EP2333350A1 - Vacuum generator operated by pressurised air - Google Patents

Vacuum generator operated by pressurised air Download PDF

Info

Publication number
EP2333350A1
EP2333350A1 EP10191764A EP10191764A EP2333350A1 EP 2333350 A1 EP2333350 A1 EP 2333350A1 EP 10191764 A EP10191764 A EP 10191764A EP 10191764 A EP10191764 A EP 10191764A EP 2333350 A1 EP2333350 A1 EP 2333350A1
Authority
EP
European Patent Office
Prior art keywords
vacuum generator
generator according
section
venturi nozzle
venturi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10191764A
Other languages
German (de)
French (fr)
Inventor
Walter Schaaf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J Schmalz GmbH
Original Assignee
J Schmalz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Schmalz GmbH filed Critical J Schmalz GmbH
Publication of EP2333350A1 publication Critical patent/EP2333350A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/20Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
    • F04F5/22Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating of multi-stage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/461Adjustable nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/467Arrangements of nozzles with a plurality of nozzles arranged in series

Definitions

  • the invention relates to a vacuum generator with the features of the preamble of claim 1.
  • Ejectors with cylindrical venturi nozzles are known (US Pat. US 2004/0052646 .
  • multi-stage ejectors with cylindrical venturi nozzles are known (US Pat. DE 699 21 627 . WO 99/49216 . US Pat. No. 6,394,760 B1 . DE 44 91 977 . WO 01 21961 A1 . WO 2006/011760 ).
  • cylindrical conveying ejectors according to the Coanda principle and the planar Coanda principle for gripping ( WO 2009/054732 A1 ) known.
  • a disadvantage is considered that the space of the vacuum generator is relatively large.
  • the invention has for its object to provide a vacuum generator with a smaller space.
  • planar Venturi nozzle according to the invention in the vacuum generator requires much less space and can also be constructed in several stages.
  • the advantages are seen in the fact that the flat surface construction of the components of flat Semifinished products are manufacturable, making them cheaper to produce. Due to the lower height, they require less space. In combination with surface suction cups, they can be ideally adapted to the surface.
  • the vacuum control has a vacuum sensor and a non-return valve.
  • multistage ejectors with multiple planar, successively connected Venturi nozzles realized.
  • the closure flaps can be arranged perpendicular to the surface or in the surface, ie parallel to it.
  • FIG. 1 shows a total of 10 designated Mehrgenejektor as he eg from the DE 699 21 627 T2 is known.
  • This known Mehrgenejektor 10 has four suction stages 12 to 18 with cylindrical Venturi nozzles 20 to 26.
  • FIGS. 1a) to 1d successive Ansaugzudes with increasing vacuum in the vacuum chamber 28 and overall decreasing Saugvolumenstrom shown.
  • Compressed air is introduced in the direction of the arrow 30 into the first Venturi nozzle 20, whereby air from the vacuum chamber 28 is sucked in the direction of the arrow 32.
  • the compressed air also flows through the Venturi nozzle 22, so that air is sucked in the direction of the arrow 34.
  • FIG. 1b shows an operating position of the multi-stage ejector 10, in which the non-return valve 52 is closed. If a certain negative pressure in the vacuum chamber 28 is reached, then the check valve 52 closes automatically, so that only the sucked air through the suction stages 12 to 16 in the direction of arrows 32, 34 and 36 is sucked. The suction volume flow is thereby reduced, but the negative pressure in the vacuum chamber 28 increases.
  • the Figure 1c shows an operating position of the multi-stage ejector 10, in which additionally the non-return valve 50 is closed.
  • This check valve 50 closes when an even higher negative pressure in the vacuum chamber 28 has been reached. Now only the sucked air via the suction stages 12 and 14 in the direction of arrows 32 and 34 is sucked. The suction volume flow is thereby even lower, but the negative pressure in the vacuum chamber 28 increases further.
  • the Figure 1d shows an operating position of the multi-stage ejector 10, in which all non-return valve 48 to 52 are closed.
  • the non-return valve 48 closes at even higher negative pressure in the vacuum chamber 28.
  • the suction volume flow is thereby even lower, which is illustrated by the small number of arrows 44, but now the maximum negative pressure in the vacuum chamber 28 can be generated.
  • FIG. 2 shows a multi-stage ejector 10 with three drinking stages 12 to 16 and two non-return valves 48 and 50, which occupy their closed position.
  • the compressed air is introduced via two openings 54, whereas the exhaust air from three openings 42 and 56 is discharged.
  • the FIG. 3 shows a flat Coanda ejector 58, as he from the WO 2009/054732 A1 is known.
  • the Coanda ejector 58 has a sandwich construction and in particular a cover plate 60, a bottom plate 62 and a function spacer 64.
  • the Coanda ejector 58 is designed in one stage, whereas the Coanda ejector 58 in the FIG. 3b ) has a plurality of parallel stages.
  • the compressed air enters the direction of the arrow 30 through the opening 54 in the Coanda ejector 58 and is introduced tangentially via a compressed air channel 65 into the suction channel 66.
  • FIG. 4 shows an exploded view of a surface suction gripper 72 according to the invention with a multi-stage ejector 10 of planar Venturi nozzles 20, 22 and 24, wherein the suction openings 46 and check valves 48, 50 and 52 are arranged parallel to the plane of the Venturi nozzles 20 to 24.
  • the multi-stage ejector 10 has a sandwich construction, wherein below the cover plate 60, the nozzle plate 74 is located. This is followed by a support plate 76 with elongated openings 78 for supporting the check valves 48, 50 and 52, which lie in a plate 80.
  • This plate 80 is preferably made of an elastomer and is provided by an omega-shaped ( ⁇ -shaped) cutting line with tongue-like or spoon-shaped valve tongues. Below this plate 80 there is a plate 82 having the suction openings, on the underside of which a frame 84 rests, via which a suction space 86 is formed between the plate 82 and a perforated plate 88.
  • the plates 60, 74, 76, 82, 82 and 88 are preferably made of metal, wherein the frame may be made of metal or a sealing material made of plastic. All plates can be punched or laser cut.
  • FIG. 5 shows an assembly view of the surface suction gripper 72 according to FIG. 4 with the multi-stage ejector 10 with the planar Venturi nozzles 20, 22 and 24, wherein the suction openings 46 and check valves 48, 50 and 52 are arranged parallel to the plane of the Venturi nozzles 20, 22 and 24. It is clearly recognizable the slim construction with low height. Due to the rectangular cross-section of the venturi 20, 22 and 24, the cover of the nozzle plate 74 is made possible with simple plates.
  • FIG. 6 shows a multi-stage ejector 10 with planar venturi 20, 22 and 24 and three suction stages 12, 14 and 16, wherein the suction ports 46 and the check valves 48 and 50 are in the Venturi nozzles 20, 22 and 24 having plane of the nozzle plate 74 and the two check valves 48 and 50 are closed.
  • These check valves 48 and 50 are provided on a separate plate 80 or integrated into the suction stages 14 and 16, in particular in grooves 90 (FIG. FIG. 7 ) are used and set up from a certain negative pressure and close the suction when the suction flow falls below a threshold.
  • FIG. 7 the flow pattern of the compressed air and the suction air is shown when the check valves 48 and 50 are opened.
  • the nozzle plate 74 may also be stamped or made by laser. The structure is even flatter in this embodiment. Due to the rectangular cross-section of the venturi 20, 22 and 24, the cover of the nozzle plate 74 is made possible with simple plates.

