EP2357133A1 - Appareil de ventilation pour aéronef - Google Patents

Appareil de ventilation pour aéronef Download PDF

Info

Publication number
EP2357133A1
EP2357133A1 EP11305161A EP11305161A EP2357133A1 EP 2357133 A1 EP2357133 A1 EP 2357133A1 EP 11305161 A EP11305161 A EP 11305161A EP 11305161 A EP11305161 A EP 11305161A EP 2357133 A1 EP2357133 A1 EP 2357133A1
Authority
EP
European Patent Office
Prior art keywords
ventilation apparatus
wheel
ventilation
inverter
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11305161A
Other languages
German (de)
English (en)
Other versions
EP2357133B1 (fr
Inventor
Olivier Darnis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations SAS
Safran Ventilation Systems SAS
Original Assignee
Technofan SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technofan SA filed Critical Technofan SA
Publication of EP2357133A1 publication Critical patent/EP2357133A1/fr
Application granted granted Critical
Publication of EP2357133B1 publication Critical patent/EP2357133B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D13/08Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned the air being heated or cooled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • B64D41/007Ram air turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/002Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying geometry within the pumps, e.g. by adjusting vanes

Definitions

  • the heat exchanger is generally a condenser of a refrigerating cycle of the aircraft.
  • the heat exchanger When the aircraft is in flight, the heat exchanger is cooled by the dynamic air created by the movement of the aircraft. Indeed, the aircraft being in motion in a substantially immobile air mass, it is therefore to be in motion in the reference system of the aircraft; we therefore call this air, moving in the frame of reference of the aircraft but substantially immobile in the terrestrial frame of reference, "dynamic air”.
  • the aircraft are therefore equipped with ventilation devices that remove air from outside the aircraft and provide sufficient airflow to the heat exchanger to cool it. This cooling is provided by means of forced mechanical convection.
  • the subject of the invention is a ventilation apparatus of the aforementioned type, the inverter being reversible and being, in a power generating mode of the ventilation apparatus, suitable for converting the electrical energy supplied by the rotating machine when it is driven mechanically by the wheel and injecting this converted electrical energy into the power supply network, characterized in that the apparatus for ventilation comprises a controller and a distributor extending transversely in front of the wheel, the distributor having radially extending vanes, the controller being clean, in motor supply mode, to control the orientation of the vanes in a first position, maximizing a flow rate of air generated by the wheel when it is driven by the rotating machine, and, in energy generating mode, to control the orientation of the blades in a second position, maximizing the electrical energy supplied by the rotating machine when it is driven by the wheel, itself driven by a flow of air passing through the distributor, the first and second positions being separate from one another.
  • ground refers to the fact that an aircraft does not fly, or that it flies at low altitude, commonly below 10000 feet.
  • In flight refers to the fact that an aircraft flies at a high altitude, commonly above 10,000 feet.
  • cylinder is to be understood in the broad sense and includes both circular elements and elements with ovoid bases, triangular, quadrangular or any other type of closed contour.
  • cylindrical of revolution refers to cylinders with a circular base.
  • the Figure 1 represents an air duct 6 of an aircraft, successively comprising a heat exchanger 8 and a ventilation apparatus according to the invention 10.
  • the air duct 6 extends in a longitudinal direction X from the front to the rear of the aircraft. It comprises successively from front to rear a dynamic air inlet 12, a cylindrical portion 16 and an air outlet 20. It further comprises a fan air inlet 14, stitched in the cylindrical portion 16, upstream of the heat exchanger 8 and the ventilation apparatus 10.
  • the dynamic air inlet 12, the fan air inlet 14 and the air outlet 20 all open on the outside of the aircraft.
  • the fan air intake 14 comprises a valve 24.
  • the cylindrical portion 16 extends longitudinally. It contains the heat exchanger 8 and carries the ventilation apparatus 10. It is cylindrical of revolution at the ventilation apparatus 10.
  • the heat exchanger 8 is preferably in front of the ventilation apparatus 10.
  • the Figure 2 shows a detailed view of the ventilation apparatus 10 inside the cylindrical portion 16. It comprises a fan 100 and an electronic power portion 106 for its power supply.
  • the fan 100 is inside the cylindrical portion 16. It consists of a wheel 102 and a three-phase rotating electrical machine 104.
  • the wheel 102 has a hub 110 of revolution.
  • the hub 110 carries a set of blades 112 whose free end substantially follows the profile of the inner surface of the cylindrical portion 16.
  • the wheel 102 is for example a helix.
  • the rotating machine 104 comprises a rotor 120 and a stator 122.
  • the rotor 120 is generally cylindrical.
  • the stator 122 extends around the rotor 120.
  • the rotating machine 104 is a synchronous machine.
  • the stator 122 has a housing 124.
  • the housing 124 has a base 126 and a cylindrical side wall 128.
  • the base 126 is extended axially forwardly by the cylindrical side wall 128.
  • the cylindrical side wall 128 forms the outer surface of the housing. the rotating machine 104.
  • a fin assembly 129 is attached to the side surface of the cylindrical side wall 128.
  • the housing 124 houses an active portion 130 of the stator 122.
  • the active portion 130 is fixed on the inner side surface of the cylindrical side wall 128. It comprises reinforcements formed of ferromagnetic materials and coils wound around these frames.
  • the active part 130 extends around an air gap 132.
  • the rotor 120 extends longitudinally in the center of the air gap 132. It is rotatably mounted relative to the stator 122 by means of rotary means 134, 135 fixed to the housing 124. These rotary means 134, 135 are for example bearings ball.
  • the rotor 120 carries on its outer surface a set of magnetic elements 136, such as bars of magnetic material.
  • the rotor 120 is secured to the wheel 102.
  • the wheel 102 is screwed onto the rotor 120.
  • the ventilation apparatus 10 also comprises a distributor 140.
  • This distributor 140 is placed in front of the wheel 102. It extends transversely. It has a median plane oriented perpendicular to the longitudinal axis X.
  • the dispenser 140 includes vanes 142 extending radially. Each blade 142 has a fixed end 144 connected to the inner surface of the cylindrical portion 16, and a free end 146 close to the central axis of the cylindrical portion 16. Each blade 142 is pivotable about an axis AA connecting its fixed end 144 at its free end 146 between a plurality of orientations. An engine (not shown) controls the rotation of each blade 142 about its axis AA. The blades 142 are fit to be locked in a precise orientation, so that they can no longer pivot around their AA axes until they are unlocked.
  • the dispenser 140 optimizes the efficiency of the ventilation apparatus 10.
  • the Figure 3 shows a diagram of the power electronics part 106. It comprises an input stage 202, an inverter 204, a controller 206 and a position sensor 208 of the rotor 120 with respect to the stator 122, such as a Hall effect sensor . It is connected to the rotating machine 104.
  • the ventilation apparatus 10 is connected to a high-voltage HVDC power supply network HVDC via the power electronic portion 106.
  • This power supply network 210 is that of the aircraft.
  • the voltage difference between the terminals of the electrical network 210 to which the ventilation device 10 is connected is for example 540 volts.
