle body, is supported.
  • An equidistant arrangement of circumferentially arranged apertures ensures a uniform fuel flow and, accordingly, a uniform pressure distribution.
  • the fuel injector can thus have a rotationally symmetrical cross section with minimized wall thicknesses, so that a particularly compact design of the fuel injector is possible. Alternatively, the original dimensions may also be maintained so that the fuel injector is suitable for higher system pressures.
  • the hydraulic booster is constructed in two or more parts and comprises at least one sleeve and a disc.
  • An at least two-part embodiment of the hydraulic translator simplifies its manufacture, since the surfaces provided for limiting the control volume are easily accessible and therefore easy to machine.
  • the disc preferably serves as a bottom part, which rests on the sleeve and forms the hydraulic active surface A 3 .
  • the disc can be detached from the sleeve, so that the respective contact surfaces on the disc and the sleeve form a further sealing seat, via which, if necessary, a relief of the control volume can be effected.
  • Illustrated embodiments of a fuel injector according to the invention have a magnetic actuator 1 for actuating an injection valve member 2.
  • the magnetic actuator 1 is accommodated in each case in an injector body 20 of the fuel injector, to which a nozzle body is attached as a further housing part 14.
  • the nozzle body 14 has a high-pressure bore 17, in which the injection valve member 2 is guided for lifting and closing at least one injection opening 3 in a liftable manner.
  • each of the magnetic actuators 1 of the embodiments of Fig. 1 to 5 a liftably mounted anchor element 4, which is moved by a magnetic force in the opening direction of the injection valve member 2 when the magnet actuator 1 is energized.
  • the movement of the anchor element 4 causes a drop in the control pressure in a control volume 5, which acts on the injection valve member 2 in the closing direction.
  • the control volume 5 thus serves as a coupler volume, via which the injection valve member 2 and the armature element 4 are hydraulically coupled.
  • Each of the control volume 5 in the axial direction bounding surfaces of the injection valve member 2 and the armature element 4 serve as hydraulic active surfaces, wherein the hydraulic active surface A 1 of the injection valve member 2 opposite hydraulic active surface A 2 of the anchor member 4 is selected to be smaller, to increase the force during a to effect the first phase of the opening stroke of the injection valve member 2.
  • the hydraulic active surface A 3 of the hydraulic translator 7 is also formed as a stop surface 8, via which a mechanical coupling of the hydraulic booster 7 takes place with the injection valve member 2 at its impact. The mechanical coupling causes a change in the area ratio of the hydraulic effective surfaces, so that now complement the surfaces A 2 and A 3 and cause a Wegverstärkung or a 1/1 translation.
  • the hydraulic effective surfaces delimiting the control volume 5 in the axial direction lie opposite one another within a guide bore 6, which is formed in a housing part 14, preferably in the nozzle body of the fuel injector, or in the hydraulic booster 7.
  • a guide bore 6 which is formed in a housing part 14, preferably in the nozzle body of the fuel injector, or in the hydraulic booster 7.
  • the guide bore 6 thus helps to minimize the control volume, so that fast-reacting or switching fuel injectors are realized.
  • the control volume 5 receiving guide bore 6 is formed in the nozzle body 14.
  • the injection valve member 2 is completely received in this guide bore 6.
  • the injection opening 3 facing away from the end face of the injection valve member 2 serves as a hydraulic active surface A 1 , which limits the control volume 5 in the axial direction.
  • the hydraulic active surface A 1 further control the volume in the axial direction limiting effective surfaces, namely formed on an anchor element 4 circular hydraulic active surface A 2 and formed on the hydraulic translator 7 annular hydraulic active surface A 3 , since the anchor element 4 in a central bore 10 of the hydraulic booster 7 is received.
  • the present disk-shaped hydraulic translator 7 is further supported via a stop surface 9 on the nozzle body 14.
  • the magnetic actuator 1 is energized.
  • the anchor member 4 is moved against the spring force of a spring 12 upwards in the direction of the magnetic actuator 1.
  • the control volume 5 increases and the control pressure in the control volume 5 is reduced.
  • the pressure applied to the nozzle body 14 hydraulic booster 7 is pressed against the nozzle body 14 and thus seals the control volume 5 in the radial direction.
  • the injection valve member 2 follows the movement of the anchor element 4 and lifts off from its sealing seat.
  • the area ratio of the hydraulically effective surfaces formed on the armature element 4 and on the injection valve member 2 determines in this first phase of the opening stroke of the injection valve member 2 the force or displacement transmission.
  • the hydraulic effective area A 1 of the injection valve member 2 opposite smaller hydraulic effective area A 2 of the anchor element 4 results in a power gain, which is, however, associated with a proportional path reduction.
  • An increased by the first stroke pressure below the injection valve member 2 reduces the force required for further opening, so that it is possible from a certain point in time, from the power gain to a path gain or to switch a 1/1 translation.
  • the spring 13 serves only the positioning of the hydraulic booster 7 and should provide no power assistance compared to the hydraulic forces.
  • the spring 13 may therefore be designed weak.
  • the situation is different with the spring 12, which acts on the anchor member 4 with a compressive force, since upon return of the anchor member 4 this impinges on the injection valve member 2 and resets by way of a mechanical coupling against the sealing seat.
  • Fig. 2 is different from that of Fig. 1 in that the anchor element 4 is sleeve-shaped with a central bore 11 for receiving a piston-shaped hydraulic translator 7. Due to the selected area ratios, an initial force-boosting stroke during a first phase is also realized in this embodiment.
  • the hydraulic booster 7 is held by a soft spring 13 in its initial position, wherein the spring 13 is supported on a resting on the anchor element 4 disc-shaped support body 22.
  • the disc-shaped support body 22 is also biased by a spring 12 relative to the anchor member 4, which also serves the provision of the anchor element 4 at the end of the energization of the magnetic actuator 1.
  • the composite consisting of injection valve member 2 and hydraulic booster 7 is entrained by the anchor element 4, so that a shift from the power gain to a path gain or a 1/1 translation takes place.
  • a fuel injector in the in the Fig. 3 illustrated embodiment of a fuel injector according to the invention is a wegverorgnde sleeve 15 as a hydraulic translator 7 is used, which limits the control volume 5 in both the axial and in the radial direction.
  • the control volume 5 and the guide bore 6 is thus formed within the sleeve 15.
  • the sleeve 15 is also supported on the front side of the nozzle body 14, so that the control volume 5 comes to lie outside of the nozzle body 14. A radial seal in the region of the nozzle body 14 can therefore be omitted, whereby the production is simplified.
  • the embodiments of the Fig. 1 to 3 is common that the fuel under high pressure is supplied via a laterally arranged high-pressure feed line 21 of the at least one injection port 3.
  • a laterally arranged high-pressure feed line 21 of the nozzle body 14 is weakened, so that it must be reinforced.
  • a centrally arranged high-pressure supply 18 is proposed.
  • a laterally arranged high pressure supply line 21 and its intersection with a nozzle body 14 formed in the high pressure bore 17 is thus unnecessary.
  • expensive ECM processing can also be dispensed with.
  • the central arrangement of the high pressure supply 18 also leads to an increase in the pressure threshold strength of the housing parts 14 and 20 of the fuel injector.
  • the high-pressure seal between the housing parts 14 and 20 is simplified due to the symmetrical fluid guide and a concomitant uniform pressure force distribution. Since the hydraulic booster 7 is completely surrounded by cool fuel, further cooling of the control volume 5 is effected.
  • the sleeve-shaped hydraulic translator 7 of the embodiments of Fig. 4 and 5 Circumferentially evenly distributed openings 16, through which the fuel from the high-pressure inlet 18 can flow into the high-pressure bore 17.
  • Fig. 5 is different from that of Fig. 4 merely in that the hydraulic translator 7 is formed in two parts and comprises a sleeve 15 as a first part and a resting on the sleeve 15 disc 19 for axially limiting the control volume 5.
  • the hydraulic translator 7 is formed in two parts and comprises a sleeve 15 as a first part and a resting on the sleeve 15 disc 19 for axially limiting the control volume 5.
  • fuel pressure for example, the closing stroke of the injection valve member 2 - the disc 19 can lift off from the sleeve 15 to compensate for the pressure difference faster in this way.
  • a fuel exchange of the control volume 5 is ensured, which counteracts an aging of the fuel in the control volume 5, so that the risk of sticking of the movable components is reduced.
  • the machining of the guide bore 6, ie the inner diameter of the sleeve 15 can be simplified because the machining can be done by honing with tool outlet.