Abstract

The generator has venturi nozzle with a flow cross section that deviates from a circularity. Two plates are arranged in parallel relationship and joined in sandwich construction, with one of the plates constructed to accommodate the venturi nozzle. A pressure sensor or flow sensor is fluidly connected to the flow cross section for process supervision. A flap valve is in parallel relation to a plane of the venturi nozzle for closing a suction cross section. The venturi nozzles are constructed so as to be individually controlled for connection or disconnection.

Description

Die Erfindung betrifft einen Unterdruckerzeuger mit den Merkmalen des Oberbegriffs des Anspruchs 1.The invention relates to a vacuum generator with the features of the preamble of claim 1.

Es sind Ejektoren mit zylindrischen Venturi-Düsen bekannt ( US 2004/0052646 . Außerdem sind Mehrstufen-Ejektoren mit zylindrischen Venturidüsen bekannt ( DE 699 21 627 , WO 99/49216 , US 6 394 760 B1 , DE 44 91 977 , WO 01 21961 A1 , WO 2006/011760 ). Daneben sind zylindrische Förderejektoren nach dem Coanda-Prinzip und das planare Coanda-Prinzip zum Greifen ( WO 2009/054732 A1 ) bekannt. Als nachteilig wird angesehen, dass der Bauraum der Unterdruckerzeuger relativ groß ist.Ejectors with cylindrical venturi nozzles are known (US Pat. US 2004/0052646 , In addition, multi-stage ejectors with cylindrical venturi nozzles are known (US Pat. DE 699 21 627 . WO 99/49216 . US Pat. No. 6,394,760 B1 . DE 44 91 977 . WO 01 21961 A1 . WO 2006/011760 ). In addition, cylindrical conveying ejectors according to the Coanda principle and the planar Coanda principle for gripping ( WO 2009/054732 A1 ) known. A disadvantage is considered that the space of the vacuum generator is relatively large.

Der Erfindung liegt die Aufgabe zugrunde, einen Unterdruckerzeuger mit einem kleineren Bauraum bereitzustellen.The invention has for its object to provide a vacuum generator with a smaller space.

Diese Aufgabe wird mit einem Unterdruckerzeuger gelöst, der die Merkmale des Anspruchs 1 aufweist.This object is achieved with a vacuum generator having the features of claim 1.

Die erfindungsgemäße planare Venturidüse im Unterdruckerzeuger benötigt wesentlich weniger Bauraum und kann zudem auch mehrstufig aufgebaut sein. Die Vorteile werden darin gesehen, dass durch die flächige Bauweise die Bauteile aus flächigen Halbzeugen fertigbar sind, wodurch sie preiswerter herstellbar sind. Durch die geringere Bauhöhe benötigen sie einen geringeren Bauraum. In Verbindung mit Flächensauggreifern können sie ideal an die Fläche angepasst werden.The planar Venturi nozzle according to the invention in the vacuum generator requires much less space and can also be constructed in several stages. The advantages are seen in the fact that the flat surface construction of the components of flat Semifinished products are manufacturable, making them cheaper to produce. Due to the lower height, they require less space. In combination with surface suction cups, they can be ideally adapted to the surface.

Erfindungsgemäß werden die folgenden Ausführungsbeispiele bevorzugt. Ein Unterdruckerzeuger mit einer planaren Venturi-Düse, oder mit einer planaren Venturi-Düse mit Vakuumregelung, wobei die Vakuumregelung einen Vakuum-Sensor und eine Rückschlagklappe aufweist. Es sind auch Mehrstufenejektoren mit mehreren planaren, hintereinander geschalteten Venturi-Düsen realisierbar. Dabei können die Verschlussklappen senkrecht zur Fläche oder in der Fläche, also parallel zu dieser, angeordnet sein.According to the invention, the following embodiments are preferred. A vacuum generator with a planar Venturi nozzle or with a planar Venturi nozzle with vacuum control, wherein the vacuum control has a vacuum sensor and a non-return valve. There are also multistage ejectors with multiple planar, successively connected Venturi nozzles realized. In this case, the closure flaps can be arranged perpendicular to the surface or in the surface, ie parallel to it.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus den Unteransprüchen sowie der nachfolgenden Beschreibung, in der unter Bezugnahme auf die beigefügte Zeichnung zwei besonders bevorzugte Ausführungsbeispiele beschrieben sind. Dabei können die in der Zeichnung dargestellten sowie in der Beschreibung und in den Ansprüchen erwähnten Merkmale jeweils im Einzelnen als auch in beliebiger Kombination erfindungswesentlich sein.Further advantages, features and details of the invention will become apparent from the subclaims and the following description in which two particularly preferred embodiments are described with reference to the accompanying drawings. The features shown in the drawing and mentioned in the description and in the claims may be essential to the invention in each case as well as in any combination.