  • the power supply network 210 comprises a general switch 211.
  • This general switch 211 is able to switch between a closed position, in which it provides a connection between the ventilation apparatus 10 and the power supply network 210, and a open position, in which it does not provide a connection between the ventilation apparatus 10 and the power supply network 210.
  • the power electronics portion 106 is connected to the power supply network 210 through the input stage 202.
  • the input stage 202 includes a reversible low pass filter 212, and two terminals A and B connected to the power supply network 210.
  • the filter 212 connected between the terminals A and B, comprises a coil 214 connected in series at a point C with a capacitor 216.
  • the power output of the inverter 204 consists of points B and C.
  • the inverter 204 is reversible. It comprises three switching branches corresponding to the three phases of the motor. These three branches are connected in parallel between the entry points C and B. Each branch comprises two switches 218,219 connected in series and between which is formed a point R, S, T of three-phase supply of the rotating machine 104. Each switch comprises a transistor 220 and a diode 221 mounted in antiparallel.
  • the transistor 220 is able to switch between an open position and a closed position. In the closed position, the transistor 220 of each switch 218, 219 is able to pass a current respectively from the terminal C to the one R of the terminals R, S, T, or one of the terminals R, S, T to the terminal B. In the open position, the transistor 220 does not let any current flow.
  • the transistor 220 is for example a bipolar transistor insulated gate, known by the acronym IGBT.
  • each switch 218, 219 is able to pass a current respectively from the terminal B to the one R of the terminals R, S, T, or from one R to the terminals R, S, T to the terminal C.
  • the diodes 221 form a rectifier bridge.
  • the position sensor 208 is able to provide a real position P of the rotor 120 with respect to the stator 122.
  • the controller 206 comprises means for receiving information concerning the actual position P of the rotor 120. It also comprises means for receiving an operating instruction F from a control unit 225 of the aircraft. It is suitable to deduce therefrom control laws 230 and 235 respectively of the switches 218, 219 and motors of the vanes 142 of the diffuser 140.
  • the control unit 225 comprises means for receiving information S on the situation in flight or on the ground of the aircraft and means for receiving an order E for reinjecting electrical energy into the electricity network 210 of the aircraft. the aircraft. It is able to deduce the instruction F, as well as control laws 238, 240 respectively of the main switch 211 and the valve 24.
  • the aircraft in a first mode of operation of the aircraft, the aircraft is on the ground.
  • the main switch 211 is then closed, the valve 24 open and the ventilation apparatus 10 in a motor supply mode.
  • the aircraft In a second mode of operation of the aircraft, the aircraft is in flight and has no specific needs for electrical energy.
  • the main switch 211 is then open, the valve 24 closed and the ventilation apparatus 10 in a reel mode.
  • the aircraft In a third mode of operation of the aircraft, the aircraft is in flight and has a specific need for electrical energy.
  • the main switch 211 is then closed, the valve 24 closed and the ventilation apparatus 10 in a power generating mode.
  • the control law 230 sent to the switches 218, 219 of the inverter 204 is of the switching type at a high frequency; the inverter 204 is thus able to convert the direct current supplied by the input stage 202 into a three-phase current transmitted to the active part 130 of the stator 122 of the rotating machine 104.
  • the vanes 142 of the distributor 140 are oriented in a first a position which maximizes an air flow generated by the wheel 102 when it is driven by the rotating machine 104.
  • the transistors 220 of the inverter 204 are switched-controlled by the controller 206; the inverter 204 is thus able to convert a three-phase current from the rotating machine 104 to a direct current fed back to the supply network 210.
  • the vanes 142 of the diffuser 140 are oriented in a second position, distinct from the first position, which maximizes electrical energy provided by the rotating machine 104, when the latter is driven by the wheel 102, itself driven by a flow of air passing through the diffuser 140.
  • the first, second and third positions are determined experimentally, according to the aerodynamic profile of the blades and the aerodynamic conditions upstream of the ventilation apparatus 10.
  • the aerodynamic design of the blade assembly 112 and the fin assembly 129 is designed so that, in the energy generating mode and in the absence of a dispenser 140, the efficiency of the ventilation apparatus 10 is greater at 0.3, preferably greater than 0.35.
  • the dispenser 140 is designed so that, in energy generating mode and when the blades 142 are oriented so as to maximize the electrical energy generated by the fan 100, the efficiency of the ventilation apparatus 10 is greater than 0.4. preferably greater than 0.45.
  • the ventilation apparatus 10 When the aircraft is on the ground, the ventilation apparatus 10 operates in engine power mode.
  • the power supply network 210 supplies the ventilation device 10 with direct current. Current flows through terminal A of input stage 202 and exits through terminal B.
  • the direct current supplied by the power supply network 210 is converted into three-phase current by the inverter 204.
  • This three-phase current supplies the rotating machine 104. Under the effect of this magnetic field, the rotor 120 rotates.
  • the controller 206 controls the speed of rotation of the rotor 120. It adjusts the duty ratio of the control law 230 that it transmits to the switches 218, 219 as a function of the difference between the actual rotational speed of the rotor 120 and the set speed. .
  • the rotor 120 drives the wheel 102, which rotates in a first direction and generates an air flow rate of its rotational speed.
  • the ventilation apparatus 10 is most often in reel mode.
  • the air passes naturally through the air duct 6 and exits through the air outlet 20, cooling the heat exchanger 8 and passing through the ventilation apparatus 10.
  • the wheel 102 offers only one very low resistance to the air circulating in the duct 6 and rotates randomly, according to the air flow.
  • the aircraft may need extra power during the flight.
  • the ventilation apparatus 10 can provide the necessary electrical energy supplement.
  • an order E of reinjection of electrical energy into the network reaches the control unit 225. It then sends an instruction F to the controller 206 controlling the switching of the ventilation apparatus 10 in generator mode energy.
  • the wheel 102 rotates, in the same direction as when the apparatus operates in motor supply mode.
  • the rotation of the wheel 102 causes the formation of alternating currents in the windings of the rotating machine 104.
  • the inverter 204 operates as a controlled rectifier.
  • the current flowing through the terminal C of the inverter is then almost continuous.
  • the low pass filter 212 filters the high frequency harmonics.
  • the current thus has a level of harmonics in accordance with the requirements of the onboard power supply network of the aircraft.
  • this output current is continuous. It has a voltage between 500 and 600 volts, preferably between 520 and 560 volts.
  • This direct current is then injected onto the power supply network 210 of the aircraft via terminal A.
  • the ventilation device is therefore useful when the aircraft is in flight. It serves as a power supply and can at any time, upon simple receipt of a switchover switch in power generator mode, supply electrical power to the aircraft power supply network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

