EP2292808B1 - Metallising pre-treatment of zinc surfaces - Google Patents

Metallising pre-treatment of zinc surfaces Download PDF

Info

Publication number
EP2292808B1
EP2292808B1 EP10187987.2A EP10187987A EP2292808B1 EP 2292808 B1 EP2292808 B1 EP 2292808B1 EP 10187987 A EP10187987 A EP 10187987A EP 2292808 B1 EP2292808 B1 EP 2292808B1
Authority
EP
European Patent Office
Prior art keywords
metal
galvanized
cations
agent
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10187987.2A
Other languages
German (de)
French (fr)
Other versions
EP2292808A1 (en
Inventor
Karsten Hackbarth
Michael Wolpers
Wolfgang Lorenz
Peter Kuhm
Kevin K. Meagher
Christian Rosenkranz
Marcel Roth
Reiner Wark
Guadalupe Sanchis Otero
Eva Wilke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP2292808A1 publication Critical patent/EP2292808A1/en
Application granted granted Critical
Publication of EP2292808B1 publication Critical patent/EP2292808B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a process for the metallizing pretreatment of galvanized and / or alloy-galvanized steel surfaces or assembled metallic components, which at least partially comprise surfaces of zinc, in a surface treatment comprising a plurality of process steps.
  • metallic layer deposits of not more than 50 mg / m 2 of tin are produced on the treated zinc surfaces.
  • Such metallized zinc surfaces are outstandingly suitable as starting material for subsequent passivation and coating steps ( illustration 1 , Process II-V) and cause a significantly higher efficiency of the anti-corrosion coating, in particular after the pretreatment of galvanized metal surfaces according to the invention.
  • the application of the process on galvanized steel strip prevents corrosive paint infiltration, especially at the cutting edges.
  • the invention therefore comprises an uncoated or subsequently coated metallic component which has been given a metallizing pretreatment according to the invention, as well as the use of such a component in vehicle body construction in automobile manufacturing, shipbuilding, construction and for the production of white goods.
  • car bodies consist of a large number of sheet-metal parts which are joined together by spot welding.
  • corrosion protection which must be able to mitigate both the consequences of bimetallic corrosion and cut edge corrosion.
  • metallic zinc coatings which are applied to the steel strip by electrolytic or hot-dip processes, provide a cathodic protection which prevents active dissolution of the more noble core material at cut edges and mechanically induced damage to the zinc coating, ligation is equally important for ensuring the material properties of the core material the corrosion rate itself.
  • Correspondingly high are the requirements for the corrosion protection coating consisting mostly of an inorganic conversion layer and an organic barrier layer.
  • the galvanic coupling between core material and metallic coating brings about an active, unimpeded local dissolution of the coating material, which in turn constitutes an activation point for the corrosive infiltration of the organic barrier layer.
  • the phenomenon of paint peeling or "blistering" is especially observed at the cut edges where unimpeded corrosion of the less noble coating material takes place.
  • the local activation of such a "defect" cut edge, damage in the metallic coating, spot welding point
  • the corrosive paint release resulting from these "defects” is all the more pronounced the greater the electrical potential difference between the metals in direct contact.
  • the prior art describes various pretreatments that address the problem of edge protection.
  • An essential strategy is to improve the paint adhesion of the organic barrier layer on the surface-treated steel strip.
  • the closest prior art is the German Offenlegungsschrift DE19733972 which deals with a process for the alkaline passivating pretreatment of galvanized and alloy-galvanized steel surfaces in strip lines.
  • the surface-treated steel strip is brought into contact with an alkaline treatment agent containing magnesium ions, iron (III) ions and a complexing agent.
  • the zinc surface is passivated thereby forming the corrosion protection layer.
  • Such a passivated surface offers according to the teaching of DE19733972 already a paint adhesion, which is comparable to nickel and cobalt-containing processes.
  • this pretreatment can be followed by further treatment steps such as chromium-free post-passivation to improve the corrosion protection before the paint system is applied. Nevertheless, it appears that this pretreatment system can not satisfactorily suppress the paint peeling caused by the corrosion at the cut edges.
  • JP 57188663 A and JP 4048095 A each disclose methods for metallizing pretreatment of galvanized and alloy-galvanized steel surfaces by contacting with aqueous solutions containing tin ions.
  • the aqueous solution of JP 57188663 A is very angry and long contact times of at least 5 minutes are required for satisfactory results.
  • the doctrine of JP 4048095 A In the following, relatively high layer plots of tin of 0.1-0.5 g / m 2 are required in order to correspond to the property profile desired there, in particular with regard to the lubricating effect.
  • the above object is achieved in this case by a method for metallizing pretreatment of galvanized or alloy-galvanized steel surfaces, wherein the galvanized or alloy-galvanized steel surface is contacted with an aqueous agent (1) for at least 1 second, but not longer than 30 seconds, whose pH Value is not less than 4 and not greater than 8, wherein cations and / or compounds of a metal (A) in the middle (1) are included whose redox potential E redox measured on a metal electrode of the metal (A) at a given process temperature and concentration cations and / or compounds of the metal (A) in the aqueous medium (1) are more anodic than the electrode potential E Zn of the galvanized or alloy-galvanized steel surface in contact with an aqueous agent (2) which differs from the agent (1) only in that that it contains no cations and / or compounds of the metal (A), characterized gekennzeic hnet that the cations and / or compounds of the metal (A) in the middle (1) are selected from
  • the method according to the invention is suitable for all metal surfaces, for example strip steel, and / or assembled metallic components, which at least partially also consist of zinc surfaces, for example automobile bodies.
  • the material combination of iron-containing surfaces and zinc surfaces is preferred.
  • E Zn is determined at a zinc electrode in the middle (2), which differs from the agent (1) only by the absence of cations and / or compounds of the metal (A), compared to a standard commercial reference electrode: e Zn in volts : Ag / AgCl / 1 M KCl / / Zn / M 2
  • the method according to the invention is characterized in that a metallizing pretreatment of the zinc surface takes place when the redox potential E redox is more anodic than the electrode potential E Zn . This is the case when E Redox -E Zn > 0.
  • the redox potential E redox of the cations and / or compounds of the metal (A) in the aqueous medium (1) is at least +50 mV, preferably at least +100 mV and particularly preferably at least +300 mV, but at most +800 mV anodic than the electrode potential E Zn of the zinc surface in contact with the aqueous agent (2). If the EMF is less than +50 mV, sufficient metallization of the galvanized surface can not be achieved in technically relevant contact times, so that in a subsequent passivating conversion treatment the metal deposit of the metal (A) is completely removed from the galvanized surface and the effect of the pretreatment therewith will be annulled.
  • an excessively high EMF of more than +800 mV in short times can lead to a complete and massive occupation of the galvanized surface with the metal (A), so that the desired formation of an inorganic corrosion-inhibiting and adhesion-promoting layer does not occur or at least in a subsequent conversion treatment is hindered.
  • metallization is particularly effective when the concentration of cations and / or compounds of the metal (A) is at least 0.001M and preferably at least 0.01M, but does not exceed 0.2M, preferably 0.1M ,
  • those cations and / or compounds of the metal (A) are preferable, which in the middle (1) both the electromotive force (EMF) condition as described above and having a standard potential E 0 Me of the metal (A) which is more cathodic than the normal potential E 0 H2 of the standard hydrogen electrode (SHE), preferably more than 100 mV, more preferably more than 200 mV more cathodic than the normal potential E 0 H2 , wherein the standard potential E 0 Me of the metal (A) refers to the reversible redox reaction Me 0 ⁇ Me n + + ne - in an aqueous solution of the metal cation Me n + with the activity 1 at 25 ° C.
  • EMF electromotive force
  • accelerators with a reducing action are oxo acids of phosphorus or nitrogen and their salts in question, wherein at least one phosphorus atom or nitrogen atom must be present in a middle oxidation state.
  • Such accelerators are, for example, hyposalphous acid, hypo nitric acid, nitrous acid, hypophosphoric acid, hypodiphosphonic acid, diphosphorus (III, V) acid, phosphonic acid, diphosphonic acid and particularly preferably phosphinic acid and salts thereof.
  • accelerators known to the person skilled in the art in phosphating. In addition to their reduction properties, they also have depolarizing properties, ie they act as hydrogen scavengers, thus additionally favoring the metallization of the galvanized Steel surface. These include hydrazine, hydroxylamine, nitroguanidine, N-methylmorpholine N-oxide, glucoheptonate, ascorbic acid and reducing sugars.
  • the molar ratio of accelerator to the concentration of the cations and / or compounds of the metal (A) in the aqueous medium (1) is preferably not greater than 2: 1, more preferably not greater than 1: 1 and preferably not below 1: 5.
  • the aqueous agent (1) in the process according to the invention additionally contain small amounts of copper (II) cations, which can also be deposited metallically on the galvanized surface simultaneously with the cations and / or compounds of the metal (A).
  • the aqueous agent (1) should additionally contain not more than 50 ppm, preferably not more than 10 ppm, but at least 0.1 ppm of copper (II) cations.
  • the aqueous agent (1) for the metallizing pretreatment may additionally contain surfactants which are able to liberate the metallic surface from impurities without itself inhibiting the surface by forming compact adsorbate layers for the metallization.
  • Nonionic surfactants with average HLB values of at least 8 and at most 14 may be used for this purpose.
  • the pH of the aqueous agent (1) is not smaller than 4 and not larger than 8, preferably not larger than 6.
  • the application methods customary in strip steel production and strip steel finishing are practicable. These include, in particular, dipping and spraying processes.
  • the contact time or pretreatment time with the aqueous agent (1) is at least 1 second, but is not longer than 30 seconds, preferably not longer than 10 seconds. Within this contact time result in inventive embodiment of the Process metallic coatings of the metal (A) with a coating of at least 1 mg / m 2 , but not more than 50 mg / m 2 .
  • the metallic layer support is defined as the area-related mass fraction of the element (A) on the galvanized or alloy-galvanized steel surface immediately after the pretreatment according to the invention.
  • Both the preferred contact times and layer conditions as well as the preferred application methods also apply to the pretreatment according to the invention of components assembled from a plurality of metallic materials insofar as these at least partially have zinc surfaces.
  • the present invention also includes those combinations of alloy-galvanized steel surfaces and aqueous compositions (1) in which an alloying constituent of the galvanized steel surface is the same element (A) as the metal (A) in the form of its cations and / or compounds in the aqueous medium (1).
  • the pretreatment process according to the invention is adapted to the subsequent process steps of the surface treatment of galvanized and / or alloy-galvanized steel surfaces with regard to optimized corrosion protection and outstanding paint adhesion, in particular to cut edges, surface defects and bimetallic contacts. Consequently, the present invention encompasses various aftertreatment processes, ie conversion and lacquer coatings, which, in conjunction with the pretreatment described above, provide the desired results in terms of corrosion protection.
  • the illustration 1 illustrates various preferred within the meaning of the present invention process chains for corrosion-protective coating of metallic surfaces in automotive manufacturing, which are already begun at the steel producer ("Coil Industry") and continued and completed in the paint shop ("Paint Shop °) at the car manufacturer.
  • the invention therefore relates in a further aspect to the production of a passivating conversion coating on the metallized pretreated galvanized and / or alloy-galvanized steel surface with or without intermediate rinsing and / or drying step (US Pat. illustration 1 , Method IIa).
  • a chromium-containing or preferably chromium-free conversion solution can be used.
  • Preferred conversion solutions with which the metal surfaces pretreated according to the present invention can be treated prior to the application of a permanent corrosion-protective organic coating can be used DE-A-199 23 084 and the literature cited herein.
  • a chromium-free aqueous conversion agent besides hexafluoro anions of Ti, Si and / or Zr may contain as further active ingredients: phosphoric acid, one or more compounds of Co, Ni, V, Fe, Mn, Mo or W, a water-soluble or water-dispersible film-forming organic polymer or copolymer and organophosphonic acids that have complexing properties.
  • the process parameters for a conversion treatment in the context of this invention are to be chosen such that a conversion layer is produced, the per m 2 surface at least 0.05, preferably at least 0.2, but not more than 3, Contains 5, preferably not more than 2.0 and more preferably not more than 1.0 mmol of the metal M, which is the essential component of the conversion solution.
  • metals M are Cr (III), B, Si, Ti, Zr, Hf.
  • the coverage of the zinc surface with the metal M can be determined, for example, by an X-ray fluorescence method.
  • the chromium-free conversion medium additionally contains copper ions.
  • the molar ratio of metal atoms M selected from zirconium and / or titanium to copper atoms in such a conversion agent is preferably chosen such that it produces a conversion layer in which at least 0.1, preferably at least 0.3, but not more than 2 mmol Copper are also included.
  • a method (IIa), in which the metallizing pretreatment is followed by a conversion treatment to form a thin amorphous inorganic coating may also include a method (IIa).
  • the metallizing pretreatment and the subsequent conversion treatment usually follow further process steps for the application of additional layers, in particular organic paints or coating systems ( illustration 1 , Method III-V).
  • Component a) is a fully reacted polycondensation product of epichlorohydrin and a bisphenol. This essentially has no epoxide groups as reactive groups more.
  • the polymer is then in the form of a hydroxyl-containing polyether, which can undergo crosslinking reactions with, for example, polyisocyanates via these hydroxyl groups.
  • the bisphenol component of this polymer can be selected, for example, from bisphenol A and bisphenol F.
  • the average molar mass (according to the manufacturer, for example determinable by gel permeation chromatography) is preferably in the range from 20,000 to 60,000, in particular in the range from 30,000 to 50,000.
  • the OH number is preferably in the range from 170 to 210 and in particular in the range from 180 to 200.
  • polymers are preferred whose hydroxyl content based on the Estherharz in the range of 5 to 7 wt .-%.
  • the aliphatic polyisocyanates b) and c) are preferably based on HDI, in particular on HDI trimer.
  • blocking agents in the blocked aliphatic polyisocyanate b) the customary polyisocyanate blocking agents may be used. Examples which may be mentioned are: butanone oxime, dimethylpyrazole, malonic esters, diisopropylamine / malonic esters, diisopropylamine / triazole and ⁇ -caprolactam.
  • a combination of malonic ester and diisopropylamine is used as the blocking agent.
  • the content of blocked NCO groups of component b) is preferably in the range from 8 to 10% by weight, in particular in the range from 8.5 to 9.5% by weight.
  • the equivalent weight is preferably in the range of 350 to 600, in particular in the range of 450 to 500 g / mol.
  • the non-blocked aliphatic polyisocyanate c) preferably has an equivalent weight in the range of 200 to 250 g / mol and an NCO content in the range of 15 to 23 wt%.
  • an aliphatic polyisocyanate can be selected which has an equivalent weight in the range of 200 to 230 g / mol, in particular in the range of 210 to 220 g / mol and an NCO content in the range of 18 to 22 wt .-%, preferably in the range from 19 to 21% by weight.
  • Another suitable aliphatic polyisocyanate has for example an equivalent weight in the range of 220 to 250 g / mol, in particular in the range of 230 to 240 g / mol and an NCO content in the range of 15 to 20 wt .-%, preferably in the range of 16 , 5 to 19 wt .-%.
  • Each of these aliphatic polyisocyanates mentioned may be component c). However, a mixture of these two polyisocyanates can also be present as component c). If a mixture of the two mentioned polyisocyanates is used, the ratio of the first-mentioned polyisocyanate to the last-mentioned polyisocyanate for component c) is preferably in the range from 1: 1 to 1: 3.
  • Component d) is selected from hydroxyl-containing polyesters and hydroxyl-containing poly (meth) acrylates.