Description

  • Die Erfindung betrifft einen Kraftstoffinjektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine mit einem Magnetaktor zur direkten Steuerung eines vorzugsweise nadelförmigen Einspritzventilgliedes, über dessen Hubbewegung wenigstens eine Einspritzöffnung des Kraftstoffinjektors freigebbar und verschließbar ist, entsprechend dem Oberbegriff des Anspruchs 1.
  • Stand der Technik
  • Bei Kraftstoffinjektoren, die einen Magnetaktor zur Steuerung eines Einspritzventilgliedes aufweisen, erfolgt die Steuerung in der Regel indirekt. Hierzu wird ein in einem Steuerraum vorhandener, das Einspritzventilglied in Schließrichtung beaufschlagender Steuerdruck abgesenkt, bis die am Einspritzventilglied anliegenden Druckkräfte aufgrund der Größenverhältnisse der druckbeaufschlagten Flächen eine Bewegung des Einspritzventilgliedes in Öffnungsrichtung bewirken. Die indirekte Steuerung des Einspritzventilgliedes erweist sich jedoch als nachteilig, da zur Absenkung des Steuerraumdrucks eine bestimmte Menge Kraftstoff einem Niederdruck-Kraftstoffrücklauf zugeführt werden muss. Die dem Rücklauf zugeführte Menge gilt es danach wieder auf Hochdruck zu fördern, so dass die Förderleistung einer vorgeschalteten Hochdruckpumpe steigt. Ferner weisen indirekt gesteuerte Kraftstoffinjektoren gegenüber direkt gesteuerten prinzipbedingt ein verzögertes Ansprechverhalten des Einspritzventilgliedes auf.
  • Zur Realisierung einer direkten Steuerung des Einspritzventilgliedes sind aus dem Stand der Technik bislang fast ausschließlich Injektorkonzepte bekannt, die den Einsatz von Piezoaktoren vorsehen, da das Öffnen des Einspritzventilgliedes bei Raildrücken von über 2000 bar einen zu großen Magnetaktor erfordern würde, um die notwendige Kraft zu realisieren.
  • Eine Ausnahme von der Regel stellt der in der DE 10 2006 015 745 A1 offenbarte Kraftstoffinjektor mit einem Magnetventil zur direkten Steuerung des Einspritzventilgliedes dar. Über das Magnetventil kann ein Ablaufkanal eines ersten Steuerraumes geöffnet oder geschlossen werden, der über eine Zulaufdrossel mit Systemdruck beaufschlagt ist. Um die prinzipbedingten langen Öffnungs- und Schließzyklen in Bezug auf das Einspritzventilglied zu verkürzen, wird vorgeschlagen, das Magnetventil durch einen zusätzlichen Bypass, der den Ablaufkanal mit einem Hochdruckanschluss verbindet, zu umgehen. Dennoch bedingt auch das hierin offenbarte Injektorkonzept das Abführen einer bestimmten Absteuermenge über einen niederdruckseitigen Ablauf.
  • Aus der DE 10 2005 015 732 A1 ist ein Kraftstoffinjektor bekannt, bei dem die Düsennadel mit Hilfe eines Piezoaktors bewegt wird, wobei zur Kraftübertragung vom Piezoaktor auf die Düsennadel ein hydraulischer Koppler vorgesehen ist. Der hydraulische Koppler weist dabei zwei Kopplervolumina auf, die hydraulisch koppelbar sind.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, einen Kraftstoffinjektor mit direkter Steuerung des Einspritzventilgliedes unter Verwendung eines Magnetaktors bereit zu stellen, der rücklaufmengenfrei betrieben werden kann und zudem schnellschaltend ist. Zudem soll der Kraftstoffinjektor kompaktbauend und kostengünstig herstellbar sein.
  • Zur Lösung der Aufgabe wird ein Kraftstoffinjektor mit den Merkmalen des Anspruchs 1 vorgeschlagen. Vorteilhafte Weiterbildungen der Erfindung werden in den Unteransprüchen angegeben.
  • Offenbarung der Erfindung
  • Der vorgeschlagene Kraftstoffinjektor weist einen Magnetaktor zur direkten Steuerung eines vorzugsweise nadelförmigen Einspritzventilgliedes auf, über dessen Hubbewegung wenigstens eine Einspritzöffnung freigebbar und verschließbar ist. Der Magnetaktor umfasst ein hubbewegliches Ankerelement zur Steuerung des Steuerdrucks in einem Steuervolumen, das in axialer Richtung von einer am Einspritzventilglied ausgebildeten hydraulischen Wirkfläche A1 begrenzt wird. Erfindungsgemäß liegt der hydraulischen Wirkfläche A1 des Einspritzventilgliedes innerhalb einer das Einspritzventilglied zumindest teilweise aufnehmenden Führungsbohrung sowohl eine am Ankerelement ausgebildete hydraulische Wirkfläche A2, als auch eine an einem hydraulischen Übersetzer ausgebildete hydraulische Wirkfläche A3 gegenüber, welche mit der hydraulischen Wirkfläche A1 des Einspritzventilgliedes über das Steuervolumen hydraulisch koppelbar ist. Die hydraulische Wirkfläche A3 ist ferner zugleich als Anschlagfläche ausgebildet und ermöglicht eine mechanische Kopplung des hydraulischen Übersetzers mit dem Einspritzventilglied. Bevorzugt erfolgt die hydraulische und/oder mechanische Kopplung des Einspritzventilgliedes mit dem Ankerelement und/oder dem hydraulischen Übersetzer zeitlich versetzt, so dass über das jeweils hydraulisch wirksame Wirkflächenverhältnis eine Kraft- oder Wegverstärkung bzw. eine 1/1-Übersetzung der Aktorkraft erzielt wird.
  • Vorzugsweise ist während einer ersten Phase des Öffnungshubes des Einspritzventilgliedes die am Ankerelement ausgebildete hydraulische Wirkfläche A2 mit der am Einspritzventilglied ausgebildeten hydraulischen Wirkfläche A1 hydraulisch gekoppelt und bewirkt eine Kraftverstärkung. Die hydraulische Wirkfläche A2 ist demnach kleiner als die hydraulische Wirkfläche A1 ausgelegt. Weiterhin vorzugsweise erfolgt mit Anschlagen des Einspritzventilgliedes am hydraulischen Übersetzer ein Umschalten von einer Kraftverstärkung auf eine Wegverstärkung oder eine 1/1-Übersetzung während einer zweiten Phase des Öffnungshubes des Einspritzventilgliedes.