Cet appareil de ventilation comporte un ventilateur et un onduleur (204). Le ventilateur comprend une machine électrique tournante (104) et une roue de mise en mouvement d'un flux d'air, solidaire de la machine tournante (104) pour sa mise en rotation. L'onduleur (204) est reliée la machine tournante (104) et, dans un mode d'alimentation moteur de l'appareil de ventilation, est propre à la mise en forme du courant d'alimentation de la machine tournante (104). L'onduleur (204) est propre à être relié à un réseau d'alimentation électrique (210). L'onduleur est réversible et est, dans un mode générateur de l'appareil de ventilation, propre à convertir l'énergie électrique fournie par la machine tournante (104) lorsque celle-ci est entraînée mécaniquement par la roue et à injecter cette énergie électrique convertie dans le réseau d'alimentation électrique (210).

Description

  • La présente invention concerne un appareil de ventilation pour aéronef, du type comprenant :
    • un ventilateur comprenant une machine électrique tournante et une roue de mise en mouvement d'un flux d'air, solidaire de la machine tournante pour sa mise en rotation ; et
    • un onduleur auquel est reliée la machine tournante et qui, dans un mode d'alimentation moteur de l'appareil de ventilation, est propre à la mise en forme du courant d'alimentation de la machine tournante, lequel onduleur est propre à être relié à un réseau d'alimentation électrique.
  • On connaît des appareils de ventilation équipant divers types d'aéronefs, et particulièrement des avions, servant au refroidissement, lorsque l'aéronef est au sol, d'un échangeur de chaleur situé au niveau d'une entrée d'air dynamique. L'échangeur de chaleur est généralement un condenseur d'un cycle frigorifique de l'aéronef.
  • Lorsque l'aéronef est en vol, l'échangeur de chaleur est refroidi par l'air dynamique créé par le déplacement de l'avion. En effet, l'avion étant en mouvement dans une masse d'air sensiblement immobile, celle-ci se trouve par conséquent être en mouvement dans le référentiel de l'avion ; on appelle donc cet air, en mouvement dans le référentiel de l'avion mais sensiblement immobile dans le référentiel terrestre, « air dynamique ».
  • En revanche, lorsque l'aéronef est au sol, la convection naturelle n'est pas suffisante pour refroidir l'échangeur de chaleur de façon satisfaisante. En l'absence de dispositif complémentaire, les cycles frigorifiques de l'aéronef ne pourraient plus remplir leur rôle.
  • Les aéronefs sont donc équipés d'appareils de ventilation qui prélèvent de l'air à l'extérieur de l'aéronef et assurent un débit d'air suffisant au niveau de l'échangeur de chaleur pour le refroidir. Ce refroidissement est assuré au moyen d'une convection mécanique forcée.
  • Cependant, les systèmes actuels ne donnent pas entière satisfaction. Si en effet les appareils de ventilation actuels remplissent bien leur fonction lorsque l'aéronef est au sol, ceux-ci sont en revanche inutiles lorsque l'aéronef est en vol.
  • Il serait donc souhaitable de trouver une utilité à ces appareils de ventilation lorsque l'appareil est vol.
  • A cet effet, l'invention a pour objet un appareil de ventilation du type précité, l'onduleur étant réversible et étant, dans un mode générateur d'énergie de l'appareil de ventilation, propre à convertir l'énergie électrique fournie par la machine tournante lorsque celle-ci est entraînée mécaniquement par la roue et à injecter cette énergie électrique convertie dans le réseau d'alimentation électrique, caractérisé en ce que l'appareil de ventilation comporte un contrôleur et un distributeur s'étendant transversalement devant la roue, le distributeur comportant des aubes s'étendant radialement, le contrôleur étant propre, en mode alimentation moteur, à commander l'orientation des aubes dans une première position, maximisant un débit d'air généré par la roue lorsque celle-ci est entraînée par la machine tournante, et, en mode générateur d'énergie, à commander l'orientation des aubes dans une deuxième position, maximisant l'énergie électrique fournie par la machine tournante lorsque celle-ci est entraînée par la roue, elle-même entraînée par un flux d'air traversant le distributeur, les première et deuxième positions étant distinctes l'une de l'autre.
  • L'appareil de ventilation selon l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou selon toute(s) combinaison(s) techniquement possible(s) :
    • l'appareil de ventilation comporte un filtre passe-bas intercalé entre l'onduleur et le réseau électrique pour le filtrage du courant issu de l'onduleur ;
    • le courant en sortie de l'appareil de ventilation en mode générateur d'énergie est un courant continu de tension comprise entre 500 et 600 volts, de préférence comprise entre 520 et 560 volts ;
    • le sens de rotation de la roue est identique lorsque le courant est consommé par le ventilateur et lorsque le courant est produit par le ventilateur ;
    • l'onduleur comporte trois branches montées en parallèle, chaque branche comportant deux interrupteurs montés en série, commandés par un contrôleur et entre lesquels est formé un point d'alimentation de la machine électrique, chaque interrupteur comportant un transistor et une diode montés en antiparallèle ;
    • en mode générateur d'énergie, l'ensemble des interrupteurs de l'onduleur forme un pont redresseur commandé par le contrôleur ;
    • les transistors sont des transistors bipolaires à grille isolée ;
    • la machine tournante est une machine synchrone ;
    • le rotor de la machine tournante comporte des aimants permanents ;