In der Zeichnung zeigen:

Figur 1
einen bekannten Mehrstufenejektor mit zylindrischen Venturi-Düsen und vier Saugstufen Darstellung
Figur 2
aufeinanderfolgender Ansaugzustände mit steigendem Vakuum in der Vakuumkammer und insgesamt abnehmendem Saugvolumenstrom dargestellt gemäß der DE 699 21 627 T2 ; einen bekannten Mehrstufenejektor mit zylindrischen Venturi-Düsen, drei Saugstufen und zwei Rückschlagklappen, wobei die beiden Klappen geschlossen sind;
Figur 3
einen bekannten flächigen Coanda-Ejektor gemäß der WO 2009/054732 A1 ;
Figur 4
eine Explosionsdarstellung eines erfindungsgemäßen Flächensauggreifers mit einem Mehrstufenejektor aus planaren Venturi-Düsen, wobei die Saugöffnungen und Rückschlagklappen parallel zur Ebene der VenturiDüsen angeordnet sind;
Figur 5
eine Zusammenbau-Ansicht des Flächensauggreifers gemäß Figur 4 mit einem Mehrstufenejektor aus planaren Venturi-Düsen, wobei die Saugöffnungen und Rückschlagklappen parallel zur Ebene der VenturiDüsen angeordnet sind;
Figur 6
einen Mehrstufenejektor mit planaren Venturidüsen und drei Saugstufen, wobei die Saugöffnungen und die Rückschlagklappen senkrecht zur Ebene der Venturi- Düsen liegen und die beiden Rückschlagklappen geschlossen sind; und
Figur 7
den Mehrstufenejektor mit planaren Venturidüsen und drei Saugstufen sowie mit aufgrund einer Strömungssimulation berechneten Strömungslinien.
In the drawing show:
FIG. 1
a well-known multi-stage ejector with cylindrical Venturi nozzles and four suction stages representation
FIG. 2
successive Ansaugzustände with increasing vacuum in the vacuum chamber and overall decreasing suction flow shown according to the DE 699 21 627 T2 ; a known Mehrstufenejektor with cylindrical Venturi nozzles, three suction stages and two non-return valves, the two flaps are closed;
FIG. 3
a known planar Coanda ejector according to the WO 2009/054732 A1 ;
FIG. 4
an exploded view of a surface suction gripper according to the invention with a multi-stage ejector from planar Venturi nozzles, wherein the suction openings and check valves are arranged parallel to the plane of the Venturi nozzles;
FIG. 5
an assembly view of the surface suction according to FIG. 4 with a multi-stage ejector of planar venturi nozzles, with the suction ports and check valves arranged parallel to the plane of the venturi nozzles;
FIG. 6
a multi-stage ejector with planar venturi nozzles and three suction stages, the suction openings and the non-return valves being perpendicular to the venturi plane Nozzles are located and the two check valves are closed; and
FIG. 7
the multi-stage ejector with planar venturi nozzles and three suction stages as well as flow lines calculated on the basis of a flow simulation.

Die Figur 1 zeigt einen insgesamt mit 10 bezeichneten Mehrstufenejektor, wie er z.B. aus der DE 699 21 627 T2 bekannt ist. Dieser bekannte Mehrstufenejektor 10 besitzt vier Saugstufen 12 bis 18 mit zylindrischen Venturi-Düsen 20 bis 26. Es sind in den Figuren 1a) bis 1d) aufeinanderfolgende Ansaugzustände mit steigendem Vakuum in der Vakuumkammer 28 und insgesamt abnehmendem Saugvolumenstrom dargestellt. In der Figur 1a) wird Druckluft in Richtung des Pfeils 30 in die erste Venturi-Düse 20 eingeleitet, wodurch Luft aus der Vakuumkammer 28 in Richtung des Pfeils 32 angesaugt wird. Die Druckluft durchströmt auch die Venturi-Düse 22, so dass Luft in Richtung des Pfeils 34 angesaugt wird. Dies geschieht auch bei den Venturi-Düsen 24 und 26, wodurch Luft in Richtung der Pfeile 36 und 38 angesaugt wird. Die Druckluft verlässt den Mehrstufenejektor 10 zusammen mit der angesaugten Saugluft in Richtung des Pfeils 40 über eine Abluftöffnung 42. Die gesamte Saugluft (Pfeile 44) tritt über eine Saugöffnung 46 in den Mehrstufenejektor 10 ein. Es ist erkennbar, dass die Rückschlagklappen 48, 50 und 52 in den Saugstufen 14 bis 18 alle offen sind. Somit herrscht ein hoher Saugvolumenstrom.The FIG. 1 shows a total of 10 designated Mehrstufenejektor as he eg from the DE 699 21 627 T2 is known. This known Mehrstufenejektor 10 has four suction stages 12 to 18 with cylindrical Venturi nozzles 20 to 26. There are in the FIGS. 1a) to 1d ) successive Ansaugzustände with increasing vacuum in the vacuum chamber 28 and overall decreasing Saugvolumenstrom shown. In the FIG. 1a Compressed air is introduced in the direction of the arrow 30 into the first Venturi nozzle 20, whereby air from the vacuum chamber 28 is sucked in the direction of the arrow 32. The compressed air also flows through the Venturi nozzle 22, so that air is sucked in the direction of the arrow 34. This also happens with the Venturi nozzles 24 and 26, whereby air is sucked in the direction of arrows 36 and 38. The compressed air leaves the multi-stage ejector 10 together with the sucked suction air in the direction of the arrow 40 via an exhaust opening 42. The entire suction air (arrows 44) enters the multi-stage ejector 10 via a suction opening 46. It can be seen that the check valves 48, 50 and 52 in the suction stages 14 to 18 are all open. Thus, there is a high suction volume flow.