  • Die Kraftverstärkung während einer ersten Phase des Öffnungshubes des Einspritzventilgliedes ermöglicht den Einsatz eines herkömmlichen Magnetaktors zur direkten Steuerung des Einspritzventilgliedes, da eine ausreichend hohe Kraft zur Überwindung der am Einspritzventilglied anliegenden hohen Schließkraft bewirkt werden kann. Nach erstem Anheben des Einspritzventilgliedes sinkt die anfängliche hohe Schließkraft und damit der zum Öffnen erforderliche Kraftbedarf, da nunmehr unter hohem Druck stehender Kraftstoff auch unter das Einspritzventilglied gelangt und der Schließkraft entgegen wirkt. Um das Einspritzventilglied nach anfänglichem Öffnen vollständig aus seinem Sitz zu heben, gilt es nunmehr sicherzustellen, dass der Öffnungshub des Einspritzventilgliedes ausreichend ist. Hierzu wird von einer Kraftverstärkung auf eine Wegverstärkung bzw. eine 1/1-Übersetzung umgeschaltet. Das Umschalten resultiert aus einer Änderung der Flächenverhältnisse der das Steuervolumen begrenzenden hydraulischen Wirkflächen. Während die hydraulische Wirkfläche A2 des Ankerelementes kleiner als die hydraulische Wirkfläche A1 des Einspritzventilgliedes gewählt ist, so dass eine Kopplung über das Steuervolumen zu einer Kraftverstärkung führt, ist die hydraulische Wirkfläche A3 des hydraulischen Übersetzers derart groß gewählt, dass die hydraulischen Wirkflächen A2 und A3 gemeinsam größer als oder zumindest gleich der hydraulischen Wirkfläche A1 sind, so dass während einer zweiten Phase des Öffnungshubes des Einspritzventilgliedes eine Wegverstärkung, zumindest jedoch eine 1/1-Übersetzung bewirkt wird. Um von einer Kraftverstärkung auf eine Wegverstärkung oder eine 1/1-Übersetzung umzuschalten, ist die hydraulische Wirkfläche A3 des hydraulischen Übersetzers zugleich als Anschlagfläche ausgebildet, an welche das Einspritzventilglied nach anfänglichem Öffnen anschlägt. Mit Anschlagen des Einspritzventilgliedes am hydraulischen Übersetzers wird eine mechanische Kopplung bewirkt, die wiederum zu einer Änderung der Flächenverhältnisse der hydraulischen Wirkflächen und damit zum Umschalten von einer Kraftverstärkung auf eine Wegverstärkung bzw. eine 1/1-Übersetzung führt.
  • Die Maßgabe, dass die hydraulischen Wirkflächen innerhalb einer das Einspritzventilglied zumindest teilweise aufnehmenden Führungsbohrung ausgebildet sind, hat zur Folge, dass der Durchmesser der Führungsbohrung den maximalen Durchmesser der hydraulischen Wirkflächen bestimmt. Der Führungsdurchmesser hat somit auch Einfluss auf das in axialer Richtung durch die hydraulischen Wirkflächen begrenzte Steuer- bzw. Kopplervolumen. Um schnelle Schaltzeiten zu erreichen, gilt es das Steuer- bzw. Kopplervolumen klein zu halten, so dass sich ein kleiner Führungsdurchmesser als vorteilhaft erweist.
  • Der vorgeschlagene erfindungsgemäße Kraftstoffinjektor zeichnet sich demnach zum Einen durch den Einsatz eines herkömmlichen Magnetaktors aus, welcher beispielsweise im Vergleich zu einem Piezoaktor kompaktbauender und kostengünstiger ist. Zum Anderen kann eine direkte Steuerung des Einspritzventilgliedes realisiert werden, wodurch der Systemaufwand reduziert wird. Denn es fällt keine Steuer- und/oder Leckagemenge an, die es einem Rücklauf zuzuführen gilt. Demzufolge kann auch eine Hochdruckpumpe mit geringerer Förderleistung eingesetzt werden. Das innerhalb einer Führungsbohrung ausgebildete minimierte Steuervolumen gewährleistet zudem schnelle Schaltzeiten.
  • Gemäß einer bevorzugten Ausführungsform der Erfindung weist der hydraulische Übersetzer eine weitere Anschlagfläche auf, mittels welcher er während der ersten Phase des Öffnungshubes des Einspritzventilgliedes gehäuseseitig abgestützt ist. Aufgrund der Abstützung wird während der ersten Phase des Öffnungshubes des Einspritzventilgliedes eine Bewegung des hydraulischen Übersetzers verhindert, welche die Bewegung des Ankerelementes zumindest teilweise kompensieren würde. Denn bei Bestromung des Magnetaktors bewirkt der Hub des Ankerelementes eine Vergrö-βerung des Steuervolumens, so dass der Steuerdruck abfällt. Der abfallende Steuerdruck hat eine Gegenbewegung des hydraulischen Übersetzers zur Folge, so dass dieser gegen das Gehäuseteil gedrückt wird, an welchem er abgestützt ist. Somit vermag lediglich das Einspritzventilglied den abfallenden Steuerdruck auszugleichen, indem es von seinem Sitz abhebt.
  • Um den hydraulischen Übersetzers während der ersten Phase des Öffnungshubes des Einspritzventilgliedes in Anlage mit dem Gehäuseteil zu halten, kann zusätzlich eine Feder vorgesehen sein, deren Federkraft den hydraulischen Übersetzter in Richtung des Gehäuseteils beaufschlagt, an welchem er abgestützt.
  • Um eine kompakte Anordnung des Ankerelementes und des hydraulischen Übersetzers zu ermöglichen, weist der hydraulische Übersetzer vorzugsweise eine zentrale Bohrung auf, durch welche das Ankerelement hindurch geführt ist. Das Ankerelement ist somit zumindest teilweise im hydraulischen Übersetzer aufgenommen. Dadurch ist ferner gewährleistet, dass die am Ankerelement und am hydraulischen Übersetzer ausgebildeten hydraulischen Wirkflächen der hydraulischen Wirkfläche des Einspritzventilgliedes gegenüberliegend angeordnet werden können.
  • Alternativ hierzu kann vorgesehen sein, dass das Ankerelement eine zentrale Bohrung aufweist, in welcher der hydraulische Übersetzer zumindest teilweise aufgenommen ist.
  • Ferner bevorzugt ist wenigstens eine Feder vorgesehen, mittels welcher das Ankerelement und/oder der hydraulische Übersetzer in Schließrichtung des Einspritzventilgliedes von einer Druckkraft beaufschlagt wird bzw. werden. Vorzugsweise werden sowohl das Ankerelement als auch der hydraulische Übersetzer jeweils von der Druckkraft einer separaten Feder beaufschlagt, welche eine Rückstellung des Ankerelementes bzw. des hydraulischen Übersetzers mit Beendigung der Bestromung des Magnetaktors bewirkt. Die Federkraft der zur Rückstellung des hydraulischen Übersetzers vorgesehenen Feder kann ferner dazu genutzt werden, den hydraulischen Übersetzer während der ersten Phase des Öffnungshubes des Einspritzventilgliedes in Anlage mit dem Gehäuseteil zu halten, an welchem der hydraulische Übersetzer abgestützt ist. Andererseits kann auf eine separate Feder zur Rückstellung des hydraulischen Übersetzers verzichtet werden, wenn beispielsweise bei Rückstellung des Ankerelementes eine Mitnahme des hydraulischen Übersetzers erfolgt. Alternativ oder ergänzend kann die Rückstellung des Ankerelementes auch die Mitnahme des Einspritzventilgliedes bewirken, so dass das Einspritzventilglied über eine mechanische Kopplung mit dem Ankerelement in seinen Sitz zurückgestellt wird. Entsprechend groß ist dann die Federkraft der Feder auszulegen, mittels welcher das Ankerelement beaufschlagt wird. Wenigstens eine weitere Feder kann jedoch entfallen, so dass die Anzahl der Bauteile und damit der Fertigungs- und Abstimmungsaufwand reduziert werden.