    • la roue comporte un moyeu de révolution portant un ensemble de pales, et la machine tournante comprend un rotor et un stator, le stator présentant un carter avec une paroi latérale portant un ensemble d'ailettes, le design aérodynamique de l'ensemble de pales et de l'ensemble d'ailettes étant conçu pour que, en mode générateur d'énergie, le rendement de l'appareil de ventilation est supérieur à 0,3, de préférence supérieur à 0,35 ;
    • le distributeur est conçu pour que, en mode générateur d'énergie et lorsque les aubes sont orientées de façon à maximiser l'énergie électrique générée par le ventilateur, le rendement de l'appareil de ventilation est supérieur à 0,4, de préférence supérieur à 0,45.
  • La présente invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés, sur lesquels :
    • la Figure 1 est une vue schématique en coupe selon un plan longitudinal d'un conduit d'air alimentant un échangeur de chaleur et équipé d'un appareil de ventilation selon l'invention ;
    • la Figure 2 est une vue en coupe selon un plan longitudinal d'un appareil de ventilation selon l'invention ;
    • la Figure 3 est un schéma simplifié de la structure électronique d'un appareil de ventilation selon l'invention.
  • Dans tout ce qui suit, on désigne par « au sol » le fait qu'un aéronef ne vole pas, ou qu'il vole à basse altitude, communément en-dessous de 10000 pieds. On désigne par « en vol » le fait qu'un aéronef vole à haute altitude, communément au-dessus de 10000 pieds.
  • De plus, le terme « cylindre » est à entendre au sens large et inclut aussi bien des éléments à base circulaire que des éléments à bases ovoïde, triangulaire, quadrangulaire ou tout autre type de contour fermé. Le terme « cylindrique de révolution » désigne des cylindres à base circulaire.
  • La Figure 1 représente un conduit d'air 6 d'un aéronef, comportant successivement un échangeur de chaleur 8 et un appareil de ventilation selon l'invention 10.
  • Le conduit d'air 6 s'étend dans une direction longitudinale X allant de l'avant vers l'arrière de l'aéronef. Il comporte successivement de l'avant vers l'arrière une entrée d'air dynamique 12, une portion cylindrique 16 et une sortie d'air 20. Il comporte en outre une entrée d'air ventilateur 14, piquée dans la portion cylindrique 16, en amont de l'échangeur de chaleur 8 et de l'appareil de ventilation 10.
  • L'entrée d'air dynamique 12, l'entrée d'air ventilateur 14 et la sortie d'air 20 débouchent toutes les trois sur l'extérieur de l'aéronef.
  • L'entrée d'air ventilateur 14 comporte un clapet 24.
  • La portion cylindrique 16 s'étend longitudinalement. Elle contient l'échangeur de chaleur 8 et porte l'appareil de ventilation 10. Elle est cylindrique de révolution au niveau de l'appareil de ventilation 10. L'échangeur de chaleur 8 est de préférence devant l'appareil de ventilation 10.
  • La Figure 2 présente une vue détaillée de l'appareil de ventilation 10 à l'intérieur de la partie cylindrique 16. Il comporte un ventilateur 100 et une partie électronique de puissance 106 pour son alimentation. Le ventilateur 100 est à l'intérieur de la portion cylindrique 16. Il est constitué d'une roue 102 et d'une machine électrique tournante triphasée 104.
  • La roue 102 comporte un moyeu 110 de révolution. Le moyeu 110 porte un ensemble de pales 112 dont l'extrémité libre suit sensiblement le profil de la surface intérieure de la partie cylindrique 16.
  • La roue 102 est par exemple une hélice.
  • La machine tournante 104 comporte un rotor 120 et un stator 122. Le rotor 120 est de forme générale cylindrique. Le stator 122 s'étend autour du rotor 120. De préférence, la machine tournante 104 est une machine synchrone.
  • Le stator 122 présente un carter 124. Le carter 124 comporte une embase 126 et une paroi latérale cylindrique 128. L'embase 126 est prolongée axialement vers l'avant par la paroi latérale cylindrique 128. La paroi latérale cylindrique 128 forme la surface extérieure de la machine tournante 104. Un ensemble d'ailettes 129 est fixé sur la surface latérale de la paroi latérale cylindrique 128.
  • Le carter 124 abrite une partie active 130 du stator 122. La partie active 130 est fixée sur la surface latérale intérieure de la paroi latérale cylindrique 128. Elle comporte des armatures formées de matériaux ferromagnétiques et des bobinages enroulés autour de ces armatures. La partie active 130 s'étend autour d'un entrefer 132.
  • Le rotor 120 s'étend longitudinalement au centre de l'entrefer 132. Il est monté rotatif par rapport au stator 122 par l'intermédiaire de moyens rotatifs 134, 135 fixés au carter 124. Ces moyens rotatifs 134, 135 sont par exemple des roulements à billes.
  • Le rotor 120 porte sur sa surface externe un ensemble d'éléments magnétiques 136, tels que des barres de matériau aimanté.
  • Le rotor 120 est solidaire de la roue 102. La roue 102 est vissée sur le rotor 120.
  • De préférence, l'appareil de ventilation 10 comporte également un distributeur 140. Ce distributeur 140 est placé devant la roue 102. Il s'étend transversalement. Il a un plan médian orienté perpendiculairement à l'axe longitudinal X.
  • Le distributeur 140 comporte des aubes 142 s'étendant radialement. Chaque aube 142 a une extrémité fixe 144 raccordée à la surface intérieure de la partie cylindrique 16, et une extrémité libre 146 proche de l'axe central de la partie cylindrique 16. Chaque aube 142 est apte à pivoter autour d'un axe A-A reliant son extrémité fixe 144 à son extrémité libre 146 entre une pluralité d'orientations. Un moteur (non représenté) commande la rotation de chaque aube 142 autour de son axe A-A. Les aubes 142 sont propres à être verrouillées dans une orientation précise, de sorte qu'ils ne peuvent alors plus pivoter autour de leurs axes A-A tant qu'ils n'ont pas été déverrouillés.