  • a hydroxyl-containing poly (meth) acrylate having an acid number in the range of 3 to 12, in particular in the range of 4 to 9 mg KOH / g can be used.
  • the content of hydroxyl groups is preferably in the range of 1 to 5 and in particular in the range of 2 to 4 wt .-%.
  • the equivalent weight is preferably in the range of 500 to 700, in particular in the range of 550 to 600 g / mol.
  • a hydroxyl-containing polyester is used as component d
  • a branched polyester having an equivalent weight in the range from 200 to 300, in particular in the range from 240 to 280 g / mol can be selected for this purpose.
  • a weakly branched polyester having an equivalent weight in the range of 300 to 500, in particular in the range of 350 to 450 g / mol is suitable.
  • These different types of polyester can each individually or as a mixture form the component d).
  • a mixture of hydroxyl-containing polyesters and hydroxyl-containing poly (meth) acrylates may also be present as component d).
  • the coating composition (1) in process (III) according to the invention thus contains both a blocked aliphatic polyisocyanate b) and an unblocked aliphatic polyisocyanate c).
  • the hydroxyl-containing components a) and d) are available. Possible reaction of each of components a) and d) with each of components b) and c) produces a complex polymer network of polyurethanes during curing of the agent (2).
  • hydroxyl-containing poly (meth) acrylates are used as component d)
  • further crosslinking via the double bonds of these components occur.
  • component d) consists at least partially of hydroxyl-containing poly (meth) acrylates.
  • the coating composition (1) is cured in the process (III) according to the invention, it is to be expected that initially the non-blocked aliphatic polyisocyanate c) reacts with one or both of components a) and d). If the hydroxyl groups of the components d) are more reactive than those of the component a), during curing, first of all, a reaction of the component c) with the component d) occurs.
  • the coating composition (1) contains, in addition to the components a) to d), a conductive pigment or a mixture of conductive pigments. These may have a relatively low density, such as carbon black and graphite, or a relatively high density, such as metallic iron.
  • the absolute content of the coating composition (1) of the conductivity pigments depends on their density, since it depends less on the mass fraction than on the volume fraction of the conductive pigment in the cured coating for the effect as a conductive pigment.
  • the coating composition (1) based on the total mass of the composition, contains (0.8 to 8) ⁇ ⁇ % by weight of conductive pigment, where ⁇ is the density of the conductive pigment or the average density of the mixture of conductive pigments in g / cm 2 means.
  • the coating composition (1) preferably contains (2 to 6), based on its total mass, ⁇ % by weight of conductive pigment.
  • the coating composition (1) contains only graphite having a density of 2.2 g / cm 2 as the conductive pigment, then it preferably contains at least 1.76, in particular at least 4.4, and preferably not more than 17 , 6, in particular not more than 13.2 wt .-% graphite.
  • the coating composition (1) based on its total mass, preferably contains at least 6.32, in particular at least 15.8% by weight and not more than 63 , 2, in particular not more than 47.4% by weight.
  • the proportions by weight are calculated accordingly if, for example, exclusively MoS 2 having a density of 4.8 g / cm 3 as the conductive pigment, aluminum having a density of 2.7 g / cm 3 or zinc with a density of 7.1 g / cm 3 is used.
  • the coating composition (1) contains not only a single conductive pigment but a mixture of at least two conductive pigments, which then differ greatly in their density.
  • a mixture can be used in which the first mixing partner is a light conductive pigment such as carbon black, graphite or aluminum and the second partner of the mixture is a heavy conductive pigment such as zinc or iron.
  • the average density of the mixture is used, which can be calculated from the weight percentages of the components in the mixture and from their respective density.
  • a specific embodiment of a coating composition (1) in process (IIIb) is characterized in that it contains both a conductive pigment having a density of less than 3 g / cm 3 and a conductive pigment having a density of greater than 4 g / cm 3 , Wherein the total amount of conductive pigment, based on the total mass of the composition (2), is (0.8 to 8) ⁇ ⁇ % by Weight, Where ⁇ is the average density of the mixture of the conductive pigments in g / cm 3 .
  • the coating agent (1) as a conductive pigment, a mixture of carbon black or graphite on the one hand and iron powder on the other hand.
  • the weight ratios of carbon black and / or graphite on the one hand and iron on the other hand can be in the range from 1: 0.1 to 1:10, in particular in the range from 1: 0.5 to 1: 2.
  • the coating composition (1) may therefore contain aluminum flakes, graphite and / or carbon black as a light electrically conductive pigment.
  • the use of graphite and / or carbon black is preferred.
  • Carbon black, and especially graphite not only provide electrical conductivity of the resultant coating, but also contribute to this layer having a desirable low Mohs hardness of not more than 4 and being readily reshapeable.
  • the lubricating effect of graphite contributes to a reduced wear of the forming tools. This effect can be further promoted by additionally using pigments with a lubricating effect such as molybdenum sulfide with.
  • the coating agent (1) may contain waxes and / or Teflon.
  • the electrically conductive pigment having a specific weight of at most 3 g / cm 3 may be in the form of small spheres or aggregates of such spheres. It is preferred that the balls or the aggregates of these balls have a diameter of less than 2 microns. However, these electrically conductive pigments are preferably in the form of platelets whose thickness is preferably less than 2 ⁇ m.
  • the coating composition (1) in process (III) according to the invention comprises at least the resin components described above and also solvents.
  • the resin components a) to d) are usually present in their commercial form as a solution or dispersion in organic solvents.
  • the coating composition (1) prepared therefrom then also contains these solvents.
  • the electrically conductive pigment such as, for example, graphite and optionally further pigments such as, in particular, anticorrosive pigments to set a viscosity which allows the coating agent (1) to be applied to the substrate in the coil coating process.
  • additional solvent can be added.
  • the chemical nature of the solvents is usually dictated by the choice of raw materials containing the appropriate solvent.
  • solvents cyclohexanone, diacetone alcohol, diethylene glycol monobutyl ether acetate, diethylene glycol, propylene glycol methyl ether, propylene glycol n-butyl ether, methoxypropyl acetate, n-butyl acetate, Xylene, dimethyl glutarate, dimethyl adipate and / or dimethyl succinate.
  • the preferred proportion of solvent on the one hand and organic resin components on the other hand in the coating agent (1) depends on the content of conductive pigment in% by weight in the coating agent (1).
  • the preferred weight percentages of solvent and resin components therefore depend on the density ⁇ of the conductivity pigment used or the average density ⁇ of a mixture of conductive pigments.
  • the coating composition (1) in the process (III) according to the invention it is preferable that, based on the total mass of the coating composition (1), [(25 to 60). Adjustment factor] wt%, preferably [(35 to 55) adjustment factor] wt% organic solvent and [(20 to 45) adjustment factor] wt%, preferably [(25 to 40) adjustment factor] wt.
  • % organic resin components wherein the sum of the weight percentages of organic resin component and solvent is not greater than [93 - adjustment factor] wt%, preferably not greater than [87 * adaptation factor] wt%, and wherein the adjustment factor [100 -2,8 ⁇ ]: 93.85 and ⁇ is the density of the conductive pigment or the average density of the mixture of conductive pigments in g / cm 3 .
  • the coating agent (1) based on the total mass of the coating agent (1), [(2 to 8) adjustment factor] wt .-%, preferably [(3 to 5) adjustment factor] wt. % of the resin component a), wherein the adjustment factor is [100-2.8 ⁇ ]: 93.85 and ⁇ is the density of the conductive pigment or the average density of the mixture of conductive pigments in g / cm 3 . From the proportion of the resin component a) can be calculated with the above-mentioned preferred ratios of the individual resin components, the preferred proportions of the resin components b) to d) in the coating agent (1).
  • the proportion of components b) in the total mass of the coating agent [(2 to 9) adjustment factor] wt .-%, Preferably, [(3 to 6) adjustment factor] wt .-%, the proportion of resin components c) [(4 to 18) adjustment factor] wt .-%, preferably [(6 to 12) adjustment factor] wt.%
  • the proportion of Resin Components d) [(7 to 30) Adjustment Factor] wt%, preferably [(10 to 20) Adjustment Factor] wt%.
  • the "adaptation factor" has the meaning given above.
  • the layer b) additionally contains corrosion inhibitors and / or anticorrosive pigments.
  • Corrosion inhibitors or anticorrosive pigments which are known in the prior art for this purpose can be used here. Examples which may be mentioned are: magnesium oxide pigments, in particular in nanoscale form, finely divided and very finely divided barium sulfate or anticorrosive pigments based on calcium silicate.
  • the preferred weight fraction of the anticorrosion pigments on the total mass of the coating composition (1) in turn depends on the density of the anticorrosion pigments used.
  • the coating composition (1) in the process (III) according to the invention contains [(5 to 25). Adjustment factor] wt .-%, in particular [(10 to 20). Adjustment factor] wt% anticorrosive pigment, where the adjustment factor is [100-2.8 ⁇ ]: 93.85 and ⁇ is the density of the conductive pigment or the average density of the mixture of conductive pigments in g / cm 3 .
  • the mechanical and chemical properties of the coating obtained after the baking of the coating agent (1) in process (III) according to the invention can be further improved by additionally containing fillers.
  • these may be selected from silicas or silicas (optionally hydrophobed), alumina (including basic alumina), titania and barium sulfate.
  • the coating composition (1) is [(0.1 to 3).
  • Adjustment factor] wt .-% preferably [(0.4 to 2) adjustment factor] wt .-% filler selected from silicas or silicon oxides, aluminum oxides, titanium dioxide and barium sulfate, wherein the adjustment factor [100-2.8 p]: 93 , 85 and ⁇ means the density of the conductive pigment or the average density of the mixture of conductive pigments in g / cm 3 .
  • steps (i-vi) are carried out as a strip treatment method, wherein the liquid coating composition (1) is applied in step (vi) in such an amount that, after curing, the desired layer thickness is in the range from 0.5 to 10
  • the coating agent (1) is applied in the so-called coil coating process.
  • continuous metal strips are continuously coated.
  • the coating agent (1) can be applied by different methods, which are familiar in the prior art. For example, applicator rolls can be used to directly adjust the desired wet film thickness. Alternatively, one can immerse the metal strip in the coating agent (1) or spray it with the coating agent (1), after which the desired wet film thickness is adjusted by means of squeeze rolls.
  • step (ii) If metal strips coated immediately before with a metal coating, for example with zinc or zinc alloys, electrolytically or by hot dip coating, it is not necessary to clean the metal surfaces prior to performing the metallizing pretreatment (ii). However, if the metal strips have already been stored and in particular provided with corrosion protection oils, a purification step (i) is necessary before carrying out step (ii).
  • the coated sheet is heated to the required drying or crosslinking temperature for the organic coating.
  • the treatment agent can also be brought to the corresponding drying or crosslinking temperature by infrared radiation, in particular by near infrared radiation.
  • Such pre-coated metal sheets are tailored and converted in the automotive production for the production of bodies accordingly.
  • the assembled component or the assembled body shell therefore has unprotected edges, which must be treated in addition corrosion protection.
  • the so-called "paint shop” therefore, there is a further corrosion-protective treatment and, ultimately, the realization of the automobile-typical paint structure.
  • the present invention therefore relates, in a further aspect, to a process (IV) which extends the process chain (i-vi) of process (III), wherein a crystalline phosphate layer is first deposited on the exposed metal surfaces, in particular on the cut edges, in order to subsequently to provide a final corrosion protection by means of dip paint, in particular protection against infiltration of the paint system at the cutting edges.
  • a process (IV) which extends the process chain (i-vi) of process (III), wherein a crystalline phosphate layer is first deposited on the exposed metal surfaces, in particular on the cut edges, in order to subsequently to provide a final corrosion protection by means of dip paint, in particular protection against infiltration of the paint system at the cutting edges.
  • the entire metallic component including the phosphated cut edges and the first-coated surfaces in process (III) can be electrodeposited ( illustration 1 , Method IVb).
  • the phosphated cutting edges are exclusively electrocoated, without a further paint build on the réellebe legieten surfaces is realized.
  • the cut edges are not phosphated, but coated with a self-depositing dip (AC) ( illustration 1 , Method IVc).
  • AC self-depositing dip
  • the present invention is distinguished by the fact that the zinc surfaces pretreated in a metallizing manner according to the invention in particular excellently prevent edge corrosion.
  • a process chain according to the invention which comprises the electrodeposition coating (KTL, ATL) in process (IV) and the application of further paint layers in a process (V), therefore, the amount of deposited dip paint per m 2 of the component consisting of zinc surfaces pretreated according to the invention (US Pat.
  • illustration 1 , Method I) and / or the amount of filler to be applied which has the main task of protecting the body panels against stone chipping and compensate for any unevenness of the metal surface, in the secondary coating ( illustration 1 , Method V) are significantly reduced, without a loss of performance in terms of corrosion protection and paint adhesion is the result.
  • the present invention relates to the galvanized and / or alloy-galvanized steel surface and the metallic component, which consists at least partially of a zinc surface which has been pretreated by metallizing in accordance with the process according to the invention with the aqueous agent (1) or subsequently this pretreatment with further passivating Conversion layers and / or paints, for example according to the inventive method (II-IV) coated.
  • a treated steel surface or treated component is used in body construction in automotive manufacturing, shipbuilding, construction and for the production of white goods.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur metallisierenden Vorbehandlung verzinkter und/oder legierungsverzinkter Stahloberflächen oder zusammengefügter metallischer Bauteile, die zumindest teilweise Oberflächen aus Zink aufweisen, in einer mehrere Prozessschritte umfassenden Oberflächenbehandlung. Im erfindungsgemäßen Verfahren werden metallische Schichtauflagen von nicht mehr als 50 mg/m2 an Zinn auf den behandelten Zinkoberflächen erzeugt. Derart metallisierte Zinkoberflächen eignen sich hervorragend als Ausgangsmaterial für nachfolgende Passivierungs- und Beschichtungsschritte (Abbildung 1, Verfahren II-V) und bewirken eine deutlich höhere Effizienz der Korrosionsschutzbeschichtung insbesondere nach der erfindungsgemäßen Vorbehandlung verzinkter Metalloberflächen. Die Applikation des Verfahrens auf verzinktem Bandstahl unterbindet dabei die korrosive Lackunterwanderung speziell an den Schnittkanten. In einem weiteren Aspekt umfasst die Erfindung daher ein unbeschichtetes oder nachfolgend beschichtetes metallisches Bauteil, welchem eine erfindungsgemäße metallisierende Vorbehandlung zuteil wurde, sowie die Verwendung eines solchen Bauteils im Karosseriebau bei der automobilen Fertigung, im Schiffsbau, im Baugewerbe sowie für die Herstellung von Weißer Ware.The present invention relates to a process for the metallizing pretreatment of galvanized and / or alloy-galvanized steel surfaces or assembled metallic components, which at least partially comprise surfaces of zinc, in a surface treatment comprising a plurality of process steps. In the process according to the invention, metallic layer deposits of not more than 50 mg / m 2 of tin are produced on the treated zinc surfaces. Such metallized zinc surfaces are outstandingly suitable as starting material for subsequent passivation and coating steps ( illustration 1 , Process II-V) and cause a significantly higher efficiency of the anti-corrosion coating, in particular after the pretreatment of galvanized metal surfaces according to the invention. The application of the process on galvanized steel strip prevents corrosive paint infiltration, especially at the cutting edges. In a further aspect, the invention therefore comprises an uncoated or subsequently coated metallic component which has been given a metallizing pretreatment according to the invention, as well as the use of such a component in vehicle body construction in automobile manufacturing, shipbuilding, construction and for the production of white goods.