Die Figur 1b) zeigt eine Betriebsstellung des Mehrstufenejektors 10, bei der die Rückschlagklappe 52 geschlossen ist. Ist ein bestimmter Unterdruck in der Vakuumkammer 28 erreicht, dann schließt die Rückschlagklappe 52 selbsttätig, so dass nur noch die über die Saugstufen 12 bis 16 Saugluft in Richtung der Pfeile 32, 34 und 36 angesaugt wird. Der Saugvolumenstrom wird dadurch geringer, jedoch erhöht sich der Unterdruck in der Vakuumkammer 28.The FIG. 1b ) shows an operating position of the multi-stage ejector 10, in which the non-return valve 52 is closed. If a certain negative pressure in the vacuum chamber 28 is reached, then the check valve 52 closes automatically, so that only the sucked air through the suction stages 12 to 16 in the direction of arrows 32, 34 and 36 is sucked. The suction volume flow is thereby reduced, but the negative pressure in the vacuum chamber 28 increases.

Die Figur 1c) zeigt eine Betriebsstellung des Mehrstufenejektors 10, bei der zusätzlich die Rückschlagklappe 50 geschlossen ist. Diese Rückschlagklappe 50 schließt, wenn ein noch höherer Unterdruck in der Vakuumkammer 28 erreicht worden ist. Nun wird nur noch die über die Saugstufen 12 und 14 Saugluft in Richtung der Pfeile 32 und 34 angesaugt. Der Saugvolumenstrom wird dadurch noch geringer, jedoch erhöht sich der Unterdruck in der Vakuumkammer 28 weiter.The Figure 1c ) shows an operating position of the multi-stage ejector 10, in which additionally the non-return valve 50 is closed. This check valve 50 closes when an even higher negative pressure in the vacuum chamber 28 has been reached. Now only the sucked air via the suction stages 12 and 14 in the direction of arrows 32 and 34 is sucked. The suction volume flow is thereby even lower, but the negative pressure in the vacuum chamber 28 increases further.

Die Figur 1d) zeigt eine Betriebsstellung des Mehrstufenejektors 10, bei der alle Rückschlagklappe 48 bis 52 geschlossen sind. Die Rückschlagklappe 48 schließt bei noch höherem Unterdruck in der Vakuumkammer 28. Nun wird nur noch die über die Saugstufe 12 Saugluft in Richtung des Pfeil 32 angesaugt. Der Saugvolumenstrom wird dadurch noch geringer, was durch die geringe Anzahl an Pfeilen 44 veranschaulicht ist, jedoch kann nun der maximale Unterdruck in der Vakuumkammer 28 erzeugt werden.The Figure 1d ) shows an operating position of the multi-stage ejector 10, in which all non-return valve 48 to 52 are closed. The non-return valve 48 closes at even higher negative pressure in the vacuum chamber 28. Now, only sucked over the suction stage 12 suction air in the direction of arrow 32. The suction volume flow is thereby even lower, which is illustrated by the small number of arrows 44, but now the maximum negative pressure in the vacuum chamber 28 can be generated.

Die Figur 2 zeigt einen Mehrstufenejektor 10 mit drei Saufstufen 12 bis 16 und zwei Rückschlagklappen 48 und 50, die ihre Schließlage einnehmen. Die Druckluft wird über zwei Öffnungen 54 eingeleitet, wohingegen die Abluft aus drei Öffnungen 42 und 56 ausgeleitet wird.The FIG. 2 shows a multi-stage ejector 10 with three drinking stages 12 to 16 and two non-return valves 48 and 50, which occupy their closed position. The compressed air is introduced via two openings 54, whereas the exhaust air from three openings 42 and 56 is discharged.

Die Figur 3 zeigt einen flächigen Coanda-Ejektor 58, wie er aus der WO 2009/054732 A1 bekannt ist. Der Coanda-Ejektor 58 besitzt einen Sandwichaufbau und insbesondere eine Deckplatte 60, eine Bodenplatte 62 und ein Funktionszwischenstück 64. In der Figur 3a) ist der Coanda-Ejektor 58 einstufig ausgebildet, wohingegen der Coanda-Ejektor 58 in der Figur 3b) mehrere parallel geschaltete Stufen aufweist. Die Druckluft tritt in Richtung des Pfeil 30 durch die Öffnung 54 in den Coanda-Ejektor 58 ein und wird tangential über einen Druckluftkanal 65 in den Saugkanal 66 eingeleitet. Dadurch wird Luft in Richtung der Pfeile 44 durch eine gelochte Sauföffnung 46 in der Bodenplatte 62 angesaugt, die den Saugkanal 66 zusammen mit der Druckluft über einen Abluftkanal 67 verlässt. Bei der in der Figur 3b) gezeigten Variante wird Die Druckluft über einen Verteilkanal 68 an mehrere Druckluftkanäle 65 verteilt, so dass sie in insgesamt sechs Saugkanäle 66 aufgeteilt wird. Die Bodenplatte 62 weist nunmehr sechs Saugöffnungen 46 auf, so das ein Werkstück 70 flächig ergriffen werden kann.The FIG. 3 shows a flat Coanda ejector 58, as he from the WO 2009/054732 A1 is known. The Coanda ejector 58 has a sandwich construction and in particular a cover plate 60, a bottom plate 62 and a function spacer 64. In the FIG. 3a ), the Coanda ejector 58 is designed in one stage, whereas the Coanda ejector 58 in the FIG. 3b ) has a plurality of parallel stages. The compressed air enters the direction of the arrow 30 through the opening 54 in the Coanda ejector 58 and is introduced tangentially via a compressed air channel 65 into the suction channel 66. As a result, air is sucked in the direction of the arrows 44 through a perforated suction opening 46 in the bottom plate 62, which leaves the suction channel 66 together with the compressed air via an exhaust air channel 67. When in the FIG. 3b ) shown variant, the compressed air is distributed via a distribution channel 68 to a plurality of compressed air channels 65, so that it is divided into a total of six suction channels 66. The bottom plate 62 now has six suction openings 46, so that a workpiece 70 can be gripped flat.