  • Weiterhin bevorzugt ist die Führungsbohrung, in welcher das Einspritzventilglied zumindest teilweise aufgenommen ist, in einem Gehäuseteil des Kraftstoffinjektors ausgebildet. Das Gehäuseteil kann insbesondere ein Düsenkörper sein, in welchem das Einspritzventilglied hubbeweglich geführt ist. Das innerhalb der Führungsbohrung ausgebildete Steuervolumen wird demnach in radialer Richtung von dem Düsenkörper bzw. dem jeweiligen Gehäuseteil begrenzt. Da das Steuervolumen in axialer Richtung nicht nur durch die am Einspritzventilglied ausgebildete hydraulische Wirkfläche A1 begrenzt wird, sondern auch durch die am Ankerelement und am hydraulischen Übersetzer ausgebildeten hydraulischen Wirkflächen A2 und A3, setzt dies voraus, dass auch das Ankerelement und der hydraulische Übersetzer zumindest teilweise in der Führungsbohrung des Düsenkörpers bzw. des jeweiligen Gehäuseteils aufgenommen sind.
  • Alternativ kann die Führungsbohrung aber auch im hydraulischen Übersetzer ausgebildet sein. Das Einspritzventilglied und das Ankerelement sind dann zumindest teilweise im hydraulischen Übersetzer aufgenommen.
  • Gemäß einer weiteren bevorzugten Ausführungsform ist daher der hydraulische Übersetzer als eine das Steuervolumen in radialer Richtung begrenzende Hülse ausgebildet, in welcher das Einspritzventilglied und das Ankerelement zumindest teilweise aufgenommen sind. Zur axialen Begrenzung des Steuervolumens und zur Ausbildung der hydraulischen Wirkfläche A3 weist die Hülse ferner bevorzugt ein Bodenteil mit einer zentralen Bohrung auf, durch welche das Ankerelement hindurch geführt ist. Die verbleibende ringförmige Fläche des Bodenteils bildet dabei die hydraulische Wirkfläche A3 aus, während der Durchmesser der im Bodenteil der Hülse vorgesehenen zentralen Bohrung den Durchmesser der am Ankerelement ausgebildeten hydraulischen Wirkfläche A2 bestimmt. Eine dem Bodenteil gegenüberliegende ringförmige Stirnfläche der Hülse dient dabei vorzugsweise als Anschlagfläche, mittels welcher der hydraulische Übersetzer gehäuseseitig, vorzugsweise am Düsenkörper, abgestützt ist.
  • Eine kompakte Gestaltung des erfindungsgemäßen Kraftstoffinjektors kann ferner dadurch gewährleistet werden, dass die hubbeweglichen Teile Einspritzventilglied, Ankerelement und hydraulischer Übersetzer koaxial zueinander angeordnet sind. Bei einer entsprechenden Anordnung der hubbeweglichen Teile erweist sich des Weiteren ein zentrale Kraftstoffzuführung innerhalb des Kraftstoffinjektors als vorteilhaft, welche eine seitlich angeordnete separate Kraftstoffzuleitung entbehrlich macht. Dies wiederum ermöglicht einen durchgehend rotationssymmetrisch ausgebildeten Querschnitt des Kraftstoffinjektors mit minimierten Wandungsstärken, da umlaufend ein gleich hoher Kraftstoffdruck anliegt.
  • Gemäß einer weiteren bevorzugten Ausführungsform wird daher vorgeschlagen, dass der als Hülse ausgebildete hydraulische Übersetzer umfangseitig mehrere, vorzugsweise äquidistante Durchbrechungen aufweist, mittels welcher eine zur Einspritzöffnung führende, zentral angeordnete Hochdruckbohrung mit einer Hochdruckzuführung hydraulisch verbunden ist. Die Durchbrechungen können beispielsweise im Bereich der stirnseitigen Anschlagfläche ausgebildet sein, mittels welcher der hülsenförmige hydraulische Übersetzer gehäuseseitig, vorzugsweise am Düsenkörper, abgestützt ist. Eine äquidistante Anordnung der umfangseitig angeordneten Durchbrechungen gewährleistet einen gleichmäßigen Kraftstofffluss und dementsprechend eine gleichmäßige Druckverteilung. Der Kraftstoffinjektor kann somit einen rotationssymmetrischen Querschnitt mit minimierten Wandungsstärken aufweisen, so dass eine besonders kom-paktbauende Gestaltung des Kraftstoffinjektors möglich ist. Alternativ können die ursprünglichen Abmessungen auch beibehalten werden, so dass der Kraftstoffinjektor für höhere Systemdrücke geeignet ist.
  • Weiterhin bevorzugt ist der hydraulische Übersetzer zwei- oder mehrteilig aufgebaut und umfasst wenigstens eine Hülse und eine Scheibe. Eine zumindest zweiteilige Ausführungsform des hydraulischen Übersetzers vereinfacht dessen Fertigung, da die zur Begrenzung des Steuervolumens vorgesehenen Oberflächen leicht zugänglich und damit leicht zu bearbeiten sind. Die Scheibe dient vorzugsweise als Bodenteil, das auf der Hülse aufliegt und die hydraulische Wirkfläche A3 ausbildet. Im Unterschied zu einer einstückig ausgebildeten Hülse mit festem Bodenteil vermag sich die Scheibe von der Hülse zu lösen, so dass die jeweiligen Kontaktflächen an der Scheibe und der Hülse einen weiteren Dichtsitz ausbilden, über welche ggf. eine Entlastung des Steuervolumens bewirkt werden kann.
  • Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der Zeichnungen näher beschrieben. Diese zeigen:
  • Fig. 1
    einen schematischen Längsschnitt durch eine erste Ausführungsform,
    Fig. 2
    einen schematischen Längsschnitt durch eine zweite Ausführungsform,
    Fig. 3
    einen schematischen Längsschnitt durch eine dritte Ausführungsform,
    Fig. 4
    einen schematischen Längsschnitt durch eine vierte Ausführungsform und
    Fig. 5
    einen schematischen Längsschnitt durch eine fünfte Ausführungsform eines erfindungsgemäßen Kraftstoffinjektors.
  • Sämtliche in den Fig. 1 bis 5 dargestellte Ausführungsformen eines erfindungsgemä-βen Kraftstoffinjektors weisen einen Magnetaktor 1 zur Betätigung eines Einspritzventilgliedes 2 auf. Der Magnetaktor 1 ist jeweils in einem Injektorkörper 20 des Kraftstoffinjektors aufgenommen, an den ein Düsenkörper als weiteres Gehäuseteil 14 angesetzt ist. Der Düsenkörper 14 weist eine Hochdruckbohrung 17 auf, in welcher das Einspritzventilglied 2 zur Freigabe und zum Verschließen wenigstens einer Einspritzöffnung 3 hubbeweglich geführt ist.