Gegenwärtig wird in der Stahlindustrie eine Vielzahl oberflächenveredelter Stahlwerkstoffe hergestellt und nahezu 80 % der Feinblechprodukte in Deutschland werden heute in oberflächenveredelter Ausführung geliefert. Für die Produktion von Erzeugnissen werden diese Feinblechprodukte weiterverarbeitet, so dass unterschiedlichste metallische Werkstoffe oder verschiedenste Kombinationen von metallischem Grund- und Oberflächenmaterial in einem Bauteil vorliegen können und für bestimmte Produktanforderungen vorliegen müssen, Bei der Weiterverarbeitung, speziell von oberflächenveredelten Bandstählen, wird der Werkstoff zugeschnitten, umgeformt und mittels Schweiß- oder Klebeverfahren zusammengefügt. Diese Verarbeitungsprozesse sind im hohen Maße typisch für den Karosseriebau in der Automobilindustrie. Dort wird hauptsächlich verzinkter Bandstahl aus der Coil-Coating-Industrie weiterverarbeitet und beispielsweise mit unverzinktem Bandstahl und/oder Bandaluminium zusammengefügt. So bestehen Autokarosserien aus einer Vielzahl von Blechteilen, die durch Punktschweißen miteinander verbunden werden.
Aus dieser Kombinationsvielfalt von metallischer Bandmaterialien in einem Bauteil und der vornehmlichen Verwendung von oberflächenveredelten Bandstählen ergeben sich besondere Anforderungen an den Korrosionschutz, der in der Lage sein muss, sowohl die Folgen der Bimetallkorrosion als auch der Schnittkantenkorrosion abzumindern. Zwar vermitteln metallische Zinküberzüge, die elektrolytisch oder im Schmelztauchverfahren auf das Stahlband aufgebracht werden, eine kathodische Schutzwirkung, die eine aktive Auflösung des edleren Kernmaterials an Schnittkanten und mechanisch hervorgerufenen Verletzungen des Zinküberzuges verhindert, doch ebenso bedeutend für die Gewährleistung der Materialeigenschaften des Kernmaterials ist die Unterbindung der Korrosionsrate an sich. Entsprechend hoch sind die Anforderungen an die Korrosionsschutzbeschichtung bestehend zumeist aus einer anorganischen Konversionsschicht und einer organischen Barriereschicht.
At present, a large number of surface-refined steel materials are produced in the steel industry, and nearly 80% of the thin-plate products in Germany are today supplied in a surface-refined design. For the production of products, these thin sheet products are further processed, so that a wide variety of metallic materials or various combinations of metallic base and surface material can be present in a component and must be present for certain product requirements, in the further processing, especially of surface-coated strip steel, the material is cut, formed and joined together by means of welding or gluing process. These processing processes are highly typical of the body shop in the automotive industry. There is mainly galvanized steel strip the coil coating industry further processed and assembled, for example, with non-galvanized steel strip and / or strip aluminum. Thus, car bodies consist of a large number of sheet-metal parts which are joined together by spot welding.
From this combination of variety of metallic strip materials in a component and the primary use of surface-treated strip steel, there are special requirements for corrosion protection, which must be able to mitigate both the consequences of bimetallic corrosion and cut edge corrosion. Although metallic zinc coatings, which are applied to the steel strip by electrolytic or hot-dip processes, provide a cathodic protection which prevents active dissolution of the more noble core material at cut edges and mechanically induced damage to the zinc coating, ligation is equally important for ensuring the material properties of the core material the corrosion rate itself. Correspondingly high are the requirements for the corrosion protection coating consisting mostly of an inorganic conversion layer and an organic barrier layer.

An Schnittkanten und an durch die Bearbeitung oder sonstige Einflüsse auftretenden Verletzungen an der Zinkauflage bewirkt die galvanische Kopplung zwischen Kernmaterial und metallischem Überzug eine aktive, ungehinderte lokale Auflösung des Überzugsmaterials, die wiederum eine Aktivierungsstelle für die korrosive Unterwanderung der organischen Barriereschicht darstellt. Das Phänomen der Lackenthaftung oder des "Blistering" wird speziell an den Schnittkanten beobachtet, an denen eine ungehinderte Korrosion des unedleren Überzugsmaterials stattfindet. Gleiches gilt prinzipiell für die Stellen eines Bauteils, an denen unterschiedliche metallische Materialien durch Fügetechniken unmittelbar miteinander verbundenen sind. Die lokale Aktivierung eines solchen "Defektes" (Schnittkante, Verletzung im metallischen Überzug, Punktschweißstelle) und damit die korrosive Lackenthaftung, die von diesen "Defekten" ausgeht, ist umso ausgeprägter je größer der elektrische Potentialunterschied zwischen den Metallen im unmittelbaren Kontakt ist. Entsprechend gute Ergebnisse bezüglich der Lackhaftung an Schnittkanten bietet Bandstahl mit Zinküberzügen, die mit edleren Metallen legiert sind, z.B. eisenlegierte Zinküberzüge (Galvannealed Steel).
Da die Bandstahlproduzenten verstärkt dazu übergehen, neben der Oberflächenveredelung mit metallischen Überzügen weitere Korrosionsbeschichtungen, insbesondere Lackbeschichtungen, in der Bandanlage zu integrieren, besteht dort und in der verarbeitenden Industrie, insbesondere in der automobilen Fertigung, ein erhöhter Bedarf an Korrosionsschutzbehandlungen, die die mit der Schnittkanten- und Kontaktkorrosion verbundenen Probleme in der Lackhaftung effektiv verhindern.
At cutting edges and at the zinc coating caused by the machining or other influences, the galvanic coupling between core material and metallic coating brings about an active, unimpeded local dissolution of the coating material, which in turn constitutes an activation point for the corrosive infiltration of the organic barrier layer. The phenomenon of paint peeling or "blistering" is especially observed at the cut edges where unimpeded corrosion of the less noble coating material takes place. The same applies in principle to the locations of a component to which different metallic materials are directly connected by joining techniques. The local activation of such a "defect" (cut edge, damage in the metallic coating, spot welding point) and thus the corrosive paint release resulting from these "defects" is all the more pronounced the greater the electrical potential difference between the metals in direct contact. Correspondingly, good results with regard to paint adhesion at cut edges are offered by steel strips with zinc coatings alloyed with nobler metals, eg iron-alloyed zinc coatings (galvannealed steel).
As the steel strip producers increasingly turn to this, in addition to surface finishing with metallic coatings, further corrosion coatings, in particular Lacquer coatings to integrate into the belt line, there and in the processing industry, particularly in automotive manufacturing, have an increased need for anti-corrosive treatments that effectively prevent the problems associated with cut edge and contact corrosion problems in paint adhesion.

Im Stand der Technik sind verschiedene Vorbehandlungen beschrieben, die das Problem des Kantensschutzes adressieren. Als wesentliche Strategie wird dabei die Verbesserung der Lackhaftung der organischen Barriereschicht auf dem oberflächenveredelten Bandstahl verfolgt.
Als nächstliegender Stand der Technik ist die deutsche Offenlegungsschrift DE19733972 anzusehen, die ein Verfahren zur alkalischen passivierenden Vorbehandlung von verzinkten und legierungsverzinkten Stahloberflächen in Bandanlagen beinhaltet. Hier wird das oberflächenveredelte Stahlband mit einem alkalischen Behandlungsmittel enthaltend Magnesium-Ionen, Eisen(III)-Ionen sowie einen Komplexbildner in Kontakt gebracht. Bei dem vorgegebenen pH-Wert von oberhalb von 9,5 wird die Zinkoberfläche dabei unter Ausbildung der Korrosionsschutzschicht passiviert. Eine derartig passivierte Oberfläche bietet gemäß der Lehre von DE19733972 bereits eine Lackhaftung, die mit Nickel- und Cobalt-haltigen Verfahren vergleichbar ist. Fakultativ können sich dieser Vorbehandlung zur Verbesserung des Korrosionsschutzes weitere Behandlungsschritte wie eine chromfreie Nachpassivierung anschließen, bevor das Lacksystem aufgetragen wird. Dennoch zeigt sich, dass dieses Vorbehandlungssystem die durch die Korrosion an den Schnittkanten hervorgerufene Lackenthaftung nicht zufrieden stellend zu unterbinden vermag.
The prior art describes various pretreatments that address the problem of edge protection. An essential strategy is to improve the paint adhesion of the organic barrier layer on the surface-treated steel strip.
The closest prior art is the German Offenlegungsschrift DE19733972 which deals with a process for the alkaline passivating pretreatment of galvanized and alloy-galvanized steel surfaces in strip lines. Here, the surface-treated steel strip is brought into contact with an alkaline treatment agent containing magnesium ions, iron (III) ions and a complexing agent. At the given pH of above 9.5, the zinc surface is passivated thereby forming the corrosion protection layer. Such a passivated surface offers according to the teaching of DE19733972 already a paint adhesion, which is comparable to nickel and cobalt-containing processes. Optionally, this pretreatment can be followed by further treatment steps such as chromium-free post-passivation to improve the corrosion protection before the paint system is applied. Nevertheless, it appears that this pretreatment system can not satisfactorily suppress the paint peeling caused by the corrosion at the cut edges.

Es stellt sich also als Aufgabe der vorliegenden Erfindung, ein Verfahren zur Vorbehandlung von verzinkten und legierungsverzinkten Stahloberflächen bereitzustellen, welches die von Defekten in der Zinkauflage des Bandstahls ausgehende Lackenthaftung, insbesondere an den Schnittkanten, im Vergleich zum Stand der Technik deutlich verbessert.It is therefore an object of the present invention to provide a method for the pretreatment of galvanized and alloy-galvanized steel surfaces, which significantly improves the Lackenthaftung emanating from defects in the zinc coating of the steel strip, especially at the cut edges, compared to the prior art.

Die Offenlegungsschriften JP 57188663 A und JP 4048095 A offenbaren jeweils Verfahren zur metallisierenden Vorbehandlung von verzinkten und legierungsverzinkten Stahloberflächen durch In-Kontakt-Bringen mit wässrigen Lösungen enthaltend Zinn-Ionen. Die wässrige Lösung der JP 57188663 A ist dabei stark sauer und lange Kontaktzeiten von zumindest 5 Minuten sind für zufriedenstellende Ergebnisse erforderlich. Der Lehre der JP 4048095 A folgend werden verhältnismäßig hohe Schichtauflagen an Zinn von 0,1-0,5 g/m2 benötigt, um dem dort gewünschten Eigenschaftsprofil, insbesondere hinsichtlich Schmierwirkung, zu entsprechen.The publications JP 57188663 A and JP 4048095 A each disclose methods for metallizing pretreatment of galvanized and alloy-galvanized steel surfaces by contacting with aqueous solutions containing tin ions. The aqueous solution of JP 57188663 A is very angry and long contact times of at least 5 minutes are required for satisfactory results. The doctrine of JP 4048095 A In the following, relatively high layer plots of tin of 0.1-0.5 g / m 2 are required in order to correspond to the property profile desired there, in particular with regard to the lubricating effect.

Oben genannte Aufgabe wird vorliegend gelöst durch ein Verfahren zur metallisierenden Vorbehandlung von verzinkten oder legierungsverzinkten Stahloberflächen, wobei die verzinkte oder legierungsverzinkte Stahloberfläche mit einem wässrigen Mittel (1) für mindestens 1 Sekunde, aber nicht länger als 30 Sekunden, in Kontakt gebracht wird, dessen pH-Wert nicht kleiner als 4 und nicht größer als 8 ist, wobei Kationen und/oder Verbindungen eines Metalls (A) im Mittel (1) enthalten sind, deren Redoxpotential ERedox gemessen an einer Metallelektrode des Metalls (A) bei vorgegebener Verfahrenstemperatur und Konzentration an Kationen und/oder Verbindungen des Metalls (A) im wässrigen Mittel (1) anodischer liegt als das Elektrodenpotential EZn der verzinkten oder legierungsverzinkten Stahloberfläche im Kontakt mit einem wässrigen Mittel (2), welches sich vom Mittel (1) nur dadurch unterscheidet, dass es keine Kationen und/oder Verbindungen des Metalls (A) enthält, dadurch gekennzeichnet, dass die Kationen und/oder Verbindungen des Metalls (A) im Mittel (1) ausgewählt sind aus Kationen und/oder Verbindungen von Zinn in den Oxidationsstufen +II und/oder +IV und nach dem in Kontakt Bringen der verzinkten oder legierungsverzinkten Stahloberfläche mit dem wässrigen Mittel ein metallischer Überzug mit Metall (A) in einer Schichtauflage von mindestens 1 mg/m2, aber nicht mehr als 50 mg/m2 vorliegt.The above object is achieved in this case by a method for metallizing pretreatment of galvanized or alloy-galvanized steel surfaces, wherein the galvanized or alloy-galvanized steel surface is contacted with an aqueous agent (1) for at least 1 second, but not longer than 30 seconds, whose pH Value is not less than 4 and not greater than 8, wherein cations and / or compounds of a metal (A) in the middle (1) are included whose redox potential E redox measured on a metal electrode of the metal (A) at a given process temperature and concentration cations and / or compounds of the metal (A) in the aqueous medium (1) are more anodic than the electrode potential E Zn of the galvanized or alloy-galvanized steel surface in contact with an aqueous agent (2) which differs from the agent (1) only in that that it contains no cations and / or compounds of the metal (A), characterized gekennzeic hnet that the cations and / or compounds of the metal (A) in the middle (1) are selected from cations and / or compounds of tin in the oxidation states + II and / or + IV and after contacting the galvanized or alloy-galvanized steel surface with the aqueous agent, a metallic coating with metal (A) in a layer of at least 1 mg / m 2 , but not more than 50 mg / m 2 is present.

Das erfindungsgemäße Verfahren eignet sich für sämtliche Metalloberflächen, beispielsweise Bandstahl, und/oder zusammengefügten metallischen Bauteile, die zumindest teilweise auch aus Zinkoberflächen bestehen, beispielsweise Automobilkarosserien. Bevorzugt ist die Werkstoffkombination aus Eisen-haltigen Oberflächen und Zinkoberflächen.The method according to the invention is suitable for all metal surfaces, for example strip steel, and / or assembled metallic components, which at least partially also consist of zinc surfaces, for example automobile bodies. The material combination of iron-containing surfaces and zinc surfaces is preferred.