  • Le distributeur 140 permet d'optimiser le rendement de l'appareil de ventilation 10.
  • La Figure 3 présente un schéma de la partie électronique de puissance 106. Elle comporte un étage d'entrée 202, un onduleur 204, un contrôleur 206 et un capteur de position 208 du rotor 120 par rapport au stator 122, tel qu'un capteur à effet Hall. Elle est reliée à la machine tournante 104.
  • L'appareil de ventilation 10 est raccordé à un réseau d'alimentation électrique 210 haute tension de courant continu HVDC par l'intermédiaire de la partie électronique de puissance 106. Ce réseau d'alimentation électrique 210 est celui de l'aéronef. La différence de tension entre les bornes du réseau électrique 210 auxquelles est relié l'appareil de ventilation 10 est par exemple de 540 volts.
  • Le réseau d'alimentation électrique 210 comprend un interrupteur général 211. Cet interrupteur général 211 est apte à commuter entre une position fermée, dans laquelle il assure une connexion entre l'appareil de ventilation 10 et le réseau d'alimentation électrique 210, et une position ouverte, dans laquelle il n'assure pas de connexion entre l'appareil de ventilation 10 et le réseau d'alimentation électrique 210.
  • La partie électronique de puissance 106 est raccordée au réseau d'alimentation électrique 210 par l'intermédiaire de l'étage d'entrée 202. L'étage d'entrée 202 comporte un filtre 212 passe-bas réversible, et deux bornes A et B raccordées au réseau d'alimentation électrique 210.
  • Le filtre 212, relié entre les bornes A et B, comporte une bobine 214 reliée en série en un point C avec un condensateur 216. La sortie d'alimentation de l'onduleur 204 est constituée des points B et C.
  • L'onduleur 204 est réversible. Il comporte trois branches de commutation correspondant aux trois phases du moteur. Ces trois branches sont montées en parallèle entre les points d'entrée C et B. Chaque branche comporte deux interrupteurs 218,219 montés en série et entre lesquels est formé un point R,S,T d'alimentation triphasée de la machine tournante 104. Chaque interrupteur comporte un transistor 220 et une diode 221 montés en antiparallèle.
  • Le transistor 220 est apte à commuter entre une position ouverte et une position fermée. En position fermée, le transistor 220 de chaque interrupteur 218, 219 est apte à laisser passer un courant respectivement de la borne C vers l'une R des bornes R, S, T, ou de l'une R des bornes R, S, T vers la borne B. En position ouverte, le transistor 220 ne laisse passer aucun courant.
  • Le transistor 220 est par exemple un transistor bipolaire à grille isolée, connu sous l'acronyme IGBT.
  • La diode 221 de chaque interrupteur 218, 219 est propre à laisser passer un courant respectivement de la borne B vers l'une R des bornes R, S, T, ou de l'une R des bornes R, S, T vers la borne C. Lorsque les transistors 220 sont tous ouverts, les diodes 221 forment un pont redresseur.
  • Le capteur de position 208 est propre à fournir une position Préelle du rotor 120 par rapport au stator 122.
  • Le contrôleur 206 comporte des moyens de réception d'informations concernant la position Préelle du rotor 120. Il comporte également des moyens de réception d'une consigne F de fonctionnement provenant d'une unité de contrôle 225 de l'aéronef. Il est propre à en déduire des lois de commande 230 et 235 respectivement des interrupteurs 218,219 et des moteurs des aubes 142 du diffuseur 140.
  • L'unité de contrôle 225 comporte des moyens de réception d'une information S sur la situation en vol ou au sol de l'aéronef et des moyens de réception d'un ordre E de réinjection d'énergie électrique dans le réseau électrique 210 de l'aéronef. Elle est propre à en déduire la consigne F, ainsi que des lois de commande 238, 240 respectivement de l'interrupteur général 211 et du clapet 24.
  • Selon les entrées S, E que reçoit l'unité de contrôle 225, ses sorties 238, 240 et F varient. Le tableau ci-dessous donne les valeurs des sorties 238, 240, F en fonction des entrées S, E :
    Entrées Sorties
    S = "au sol" 238 = fermé
    240 = ouvert
    F = alimentation moteur
    S = "en vol" 238 = ouvert
    E = 0 240 = fermé
    F = moulinet
    S = "en vol" 238 = fermé
    E = 1 240 = fermé
    F = générateur d'énergie
  • Ainsi, dans un premier mode de fonctionnement de l'aéronef, l'aéronef est au sol. L'interrupteur général 211 est alors fermé, le clapet 24 ouvert et l'appareil de ventilation 10 dans un mode d'alimentation moteur.
  • Dans un deuxième mode de fonctionnement de l'aéronef, l'aéronef est en vol et n'a pas de besoins spécifiques en énergie électrique. L'interrupteur général 211 est alors ouvert, le clapet 24 fermé et l'appareil de ventilation 10 dans un mode moulinet.
  • Dans un troisième mode de fonctionnement de l'aéronef, l'aéronef est en vol et a un besoin spécifique en énergie électrique. L'interrupteur général 211 est alors fermé, le clapet 24 fermé et l'appareil de ventilation 10 dans un mode générateur d'énergie.
  • Selon la consigne F reçue par le contrôleur 206, ses sorties 230, 235 varient. Le tableau ci-dessous donne les valeurs des sorties 230, 235 en fonction de la consigne F :
    Consigne F Sorties
    « alimentation moteur » 230 = commande par modulation de largeur d'impulsion
    235 = première position
    « moulinet » 230 = ouvert