Die Figur 4 zeigt eine Explosionsdarstellung eines erfindungsgemäßen Flächensauggreifers 72 mit einem Mehrstufenejektor 10 aus planaren Venturi-Düsen 20, 22 und 24, wobei die Saugöffnungen 46 und Rückschlagklappen 48, 50 und 52 parallel zur Ebene der Venturi-Düsen 20 bis 24 angeordnet sind. Es ist deutlich erkennbar, dass der Mehrstufenejektor 10 einen Sandwichaufbau aufweist, wobei unterhalb der Deckplatte 60 die Düsenplatte 74 liegt. Dieser folgt eine Stützplatte 76 mit länglichen Öffnungen 78 zur Abstützung der Rückschlagklappen 48, 50 und 52, die in einer Platte 80 liegen. Diese Platte 80 besteht vorzugsweise aus einem Elastomer und ist durch eine omega-förmige (Ω-förmige) Schnittlinie mit zungenartigen oder löffelförmigen Ventilzungen versehen. Unterhalb dieser Platte 80 befindet sich eine die Saugöffnungen aufweisende Platte 82, an deren Unterseite ein Rahmen 84 anliegt, über welchen ein Saugraum 86 zwischen der Platte 82 und einer Lochplatte 88 gebildet wird. Die Platten 60, 74, 76, 82, 82 und 88 bestehen vorzugsweise aus Metall, wobei der Rahmen aus Metall oder einem Dichtmaterial aus Kunststoff bestehen kann. Alle Platten können gestanzt oder lasergeschnitten sein.The FIG. 4 shows an exploded view of a surface suction gripper 72 according to the invention with a multi-stage ejector 10 of planar Venturi nozzles 20, 22 and 24, wherein the suction openings 46 and check valves 48, 50 and 52 are arranged parallel to the plane of the Venturi nozzles 20 to 24. It can be clearly seen that the multi-stage ejector 10 has a sandwich construction, wherein below the cover plate 60, the nozzle plate 74 is located. This is followed by a support plate 76 with elongated openings 78 for supporting the check valves 48, 50 and 52, which lie in a plate 80. This plate 80 is preferably made of an elastomer and is provided by an omega-shaped (Ω-shaped) cutting line with tongue-like or spoon-shaped valve tongues. Below this plate 80 there is a plate 82 having the suction openings, on the underside of which a frame 84 rests, via which a suction space 86 is formed between the plate 82 and a perforated plate 88. The plates 60, 74, 76, 82, 82 and 88 are preferably made of metal, wherein the frame may be made of metal or a sealing material made of plastic. All plates can be punched or laser cut.

Die Figur 5 zeigt eine Zusammenbau-Ansicht des Flächensauggreifers 72 gemäß Figur 4 mit dem Mehrstufenejektor 10 mit den planaren Venturi-Düsen 20, 22 und 24, wobei die Saugöffnungen 46 und Rückschlagklappen 48, 50 und 52 parallel zur Ebene der Venturi-Düsen 20, 22 und 24 angeordnet sind. Es ist deutlich der schlanke Aufbau mit geringer Höhe erkennbar. Durch den rechteckförmigen Querschnitt der Venturidüsen 20, 22 und 24 wird die Abdeckung der Düsenplatte 74 mit einfachen Platten ermöglicht.The FIG. 5 shows an assembly view of the surface suction gripper 72 according to FIG. 4 with the multi-stage ejector 10 with the planar Venturi nozzles 20, 22 and 24, wherein the suction openings 46 and check valves 48, 50 and 52 are arranged parallel to the plane of the Venturi nozzles 20, 22 and 24. It is clearly recognizable the slim construction with low height. Due to the rectangular cross-section of the venturi 20, 22 and 24, the cover of the nozzle plate 74 is made possible with simple plates.

Die Figur 6 zeigt einen Mehrstufenejektor 10 mit planaren Venturidüsen 20, 22 und 24 und drei Saugstufen 12, 14 und 16, wobei die Saugöffnungen 46 und die Rückschlagklappen 48 und 50 in der die Venturidüsen 20, 22 und 24 aufweisenden Ebene der Düsenplatte 74 liegen und die beiden Rückschlagklappen 48 und 50 geschlossen sind. Diese Rückschlagklappen 48 und 50 sind an einer separaten Platte 80 vorgesehen oder in die Saugstufen 14 und 16 integriert, insbesondere in Nuten 90 (Figur 7) eingesetzt und stellen sich ab einem bestimmten Unterdruck auf und verschließen die Ansaugöffnung, wenn der Saugvolumenstrom einen Schwellwert unterschreitet.The FIG. 6 shows a multi-stage ejector 10 with planar venturi 20, 22 and 24 and three suction stages 12, 14 and 16, wherein the suction ports 46 and the check valves 48 and 50 are in the Venturi nozzles 20, 22 and 24 having plane of the nozzle plate 74 and the two check valves 48 and 50 are closed. These check valves 48 and 50 are provided on a separate plate 80 or integrated into the suction stages 14 and 16, in particular in grooves 90 (FIG. FIG. 7 ) are used and set up from a certain negative pressure and close the suction when the suction flow falls below a threshold.