Unter Vorbehandlung wird im Sinne dieser Erfindung ein der Passivierung mittels anorganischer Barriereschichten (z.B. Phosphatierung, Chromatierung) oder ein der Lackbeschichtung vorausgehender Prozessschritt zur Konditionierung der gereinigten metallischen Oberfläche bezeichnet. Eine solche Konditionierung der Oberfläche bewirkt für das gesamte, am Ende einer Prozesskette zur korrosionsschützenden Oberflächenbehandlung resultierende Schichtsystem eine Verbesserung des Korrosionsschutzes und der Lackhaftung. In der Abbildung 1 sind typische Prozessketten im Sinne der vorliegenden Erfindung zusammengefasst, die von der erfindungsgemäßen Vorbehandlung in besonderem Maße profitieren.
In der spezifizierenden Bezeichnung der Vorbehandlung als "metallisierend" ist ein Vorbehandlungsprozess zu verstehen, der unmittelbar eine metallische Abscheidung von Metall-Kationen (A) auf der Zinkoberfläche bewirkt, wobei nach erfolgter metallisierender Vorbehandlung mindestens 50 At-% des Elements (A) entsprechend der im Beispielteil dieser Anmeldung definierten Analysenmethode auf der Zinkoberfläche im metallischen Zustand vorliegen.
Das Redoxpotential ERedox wird erfindungsgemäß direkt im Mittel (1) an einer Metallelektrode des Metalls (A) gegenüber einer kommerziellen Standardreferenzelektrode, z.B. Silber-Silberchlorid-Elektrode, gemessen. Beispielsweise in einer elektrochemischen Messkette der folgender Art: E Redox in Volt : Ag / AgCl / 1 M KCl / / Metall A / M 1

Figure imgb0001

  • mit Ag / AgCl/1M KCl = 0,2368 V gegenüber Standardwasserstoffelektrode (SHE)
  • mit M(1) das erfindungsgemäße Mittel (1) enthaltend Kationen und/oder Verbindungen des Metalls (A) bezeichnend
For the purposes of this invention, pretreatment refers to the passivation by means of inorganic barrier layers (eg phosphating, chromating) or a process step preceding the lacquer coating for conditioning the cleaned metallic surface. Such conditioning of the surface causes corrosion protection for the whole, at the end of a process chain Surface treatment resulting layer system an improvement in corrosion protection and paint adhesion. In the illustration 1 are typical process chains summarized in the sense of the present invention, which benefit in particular from the pretreatment according to the invention.
The specifying designation of the pretreatment as "metallizing" is to be understood as meaning a pretreatment process which directly effects a metallic deposition of metal cations (A) on the zinc surface, wherein after metallizing pretreatment at least 50 at% of the element (A) corresponding to in the example part of this application defined analytical method on the zinc surface in the metallic state.
According to the invention, the redox potential E redox is measured directly on average (1) on a metal electrode of the metal (A) in relation to a standard commercial reference electrode, eg silver-silver chloride electrode. For example, in an electrochemical measuring chain of the following type: e redox in volts : Ag / AgCl / 1 M KCl / / metal A / M 1
Figure imgb0001
  • with Ag / AgCl / 1M KCl = 0.2368 V versus standard hydrogen electrode (SHE)
  • with M (1) the agent (1) according to the invention containing cations and / or compounds of the metal (A) indicative

Gleiches gilt für das Elektrodenpotential EZn, welches an einer Zinkelektrode im Mittel (2), welches sich vom Mittel (1) lediglich durch die Abwesenheit der Kationen und/oder Verbindungen des Metalls (A) unterscheidet, gegenüber einer kommerziellen Standardrferenzelektrode bestimmt wird: E Zn in Volt : Ag / AgCl / 1 M KCl / / Zn / M 2

Figure imgb0002
The same applies to the electrode potential E Zn , which is determined at a zinc electrode in the middle (2), which differs from the agent (1) only by the absence of cations and / or compounds of the metal (A), compared to a standard commercial reference electrode: e Zn in volts : Ag / AgCl / 1 M KCl / / Zn / M 2
Figure imgb0002

Das erfindungsgemäße Verfahren kennzeichnet sich nun dadurch aus, dass eine metallisierende Vorbehandlung der Zinkoberfläche dann erfolgt, wenn das Redoxpotential ERedox anodischer liegt als das Elektrodenpotential EZn. Dies ist der Fall, wenn ERedox-EZn > 0 ist.The method according to the invention is characterized in that a metallizing pretreatment of the zinc surface takes place when the redox potential E redox is more anodic than the electrode potential E Zn . This is the case when E Redox -E Zn > 0.

Als elektromotorische Kraft (EMK), also als thermodynamische Triebkraft für die stromlose metallisierende Vorbehandlung, ist die Potentialdifferenz von Redoxpotential ERedox und Elektrodenpotential EZn gemäß obigen Definitionen anzusehen. Die elektromotorische Kraft (EMK) entspricht dabei einer elektrochemischen Messkette der folgenden Art: Zn / M 2 / / Metall A / M 1

Figure imgb0003

  • mit M(1) das Mittel (1) enthaltend Kationen und/oder Verbindungen des Metalls (A) bezeichnend, und
  • mit M(2) das Mittel (2) bezeichnend, welches sich von M(1) nur dadurch unterscheidet, dass es keine Kationen und/oder Verbindungen des Metalls (A) enthält.
As the electromotive force (EMF), ie as a thermodynamic driving force for the electroless metallizing pretreatment, the potential difference of redox potential E redox and electrode potential E Zn according to the above definitions is to be considered. The electromotive force (EMF) corresponds to an electrochemical measuring chain of the following type: Zn / M 2 / / metal A / M 1
Figure imgb0003
  • denoting M (1) the agent (1) containing cations and / or compounds of the metal (A), and
  • denoting M (2) the agent (2) which differs from M (1) only in that it contains no cations and / or compounds of the metal (A).

Für das erfindungsgemäße Verfahren ist es dabei vorteilhaft, wenn das Redoxpotential ERedox der Kationen und/oder Verbindungen des Metalls (A) im wässrigen Mittel (1) um mindestens +50 mV, vorzugsweise mindestens +100 mV und besonders bevorzugt mindestens +300 mV, aber höchstens +800 mV anodischer liegt als das Elektrodenpotential EZn der Zinkoberfläche im Kontakt mit dem wässrigen Mittel (2). Ist die EMK kleiner als +50 mV kann eine hinreichende Metallisierung der verzinkten Oberfläche in technisch relevanten Kontaktzeiten nicht erzielt werden, so dass in einer nachfolgenden passivierenden Konversionsbehandlung die Metallauflage des Metalls (A) vollständig von der verzinkten Oberfläche entfernt wird und die Wirkung der Vorbehandlung damit aufgehoben wird. Umgekehrt kann eine zu hohe EMK von mehr als +800 mV in kurzen Zeiten zu einer vollständigen und massiven Belegung der verzinkten Oberfläche mit dem Metall (A) führen, so dass in einer nachfolgenden Konversionsbehandlung die gewünschte Ausbildung einer anorganischen korrosionsschützenden und haftvermittelnden Schicht ausbleibt oder zumindest gehindert ist. Es zeigt sich, dass die Metallisierung besonders effektiv ist, wenn die Konzentration an Kationen und/oder Verbindungen des Metalls (A) mindestens 0,001 M und vorzugsweise mindestens 0,01 M beträgt, aber 0,2 M, vorzugsweise 0,1 M nicht überschreitet.It is advantageous for the process according to the invention if the redox potential E redox of the cations and / or compounds of the metal (A) in the aqueous medium (1) is at least +50 mV, preferably at least +100 mV and particularly preferably at least +300 mV, but at most +800 mV anodic than the electrode potential E Zn of the zinc surface in contact with the aqueous agent (2). If the EMF is less than +50 mV, sufficient metallization of the galvanized surface can not be achieved in technically relevant contact times, so that in a subsequent passivating conversion treatment the metal deposit of the metal (A) is completely removed from the galvanized surface and the effect of the pretreatment therewith will be annulled. Conversely, an excessively high EMF of more than +800 mV in short times can lead to a complete and massive occupation of the galvanized surface with the metal (A), so that the desired formation of an inorganic corrosion-inhibiting and adhesion-promoting layer does not occur or at least in a subsequent conversion treatment is hindered. It is found that metallization is particularly effective when the concentration of cations and / or compounds of the metal (A) is at least 0.001M and preferably at least 0.01M, but does not exceed 0.2M, preferably 0.1M ,

Des Weiteren sind solche Kationen und/oder Verbindungen des Metalls (A) bevorzugt, die im Mittel (1) sowohl die Bedingung für die elektromotorische Kraft (EMK) wie zuvor beschrieben erfüllen als auch ein Standardpotential E0 Me des Metalls (A) aufweisen, das kathodischer liegt als das Normalpotenial E0 H2 der Standardwasserstoffelektrode (SHE), vorzugsweise um mehr als 100 mV, besonders bevorzugt um mehr als 200 mV kathodischer als das Normalpotential E0 H2, wobei sich das Standardpotential E0 Me des Metalls (A) auf die reversible Redoxreaktion Me0→ Men+ + n e- in einer wässrigen Lösung des Metall-Kations Men+ mit der Aktivität 1 bei 25 °C bezieht.Further, those cations and / or compounds of the metal (A) are preferable, which in the middle (1) both the electromotive force (EMF) condition as described above and having a standard potential E 0 Me of the metal (A) which is more cathodic than the normal potential E 0 H2 of the standard hydrogen electrode (SHE), preferably more than 100 mV, more preferably more than 200 mV more cathodic than the normal potential E 0 H2 , wherein the standard potential E 0 Me of the metal (A) refers to the reversible redox reaction Me 0 → Me n + + ne - in an aqueous solution of the metal cation Me n + with the activity 1 at 25 ° C.

Liegt diese zweite Bedingung nicht erfüllt vor, so werden in einer dem erfindungsgemäßen Verfahren nachfolgenden Konversionsbehandlung aufgrund reduzierter Beizraten der Substratoberfläche Passivierungsschichten ausgebildet, die weniger homogen sind und vermehrt Defekte aufweisen. Im Extremfall unterbleibt im nachfolgenden Verfahrensschritt die passivierende Konversion der im erfindungsgemäßen Verfahren vorbehandelten Substratoberfläche. Gleiches gilt für eine der erfindungsgemäßen Vorbehandlung unmittelbar nachfolgenden organischen Beschichtung, die auf einen Selbstabscheidungsprozess beruht, der durch den Beizangriff des Substrates eingeleitet wird (Autophoretische Tauchlackbeschichtung, Abk.: AC für "Autodepositable Coating").If this second condition is not met, passivation layers are formed in a conversion treatment following the method according to the invention due to reduced pickling rates of the substrate surface, which layers are less homogeneous and have more defects. In the extreme case, the passivating conversion of the substrate surface pretreated in the process according to the invention is omitted in the subsequent process step. The same applies to an organic coating immediately following the pretreatment according to the invention, which is based on a self-deposition process which is initiated by the pickling attack of the substrate (autophoretic dip coating, abbreviation: AC for "autodepositable coating").

Vorzugsweise werden im erfindungsgemäßen Vorbehandlungsverfahren zur Erhöhung der Abscheidungsrate der Kationen und/oder Verbindungen des Metalls (A), also der Metallisierung der verzinkten oder legierungsverzinkten Oberfläche, Beschleuniger mit Reduktionswirkung dem wässrigen Mittel (1) hinzugesetzt. Als mögliche Beschleuniger kommen Oxosäuren von Phosphor oder Stickstoff sowie deren Salze in Frage, wobei mindestens ein Phosphoratom oder Stickstoffatom in einer mittleren Oxidationsstufe vorliegen muss. Derartige Beschleuniger sind beispielsweise Hyposalpetrige Säure, Hyposalpetersäure, Salpetrige Säure, Hypophosphorsäure, Hypodiphosphonsäure, Diphosphor(III, V)-säure, Phosphonsäure, Diphosphonsäure und besonders bevorzugt Phosphinsäure sowie deren Salze.In the pretreatment process according to the invention, in order to increase the deposition rate of the cations and / or compounds of the metal (A), ie the metallization of the galvanized or alloy-galvanized surface, it is preferable to add accelerators with a reducing action to the aqueous agent (1). Suitable accelerators are oxo acids of phosphorus or nitrogen and their salts in question, wherein at least one phosphorus atom or nitrogen atom must be present in a middle oxidation state. Such accelerators are, for example, hyposalphous acid, hypo nitric acid, nitrous acid, hypophosphoric acid, hypodiphosphonic acid, diphosphorus (III, V) acid, phosphonic acid, diphosphonic acid and particularly preferably phosphinic acid and salts thereof.

Des Weiteren können Beschleuniger eingesetzt werden, die dem Fachmann aus dem Stand der Technik in der Phosphatierung bekannt sind. Diese haben neben ihren Reduktionseigenschaften auch depolarisierende Eigenschaften, d.h. sie wirken als Wasserstofffänger, und begünstigen so zusätzlich die Metallisierung der verzinkten Stahloberfläche. Hierzu gehören Hydrazin, Hydroxylamin, Nitroguanidin, N-Methylmorpholin-N-oxid, Glucoheptonat, Ascorbinsäure und reduzierende Zucker.
Das molare Verhältnis von Beschleuniger zur Konzentration der Kationen und/oder Verbindungen des Metalls (A) im wässrigen Mittel (1) ist vorzugsweise nicht größer ist als 2:1, besonders bevorzugt nicht größer als 1:1 und unterschreitet vorzugsweise 1:5 nicht.
Furthermore, it is possible to use accelerators known to the person skilled in the art in phosphating. In addition to their reduction properties, they also have depolarizing properties, ie they act as hydrogen scavengers, thus additionally favoring the metallization of the galvanized Steel surface. These include hydrazine, hydroxylamine, nitroguanidine, N-methylmorpholine N-oxide, glucoheptonate, ascorbic acid and reducing sugars.
The molar ratio of accelerator to the concentration of the cations and / or compounds of the metal (A) in the aqueous medium (1) is preferably not greater than 2: 1, more preferably not greater than 1: 1 and preferably not below 1: 5.

Optional kann das wässrige Mittel (1) im erfindungsgemäßen Verfahren zusätzlich geringe Mengen an Kupfer(II)-Kationen enthalten, die ebenfalls simultan mit den Kationen und/oder Verbindungen des Metalls (A) auf der verzinkten Oberfläche metallisch abgeschieden werden können. Allerdings ist hier zu beachten, dass keine massive, nahezu vollständig oberflächenbedeckende Zementation von Kupfer eintritt, da sonst eine nachfolgende Konversionsbehandlung vollständig unterbunden wird und/oder sich die Lackhaftung deutlich verschlechtert. Daher sollte das wässrige Mittel (1) nicht mehr als 50 ppm, vorzugsweise nicht mehr als 10 ppm, aber mindestens 0,1 ppm Kupfer(II)-Kationen zusätzlich enthalten.Optionally, the aqueous agent (1) in the process according to the invention additionally contain small amounts of copper (II) cations, which can also be deposited metallically on the galvanized surface simultaneously with the cations and / or compounds of the metal (A). However, it should be noted here that no massive, almost completely surface-covering cementation of copper occurs, since otherwise a subsequent conversion treatment is completely prevented and / or the paint adhesion deteriorates significantly. Therefore, the aqueous agent (1) should additionally contain not more than 50 ppm, preferably not more than 10 ppm, but at least 0.1 ppm of copper (II) cations.