  • Zur Betätigung des Einspritzventilgliedes 2 weist jeder der Magnetaktoren 1 der Ausführungsformen der Fig. 1 bis 5 ein hubbeweglich gelagertes Ankerelement 4 auf, das bei einer Bestromung des Magnetaktors 1 mittels Magnetkraft in Öffnungsrichtung des Einspritzventilgliedes 2 bewegt wird. Die Bewegung des Ankerelementes 4 bewirkt einen Abfall des Steuerdrucks in einem Steuervolumen 5, der das Einspritzventilglied 2 in Schließrichtung beaufschlagt. Mit Unterschreiten eines bestimmten Steuerdrucks folgt das Einspritzventilglied 2 der Bewegung des Ankerelementes 4 und hebt von seinem Dichtsitz ab. Das Steuervolumen 5 dient somit als Kopplervolumen, über welches das Einspritzventilglied 2 und das Ankerelement 4 hydraulisch koppelbar sind. Die jeweils das Steuervolumen 5 in axialer Richtung begrenzenden Flächen des Einspritzventilgliedes 2 und des Ankerelementes 4 dienen dabei als hydraulische Wirkflächen, wobei die der hydraulischen Wirkfläche A1 des Einspritzventilgliedes 2 gegenüberliegende hydraulische Wirkfläche A2 des Ankerelementes 4 kleiner gewählt ist, um eine Kraftverstärkung während einer ersten Phase des Öffnungshubes des Einspritzventilgliedes 2 zu bewirken. Während einer zweiten Phase des Öffnungshubes des Einspritzventilgliedes 2 erfolgt eine Wegverstärkung bzw. eine 1/1-Übersetzung, da nach erstem Anheben, das Einspritzventilglied 2 auf einen hydraulischen Übersetzer 7 mit einer das Steuervolumen 5 begrenzenden hydraulischen Wirkfläche A3 trifft. Die hydraulische Wirkfläche A3 des hydraulischen Übersetzers 7 ist zugleich als Anschlagfläche 8 ausgebildet, über welche eine mechanische Kopplung des hydraulischen Übersetzers 7 mit dem Einspritzventilglied 2 bei dessen Auftreffen erfolgt. Die mechanische Kopplung bewirkt eine Änderung des Flächenverhältnisses der hydraulischen wirksamen Flächen, so dass sich nunmehr die Flächen A2 und A3 ergänzen und eine Wegverstärkung bzw. eine 1/1-Übersetzung bewirken.
  • Die das Steuervolumen 5 in axialer Richtung begrenzenden hydraulischen Wirkflächen liegen sich innerhalb einer Führungsbohrung 6 gegenüber, welche in einem Gehäuseteil 14, vorzugsweise im Düsenkörper des Kraftstoffinjektors, oder im hydraulischen Übersetzer 7 ausgebildet ist. Hierin unterscheiden sich die in den Fig. 1 bis 5 dargestellten Ausführungsformen. Allen Ausführungsformen gemein ist jedoch, dass der Durchmesser der Führungsbohrung 6 zugleich den maximalen Durchmesser der hydraulischen Wirkflächen und damit die radialen Abmessungen des Steuervolumens 5 bestimmt. Die Führungsbohrung 6 hilft demnach das Steuervolumen zu minimieren, so dass schnell ansprechende bzw. schaltende Kraftstoffinjektoren realisiert werden.
  • Bei dem in der Fig. 1 dargestellten Ausführungsbeispiel eines erfindungsgemäßen Kraftstoffinjektors ist die das Steuervolumen 5 aufnehmende Führungsbohrung 6 im Düsenkörper 14 ausgebildet. Das Einspritzventilglied 2 ist vollständig in dieser Führungsbohrung 6 aufgenommen. Die der Einspritzöffnung 3 abgewandte Stirnfläche des Einspritzventilgliedes 2 dient als hydraulische Wirkfläche A1, welche das Steuervolumen 5 in axialer Richtung begrenzt. Innerhalb der Führungsbohrung 6 liegen der hydraulischen Wirkfläche A1 weitere das Steuervolumen in axialer Richtung begrenzende Wirkflächen gegenüber, nämlich eine am Ankerelement 4 ausgebildete kreisrunde hydraulische Wirkfläche A2 und eine am hydraulischen Übersetzer 7 ausgebildete ringförmige hydraulische Wirkfläche A3, da das Ankerelement 4 in einer zentralen Bohrung 10 des hydraulischen Übersetzers 7 aufgenommen ist. Der vorliegend scheibenförmig ausgebildete hydraulische Übersetzer 7 ist ferner über eine Anschlagfläche 9 am Düsenkörper 14 abgestützt.
  • Zum Freigeben der wenigstens einen Einspritzöffnung 3 durch einen Öffnungshub des Einspritzventilgliedes 2 wird der Magnetaktor 1 bestromt. Das Ankerelement 4 wird entgegen der Federkraft einer Feder 12 nach oben in Richtung des Magnetaktors 1 bewegt. Mit der Bewegung des Ankerelementes 4 vergrößert sich das Steuervolumen 5 und der Steuerdruck im Steuervolumen 5 wird reduziert. Aufgrund der im Steuervolumen 5 vorherrschenden Druckverhältnisse wird der am Düsenkörper 14 anliegende hydraulische Übersetzer 7 an den Düsenkörper 14 gedrückt und dichtet somit das Steuervolumen 5 in radialer Richtung ab. Mit weiterem Druckabfall im Steuervolumen 5 folgt das Einspritzventilglied 2 der Bewegung des Ankerelementes 4 und hebt von seinem Dichtsitz ab. Das Flächenverhältnis der am Ankerelement 4 und an dem Einspritzventilglied 2 ausgebildeten hydraulisch wirksamen Flächen bestimmt in dieser ersten Phase des Öffnungshubes des Einspritzventilgliedes 2 die Kraft- bzw. Wegübersetzung. Durch die der hydraulischen Wirkfläche A1 des Einspritzventilgliedes 2 gegenüberliegende kleinere hydraulische Wirkfläche A2 des Ankerelementes 4 ergibt sich eine Kraftverstärkung, die allerdings mit einer proportionalen Wegreduzierung verbunden ist. Somit kann zunächst lediglich ein erster kleiner Hub des Einspritzventilgliedes 2 realisiert werden. Ein durch den ersten Hub erhöhter Druck unterhalb des Einspritzventilgliedes 2 verringert die zur weiteren Öffnung benötigte Kraft, so dass es ab einem bestimmten Zeitpunkt möglich ist, von der Kraftverstärkung auf eine Wegverstärkung bzw. eine 1/1-Übersetzung umzuschalten. Dazu schlägt bei einem wählbaren Hub das Einspritzventilgliedes 2 an der Anschlagfläche 8 des hydraulischen Übersetzers 7 an. Eine geeignete Dichtgeometrie der Kontaktflächen verhindert, dass Kraftstoff radial in das Steuervolumen 5 nachgesaugt wird. Dies führt zu einer Gleichschaltung des Wegs bei gleichzeitiger Kraftminderung, wodurch bei weiterem Hub des Ankerelementes 4 der hydraulische Übersetzer 7 vom Düsenkörper 14 abhebt und der Verbund aus Einspritzventilglied 2 und hydraulischem Übersetzer 7 vom Ankerelement 4 während dieser zweiten Phase des Öffnungshubes des Einspritzventilgliedes 2 mitgenommen wird. Das Schließen des Kraftstoffinjektors erfolgt mit Beendigung der Bestromung des Magnetaktors 1 in umgekehrter Richtung, wobei die das Ankerelement 4 beaufschlagende Feder 12 die Rückstellung des Ankerelementes 4 und eine den hydraulischen Übersetzer 7 beaufschlagende Feder 13 die Rückstellung des hydraulischen Übersetzers 7 bewirkt. Die Feder 13 dient dabei lediglich der Positionierung des hydraulischen Übersetzers 7 und soll im Vergleich zu den hydraulischen Kräften keine Kraftunterstützung bieten. Die Feder 13 kann daher schwach ausgelegt sein. Anders verhält es sich mit der Feder 12, welche das Ankerelement 4 mit einer Druckkraft beaufschlagt, da bei Rückstellung des Ankerelementes 4 dieses auf das Einspritzventilglied 2 auftrifft und im Wege einer mechanischen Kopplung gegen den Dichtsitz zurückstellt.