In der Figur 7 ist der Strömungsverlauf der Druckluft und der Saugluft dargestellt, wenn die Rückschlagklappen 48 und 50 geöffnet sind. Die Düsenplatte 74 kann ebenfalls gestanzt oder mittels eines Laser hergestellt werden. Der Aufbau ist bei diesem Ausführungsbeispiel noch flacher. Durch den rechteckförmigen Querschnitt der Venturidüsen 20, 22 und 24 wird die Abdeckung der Düsenplatte 74 mit einfachen Platten ermöglicht.In the FIG. 7 the flow pattern of the compressed air and the suction air is shown when the check valves 48 and 50 are opened. The nozzle plate 74 may also be stamped or made by laser. The structure is even flatter in this embodiment. Due to the rectangular cross-section of the venturi 20, 22 and 24, the cover of the nozzle plate 74 is made possible with simple plates.

Claims (12)

Druckluftbetriebener Unterdruckerzeuger mit mindestens einer Venturi-Düse (20 bis 26), dadurch gekennzeichnet, dass die Venturi-Düse (20 bis 26) einen von der Kreisform abweichenden, insbesondere im Wesentlichen rechteckförmigen oder unrunden, z.B. ovalen oder elliptischen Strömungsquerschnitt aufweist.Compressed air operated vacuum generator with at least one Venturi nozzle (20 to 26), characterized in that the Venturi nozzle (20 to 26) has a deviating from the circular shape, in particular substantially rectangular or non-circular, for example oval or elliptical flow cross-section. Unterdruckerzeuger nach Anspruch 1, dadurch gekennzeichnet, dass der Strömungsquerschnitt zur Prozessüberwachung mit einem Drucksensor oder Strömungssensor strömungsverbunden ist.Vacuum generator according to claim 1, characterized in that the flow cross section for process monitoring with a pressure sensor or flow sensor is fluidly connected. Unterdruckerzeuger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine den Ansaugquerschnitt verschließende Rückschlagklappe (48 bis 52) vorgesehen ist.Vacuum generator according to one of the preceding claims, characterized in that a suction cross-section closing check valve (48 to 52) is provided. Unterdruckerzeuger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens zwei Venturi-Düsen (20 bis 26) hintereinander geschaltet sind.Vacuum generator according to one of the preceding claims, characterized in that at least two Venturi nozzles (20 to 26) are connected in series. Unterdruckerzeuger nach Anspruch 4, dadurch gekennzeichnet, dass der Abluftstrom des Ausgangs der einen, stromaufwärts liegenden Venturi-Düse (20 bis 24) als Treibluftstrom für den Eingang der anderen, stromabwärts liegenden Venturi-Düse (22 bis 26) verwendet wird.Vacuum generator according to claim 4, characterized in that the exhaust air flow of the outlet of the one, upstream venturi nozzle (20 to 24) as propellant air flow for the entrance of the other, downstream venturi nozzle (22 to 26) is used. Unterdruckerzeuger nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die mehreren Venturi-Düsen (20 bis 26) einzeln zu- und/oder abschaltbar sind.Vacuum generator according to claim 4 or 5, characterized in that the plurality of Venturi nozzles (20 to 26) are individually switched on and / or off. Unterdruckerzeuger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Strömungsquerschnitt der stromabwärts liegenden Venturi-Düse (22 bis 26) größer ist, als der Strömungsquerschnitt der stromaufwärts liegenden Venturi-Düse (20 bis 24).Vacuum generator according to one of the preceding claims, characterized in that the flow cross section of the downstream Venturi nozzle (22 to 26) is greater than the flow cross section of the upstream Venturi nozzle (20 to 24). Unterdruckerzeuger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Abblasvorrichtung vorgesehen ist.Vacuum generator according to one of the preceding claims, characterized in that a blow-off device is provided. Unterdruckerzeuger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Abblasvorrichtung ein beweglicher Kolben mit rechteckförmiger, kreisrunder oder unrunder, z.B. ovaler oder elliptischer Kolbenfläche vorgesehen ist.Vacuum generator according to one of the preceding claims, characterized in that a movable piston with a rectangular, circular or non-round, eg oval or elliptical piston surface is provided in the blow-off device. Unterdruckerzeuger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eine Venturi-Düse (20 bis 26) mit einem rechteckförmigen Strömungsquerschnitt vorgesehen ist, die einen Flächensauggreifer (72) betreibt.Vacuum generator according to one of the preceding claims, characterized in that at least one Venturi nozzle (20 to 26) is provided with a rectangular flow cross-section which operates a surface suction gripper (72). Unterdruckerzeuger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse der Venturi-Düse (20 bis 26) einen rechteckförmigen Außenquerschnitt aufweist.Vacuum generator according to one of the preceding claims, characterized in that the housing of the Venturi nozzle (20 to 26) has a rectangular outer cross section. Unterdruckerzeuger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er einen Sandwichaufbau besitzt und von wenigstens zwei, parallel zueinander liegenden Platten (60, 74, 76, 80, 82, 84, 88) gebildet wird, deren einander zugewandten Seiten die den Unterdruckerzeuger bildenden Erhebungen und Vertiefungen aufweisen.Vacuum generator according to one of the preceding claims, characterized in that it has a sandwich construction and is formed by at least two mutually parallel plates (60, 74, 76, 80, 82, 84, 88) whose mutually facing sides forming the vacuum generator Surveys and depressions.
EP10191764A 2009-11-24 2010-11-18 Vacuum generator operated by pressurised air Withdrawn EP2333350A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009047085A DE102009047085A1 (en) 2009-11-24 2009-11-24 Compressed air operated vacuum generator

Publications (1)

Publication Number Publication Date
EP2333350A1 true EP2333350A1 (en) 2011-06-15

Family

ID=43602844

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10191764A Withdrawn EP2333350A1 (en) 2009-11-24 2010-11-18 Vacuum generator operated by pressurised air

Country Status (4)