    235 = /
    « générateur d'énergie » 230 = commande en commutation
    235 = deuxième position
  • En mode alimentation moteur, la loi de commande 230 envoyée aux interrupteurs 218, 219 de l'onduleur 204 est de type à découpage à une fréquence élevée ; l'onduleur 204 est ainsi apte à convertir le courant continu fourni par l'étage d'entrée 202 en courant triphasé transmis à la partie active 130 du stator 122 de la machine tournante 104. Les aubes 142 du distributeur 140 sont orientées dans une première position qui maximise un débit d'air généré par la roue 102, lorsque celle-ci est entraînée par la machine tournante 104.
  • En mode générateur d'énergie, les transistors 220 de l'onduleur 204 sont commandés en commutation par le contrôleur 206 ; l'onduleur 204 est ainsi apte à convertir un courant triphasé provenant de la machine tournante 104 en courant continu réinjecté sur le réseau d'alimentation 210. Les aubes 142 du diffuseur 140 sont orientées dans une deuxième position, distincte de la première position, qui maximise une énergie électrique fournie par la machine tournante 104, lorsque celle-ci est entraînée par la roue 102, elle-même entraînée par un flux d'air traversant le diffuseur 140.
  • Les première, deuxième et troisième positions sont déterminées expérimentalement, en fonction du profil aérodynamique des pales et des conditions aérodynamiques en amont de l'appareil de ventilation 10.
  • Le design aérodynamique de l'ensemble de pales 112 et de l'ensemble d'ailettes 129 est conçu pour que, en mode générateur d'énergie et en l'absence de distributeur 140, le rendement de l'appareil de ventilation 10 soit supérieur à 0,3, de préférence supérieur à 0,35. Le distributeur 140 est conçu pour que, en mode générateur d'énergie et lorsque les aubes 142 sont orientées de façon à maximiser l'énergie électrique générée par le ventilateur 100, le rendement de l'appareil de ventilation 10 soit supérieur à 0,4, de préférence supérieur à 0,45.
  • Nous allons maintenant décrire le fonctionnement de l'appareil de ventilation 10.
  • Lorsque l'aéronef est au sol, l'appareil de ventilation 10 fonctionne en mode alimentation moteur.
  • L'interrupteur général 211 étant fermé, le réseau d'alimentation électrique 210 alimente l'appareil de ventilation 10 en courant continu. Le courant entre par la borne A de l'étage d'entrée 202 et sort par la borne B.
  • Le courant continu fourni par le réseau d'alimentation électrique 210 est converti en courant triphasé par l'onduleur 204. Ce courant triphasé alimente la machine tournante 104. Sous l'effet de ce champ magnétique, le rotor 120 tourne.
  • Le contrôleur 206 pilote la vitesse de rotation du rotor 120. Il ajuste le rapport cyclique de la loi de commande 230 qu'il transmet aux interrupteurs 218,219 en fonction de l'écart entre la vitesse réelle de rotation du rotor 120 et la vitesse de consigne.
  • Le rotor 120 entraîne la roue 102, qui tourne dans un premier sens et génère un débit d'air fonction de sa vitesse de rotation.
  • Lorsque l'aéronef est en vol, il n'y a plus besoin de convection forcée pour refroidir l'échangeur de chaleur 8. L'appareil de ventilation 10 est le plus souvent en mode moulinet.
  • L'air pénètre dans le conduit 6 par l'entrée d'air dynamique 12 sous le seul effet de la vitesse de l'aéronef par rapport aux masses d'air. L'air traverse naturellement le conduit d'air 6 et ressort par la sortie d'air 20, en refroidissant au passage l'échangeur de chaleur 8 et en traversant l'appareil de ventilation 10. La roue 102 n'offre qu'une résistance très faible à l'air circulant dans le conduit 6 et tourne aléatoirement, au gré du débit d'air.
  • Il se peut que l'aéronef ait besoin d'un surplus d'énergie électrique au cours du vol. Dans ce cas, l'appareil de ventilation 10 peut fournir l'appoint d'énergie électrique nécessaire.
  • En cas de nécessité, un ordre E de réinjection d'énergie électrique dans le réseau parvient à l'unité de contrôle 225. Celle-ci envoie alors une consigne F au contrôleur 206 commandant le basculement de l'appareil de ventilation 10 en mode générateur d'énergie.
  • Sous l'effet de l'air circulant dans le conduit 6, la roue 102 tourne, dans le même premier sens que lorsque l'appareil fonctionne en mode d'alimentation moteur. La rotation de la roue 102 entraîne la formation de courants alternatifs dans les bobinages de la machine tournante 104.
  • Ces courants alternatifs entrent dans l'onduleur 204 au niveau des points R, S, T. Les transistors 220 modulent le passage de ce courant afin de générer un courant de tension continu adapté au niveau de tension du réseau 210. L'onduleur 204 fonctionne en redresseur commandé.
  • Le courant qui sort par la borne C de l'onduleur est alors presque continu. Le filtre passe-bas 212 filtre les harmoniques de haute fréquence. En sortie du filtre 212, le courant a ainsi un niveau d'harmoniques conforme aux exigences du réseau d'alimentation électrique de bord de l'aéronef. En première approximation, ce courant de sortie est continu. Il a une tension comprise entre 500 et 600 volts, de préférence comprise entre 520 et 560 volts.
  • Ce courant continu est ensuite injecté sur le réseau d'alimentation électrique 210 de l'aéronef par la borne A.
  • Grâce à l'invention, l'appareil de ventilation a donc une utilité lorsque l'aéronef est en vol. Il sert d'alimentation électrique et peut à tout moment, sur simple réception d'une consigne de basculement en mode générateur d'énergie, fournir de l'énergie électrique au réseau d'alimentation électrique de l'aéronef.