  • Das Ausführungsbeispiel der Fig. 2 unterscheidet sich von dem der Fig. 1 dadurch, dass das Ankerelement 4 hülsenförmig mit einer zentralen Bohrung 11 zur Aufnahme eines kolbenförmigen hydraulischen Übersetzers 7 ausgebildet ist. Aufgrund der gewählten Flächenverhältnisse wird auch bei diesem Ausführungsbeispiel ein initialer kraftverstärkender Hub während einer ersten Phase realisiert. Der hydraulische Übersetzer 7 wird von einer weichen Feder 13 in seiner Ausgangslage gehalten, wobei die Feder 13 an einem am Ankerelement 4 aufliegenden scheibenförmigen Stützkörper 22 abgestützt ist. Der scheibenförmige Stützkörper 22 ist zudem mittels einer Feder 12 gegenüber dem Ankerelement 4 vorgespannt, welche zugleich der Rückstellung des Ankerelementes 4 bei Beendigung der Bestromung des Magnetaktors 1 dient. Schlägt das Einspritzventilglied 2 während seines Öffnungshubes am kolbenförmig ausgebildeten hydraulischen Übersetzer 7 an, wird der Verbund bestehend aus Einspritzventilglied 2 und hydraulischem Übersetzer 7 vom Ankerelement 4 mitgenommen, so dass ein Umschalten von der Kraftverstärkung auf eine Wegverstärkung bzw. eine 1/1-Übersetzung erfolgt.
  • Bei dem in der Fig. 3 dargestellten Ausführungsbeispiel eines erfindungsgemäßen Kraftstoffinjektors kommt eine wegverstärkende Hülse 15 als hydraulischer Übersetzer 7 zum Einsatz, welche das Steuervolumen 5 sowohl in axialer als auch in radialer Richtung begrenzt. Das Steuervolumen 5 bzw. die Führungsbohrung 6 wird somit innerhalb der Hülse 15 ausgebildet. Die Hülse 15 ist ferner stirnseitig am Düsenkörper 14 abgestützt, so dass das Steuervolumen 5 außerhalb des Düsenkörpers 14 zu liegen kommt. Eine Radialabdichtung im Bereich des Düsenkörpers 14 kann demnach entfallen, wodurch die Fertigung vereinfacht wird.
  • Den Ausführungsformen der Fig. 1 bis 3 ist gemein, dass der unter hohem Druck stehende Kraftstoff über eine seitliche angeordnete Hochdruckzuleitung 21 der wenigstens einen Einspritzöffnung 3 zugeführt wird. Durch die seitlich angeordnete Hochdruckzuleitung 21 wird der Düsenkörper 14 geschwächt, so dass dieser verstärkt werden muss.
  • Um den erfindungsgemäßen Kraftstoffinjektor weiter zu optimieren, insbesondere die Wandstärken der Gehäuseteile 14 und 20 zu reduzieren und damit den Kraftstoffinjektor kompakter und leichter zu gestalten, wird daher gemäß den Ausführungsbeispielen der Fig. 4 und 5 ferner eine zentral angeordnete Hochdruckzuführung 18 vorgeschlagen. Eine seitlich angeordnete Hochdruckzuleitung 21 sowie deren Verschneidung mit einer im Düsenkörper 14 ausgebildeten Hochdruckbohrung 17 ist somit entbehrlich. Demzufolge kann auch eine kostenintensive ECM-Bearbeitung entfallen. Die zentrale Anordnung der Hochdruckzuführung 18 führt ferner zu einer Erhöhung der Druckschwellfestigkeit der Gehäuseteile 14 und 20 des Kraftstoffinjektors. Zudem wird die Hochdruckabdichtung zwischen den Gehäuseteilen 14 und 20 aufgrund der symmetrischen Fluidführung und einer damit einhergehenden gleichmäßigen Druckkraftverteilung vereinfacht. Da der hydraulische Übersetzer 7 vollständig von kühlem Kraftstoff umströmt wird, wird des Weiteren eine verbesserte Kühlung des Steuervolumens 5 bewirkt.
  • Um die zentral angeordnete Hochdruckzuführung 18 mit der Hochdruckbohrung 17 des Düsenkörpers 14 zu verbinden, weist der hülsenförmig ausgebildete hydraulische Übersetzer 7 der Ausführungsformen der Fig. 4 und 5 umfangseitig gleichmäßig verteilt angeordnete Durchbrechungen 16 auf, durch welche der Kraftstoff aus der Hochdruckzuführung 18 in die Hochdruckbohrung 17 strömen kann.
  • Das Ausführungsbeispiel der Fig. 5 unterscheidet sich von dem der Fig. 4 lediglich dadurch, dass der hydraulische Übersetzer 7 zweiteilig ausgebildet ist und eine Hülse 15 als erstes Teil sowie eine auf der Hülse 15 aufliegende Scheibe 19 zur axialen Begrenzung des Steuervolumens 5 umfasst. Bei einer positiven Druckdifferenz zwischen dem Steuerdruck des Steuervolumens 5 und dem außen an der Hülse 15 anliegenden Kraftstoffdruck - beispielsweise beim Schließhub des Einspritzventilgliedes 2 - kann die Scheibe 19 von der Hülse 15 abheben, um auf diese Weise die Druckdifferenz schneller auszugleichen. Ferner wird ein Kraftstoffaustausch des Steuervolumens 5 gewährleistet, der einer Alterung des Kraftstoffs im Steuervolumen 5 entgegen wirkt, so dass die Gefahr eines Verklebens der beweglichen Bauteile vermindert wird. Zudem kann die Bearbeitung der Führungsbohrung 6, d.h. des Innendurchmessers der Hülse 15 vereinfacht werden, da die Bearbeitung mittels Honen mit Werkzeugauslauf erfolgen kann.
  • Die in den Fig. 4 und 5 beispielhaft gezeigte rotationssymmetrische Fluidführung ist auch auf die anderen dargestellten Ausführungsformen eines erfindungsgemäßen Kraftstoffinjektors übertragbar. Grundsätzlich gilt es hierzu lediglich eine hydraulische Verbindung einer zentralen Hochdruckzuführung 18 mit einer im Düsenkörper 14 angeordneten Hochdruckbohrung 17 sicherzustellen. Hierzu sind im hülsenförmig ausgebildeten und das Steuervolumen 5 in radialer Richtung begrenzenden Körper, d.h. im hydraulischen Übersetzer 7 oder im Ankerelement 4, umfangseitig verteilt angeordnete Durchbrechungen 16 vorzusehen.