Country Link
US (1) US8596990B2 (en)
EP (1) EP2333350A1 (en)
CN (1) CN102072209A (en)
DE (2) DE102009047085A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014096022A1 (en) * 2012-12-21 2014-06-26 Xerex Ab Multi-stage vacuum ejector with moulded nozzle having integral valve elements
US10202984B2 (en) 2012-12-21 2019-02-12 Xerex Ab Vacuum ejector with multi-nozzle drive stage and booster
US10457499B2 (en) 2014-10-13 2019-10-29 Piab Aktiebolag Handling device with suction cup for foodstuff
US10753373B2 (en) 2012-12-21 2020-08-25 Piab Aktiebolag Vacuum ejector nozzle with elliptical diverging section
US10767663B2 (en) 2012-12-21 2020-09-08 Piab Aktiebolag Vacuum ejector with tripped diverging exit flow

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512120A (en) * 2009-11-25 2013-04-11 オセ−テクノロジーズ・ベー・ヴエー Sheet processing device
US9451810B2 (en) 2011-11-18 2016-09-27 Nike, Inc. Automated identification of shoe parts
US8755925B2 (en) 2011-11-18 2014-06-17 Nike, Inc. Automated identification and assembly of shoe parts
US8696043B2 (en) * 2011-11-18 2014-04-15 Nike, Inc. Hybrid pickup tool
US9010827B2 (en) 2011-11-18 2015-04-21 Nike, Inc. Switchable plate manufacturing vacuum tool
US10552551B2 (en) 2011-11-18 2020-02-04 Nike, Inc. Generation of tool paths for shore assembly
US8960745B2 (en) 2011-11-18 2015-02-24 Nike, Inc Zoned activation manufacturing vacuum tool
US8849620B2 (en) 2011-11-18 2014-09-30 Nike, Inc. Automated 3-D modeling of shoe parts
US8958901B2 (en) 2011-11-18 2015-02-17 Nike, Inc. Automated manufacturing of shoe parts
US8858744B2 (en) 2011-11-18 2014-10-14 Nike, Inc. Multi-functional manufacturing tool
US9328702B2 (en) 2013-10-24 2016-05-03 Ford Global Technologies, Llc Multiple tap aspirator
SE539775C2 (en) * 2014-06-23 2017-11-28 Onishi Teknik Ab Multistage vacuum ejector
WO2016007861A1 (en) * 2014-07-10 2016-01-14 Dayco Ip Holdings, Llc Dual venturi device
US9657748B2 (en) * 2014-08-06 2017-05-23 Dayco Ip Holdings, Llc Pneumatically actuated vacuum pump having multiple venturi gaps and check valves
EP3209346B1 (en) 2014-10-24 2021-02-24 Integrated Surgical LLC Suction device for surgical instruments
US9828953B2 (en) * 2014-12-01 2017-11-28 Dayco Ip Holdings, Llc Evacuator system having multi-port evacuator
EP3109568B1 (en) * 2015-06-24 2017-11-01 Danfoss A/S Ejector arrangement
CN114225125A (en) 2015-07-13 2022-03-25 康曼德公司 Surgical suction device using positive pressure gas
US10926007B2 (en) 2015-07-13 2021-02-23 Conmed Corporation Surgical suction device that uses positive pressure gas
KR101685998B1 (en) 2016-09-21 2016-12-13 (주)브이텍 Vacuum pump using profile
DE102017202761A1 (en) * 2017-02-21 2018-08-23 Homag Gmbh Device for receiving an adhesive application unit and method
WO2019030724A1 (en) * 2017-08-10 2019-02-14 Colin Maxwell Wade Vacuum lifter
IT201800006994A1 (en) * 2018-07-06 2020-01-06 SUCTION DEVICE FOR THE HOLDING AND / OR TRANSPORT OF OBJECTS OF DIFFERENT FORMATS
US20230304510A1 (en) * 2022-03-25 2023-09-28 Guardair Corp. Multistage vacuum

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942724A (en) * 1974-08-01 1976-03-09 S.R.C. Laboratories, Inc. Variable throat nozzle
GB2001549A (en) * 1977-07-27 1979-02-07 Zink Co John Venturi scrubber
EP0142424A2 (en) * 1983-11-10 1985-05-22 Bertin & Cie Variable area mixing nozzle
DE4491977C1 (en) 1993-03-31 1997-06-05 Smc Corp Multi-stage jet pump unit
WO1999049216A1 (en) 1998-03-20 1999-09-30 Piab Ab Vacuum ejector pump
WO2001021961A1 (en) 1999-09-20 2001-03-29 Thilo Volkmann Multi-stage ejector pump
US20040052646A1 (en) 2000-06-09 2004-03-18 Pascal Denoel Method for adjusting flow rate exhausted into a vacuum generator and vacuum generator with adjustable flow rate
US6877960B1 (en) * 2002-06-05 2005-04-12 Flodesign, Inc. Lobed convergent/divergent supersonic nozzle ejector system
US20050173336A1 (en) * 2001-06-12 2005-08-11 Johnny Arnaud Methods and apparatus for enhancing venturi suction in eductor mixers
WO2006011760A1 (en) 2004-07-28 2006-02-02 Korea Pneumatic System Co., Ltd Vacuum ejector pumps
WO2009054732A1 (en) 2007-10-26 2009-04-30 Ntnu Technology Transfer As A coanda ej ector