Darüber hinaus kann das wässrige Mittel (1) für die metallisierende Vorbehandlung zusätzlich Tenside enthalten, die die metallische Oberfläche von Verunreinigungen zu befreien vermag, ohne selbst die Oberfläche durch die Ausbildung kompakter Adsorbatschichten für die Metallisierung zu inhibieren. Hierfür können vorzugsweise Niotenside mit mittleren HLB-Werten von mindestens 8 und höchstens 14 eingesetzt werden.In addition, the aqueous agent (1) for the metallizing pretreatment may additionally contain surfactants which are able to liberate the metallic surface from impurities without itself inhibiting the surface by forming compact adsorbate layers for the metallization. Nonionic surfactants with average HLB values of at least 8 and at most 14 may be used for this purpose.

Der pH-Wert des wässrigen Mittels (1) ist nicht kleiner als 4 und nicht größer als 8, bevorzugt nicht größer als 6.The pH of the aqueous agent (1) is not smaller than 4 and not larger than 8, preferably not larger than 6.

Für das erfindungsgemäße Vorbehandlungsverfahren, welches einen Teil der Prozesskette der Oberflächenbehandlung von verzinkten und/oder legierungsverzinkten Stahloberflächen darstellt, sind die in der Bandstahlherstellung und Bandstahlveredelung üblichen Applikationsmethoden praktikabel. Hierzu gehören insbesondere Tauch- und Spritzverfahren. Die Kontaktzeit oder Vorbehandlungsdauer mit dem wässrigen Mittel (1) beträgt mindestens 1 Sekunde, aber ist nicht länger als 30 Sekunden, vorzugsweise nicht länger als 10 Sekunden. Innerhalb dieser Kontaktzeit resultieren bei erfindungsgemäßer Ausführung des Verfahrens metallische Überzüge des Metalls (A) mit einer Schichtauflage von mindestens 1 mg/m2, aber nicht mehr als 50 mg/m2. Die metallische Schichtauflage ist im Sinne der vorliegenden Erfindung definiert als flächenbezogener Massenanteil des Elements (A) auf der verzinkten oder legierungsverzinkten Stahloberfläche unmittelbar nach der erfindungsgemäßen Vorbehandlung.
Sowohl die bevorzugten Kontaktzeiten und Schichtauflagen als auch die bevorzugten Applikationsmethoden gelten ebenso für die erfindungsgemäße Vorbehandlung von aus mehreren metallischen Werkstoffen zusammengefügten Bauteilen, insofern diese zumindest teilweise Zinkoberflächen aufweisen.
For the pretreatment process according to the invention, which forms part of the process chain of the surface treatment of galvanized and / or alloy-galvanized steel surfaces, the application methods customary in strip steel production and strip steel finishing are practicable. These include, in particular, dipping and spraying processes. The contact time or pretreatment time with the aqueous agent (1) is at least 1 second, but is not longer than 30 seconds, preferably not longer than 10 seconds. Within this contact time result in inventive embodiment of the Process metallic coatings of the metal (A) with a coating of at least 1 mg / m 2 , but not more than 50 mg / m 2 . For the purposes of the present invention, the metallic layer support is defined as the area-related mass fraction of the element (A) on the galvanized or alloy-galvanized steel surface immediately after the pretreatment according to the invention.
Both the preferred contact times and layer conditions as well as the preferred application methods also apply to the pretreatment according to the invention of components assembled from a plurality of metallic materials insofar as these at least partially have zinc surfaces.

Zum vorliegenden Erfindungsgegenstand gehören auch diejenigen Kombinationen von legierungsverzinkten Stahloberflächen und wässrigen Mittel (1), bei denen ein Legierungsbestandteil der verzinkten Stahloberfläche dasselbe Element (A) darstellt wie das Metall (A) in Form seiner Kationen und/oder Verbindungen im wässrigen Mittel (1).The present invention also includes those combinations of alloy-galvanized steel surfaces and aqueous compositions (1) in which an alloying constituent of the galvanized steel surface is the same element (A) as the metal (A) in the form of its cations and / or compounds in the aqueous medium (1). ,

Das erfindungsgemäße Vorbehandiungsverfahren ist auf die nachfolgenden Prozessschritte der Oberflächenbehandlung von verzinkten und/oder legierungsverzinkten Stahloberflächen hinsichtlich eines optimierten Korrosionsschutzes und einer hervorragenden Lackhaftung insbesondere an Schnittkanten, Oberflächendefekten und Bimetallkontakten abgestimmt. Konsequenterweise werden von der vorliegenden Erfindung verschiedene Nachbehandlungsverfahren, also Konversions- und Lackbeschichtungen, umfasst, die in Verbindung mit der zuvor beschriebenen Vorbehandlung die gewünschten Ergebnisse hinsichtlich des Korrosionsschutzes liefern. Die Abbildung 1 illustriert verschiedene im Sinne der vorliegenden Erfindung bevorzugte Prozessketten zur korrosionsschützenden Beschichtung von metallischen Oberflächen in der automobilen Fertigung, die bereits beim Stahlerzeuger ("Coil Industry") begonnen und im Lackierbetrieb ("Paint Shop°) beim Automobilhersteller fortgesetzt und vollendet werden.
Die Erfindung betrifft daher in einem weiteren Aspekt die Erzeugung einer passivierenden Konversionsbeschichtung auf der metallisierend vorbehandelten verzinkten und/oder legierungsverzinkten Stahloberfläche mit oder ohne dazwischenliegendem Spül- und/oder Trocknungsschritt (Abbildung 1, Verfahren IIa).
The pretreatment process according to the invention is adapted to the subsequent process steps of the surface treatment of galvanized and / or alloy-galvanized steel surfaces with regard to optimized corrosion protection and outstanding paint adhesion, in particular to cut edges, surface defects and bimetallic contacts. Consequently, the present invention encompasses various aftertreatment processes, ie conversion and lacquer coatings, which, in conjunction with the pretreatment described above, provide the desired results in terms of corrosion protection. The illustration 1 illustrates various preferred within the meaning of the present invention process chains for corrosion-protective coating of metallic surfaces in automotive manufacturing, which are already begun at the steel producer ("Coil Industry") and continued and completed in the paint shop ("Paint Shop °) at the car manufacturer.
The invention therefore relates in a further aspect to the production of a passivating conversion coating on the metallized pretreated galvanized and / or alloy-galvanized steel surface with or without intermediate rinsing and / or drying step (US Pat. illustration 1 , Method IIa).

Hierfür kann eine chromhaltige oder vorzugsweise chromfreie Konversionslösung eingesetzt werden. Bevorzugte Konversionslösungen, mit denen die gemäß der vorliegenden Erfindung vorbehandelten Metalloberflächen vor den Aufbringen einer permanent korrosionsschützenden organischen Beschichtung behandelt werden können, können der DE-A-199 23 084 und der hierin zitierten Literatur entnommen werden. Nach dieser Lehre kann ein chromfreies wässriges Konversionsmittel außer Hexafluoro-Anionen von Ti, Si und/oder Zr als weitere Wirkstoffe enthalten: Phosphorsäure, eine oder mehrere Verbindungen von Co, Ni, V, Fe, Mn, Mo oder W, ein wasserlösliches oder wasserdispergierbares filmbildendes organisches Polymer oder Copolymer und Organophosphonsäuren, die komplexierende Eigenschaften haben. Auf Seite 4 dieses Dokuments ist in Zeilen 17 bis 39 eine ausführliche Liste organischer filmbildender Polymere aufgeführt, die in den genannten Konversionslösungen enthalten sein können.
Im Anschluss hieran offenbart dieses Dokument eine sehr umfangreiche Liste komplexbildender Organophosphonsäuren als weitere mögliche Komponenten der Konversionslösungen. Konkrete Beispiele dieser Komponenten können der genannten DE-A-199 23 084 entnommen werden.
Des Weiteren können wasserlösliche und/oder wasserdispergierbare polymere Komplexbildner mit Sauerstoff- und/oder Stickstoff-Liganden auf der Basis von Mannich-Additionsprodukten von Polyvinylphenolen mit Formaldehyd und aliphatischen Aminoalkoholen enthalten sein. Derartige Polymere sind in der Patentschrift US 5,298,289 offenbart.
For this purpose, a chromium-containing or preferably chromium-free conversion solution can be used. Preferred conversion solutions with which the metal surfaces pretreated according to the present invention can be treated prior to the application of a permanent corrosion-protective organic coating can be used DE-A-199 23 084 and the literature cited herein. According to this teaching, a chromium-free aqueous conversion agent besides hexafluoro anions of Ti, Si and / or Zr may contain as further active ingredients: phosphoric acid, one or more compounds of Co, Ni, V, Fe, Mn, Mo or W, a water-soluble or water-dispersible film-forming organic polymer or copolymer and organophosphonic acids that have complexing properties. On page 4 of this document, a detailed list of organic film-forming polymers which may be included in said conversion solutions is given in lines 17-39.
Following this, this document discloses a very extensive list of complex-forming organophosphonic acids as further possible components of the conversion solutions. Concrete examples of these components may be mentioned DE-A-199 23 084 be removed.
Furthermore, water-soluble and / or water-dispersible polymeric complexing agents with oxygen and / or nitrogen ligands based on Mannich addition products of polyvinylphenols with formaldehyde and aliphatic amino alcohols may be present. Such polymers are in the patent US 5,298,289 disclosed.

Die Verfahrensparameter für eine Konversionsbehandlung im Sinne dieser Erfindung wie beispielsweise Behandlungstemperatur, Behandlungsdauer und Kontaktzeit sind dabei derart zu wählen, dass eine Konversionsschicht erzeugt wird, die pro m2 Oberfläche mindestens 0,05, vorzugsweise mindestens 0,2, aber nicht mehr als 3,5, vorzugsweise nicht mehr als 2,0 und besonders bevorzugt nicht mehr als 1,0 mmol des Metalls M enthält, das die wesentliche Komponente der Konversionslösung darstellt. Beispiele für Metalle M sind Cr(III), B, Si, Ti, Zr, Hf. Die Belegungsdichte der Zinkoberfläche mit dem Metall M kann beispielsweise mit einer Röntgenfluoreszenzmethode ermittelt werden.The process parameters for a conversion treatment in the context of this invention, such as treatment temperature, treatment time and contact time are to be chosen such that a conversion layer is produced, the per m 2 surface at least 0.05, preferably at least 0.2, but not more than 3, Contains 5, preferably not more than 2.0 and more preferably not more than 1.0 mmol of the metal M, which is the essential component of the conversion solution. Examples of metals M are Cr (III), B, Si, Ti, Zr, Hf. The coverage of the zinc surface with the metal M can be determined, for example, by an X-ray fluorescence method.

In einem besonderen Aspekt eines erfindungsgemäßen Verfahrens (IIa), das eine der metallisierenden Vorbehandlung folgende Konversionsbehandlung umfasst, enthält das chromfreie Konversionsmittel zusätzlich Kupfer-Ionen. Das molare Verhältnis von Metallatomen M ausgewählt aus Zirkon und/oder Titan zu Kupferatomen in einem solchen Konversionsmittel ist dabei vorzugsweise derart gewählt, dass dieses eine Konversionsschicht erzeugt, in der mindestens 0,1, vorzugsweise mindestens 0,3, aber nicht mehr als 2 mmol Kupfer zusätzlich enthalten sind.In a particular aspect of a process (IIa) according to the invention, which comprises a conversion treatment following the metallizing pretreatment, the chromium-free conversion medium additionally contains copper ions. The molar ratio of metal atoms M selected from zirconium and / or titanium to copper atoms in such a conversion agent is preferably chosen such that it produces a conversion layer in which at least 0.1, preferably at least 0.3, but not more than 2 mmol Copper are also included.

Die vorliegende Erfindung betrifft also auch ein Verfahren (IIa), welches folgende Prozessschritte einschließlich der metallisierenden Vorbehandlung und einer Konversionsbehandlung der verzinkten und/oder legierungsverzinkten Stahloberfläche umfasst:

  1. i) gegebenenfalls Reinigung / Entfettung der Werkstoffoberfläche
  2. ii) metallisierende Vorbehandlung mit einem wässrigen Mittel (1) gemäß der vorliegenden Erfindung
  3. iii) gegebenenfalls Spül- und/oder Trocknungsschritt
  4. iv) chrom(VI)freie Konversionsbehandlung, bei der eine Konversionsschicht erzeugt wird, die pro m2 Oberfläche 0,05 bis 3,5 mmol des Metalls M enthält, das die wesentliche Komponente der Konversionslösung darstellt, wobei die Metalle M ausgewählt sind aus Cr(III), B, Si, Ti, Zr, Hf.
The present invention thus also relates to a process (IIa) which comprises the following process steps, including the metallizing pretreatment and a conversion treatment of the galvanized and / or alloy-galvanized steel surface:
  1. i) optionally cleaning / degreasing the material surface
  2. ii) metallizing pretreatment with an aqueous agent (1) according to the present invention
  3. iii) optionally rinsing and / or drying step
  4. iv) chromium (VI) free conversion treatment in which a conversion layer containing, per m 2 of surface area, 0.05 to 3.5 mmol of the metal M which is the essential component of the conversion solution, the metals M being selected from Cr (III), B, Si, Ti, Zr, Hf.

Alternativ kann zu einem Verfahren (IIa), in dem der metallisierenden Vorbehandlung eine Konversionsbehandlung unter Ausbildung einer dünnen amorphen anorganischen Beschichtung folgt, auch ein Verfahren (Abbildung 1, IIb) angewandt werden, in dem der erfindungsgemäßen Metallisierung eine Zinkphosphatierung unter Ausbildung einer kristallinen Phosphatschicht mit einem bevorzugten Schichtgewicht von nicht weniger als 3 g/m2 folgt. Bevorzugt gemäß der vorliegenden Erfindung ist jedoch wegen des deutlich geringeren Prozessaufwandes und der deutlichen Verbesserung des Korrosionsschutzes von Konversionsschichten auf verzinkten Oberflächen, die zuvor metallisierend behandelt wurden, ein Verfahren (IIa).Alternatively, a method (IIa), in which the metallizing pretreatment is followed by a conversion treatment to form a thin amorphous inorganic coating, may also include a method (IIa). illustration 1 , IIb) in which the metallization of the invention is followed by zinc phosphating to form a crystalline phosphate layer having a preferred coating weight of not less than 3 g / m 2 . However, preference is given in accordance with the present invention to a process (IIa) because of the significantly lower process outlay and the marked improvement in the corrosion protection of conversion layers on galvanized surfaces which have been previously metallized.

Darüber hinaus schließen sich der metallisierenden Vorbehandlung und der nachfolgenden Konversionsbehandlung üblicherweise weitere Verfahrensschritte zur Aufbringung zusätzlicher Schichten, insbesondere organischer Lacke oder Lacksysteme an (Abbildung 1, Verfahren III-V).In addition, the metallizing pretreatment and the subsequent conversion treatment usually follow further process steps for the application of additional layers, in particular organic paints or coating systems ( illustration 1 , Method III-V).