Claims (10)

  1. Kraftstoffinjektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine mit einem Magnetaktor (1) zur direkten Steuerung eines vorzugsweise nadelförmigen Einspritzventilgliedes (2), über dessen Hubbewegung wenigstens eine Einspritzöffnung (3) des Kraftstoffinjektors freigebbar und verschließbar ist, wobei der Magnetaktor (1) ein hubbewegliches Ankerelement (4), zur Steuerung des Steuerdrucks in einem Steuervolumen (5) umfasst, das in axialer Richtung von einer am Einspritzventilglied (2) ausgebildeten hydraulischen Wirkfläche A1 begrenzt wird,
    dadurch gekennzeichnet, dass der hydraulischen Wirkfläche A1 des Einspritzventilgliedes (2) innerhalb einer das Einspritzventilglied (2) zumindest teilweise aufnehmenden Führungsbohrung (6) sowohl eine am Ankerelement (4) ausgebildete hydraulische Wirkfläche A2, als auch eine an einem hydraulischen Übersetzer (7) ausgebildete hydraulische Wirkfläche A3 gegenüberliegt, welche mit der hydraulischen Wirkfläche A1 des Einspritzventilgliedes (2) über das Steuervolumen (5) hydraulisch koppelbar sind, wobei die hydraulische Wirkfläche A3 zugleich als Anschlagfläche (8) ausgebildet ist und eine mechanische Kopplung des hydraulischen Übersetzers (7) mit dem Einspritzventilglied (2) ermöglicht.
  2. Kraftstoffinjektor nach Anspruch 1,
    dadurch gekennzeichnet, dass während einer ersten Phase des Öffnungshubes des Einspritzventilgliedes (2) die am Ankerelement (4) ausgebildete hydraulische Wirkfläche A2 mit der am Einspritzventilglied (2) ausgebildeten hydraulischen Wirkfläche A1 hydraulisch gekoppelt ist und eine Kraftverstärkung bewirkt und, dass mit Anschlagen des Einspritzventilgliedes (2) am hydraulischen Übersetzer (7) ein Umschalten von einer Kraftverstärkung auf eine Wegverstärkung oder eine 1/1-Übersetzung während einer zweiten Phase des Öffnungshubes erfolgt.
  3. Kraftstoffinjektor nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass der hydraulische Übersetzer (7) eine weitere Anschlagfläche (9) aufweist, mittels welcher der hydraulische Übersetzer (7) während der ersten Phase des Öffnungshubes des Einspritzventilgliedes (2) gehäuseseitig abgestützt ist.
  4. Kraftstoffinjektor nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass der hydraulische Übersetzer (7) eine zentrale Bohrung (10) aufweist, durch welche das Ankerelement (4) hindurch geführt ist.
  5. Kraftstoffinjektor nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass das Ankerelement (4) eine zentrale Bohrung (11) aufweist, in welcher der hydraulische Übersetzer (7) zumindest teilweise aufgenommen ist.
  6. Kraftstoffinjektor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass wenigstens eine Feder (12, 13) vorgesehen ist, mittels welcher das Ankerelement (4) und/oder der hydraulische Übersetzer (7) in Schließrichtung des Einspritzventilgliedes (2) von einer Druckkraft beaufschlagt wird bzw. werden.
  7. Kraftstoffinjektor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Führungsbohrung (6) in einem Gehäuseteil (14) oder im hydraulischen Übersetzer (7) ausgebildet ist.
  8. Kraftstoffinjektor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass der hydraulische Übersetzer (7) als eine das Steuervolumen (5) in radialer Richtung begrenzende Hülse (15) ausgebildet ist, in welcher das Einspritzventilglied (2) und das Ankerelement (4) zumindest teilweise aufgenommen sind.
  9. Kraftstoffinjektor nach Anspruch 8,
    dadurch gekennzeichnet, dass der als Hülse (15) ausgebildete hydraulische Übersetzer (7) umfangseitig mehrere, vorzugsweise äquidistante Durchbrechungen (16) aufweist, mittels welcher eine zur Einspritzöffnung (3) führende, zentral angeordnete Hochdruckbohrung (17) mit einer Hochdruckzuführung (18) hydraulisch verbunden ist.
  10. Kraftstoffinjektor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass der hydraulische Übersetzer (7) zwei- oder mehrteilig aufgebaut ist und wenigstens eine Hülse (15) und eine Scheibe (19) umfasst.
EP20110165102 2010-05-11 2011-05-06 Kraftstoffinjektor Not-in-force EP2386746B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010028835 DE102010028835A1 (de) 2010-05-11 2010-05-11 Kraftstoffinjektor