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3636964A (en) * 1968-11-20 1972-01-25 Consiglio Nazionale Ricerche Compressed air feed system for pure fluid devices
SE427955B (en) * 1980-05-21 1983-05-24 Piab Ab MULTIEJEKTOR
IL74282A0 (en) * 1985-02-08 1985-05-31 Dan Greenberg Multishaft jet suction device
SE466561B (en) * 1988-06-08 1992-03-02 Peter Tell MULTIEJEKTORANORDNING
US5228839A (en) * 1991-05-24 1993-07-20 Gast Manufacturing Corporation Multistage ejector pump
SE469291B (en) * 1991-10-31 1993-06-14 Piab Ab EJECTOR ARRANGEMENTS INCLUDING AT LEAST TWO PRESSURIZED EJECTORS AND PROCEDURAL PROVIDES THAT WITH A MINIMUM TWO PRESSURE AIRED EJECTORS ACHIEVES A DIFFERENT PREVENTION OF A MINIMUM DIFFICULTY OF A MINIMUM DIFFICULTY OF A MINIMUM DIFFICULTY OF A MINIMUM DIFFICULTY OF A MINIMUM DIFFICULTY OF A MINIMUM DIFFICULTY OF A MINIMUM DIFFICULTY OF A MINIMUM DIFFICULTY OF A MINIMUM DIFFICULTY OF A MINIMUM DIFFICULTY.
AU4654593A (en) * 1992-07-15 1994-02-14 Minnesota Mining And Manufacturing Company Article-handling system
CN2333834Y (en) * 1998-05-18 1999-08-18 冯燕鸿 Jet pump
IL125791A (en) * 1998-08-13 2004-05-12 Dan Greenberg Vacuum pump
DE19855433B4 (en) * 1998-11-27 2005-10-06 Siemens Ag eductor
US6354371B1 (en) * 2000-02-04 2002-03-12 O'blanc Alton A. Jet pump assembly
DE20120138U1 (en) * 2001-12-12 2002-02-28 Festo Ag & Co Vacuum generator device
DE102004016637A1 (en) * 2004-03-30 2005-10-27 J. Schmalz Gmbh grippers

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942724A (en) * 1974-08-01 1976-03-09 S.R.C. Laboratories, Inc. Variable throat nozzle
GB2001549A (en) * 1977-07-27 1979-02-07 Zink Co John Venturi scrubber
EP0142424A2 (en) * 1983-11-10 1985-05-22 Bertin & Cie Variable area mixing nozzle
DE4491977C1 (en) 1993-03-31 1997-06-05 Smc Corp Multi-stage jet pump unit
US6394760B1 (en) 1998-03-20 2002-05-28 Piab Ab Vacuum ejector pump
WO1999049216A1 (en) 1998-03-20 1999-09-30 Piab Ab Vacuum ejector pump
DE69921627T2 (en) 1998-03-20 2005-10-27 Xerex Ab VACUUM EJECTOR PUMP
WO2001021961A1 (en) 1999-09-20 2001-03-29 Thilo Volkmann Multi-stage ejector pump
US20040052646A1 (en) 2000-06-09 2004-03-18 Pascal Denoel Method for adjusting flow rate exhausted into a vacuum generator and vacuum generator with adjustable flow rate
US20050173336A1 (en) * 2001-06-12 2005-08-11 Johnny Arnaud Methods and apparatus for enhancing venturi suction in eductor mixers
US6877960B1 (en) * 2002-06-05 2005-04-12 Flodesign, Inc. Lobed convergent/divergent supersonic nozzle ejector system
WO2006011760A1 (en) 2004-07-28 2006-02-02 Korea Pneumatic System Co., Ltd Vacuum ejector pumps
WO2009054732A1 (en) 2007-10-26 2009-04-30 Ntnu Technology Transfer As A coanda ej ector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014096022A1 (en) * 2012-12-21 2014-06-26 Xerex Ab Multi-stage vacuum ejector with moulded nozzle having integral valve elements
US10202984B2 (en) 2012-12-21 2019-02-12 Xerex Ab Vacuum ejector with multi-nozzle drive stage and booster
US10753373B2 (en) 2012-12-21 2020-08-25 Piab Aktiebolag Vacuum ejector nozzle with elliptical diverging section
US10767662B2 (en) 2012-12-21 2020-09-08 Piab Aktiebolag Multi-stage vacuum ejector with molded nozzle having integral valve elements
US10767663B2 (en) 2012-12-21 2020-09-08 Piab Aktiebolag Vacuum ejector with tripped diverging exit flow
US10457499B2 (en) 2014-10-13 2019-10-29 Piab Aktiebolag Handling device with suction cup for foodstuff

Also Published As

Publication number Publication date
CN102072209A (en) 2011-05-25
US8596990B2 (en) 2013-12-03
DE102009047085A1 (en) 2011-06-01
DE202009019074U1 (en) 2016-05-23
US20110123359A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
EP2333350A1 (en) Vacuum generator operated by pressurised air
DE60020007T2 (en) Internal air cooling system for turbine blades
DE102015006497A1 (en) Cyclone separator and filter device with cyclone separator
WO2011064138A1 (en) Compressed-air-operated vacuum generator or vacuum gripper
EP3436702A1 (en) Vacuum pump having a silencer
DE102015115593A1 (en) Modular valve system
EP2170485B1 (en) Separator
WO2010108462A1 (en) Bernoulli gripper apparatus having at least one bernoulli gripper
DE102016100419B4 (en) Oil separation device for the crankcase ventilation of an internal combustion engine
WO1998032955A1 (en) Internal combustion engine with a valve chamber cap
EP3751145A1 (en) Ventilator device
EP2626644B1 (en) Ventilation component comprising a channel-shaped housing with surrounding coverings
EP1496240B1 (en) Separation system
WO2017203025A1 (en) Oil separator
DE102009000613B4 (en) Separating layer arrangement for a pneumatic water removal device
DE102009047089A1 (en) Compressed air-powered vacuum generator has Coanda nozzle having suction inlet and exhaust air outlet for exhaust air stream and lateral inlet for forced air stream
DE102010029662A1 (en) Low pressure generator, has compressed air connections provided in single-piece housing, where exhaust air is fed through compressed air connections and housing is provided with three housing portions
WO2019042824A1 (en) Oil mist separator having pressure limiting valves
DE102010042755B4 (en) Compressed air operated vacuum generator
DE102017217314A1 (en) Oil separator unit and oil separator
EP3824236B1 (en) Air lock
DE102018117768B4 (en) Device for controlling the functional state of a suction gripper of a workpiece handling device and workpiece handling device
DE102012215798B4 (en) area vacuum
DE102017215365B4 (en) Oil separator and engine ventilation device
DE102011018932B4 (en) Silencer and packaging machine with such a silencing device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20111215

17Q First examination report despatched

Effective date: 20150205

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150616