Die vorliegende Erfindung betrifft daher in einem weiteren Aspekt ein Verfahren (III), welches die Prozesskette (i-iv) des Verfahrens (II) erweitert, wobei ein organisches Beschichtungsmittel (1) aufgebracht wird, das in einem organischen Lösungsmittel oder Lösungsmittelgemisch gelöste oder dispergierte organische Harzkomponenten enthält, dadurch gekennzeichnet, dass das Beschichtungsmittel (1) mindestens folgende organische Harzkomponenten enthält:

  1. a) als Hydroxylguppen-haltiger Polyether vorliegendes Epoxidharz auf Basis eines Bisphenol-Epichlorhydrin-Polykondensationsproduktes,
  2. b) blockiertes aliphatisches Polyisocyanat,
  3. c) nicht blockiertes aliphatisches Polyisocyanat,
  4. d) mindestens eine Reaktionskomponente ausgewählt aus Hydroxylgruppen-haltigen Polyestern und Hydroxylgruppen-haltigen Poly(meth)acrylaten.
The present invention therefore relates in a further aspect to a process (III) which extends the process chain (i-iv) of process (II), wherein an organic coating agent (1) is applied, which dissolved or dispersed in an organic solvent or solvent mixture containing organic resin components, characterized in that the coating agent (1) contains at least the following organic resin components:
  1. a) epoxy resin present as hydroxyl group-containing polyether based on a bisphenol-epichlorohydrin polycondensation product,
  2. b) blocked aliphatic polyisocyanate,
  3. c) unblocked aliphatic polyisocyanate,
  4. d) at least one reaction component selected from hydroxyl-containing polyesters and hydroxyl-containing poly (meth) acrylates.

Bei der Komponente a) handelt es sich um ein durchreagiertes Polykondensationsprodukt von Epichlorhydrin und einem Bisphenol. Dieses weist im Wesentlichen keine Epoxidgruppen als reaktive Gruppen mehr auf. Das Polymer liegt dann in Form eines Hydroxylgruppen-haltigen Polyethers vor, der über diese Hydroxylgruppen Vernetzungsreaktionen mit beispielsweise Polyisocyanaten eingehen kann.Component a) is a fully reacted polycondensation product of epichlorohydrin and a bisphenol. This essentially has no epoxide groups as reactive groups more. The polymer is then in the form of a hydroxyl-containing polyether, which can undergo crosslinking reactions with, for example, polyisocyanates via these hydroxyl groups.

Die Bisphenol-Komponente dieses Polymers kann beispielsweise ausgewählt sein aus Bisphenol A und Bisphenol F. Die mittlere Molmasse (gemäß Herstellerangaben, beispielsweise bestimmbar durch Gelpermeationschromotographie) liegt vorzugsweise im Bereich von 20.000 bis 60.000, insbesondere im Bereich von 30.000 bis 50.000. Die OH-Zahl liegt vorzugsweise im Bereich von 170 bis 210 und insbesondere im Bereich von 180 bis 200. Insbesondere sind Polymere bevorzugt, deren Hydroxylgehalt bezogen auf das Estherharz im Bereich von 5 bis 7 Gew.-% liegt.The bisphenol component of this polymer can be selected, for example, from bisphenol A and bisphenol F. The average molar mass (according to the manufacturer, for example determinable by gel permeation chromatography) is preferably in the range from 20,000 to 60,000, in particular in the range from 30,000 to 50,000. The OH number is preferably in the range from 170 to 210 and in particular in the range from 180 to 200. In particular, polymers are preferred whose hydroxyl content based on the Estherharz in the range of 5 to 7 wt .-%.

Die aliphatischen Polyisocyanate b) und c) basieren vorzugsweise auf HDI, insbesondere auf HDI-Trimer. Als Blockierungsmittel in dem blockierten aliphatischen Polyisocyanat b) können die üblichen Polyisocyanat-Blockierungsmittel eingesetzt sein. Beispielsweise seien genannt: Butanonoxim, Dimethylpyrazol, Malonester, Diisopropylamin/Malonester, Diisopropylamin/Triazol sowie ε-Caprolactam. Bevorzugt wird eine Kombination von Malonester und Diisopropylamin als Blockierungsmittel verwendet.
Der Gehalt an blockierten NCO-Gruppen der Komponente b) liegt vorzugsweise im Bereich von 8 bis 10 Gew.-%, insbesondere im Bereich von 8,5 bis 9,5 Gew.-%. Das Äquivalentgewicht liegt vorzugsweise im Bereich vor 350 bis 600, insbesondere im Bereich von 450 bis 500 g/mol.
The aliphatic polyisocyanates b) and c) are preferably based on HDI, in particular on HDI trimer. As blocking agents in the blocked aliphatic polyisocyanate b), the customary polyisocyanate blocking agents may be used. Examples which may be mentioned are: butanone oxime, dimethylpyrazole, malonic esters, diisopropylamine / malonic esters, diisopropylamine / triazole and ε-caprolactam. Preferably, a combination of malonic ester and diisopropylamine is used as the blocking agent.
The content of blocked NCO groups of component b) is preferably in the range from 8 to 10% by weight, in particular in the range from 8.5 to 9.5% by weight. The equivalent weight is preferably in the range of 350 to 600, in particular in the range of 450 to 500 g / mol.

Das nicht-blockierte aliphatische Polyisocyanat c) hat vorzugsweise ein Äquivalentgewicht im Bereich von 200 bis 250 g/mol und einen NCO-Gehalt im Bereich von 15 bis 23 Gew.-%. Beispielsweise kann ein aliphatisches Polyisocyanat ausgewählt werden, das ein Äquivalentgewicht im Bereich von 200 bis 230 g/mol, insbesondere im Bereich von 210 bis 220 g/mol und einen NCO-Gehalt im Bereich von 18 bis 22 Gew.-%, vorzugsweise im Bereich von 19 bis 21 Gew.-% aufweist. Ein weiteres geeignetes aliphatisches Polyisocyanat hat beispielsweise ein Äquivalentgewicht im Bereich von 220 bis 250 g/mol, insbesondere im Bereich von 230 bis 240 g/mol und einen NCO-Gehalt im Bereich von 15 bis 20 Gew.-%, vorzugsweise im Bereich von 16,5 bis 19 Gew.-%. Dabei kann jedes dieser genannten aliphatischen Polyisocyanate die Komponente c) darstellen. Als Komponente c) kann jedoch auch ein Gemisch dieser beiden Polyisocyanate vorliegen. Setzt man ein Gemisch der beiden genannten Polyisocyanate ein, so liegt das Mengenverhältnis des erstgenannten Polyisocyanats zum letztgenannten Polyisocyanat für die Komponente c) vorzugsweise im Bereich von 1 : 1 bis 1 : 3.The non-blocked aliphatic polyisocyanate c) preferably has an equivalent weight in the range of 200 to 250 g / mol and an NCO content in the range of 15 to 23 wt%. For example, an aliphatic polyisocyanate can be selected which has an equivalent weight in the range of 200 to 230 g / mol, in particular in the range of 210 to 220 g / mol and an NCO content in the range of 18 to 22 wt .-%, preferably in the range from 19 to 21% by weight. Another suitable aliphatic polyisocyanate has for example an equivalent weight in the range of 220 to 250 g / mol, in particular in the range of 230 to 240 g / mol and an NCO content in the range of 15 to 20 wt .-%, preferably in the range of 16 , 5 to 19 wt .-%. Each of these aliphatic polyisocyanates mentioned may be component c). However, a mixture of these two polyisocyanates can also be present as component c). If a mixture of the two mentioned polyisocyanates is used, the ratio of the first-mentioned polyisocyanate to the last-mentioned polyisocyanate for component c) is preferably in the range from 1: 1 to 1: 3.

Die Komponente d) ist ausgewählt aus Hydroxylgruppen-haltigen Polyestern und Hydroxylgruppen-haltigen Poly(meth)acrylaten. Beispielsweise kann ein Hydroxylgruppenhaltiges Poly(meth)acrylat mit einer Säurezahl im Bereich von 3 bis 12, insbesondere im Bereich von 4 bis 9 mg KOH/g eingesetzt werden. Der Gehalt an Hydroxylgruppen liegt vorzugsweise im Bereich von 1 bis 5 und insbesondere im Bereich von 2 bis 4 Gew.-%. Das Äquivalentgewicht liegt vorzugsweise im Bereich von 500 bis 700, insbesondere im Bereich von 550 bis 600 g/mol.Component d) is selected from hydroxyl-containing polyesters and hydroxyl-containing poly (meth) acrylates. For example, a hydroxyl-containing poly (meth) acrylate having an acid number in the range of 3 to 12, in particular in the range of 4 to 9 mg KOH / g can be used. The content of hydroxyl groups is preferably in the range of 1 to 5 and in particular in the range of 2 to 4 wt .-%. The equivalent weight is preferably in the range of 500 to 700, in particular in the range of 550 to 600 g / mol.

Setzt man als Komponente d) einen Hydroxylgruppen-haltigen Polyester ein, so kann man hierfür einen verzweigten Polyester mit einem Äquivalentgewicht im Bereich von 200 bis 300, insbesondere im Bereich von 240 bis 280 g/mol auswählen. Weiterhin ist beispielsweise ein schwach verzweigter Polyester mit einem Äquivalentgewicht im Bereich von 300 bis 500, insbesondere im Bereich von 350 bis 450 g/mol geeignet. Diese unterschiedlichen Polyester-Typen können jedes für sich oder als Gemisch die Komponente d) bilden. Selbstverständlich kann als Komponente d) auch eine Mischung von Hydroxylgruppen-haltigen Polyestern und Hydroxylgruppen-haltigen Poly(meth)acrylaten vorliegen.If a hydroxyl-containing polyester is used as component d), a branched polyester having an equivalent weight in the range from 200 to 300, in particular in the range from 240 to 280 g / mol, can be selected for this purpose. Furthermore, for example, a weakly branched polyester having an equivalent weight in the range of 300 to 500, in particular in the range of 350 to 450 g / mol is suitable. These different types of polyester can each individually or as a mixture form the component d). Of course, a mixture of hydroxyl-containing polyesters and hydroxyl-containing poly (meth) acrylates may also be present as component d).

Das Beschichtungsmittel (1) im erfindungsgemäße Verfahren (III) enthält also sowohl ein blockiertes aliphatisches Polyisocyanat b) als auch ein nicht-blockiertes aliphatisches Polyiscyanat c). Als potenzielle Reaktionskomponenten für diese beiden Polyisocyanat-Typen stehen die Hydroxylgruppen-haltigen Komponenten a) und d) zur Verfügung. Durch mögliche Reaktion jeder der Komponenten a) und d) mit jeder der Komponenten b) und c) entsteht beim Aushärten des Mittels (2) ein komplexes Polymer-Netzwerk aus Polyurethanen. Zusätzlich können in dem Fall, dass als Komponente d) Hydroxylgruppen-haltige Poly(meth)acrylate eingesetzt werden, weitere Vernetzungen über die Doppelbindungen dieser Komponenten eintreten. Soweit nicht alle Doppelbindungen der Poly(meth)acrylate beim Aushärten vernetzen, können insbesondere oberflächlich vorhandene Doppelbindungen eine verbesserte Verknüpfung zu einem nachträglich aufgebrachten Lack bewirken, falls dieser ebenfalls Komponenten mit polymerisierbaren Doppelbindungen enthält. Unter diesem Gesichtspunkt ist es bevorzugt, dass die Komponente d) zumindest teilweise aus Hydroxylgruppen-haltigen Poly(meth)acrylaten besteht.The coating composition (1) in process (III) according to the invention thus contains both a blocked aliphatic polyisocyanate b) and an unblocked aliphatic polyisocyanate c). As potential reaction components for these two types of polyisocyanate, the hydroxyl-containing components a) and d) are available. Possible reaction of each of components a) and d) with each of components b) and c) produces a complex polymer network of polyurethanes during curing of the agent (2). In addition, in the case where hydroxyl-containing poly (meth) acrylates are used as component d), further crosslinking via the double bonds of these components occur. Insofar as not all double bonds of the poly (meth) acrylates crosslink during curing, especially double bonds present on the surface can bring about improved bonding to a subsequently applied lacquer, if it also contains components with polymerizable double bonds. From this point of view, it is preferred that component d) consists at least partially of hydroxyl-containing poly (meth) acrylates.

Beim Aushärten des Beschichtungsmittels (1) im erfindungsgemäßen Verfahren (III) ist zu erwarten, dass zunächst das nicht-blockierte aliphatische Polyisocyanat c) mit einer oder beiden der Komponenten a) und d) reagiert. Sofern die Hydroxylgruppen der Komponenten d) reaktiver sind als diejenigen der Komponente a), tritt beim Aushärten zunächst bevorzugt eine Reaktion der Komponente c) mit der Komponente d) ein.When the coating composition (1) is cured in the process (III) according to the invention, it is to be expected that initially the non-blocked aliphatic polyisocyanate c) reacts with one or both of components a) and d). If the hydroxyl groups of the components d) are more reactive than those of the component a), during curing, first of all, a reaction of the component c) with the component d) occurs.

Dem gegenüber reagiert das blockierte aliphatische Polyisocyanat b) erst dann mit einer oder beiden der Komponenten a) und d), wenn die Deblockierungstemperatur erreicht ist. Zur Polyurethanbildung steht dann nur noch derjenige der Reaktionspartner a) und d) zur Verfügung, der die weniger reaktionsfreudigen OH-Gruppen aufweist. Für das sich ausbildende Polyurethan-Netzwerk bedeutet dies beispielsweise, dass dann, wenn die OH-Gruppen der Komponenten a) reaktionsträger sind als diejenigen Komponenten d), sich zwei Polyurethan-Netzwerke aus der Reaktion der Komponenten c) und d) einerseits und der Komponenten a) und b) andererseits aufbauen.
Das Beschichtungsmittel (1) im erfindungsgemäßen Verfahren (III) enthält die Komponenten a) und b) einerseits und c) und d) andererseits vorzugsweise in folgenden relativen Gewichtsverhältnissen:

  • a) : b) = 1: 0,8 bis 1 : 1,3
  • c) : d)=1 ; 1,4 bis 1 : 2,3
Die Komponenten a) und d) einerseits sowie b) und c) andererseits liegen vorzugsweise in folgendem relativen Gewichtsverhältnis vor:
  1. a) : d) = 1 : 2 bis 1: 6 und (vorzugsweise 1 : 3 bis 1 : 5)
  2. b) : c) = 1 : 0,5 bis 1 : 5 (vorzugsweise 1 : 1 bis 1 : 3).
In contrast, the blocked aliphatic polyisocyanate b) only reacts with one or both of the components a) and d) when the deblocking temperature is reached. For polyurethane formation is then only that of the reactants a) and d) to Available, which has the less reactive OH groups. For the forming polyurethane network, this means, for example, that when the OH groups of components a) are less reactive than those components d), two polyurethane networks from the reaction of components c) and d) on the one hand and the components a) and b) on the other.
The coating composition (1) in process (III) according to the invention comprises components a) and b) on the one hand and c) and d) on the other hand preferably in the following relative weight ratios:
  • a): b) = 1: 0.8 to 1: 1.3
  • c): d) = 1; 1.4 to 1: 2.3
The components a) and d) on the one hand and b) and c) on the other hand are preferably present in the following relative weight ratio:
  1. a): d) = 1: 2 to 1: 6 and (preferably 1: 3 to 1: 5)
  2. b): c) = 1: 0.5 to 1: 5 (preferably 1: 1 to 1: 3).