Publications (3)

Publication Number Publication Date
EP2386746A2 EP2386746A2 (de) 2011-11-16
EP2386746A3 EP2386746A3 (de) 2013-02-20
EP2386746B1 true EP2386746B1 (de) 2014-09-03

Family

ID=44484768

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110165102 Not-in-force EP2386746B1 (de) 2010-05-11 2011-05-06 Kraftstoffinjektor

Country Status (2)

Country Link
EP (1) EP2386746B1 (de)
DE (1) DE102010028835A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044205A1 (de) * 2010-11-22 2012-05-24 Robert Bosch Gmbh Kraftstoffinjektor
DE102011002422A1 (de) * 2011-01-04 2012-07-05 Robert Bosch Gmbh Einspritzventil zum Einspritzen eines Fluids
DE102012210220A1 (de) * 2012-06-18 2013-12-19 Robert Bosch Gmbh Kraftstoffinjektor mit direkt gesteuerter Düsennadel
DE102012222043A1 (de) 2012-12-03 2014-06-05 Robert Bosch Gmbh Kraftstoffinjektor
DE102012222127A1 (de) 2012-12-04 2014-06-05 Robert Bosch Gmbh Kraftstoffinjektor
DE102013210744A1 (de) 2013-06-10 2014-12-11 Robert Bosch Gmbh Kraftstoffinjektor
DE102013221534A1 (de) 2013-10-23 2015-04-23 Robert Bosch Gmbh Kraftstoffinjektor
DE102013221484A1 (de) 2013-10-23 2015-04-23 Robert Bosch Gmbh Kraftstoffinjektor
DE102015209505A1 (de) 2015-05-22 2016-11-24 Robert Bosch Gmbh Kraftstoffinjektor
DE102015209395A1 (de) 2015-05-22 2016-11-24 Robert Bosch Gmbh Kraftstoffinjektor
GB201520123D0 (en) * 2015-11-16 2015-12-30 Delphi Internat Operations Luxembourg S À R L Fuel injector
GB201520206D0 (en) * 2015-11-17 2015-12-30 Delphi Internat Operations Luxembourg S À R L Fuel injector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005015732B4 (de) * 2005-04-06 2017-02-09 Robert Bosch Gmbh Kraftstoffinjektor mit hydraulischem Mitnehmer
DE102006015745A1 (de) 2006-04-04 2007-10-11 Robert Bosch Gmbh Kraftstoffinjektor mit direktgesteuertem Einspritzventilglied

Also Published As

Publication number Publication date
EP2386746A3 (de) 2013-02-20
DE102010028835A1 (de) 2011-11-17
EP2386746A2 (de) 2011-11-16

Similar Documents

Publication Publication Date Title
EP2386746B1 (de) Kraftstoffinjektor
EP1831537B1 (de) Injektor eines kraftstoffeinspritzsystems einer brennkraftmaschine
EP1756415B1 (de) Kraftstoffinjektor mit variabler aktorübersetzung
EP1144857B1 (de) Doppelschaltendes steuerventil mit hydraulischer verstärkung des aktors
EP1899597A1 (de) Injektor mit zuschaltbarem druckübersetzer
EP2310662B1 (de) Kraftstoff-injektor
WO2008049671A1 (de) Kraftstoffinjektor
EP1682769B1 (de) Kraftstoffinjektor mit mehrteiligem, direktgesteuertem einspritzventilglied
WO2002073028A2 (de) Sitz/schieber-ventil mit druckausgleichsstift
EP2278152B1 (de) Kraftstoffeinspritzventil
DE102012220027A1 (de) Schaltventil für einen Kraftstoffinjektor
EP2458194B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1836385B1 (de) Brennstoffeinspritzventil mit druckverstärkung
EP1999363B1 (de) Kraftstoffeinspritzventile für brennkraftmaschinen
EP1961953A1 (de) Mehrwegeventil
EP1911966A2 (de) Kraftstoffinjektor für eine Brennkraftmaschine
EP1703118B1 (de) Einspritzdüse
DE19963926A1 (de) Steuerventil für eine Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen mit verstellbarem Hubanschlag
EP2204570B1 (de) Kraftstoff-Injektor
DE102006036782B4 (de) Injektor
EP2957760A1 (de) Düsenbaugruppe für einen kraftstoffinjektor sowie kraftstoffinjektor
EP2246553B1 (de) Kraftstoffinjektor
EP2581597B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen mit direkt angesteuerter Ventilnadel
EP1165956A1 (de) Ventil zum steuern von flüssigkeiten
WO2005035975A1 (de) Druckgesteuerter cr-injektor

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 51/06 20060101ALI20130111BHEP

Ipc: F02M 47/02 20060101AFI20130111BHEP

17P Request for examination filed

Effective date: 20130820

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140507

INTG Intention to grant announced

Effective date: 20140528

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 685764

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011004244

Country of ref document: DE

Effective date: 20141016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141204

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140903

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150105

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150103

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011004244

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

26N No opposition filed

Effective date: 20150604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150506

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150506

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110506

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 685764

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160506

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190521

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190521

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190716

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011004244

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200506