Claims (11)

  1. Appareil de ventilation (10) pour aéronef comportant :
    - un ventilateur (100) comprenant une machine électrique tournante (104) et une roue (102) de mise en mouvement d'un flux d'air, solidaire de la machine tournante (104) pour sa mise en rotation ; et
    - un onduleur (204), propre à être relié à un réseau d'alimentation électrique (210), et auquel est reliée la machine tournante (104), l'onduleur étant, dans un mode d'alimentation moteur de l'appareil de ventilation (10), propre à la mise en forme du courant d'alimentation de la machine tournante (104), l'onduleur (204) étant réversible et étant, dans un mode générateur d'énergie de l'appareil de ventilation (10), propre à convertir l'énergie électrique fournie par la machine tournante (104) lorsque celle-ci est entraînée mécaniquement par la roue (102), et à injecter cette énergie électrique convertie dans le réseau d'alimentation électrique (210),
    caractérisé en ce que l'appareil de ventilation (10) comporte un contrôleur (206) et un distributeur (140) s'étendant transversalement devant la roue (102), le distributeur (140) comportant des aubes (142) s'étendant radialement, le contrôleur (206) étant propre, en mode alimentation moteur, à commander l'orientation des aubes (142) dans une première position, maximisant un débit d'air généré par la roue (102) lorsque celle-ci est entraînée par la machine tournante (104), et, en mode générateur d'énergie, à commander l'orientation des aubes (142) dans une deuxième position, maximisant l'énergie électrique fournie par la machine tournante (104) lorsque celle-ci est entraînée par la roue (102), elle-même entraînée par un flux d'air traversant le distributeur (140), les première et deuxième positions étant distinctes l'une de l'autre.
  2. Appareil de ventilation selon la revendication 1, caractérisé en ce qu'il comporte un filtre passe-bas (212) intercalé entre l'onduleur (204) et le réseau électrique (210) pour le filtrage du courant issu de l'onduleur (204).
  3. Appareil de ventilation selon la revendication 1 ou 2, caractérisé en ce que le courant en sortie de l'appareil de ventilation (10) en mode générateur d'énergie est un courant continu de tension comprise entre 500 et 600 volts, de préférence comprise entre 520 et 560 volts.
  4. Appareil de ventilation selon l'une des revendications précédentes, caractérisé en ce que le sens de rotation de la roue (102) est identique lorsque le courant est consommé par le ventilateur (100) et lorsque le courant est produit par le ventilateur (100).
  5. Appareil de ventilation selon l'une des revendications précédentes, caractérisé en ce que l'onduleur (204) comporte trois branches montées en parallèle, chaque branche comportant deux interrupteurs (218, 219) montés en série, commandés par le contrôleur (206) et entre lesquels est formé un point (R, S, T) d'alimentation de la machine électrique (104), chaque interrupteur (218, 219) comportant un transistor (220) et une diode (221) montés en antiparallèle.
  6. Appareil de ventilation selon la revendication 5, caractérisé en ce que, en mode générateur d'énergie, l'ensemble des interrupteurs (218, 219) de l'onduleur (204) forme un pont redresseur commandé par le contrôleur (206).
  7. Appareil de ventilation selon les revendications 5 ou 6, caractérisé en ce que les transistors (220) sont des transistors bipolaires à grille isolée.
  8. Appareil de ventilation selon l'une des revendications précédentes, caractérisé en ce que la machine tournante (104) est une machine synchrone.
  9. Appareil de ventilation selon la revendication 8, caractérisé en ce que le rotor (120) de la machine tournante (104) comporte des aimants permanents (136).
  10. Appareil de ventilation selon l'une des revendications précédentes, caractérisé en ce que la roue (102) comporte un moyeu (110) de révolution portant un ensemble de pales (112), et en ce que la machine tournante (104) comprend un rotor (120) et un stator (122), le stator (122) présentant un carter (124) avec une paroi latérale (128) portant un ensemble d'ailettes (129), le design aérodynamique de l'ensemble de pales (112) et de l'ensemble d'ailettes (129) étant conçu pour que, en mode générateur d'énergie, le rendement de l'appareil de ventilation (10) soit supérieur à 0,3, de préférence supérieur à 0,35.
  11. Appareil de ventilation selon l'une quelconque des revendications précédentes, caractérisé en ce que le distributeur (140) est conçu pour que, en mode générateur d'énergie et lorsque les aubes (142) sont orientées de façon à maximiser l'énergie électrique générée par le ventilateur (100), le rendement de l'appareil de ventilation (10) soit supérieur à 0,4, de préférence supérieur à 0,45.
EP11305161.9A 2010-02-17 2011-02-16 Appareil de ventilation pour aéronef Active EP2357133B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1051124A FR2956379B1 (fr) 2010-02-17 2010-02-17 Appareil de ventilation pour aeronef

Publications (2)

Publication Number Publication Date
EP2357133A1 true EP2357133A1 (fr) 2011-08-17
EP2357133B1 EP2357133B1 (fr) 2013-07-24

Family

ID=42751625

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11305161.9A Active EP2357133B1 (fr) 2010-02-17 2011-02-16 Appareil de ventilation pour aéronef

Country Status (3)

Country Link
US (1) US9180971B2 (fr)
EP (1) EP2357133B1 (fr)
FR (1) FR2956379B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2572989A1 (fr) * 2011-09-21 2013-03-27 General Electric Company Turbine à air dynamique avec échangeur de chaleur intégré
FR3025591A1 (fr) * 2014-09-05 2016-03-11 Technofan Dispositif de ventilation, aeronef comportant un tel dispositif de ventilation et procede de surveillance associe
FR3028361A1 (fr) * 2014-11-10 2016-05-13 Technofan Ventilateur comportant un dispositif de transformation d'un courant electrique triphase
FR3033460A1 (fr) * 2015-03-04 2016-09-09 Technofan Ensemble de refroidissement pour aeronef

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2992796B1 (fr) * 2012-07-02 2015-05-01 Snecma Dispositif de ventilation et d'alimentation electrique d'un calculateur de moteur d'aeronef
FR3017010B1 (fr) * 2014-01-30 2016-02-26 Technofan Dispositif de detection de sous-vitesse, systeme de ventilation et vehicule associes
FR3025184B1 (fr) * 2014-09-01 2016-12-23 Technofan Appareil de ventilation pour aeronef
US20160146511A1 (en) * 2014-11-24 2016-05-26 Hamilton Sundstrand Corporation Heat exchanger assembly for aircraft ecs
US20190256213A1 (en) * 2016-06-14 2019-08-22 Bombardier Inc. Duct and method for directing a flow of air from an air-cooled device onboard an aircraft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383335A (en) * 1993-10-19 1995-01-24 Pneumo Abex Corporation Method and apparatus for supplying preconditioned air to a parked aircraft
DE10119433C1 (de) * 2001-04-20 2002-08-22 Liebherr Aerospace Gmbh Stauluftkanal für eine Flugzeugklimaanlage
EP1746260A2 (fr) * 2005-07-20 2007-01-24 United Technologies Corporation Train d'engrenage avec mécanisme de synchronisation pour les aubes de guidage variables et l' anneau des aubes à diamètre interne
JP2009284747A (ja) * 2008-04-23 2009-12-03 Mitsubishi Electric Corp 永久磁石同期モータの駆動装置、空気調和装置、換気扇の駆動装置、洗濯機、自動車及び車両