Bevorzugte absolute Mengenbereiche der genannten vier Komponenten a) bis d) werden weiter unten angegeben, da diese von der Dichte fakultativ vorhandener Leitfähigkeitspigmente (Abbildung 1, Verfahren IIIb) abhängen. Vorzugsweise enthält das Beschichtungsmittel (1) zusätzlich zu den Komponenten a) bis d) ein Leitfähigkeitspigment oder eine Mischung von Leitfähigkeitspigmenten. Diese können eine relativ geringe Dichte wie beispielsweise Ruß und Graphit oder eine relativ hohe Dichte wie beispielsweise metallisches Eisen aufweisen. Der Absolutgehalt des Beschichtungsmittels (1) an Leitfähigkeitspigmenten hängt von deren Dichte ab, da es für die Wirkung als Leitfähigkeitspigment weniger auf den Massenanteil als vielmehr auf den Volumenanteil des Leitfähigkeitspigments in der ausgehärteten Beschichtung ankommt.Preferred absolute ranges of the said four components a) to d) are given below since these are based on the density of optionally present conductive pigments ( illustration 1 , Method IIIb). Preferably, the coating composition (1) contains, in addition to the components a) to d), a conductive pigment or a mixture of conductive pigments. These may have a relatively low density, such as carbon black and graphite, or a relatively high density, such as metallic iron. The absolute content of the coating composition (1) of the conductivity pigments depends on their density, since it depends less on the mass fraction than on the volume fraction of the conductive pigment in the cured coating for the effect as a conductive pigment.

Allgemein gilt, dass das Beschichtungsmittel (1), bezogen auf die Gesamtmasse des Mittels, (0,8 bis 8) ·ρ Gew.-% an Leitfähigkeitspigment enthält, wobei ρ die Dichte des Leitfähigkeitspigments oder die mittlere Dichte der Mischung von Leitfähigkeitspigmenten in g/cm2 bedeutet. Vorzugsweise enthält das Beschichtungsmittel (1) bezogen auf seine Gesamtmasse (2 bis 6)·ρ Gew.-% an Leitfähigkeitspigment.In general, the coating composition (1), based on the total mass of the composition, contains (0.8 to 8) × ρ% by weight of conductive pigment, where ρ is the density of the conductive pigment or the average density of the mixture of conductive pigments in g / cm 2 means. The coating composition (1) preferably contains (2 to 6), based on its total mass, ρ% by weight of conductive pigment.

Beispielsweise bedeutet dies: Enthält das Beschichtungsmittel (1) als Leitfähigkeitspigment nur Graphit mit einer Dichte von 2,2 g/cm2, so enthält es vorzugsweise mindestens 1,76, insbesondere mindestens 4,4 Gew.-% und vorzugsweise nicht mehr als 17,6, insbesondere nicht mehr als 13,2 Gew.-% Graphit. Wird Eisenpulver mit einer Dichte von 7,9 g/cm2 als alleiniges Leitfähigkertspigment verwendet, enthält das Beschichtungsmittel (1), bezogen auf seine Gesamtmasse, vorzugsweise mindestens 6,32, insbesondere mindestens 15,8 Gew.-% und nicht mehr als 63,2, insbesondere nicht mehr als 47,4 Gew.-% Entsprechend errechnen sich die Gew.-Anteile, wenn als Leitfähigkeitspigment beispielsweise ausschließlich MoS2 mit einer Dichte von 4,8 g/cm3, Aluminium mit einer Dichte von 2,7 g/cm3 oder Zink mit einer Dichte von 7,1 g/cm3 eingesetzt wird.For example, if the coating composition (1) contains only graphite having a density of 2.2 g / cm 2 as the conductive pigment, then it preferably contains at least 1.76, in particular at least 4.4, and preferably not more than 17 , 6, in particular not more than 13.2 wt .-% graphite. If iron powder having a density of 7.9 g / cm 2 is used as sole conductive core pigment, the coating composition (1), based on its total mass, preferably contains at least 6.32, in particular at least 15.8% by weight and not more than 63 , 2, in particular not more than 47.4% by weight. The proportions by weight are calculated accordingly if, for example, exclusively MoS 2 having a density of 4.8 g / cm 3 as the conductive pigment, aluminum having a density of 2.7 g / cm 3 or zinc with a density of 7.1 g / cm 3 is used.

Es kann jedoch zu einer günstigen Eigenschaften-Kombination kommen, wenn das Beschichtungsmittel (1) nicht nur ein einziges Leitfähigkeitspigment, sondern eine Mischung aus mindestens zwei Leitfähigkeitspigmenten enthält, die sich dann vorzugsweise in ihrer Dichte stark unterscheiden. Beispielsweise kann eine Mischung eingesetzt werden, bei der der erste Mischungspartner ein leichtes Leitfähigkeitspigment wie beispielsweise Ruß, Graphit oder Aluminium und der zweite Partner der Mischung ein schweres Leitfähigkeitspigment wie beispielsweise Zink oder Eisen darstellt. In diesen Fällen wird für die Dichte ρ in der vorstehend genannten Formel die mittlere Dichte der Mischung eingesetzt, die sich aus den Gew.-Anteilen der Komponenten in der Mischung und aus ihrer jeweiligen Dichte errechnen lässt.However, a favorable combination of properties may occur if the coating composition (1) contains not only a single conductive pigment but a mixture of at least two conductive pigments, which then differ greatly in their density. For example, a mixture can be used in which the first mixing partner is a light conductive pigment such as carbon black, graphite or aluminum and the second partner of the mixture is a heavy conductive pigment such as zinc or iron. In these cases, for the density ρ in the aforementioned formula, the average density of the mixture is used, which can be calculated from the weight percentages of the components in the mixture and from their respective density.

Demgemäß Ist eine spezielle Ausführungsform eines Beschichtungsmittels (1) im Verfahren (IIIb) dadurch gekennzeichnet, dass es sowohl ein Leitfähigkeitspigment mit einer Dichte von kleiner als 3 g/cm3 als auch ein Leitfähigkeitspigment mit einer Dichte von größer als 4 g/cm3 enthält, wobei die Gesamtmenge an Leitfähigkeitspigment, bezogen auf die Gesamtmasse des Mittels (2), (0,8 bis 8)·ρ Gew.-% beträgt, wobei ρ die mittlere Dichte der Mischung der Leitfähigkeitspigmente in g/cm3 bedeutet.Accordingly, a specific embodiment of a coating composition (1) in process (IIIb) is characterized in that it contains both a conductive pigment having a density of less than 3 g / cm 3 and a conductive pigment having a density of greater than 4 g / cm 3 , Wherein the total amount of conductive pigment, based on the total mass of the composition (2), is (0.8 to 8) × ρ% by Weight, Where ρ is the average density of the mixture of the conductive pigments in g / cm 3 .

Beispielsweise kann das Beschichtungsmittel (1) als Leitfähigkeitspigment eine Mischung aus Ruß oder Graphit einerseits und Eisenpulver andererseits enthalten. Dabei können die Gewichtsverhältnisse von Ruß und/oder Graphit einerseits und Eisen andererseits im Bereich von 1 : 0,1 bis 1 : 10, insbesondere im Bereich von 1 : 0,5 bis 1 : 2 liegen.For example, the coating agent (1) as a conductive pigment, a mixture of carbon black or graphite on the one hand and iron powder on the other hand. On the other hand, the weight ratios of carbon black and / or graphite on the one hand and iron on the other hand can be in the range from 1: 0.1 to 1:10, in particular in the range from 1: 0.5 to 1: 2.

Das Beschichtungsmittel (1) kann also als leichtes elektrisch leitfähiges Pigment Aluminiumflocken, Graphit und/oder Ruß enthalten. Dabei ist die Verwendung von Graphit und/oder Ruß bevorzugt. Ruß und insbesondere Graphit bewirken nicht nur eine elektrische Leitfähigkeit der erhaltenen Beschichtung, sondern tragen auch dazu bei, dass diese Schicht eine erwünschte geringe Mohs'sche Härte von nicht mehr als 4 aufweist und gut umformbar ist. Insbesondere die Schmierwirkung von Graphit trägt zu einem verringerten Verschleiß der Umformwerkzeuge bei. Diese Wirkung kann noch gefördert werden, indem man zusätzlich Pigmente mit Schmierwirkung wie beispielsweise Molybdänsulfid mit einsetzt. Als weitere Gleitmittel oder Umformhilfen kann das Beschichtungsmittel (1) Wachse und/oder Teflon enthalten.The coating composition (1) may therefore contain aluminum flakes, graphite and / or carbon black as a light electrically conductive pigment. The use of graphite and / or carbon black is preferred. Carbon black, and especially graphite, not only provide electrical conductivity of the resultant coating, but also contribute to this layer having a desirable low Mohs hardness of not more than 4 and being readily reshapeable. In particular, the lubricating effect of graphite contributes to a reduced wear of the forming tools. This effect can be further promoted by additionally using pigments with a lubricating effect such as molybdenum sulfide with. As further lubricants or forming aids, the coating agent (1) may contain waxes and / or Teflon.

Das elektrisch leitfähige Pigment mit einem spezifischen Gewicht von maximal 3 g/cm3 kann in Form kleiner Kugeln oder Aggregate solcher Kugeln vorliegen. Dabei ist es bevorzugt, dass die Kugeln bzw. die Aggregate dieser Kugeln einen Durchmesser von weniger als 2 µm aufweisen. Vorzugsweise liegen diese elektrisch leitfähigen Pigmente jedoch in Form von Plättchen vor, deren Dicke vorzugsweise geringer ist als 2 µm.The electrically conductive pigment having a specific weight of at most 3 g / cm 3 may be in the form of small spheres or aggregates of such spheres. It is preferred that the balls or the aggregates of these balls have a diameter of less than 2 microns. However, these electrically conductive pigments are preferably in the form of platelets whose thickness is preferably less than 2 μm.

Das Beschichtungsmittel (1) im erfindungsgemäßen Verfahren (III) enthält zumindest die weiter oben beschriebenen Harzkomponenten sowie Lösungsmittel. Die Harzkomponenten a) bis d) liegen in ihrer Handelsform in der Regel als Lösung bzw. Dispersion in organischen Lösungsmitteln vor. Das hieraus zubereitete Beschichtungsmittel (1) enthält dann ebenfalls diese Lösungsmittel.The coating composition (1) in process (III) according to the invention comprises at least the resin components described above and also solvents. The resin components a) to d) are usually present in their commercial form as a solution or dispersion in organic solvents. The coating composition (1) prepared therefrom then also contains these solvents.

Diese sind erwünscht, um trotz der zusätzlichen Anwesenheit des elektrisch leitfähigen Pigments wie beispielsweise Graphit und ggf. weiterer Pigmente wie insbesondere Korrosionsschutzpigmente eine Viskosität einzustellen, die es erlaubt, das Beschichtungsmittel (1) im Coil-Coating-Verfahren auf das Substrat aufzubringen. Erforderlichenfalls kann zusätzlich Lösungsmittel zugesetzt werden. Die chemische Natur der Lösungsmittel ist in der Regel durch die Wahl der Rohstoffe, die das entsprechende Lösungsmittel enthalten, vorgegeben. Beispielsweise kann als Lösungsmittel vorliegen: Cyclohexanon, Diacetonalkohol, Diethylenglykolmonobutyletheracetat, Diethylenglykol, Propylenglykolmethylether, Propylenglykol-n-Butylether, Methoxypropylacetat, n-Butylacetat, Xylol, Glutarsäuredimethylester, Adipinsäuredimethylester und/oder Bernsteinsäuredimethylester.These are desirable in order, in spite of the additional presence of the electrically conductive pigment such as, for example, graphite and optionally further pigments such as, in particular, anticorrosive pigments to set a viscosity which allows the coating agent (1) to be applied to the substrate in the coil coating process. If necessary, additional solvent can be added. The chemical nature of the solvents is usually dictated by the choice of raw materials containing the appropriate solvent. For example, the following may be present as solvents: cyclohexanone, diacetone alcohol, diethylene glycol monobutyl ether acetate, diethylene glycol, propylene glycol methyl ether, propylene glycol n-butyl ether, methoxypropyl acetate, n-butyl acetate, Xylene, dimethyl glutarate, dimethyl adipate and / or dimethyl succinate.

Der bevorzugte Anteil an Lösungsmittel einerseits und organischen Harzkomponenten andererseits in dem Beschichtungsmittel (1) hängt, wenn man ihn in Gew.-% ausdrückt, von dem Anteil an Leitfähigkeitspigment in Gew.% in dem Beschichtungsmittel (1) ab. Je höher die Dichte des Leitfähigkeitpigments, desto höher ist dessen bevorzugter Gewichtsanteil an dem gesamten Beschichtungsmittel (1), und desto geringer sind die Gewichtsanteile an Lösungsmittel und Harzkomponenten. Die bevorzugten Gew-Anteile von Lösungsmittel und Harzkomponenten hängen daher von der Dichte ρ des eingesetzten Leitfähigkeitspigments bzw. der mittleren Dichte ρ einer Mischung von Leitfähigkeitspigmenten ab.The preferred proportion of solvent on the one hand and organic resin components on the other hand in the coating agent (1), expressed in% by weight, depends on the content of conductive pigment in% by weight in the coating agent (1). The higher the density of the conductive pigment, the higher its preferred weight ratio of the total coating agent (1), and the lower the weight proportions of solvent and resin components. The preferred weight percentages of solvent and resin components therefore depend on the density ρ of the conductivity pigment used or the average density ρ of a mixture of conductive pigments.

Allgemein gilt für das Beschichtungsmittel (1) im erfindungsgemäßen Verfahren (III), dass es vorzugsweise, bezogen auf die Gesamtmasse des Beschichtungsmittels (1), [(25 bis 60). Anpassungsfaktor] Gew.-%, vorzugsweise [(35 bis 55) - Anpassungsfaktor] Gew.-% organisches Lösungsmittel und [(20 bis 45) - Anpassungsfaktor] Gew.-%, vorzugsweise [(25 bis 40) - Anpassungsfaktor] Gew.-%, organische Harzkomponenten enthält, wobei die Summe der Gewichtsprozentanteile von organischer Harzkomponente und Lösungsmittel nicht größer als [93 - Anpassungsfaktor] Gew.-%, vorzugsweise nicht größer als [87 · Anpassungsfaktor] Gew.-% ist und wobei der Anpassungsfaktor [100-2,8ρ]:93,85 ist und ρ die Dichte des Leitfähigkeitspigments oder die mittlere Dichte der Mischung von Leitfähigkeitspigmenten in g/cm3 bedeutet.In general, for the coating composition (1) in the process (III) according to the invention, it is preferable that, based on the total mass of the coating composition (1), [(25 to 60). Adjustment factor] wt%, preferably [(35 to 55) adjustment factor] wt% organic solvent and [(20 to 45) adjustment factor] wt%, preferably [(25 to 40) adjustment factor] wt. % organic resin components, wherein the sum of the weight percentages of organic resin component and solvent is not greater than [93 - adjustment factor] wt%, preferably not greater than [87 * adaptation factor] wt%, and wherein the adjustment factor [100 -2,8ρ]: 93.85 and ρ is the density of the conductive pigment or the average density of the mixture of conductive pigments in g / cm 3 .