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761600A (en) * 1987-03-06 1988-08-02 General Electric Company Dynamic brake control
US6794766B2 (en) * 2001-06-29 2004-09-21 General Electric Company Method and operational strategy for controlling variable stator vanes of a gas turbine power generator compressor component during under-frequency events
US20040096327A1 (en) * 2002-11-14 2004-05-20 Kari Appa Method of increasing wind farm energy production
DE102006041325A1 (de) * 2006-09-01 2008-03-06 Rolls-Royce Deutschland Ltd & Co Kg Generator-Starter-System für ein Mehrwellentriebwerk
US20080137383A1 (en) * 2006-11-21 2008-06-12 University Of New Brunsick Two-phase power converter apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383335A (en) * 1993-10-19 1995-01-24 Pneumo Abex Corporation Method and apparatus for supplying preconditioned air to a parked aircraft
DE10119433C1 (de) * 2001-04-20 2002-08-22 Liebherr Aerospace Gmbh Stauluftkanal für eine Flugzeugklimaanlage
EP1746260A2 (fr) * 2005-07-20 2007-01-24 United Technologies Corporation Train d'engrenage avec mécanisme de synchronisation pour les aubes de guidage variables et l' anneau des aubes à diamètre interne
JP2009284747A (ja) * 2008-04-23 2009-12-03 Mitsubishi Electric Corp 永久磁石同期モータの駆動装置、空気調和装置、換気扇の駆動装置、洗濯機、自動車及び車両

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2572989A1 (fr) * 2011-09-21 2013-03-27 General Electric Company Turbine à air dynamique avec échangeur de chaleur intégré
US8864448B2 (en) 2011-09-21 2014-10-21 General Electric Company Ram air turbine with integrated heat exchanger
FR3025591A1 (fr) * 2014-09-05 2016-03-11 Technofan Dispositif de ventilation, aeronef comportant un tel dispositif de ventilation et procede de surveillance associe
FR3028361A1 (fr) * 2014-11-10 2016-05-13 Technofan Ventilateur comportant un dispositif de transformation d'un courant electrique triphase
FR3033460A1 (fr) * 2015-03-04 2016-09-09 Technofan Ensemble de refroidissement pour aeronef
US10131434B2 (en) 2015-03-04 2018-11-20 Technofan Cooling assembly for an aircraft provided with a fan

Also Published As

Publication number Publication date
EP2357133B1 (fr) 2013-07-24
US20110204628A1 (en) 2011-08-25
US9180971B2 (en) 2015-11-10
FR2956379B1 (fr) 2012-08-24
FR2956379A1 (fr) 2011-08-19

Similar Documents

Publication Publication Date Title
EP2357133B1 (fr) Appareil de ventilation pour aéronef
EP2635154B1 (fr) Sèche-cheveux léger et performant
FR2893461B1 (fr) Machine electrique rotative pour vehicules
EP1929611B1 (fr) Systeme de ventilation pour machines electriques tournantes equipe d'un dispositif de refroidissement par ecoulement force d'un fluide et machine electrique tournante comportant un tel dispositif
FR2742300A1 (fr) Tondeuse a gazon electrique
CA2802569C (fr) Alimentation electrique des equipements portes par le rotor d'un moteur d'aeronef
EP1695431A1 (fr) Ralentisseur electromagnetique comportant des moyens pour assurer une ventilation
FR3010590A1 (fr) Ensemble electronique pour machine electrique tournante pour vehicule automobile
EP2272155B1 (fr) Moteur electrique
FR2971648A1 (fr) Ensemble fonctionnant a regime variable, comportant un alternateur synchrone a rotor bobine et un convertisseur
EP3574572A1 (fr) Machine electrique tournante fermee comportant un systeme de refroidissement interne par air des aimants dans le rotor
EP3304699A1 (fr) Moteur electrique a commutation electronique et dispositif de pulsion d'air correspondant
EP3324035A1 (fr) Procédé de commande d'un démarreur générateur
WO2013030767A2 (fr) Machine electrique a refroidissement ameliore
FR3028361A1 (fr) Ventilateur comportant un dispositif de transformation d'un courant electrique triphase
EP2913910B1 (fr) Machine électrique tournante pour véhicule automobile comprenant un ensemble électronique
FR2797535A1 (fr) Dispositif de production d'electricite
FR3033460A1 (fr) Ensemble de refroidissement pour aeronef
FR3025184A1 (fr) Appareil de ventilation pour aeronef
FR3076114A1 (fr) Systeme de controle d'une machine electrique tournante
FR3118680A1 (fr) Dissipation de l’énergie de freinage générée par le moteur électrique de la micro-soufflante d’un ventilateur médical
FR3028112A1 (fr) Ventilateur embarque a bord d'un aeronef et aeronef associe
FR3114616A1 (fr) Dispositif d’actionnement de pompe, système de pompage, aéronef et procédé d’alimentation en carburant associés
FR2894091A1 (fr) Procede d'amelioration du refroidissement d'un ralentisseur electromagnetique
WO2016193046A1 (fr) Moteur electrique a commutation electronique et dispositif de pulsion d'air correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LANDO, JEAN-LOUIS

Inventor name: DARNIS, OLIVIER

Inventor name: FOCH, ETIENNE

17P Request for examination filed

Effective date: 20120124

RIC1 Information provided on ipc code assigned before grant

Ipc: H02M 7/219 20060101ALI20120924BHEP

Ipc: B64D 13/06 20060101AFI20120924BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TECHNOFAN

Owner name: AIRBUS OPERATIONS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DARNIS, OLIVIER

Inventor name: LANDO, JEAN-LOUIS

Inventor name: FOCH, ETIENNE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 623249

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011002459

Country of ref document: DE

Effective date: 20130919

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 623249

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130724

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130724

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131024

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131124

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131025

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140425

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011002459

Country of ref document: DE

Effective date: 20140425

BERE Be: lapsed

Owner name: TECHNOFAN

Effective date: 20140228

Owner name: AIRBUS OPERATIONS

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140216

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110216

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200121

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602011002459

Country of ref document: DE

Owner name: SAFRAN VENTILATION SYSTEMS SASU, FR

Free format text: FORMER OWNERS: AIRBUS OPERATIONS, TOULOUSE, FR; TECHNOFAN, BLAGNAC, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602011002459

Country of ref document: DE

Owner name: AIRBUS OPERATIONS, FR

Free format text: FORMER OWNERS: AIRBUS OPERATIONS, TOULOUSE, FR; TECHNOFAN, BLAGNAC, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 14

Ref country code: GB

Payment date: 20240123

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240123

Year of fee payment: 14