Hinsichtlich der einzelnen Harzkomponente a) gilt vorzugsweise, dass das Beschichtungsmittel (1), bezogen auf die Gesamtmasse des Beschichtungsmittels (1), [(2 bis 8) Anpassungsfaktor] Gew.-%, vorzugsweise [(3 bis 5) Anpassungsfaktor] Gew.-% der Harzkomponente a) enthält, wobei der Anpassungsfaktor [100-2,8ρ]:93,85 ist und ρ die Dichte des Leitfähigkeitspigments oder die mittlere Dichte der Mischung von Leitfähigkeitspigmenten in g/cm3 bedeutet. Aus dem Mengenanteil der Harzkomponente a) lassen sich mit den weiter oben angegebenen bevorzugten Mengenverhältnissen der einzelnen Harzkomponenten die bevorzugten Mengenanteile der Harzkomponenten b) bis d) im Beschichtungsmittel (1) berechnen. Beispielsweise kann der Anteil der Komponenten b) an der Gesamtmasse des Beschichtungsmittels [(2 bis 9) Anpassungsfaktor] Gew.-%, vorzugsweise [(3 bis 6) Anpassungsfaktor] Gew.-% betragen, der Anteil der Harzkomponenten c) [(4 bis 18) Anpassungsfaktor] Gew.-%, vorzugsweise [(6 bis 12) Anpassungsfaktor] Gew.% und der Anteil der Harzkomponenten d) [(7 bis 30) Anpassungsfaktor] Gew.%, vorzugsweise [(10 bis 20) Anpassungsfaktor] Gew.-%. Der "Anpassungsfaktor" hat dabei die vorstehend angegebene Bedeutung.
Weiterhin ist es bevorzugt, dass die Schicht b) zusätzlich Korrosionsinhibitoren und/oder Korrosionsschutzpigmente enthält. Hierbei können Korrosioninhibitoren oder Korrosionsschutzpigmente eingesetzt werden, die im Stand der Technik für diesen Zweck bekannt sind. Beispielsweise genannt seien: Magnesiumoxidpigmente, insbesondere in nanoskaliger Form, feinteiliges und sehr feinteiliges Bariumsulfat oder Korrosionsschutzpigmente basieren auf Calciumsilicat. Der bevorzugte Gewichtsanteil der Korrosionsschutzpigmente an der Gesamtmasse des Beschichtungsmittels (1) hängt wiederum von der Dichte der eingesetzten Korrosionsschutzpigmente ab. Vorzugsweise enthält das Beschichtungsmittel (1) im erfindungsgemäßen Verfahren (III), bezogen auf die Gesamtmasse des Beschichtungsmittels, [(5 bis 25). Anpassungsfaktor] Gew.-%, insbesondere [(10 bis 20). Anpassungsfaktor] Gew.-% Korrosionsschutzpigment, wobei der Anpassungsfaktor [100-2,8ρ]:93,85 ist und ρ die Dichte des Leitfähigkeitspigments oder die mittlere Dichte der Mischung von Leitfähigkeitspigmenten in g/cm3 bedeutet.
With regard to the individual resin component a), it is preferable that the coating agent (1), based on the total mass of the coating agent (1), [(2 to 8) adjustment factor] wt .-%, preferably [(3 to 5) adjustment factor] wt. % of the resin component a), wherein the adjustment factor is [100-2.8ρ]: 93.85 and ρ is the density of the conductive pigment or the average density of the mixture of conductive pigments in g / cm 3 . From the proportion of the resin component a) can be calculated with the above-mentioned preferred ratios of the individual resin components, the preferred proportions of the resin components b) to d) in the coating agent (1). For example, the proportion of components b) in the total mass of the coating agent [(2 to 9) adjustment factor] wt .-%, Preferably, [(3 to 6) adjustment factor] wt .-%, the proportion of resin components c) [(4 to 18) adjustment factor] wt .-%, preferably [(6 to 12) adjustment factor] wt.% And the proportion of Resin Components d) [(7 to 30) Adjustment Factor] wt%, preferably [(10 to 20) Adjustment Factor] wt%. The "adaptation factor" has the meaning given above.
Furthermore, it is preferred that the layer b) additionally contains corrosion inhibitors and / or anticorrosive pigments. Corrosion inhibitors or anticorrosive pigments which are known in the prior art for this purpose can be used here. Examples which may be mentioned are: magnesium oxide pigments, in particular in nanoscale form, finely divided and very finely divided barium sulfate or anticorrosive pigments based on calcium silicate. The preferred weight fraction of the anticorrosion pigments on the total mass of the coating composition (1) in turn depends on the density of the anticorrosion pigments used. Preferably, the coating composition (1) in the process (III) according to the invention, based on the total mass of the coating composition, contains [(5 to 25). Adjustment factor] wt .-%, in particular [(10 to 20). Adjustment factor] wt% anticorrosive pigment, where the adjustment factor is [100-2.8ρ]: 93.85 and ρ is the density of the conductive pigment or the average density of the mixture of conductive pigments in g / cm 3 .

Die mechanischen und chemischen Eigenschaften der nach dem Einbrennen des Beschichtungsmittels (1) im erfindungsgemäßen Verfahren (III) erhaltenen Beschichtung können weiterhin dadurch verbessert werden, dass diese zusätzlich Füllstoffe enthält. Beispielsweise können diese ausgewählt sein aus Kieselsäuren oder Siliziumoxiden (gegebenenfalls hydrophobiert), Aluminiumoxiden (einschließlich basischen Aluminiumoxid), Titandioxid und Bariumsulfat. Hinsichtlich deren bevorzugten Mengen gilt, dass das Beschichtungsmittel (1) [(0,1 bis 3). Anpassungsfaktor] Gew.-%, vorzugsweise [(0,4 bis 2) Anpassungsfaktor] Gew.-% Füllstoff ausgewählt aus Kieselsäuren bzw. Siliziumoxiden, Aluminiumoxiden, Titandioxid und Bariumsulfat enthält, wobei der Anpassungsfaktor [100-2,8 p]:93,85 ist und ρ die Dichte des Leitfähigkeitspigments oder die mittlere Dichte der Mischung von Leitfähigkeitspigmenten in g/cm3 bedeutet.The mechanical and chemical properties of the coating obtained after the baking of the coating agent (1) in process (III) according to the invention can be further improved by additionally containing fillers. For example, these may be selected from silicas or silicas (optionally hydrophobed), alumina (including basic alumina), titania and barium sulfate. With regard to their preferred amounts, the coating composition (1) is [(0.1 to 3). Adjustment factor] wt .-%, preferably [(0.4 to 2) adjustment factor] wt .-% filler selected from silicas or silicon oxides, aluminum oxides, titanium dioxide and barium sulfate, wherein the adjustment factor [100-2.8 p]: 93 , 85 and ρ means the density of the conductive pigment or the average density of the mixture of conductive pigments in g / cm 3 .

Werden Gleitmittel oder Umformhilfen zusätzlich mit eingesetzt, so gilt, dass das Beschichtungsmittel (1) bezogen, auf seine Gesamtmasse, Gleitmittel oder Umformhilfen, vorzugsweise ausgewählt aus Wachsen, Molybdänsulfid und Teflon, vorzugsweise in einer Menge von [(0,5 bis 20). Anpassungsfaktor], insbesondere in einer Menge von [(1 bis 10) Anpassungsfaktor] Gew.-% enthält, wobei der Anpassungsfaktor [100-2,8ρ]:93.85 ist und ρ die Dichte des Leitfähigkeitspigments oder die mittlere Dichte der Mischung von Leitfähigkeitspigmenten in g/cm3 bedeutet.
Das erfindungsgemäße Verfahren (III), welches die Aufbringung organischer Lacke mit umfasst, besteht demgemäß aus folgender Prozesskette:

  1. i) gegebenenfalls Reinigung / Entfettung der Werkstoffoberfläche
  2. ii) metallisierende Vorbehandlung mit einem wässrigen Mittel (1) gemäß der vorliegenden Erfindung
  3. iii) gegebenenfalls Spül- und/oder Trocknungsschritt
  4. iv) chrom(VI)freie Konversionsbehandlung, bei der eine Konversionsschicht erzeugt wird, die pro m2 Oberfläche 0,01 bis 0,7 mmol des Metalls M enthält, das die wesentliche Komponente der Konversionslösung darstellt, wobei die Metalle M ausgewählt sind aus Cr(III), B, Si, Ti, Zr, Hf.
  5. v) gegebenenfalls Spül- und/oder Trocknungsschritt
  6. vi) Beschichtung mit einem Beschichtungsmittel (1) gemäß vorstehender Beschreibung und Aushärten bei einer Substrattemperatur im Bereich von 120 bis 260 °C, vorzugsweise im Bereich von 150 bis 170 °C.
If lubricants or forming aids are additionally used, it is the case that the coating composition (1), based on its total mass, lubricants or forming aids, preferably selected from waxes, molybdenum sulfide and Teflon, preferably in an amount of [(0.5 to 20). Adjustment factor], in particular in an amount of [(1 to 10) adjustment factor] wt%, where the adjustment factor is [100-2,8ρ]: 93.85 and ρ is the density of the conductive pigment or the average density of the mixture of conductive pigments in g / cm 3 .
The process (III) according to the invention, which comprises the application of organic paints, accordingly consists of the following process chain:
  1. i) optionally cleaning / degreasing the material surface
  2. ii) metallizing pretreatment with an aqueous agent (1) according to the present invention
  3. iii) optionally rinsing and / or drying step
  4. iv) chromium (VI) free conversion treatment which produces a conversion layer containing, per m 2 of surface, 0.01 to 0.7 mmol of the metal M which is the essential component of the conversion solution, the metals M being selected from Cr (III), B, Si, Ti, Zr, Hf.
  5. v) optionally rinsing and / or drying step
  6. vi) coating with a coating agent (1) as described above and curing at a substrate temperature in the range of 120 to 260 ° C, preferably in the range of 150 to 170 ° C.

Dabei führt man vorzugsweise sämtliche Schritte (i-vi) als Bandbehandlungsverfahren durch, wobei man im Schritt (vi) das flüssige Beschichtungsmittel (1) in einer solchen Menge aufbringt, dass man nach dem Aushärten die gewünschte Schichtdicke im Bereich von 0,5 bis 10 µm erhält Vorzugsweise wird also das Beschichtungsmittel (1) im so genannten Coil-Coating-Verfahren aufgebracht. Hierbei werden laufende Metallbänder kontinuierlich beschichtet. Das Beschichtungsmittel (1) kann dabei nach unterschiedlichen Verfahren aufgetragen werden, die im Stand der Technik geläufig sind. Beispielsweise können Auftragswalzen verwendet werden, mit denen sich direkt die erwünschte Nassfilm-Dicke einstellen lässt. Alternativ hierzu kann man das Metallband in das Beschichtungsmittel (1) eintauchen oder es mit dem Beschichtungsmittel (1) besprühen, wonach man mit Hilfe von Abquetschwalzen die erwünschte Nassfilmdicke einstellt.In this case, preferably all steps (i-vi) are carried out as a strip treatment method, wherein the liquid coating composition (1) is applied in step (vi) in such an amount that, after curing, the desired layer thickness is in the range from 0.5 to 10 Preferably, therefore, the coating agent (1) is applied in the so-called coil coating process. Here, continuous metal strips are continuously coated. The coating agent (1) can be applied by different methods, which are familiar in the prior art. For example, applicator rolls can be used to directly adjust the desired wet film thickness. Alternatively, one can immerse the metal strip in the coating agent (1) or spray it with the coating agent (1), after which the desired wet film thickness is adjusted by means of squeeze rolls.

Sofern Metallbänder beschichtet werden, die unmittelbar zuvor mit einer Metallauflage, beispielsweise mit Zink oder Zinklegierungen, elektrolytisch oder im Schmelztauchverfahren überzogen wurden, ist eine Reinigung der Metalloberflächen vor der Durchführung der metallisierenden Vorbehandlung (ii) nicht erforderlich. Sind die Metallbänder jedoch bereits gelagert worden und insbesondere mit Korrosionsschutzölen versehen, ist ein Reinigungsschritt (i) notwendig, bevor man den Schritt (ii) durchführt.If metal strips coated immediately before with a metal coating, for example with zinc or zinc alloys, electrolytically or by hot dip coating, it is not necessary to clean the metal surfaces prior to performing the metallizing pretreatment (ii). However, if the metal strips have already been stored and in particular provided with corrosion protection oils, a purification step (i) is necessary before carrying out step (ii).

Nach dem Auftragen des flüssigen Beschichtungsmittels (1) im Schritt (vi) wird das beschichtete Blech auf die erforderliche Trocknungs- bzw. Vernetzungstemperatur für die organische Beschichtung erwärmt. Das Erwärmen des beschichteten Substrats auf die erforderliche Substrattemperatur ("Peak-metal-temperature" = TMP) im Bereich von 120 bis 260°C, vorzugsweise im Bereich von 150 bis 170°C kann in einem aufgeheizten Durchlaufofen erfolgen. Das Behandlungsmittel kann jedoch auch durch Infrarotstrahlung, insbesondere durch nahe Infrarotstrahlung, auf die entsprechende Trocknungs- bzw. Vemetzungstemperatur gebracht werden.After applying the liquid coating agent (1) in step (vi), the coated sheet is heated to the required drying or crosslinking temperature for the organic coating. The heating of the coated substrate to the required substrate temperature ("peak-metal-temperature" = TMP) in the range of 120 to 260 ° C, preferably in the range of 150 to 170 ° C can take place in a heated continuous furnace. However, the treatment agent can also be brought to the corresponding drying or crosslinking temperature by infrared radiation, in particular by near infrared radiation.

Derart vorbeschichtete Metallbleche werden in der automobilen Fertigung für die Herstellung von Karosserien entsprechend zugeschnitten und umgeformt. Das zusammengefügte Bauteil bzw. die zusammengefügte Rohkarosse weist folglich ungeschützte Schnittkanten auf, die zusätzlich korrosionsschützend behandelt werden müssen. Im sogenannten "Paint Shop" erfolgt daher eine weitere korrosionsschützende Behandlung und letztendlich die Realisierung des automobiltypischen Lackaufbaus.Such pre-coated metal sheets are tailored and converted in the automotive production for the production of bodies accordingly. The assembled component or the assembled body shell therefore has unprotected edges, which must be treated in addition corrosion protection. In the so-called "paint shop", therefore, there is a further corrosion-protective treatment and, ultimately, the realization of the automobile-typical paint structure.

Die vorliegende Erfindung betrifft daher in einem weiteren Aspekt ein Verfahren (IV), welches die Prozesskette (i-vi) des Verfahrens (III) erweitert, wobei zunächst auf den freiliegenden Metalloberflächen, insbesondere auf den Schnittkanten, eine kristalline Phosphatschicht abgeschieden wird, um anschließend mittels Tauchlack einen finalen Korrosionsschutz, insbesondere Schutz vor Unterwanderung des Lacksystems an den Schnittkanten zu realisieren. Für den Fall, dass die Erstbeschichtung im Verfahren (III) mit einem organischen Beschichtungsmittel (1) zu einer leitfähigen Beschichtung führt, kann das gesamte metallische Bauteil einschließlich der phosphatierten Schnittkanten und der im Verfahren (III) erstbeschichteten Flächen elektrotauchlackiert werden (Abbildung 1, Verfahren IVb). Bei nicht ausreichender Leitfähigkeit der Erstbeschichtung werden ausschließlich die phosphatierten Schnittkanten elektrotauchlackiert, ohne dass ein weiterer Lackaufbau auf den erstbeschichteten Flächen realisiert wird. Gleiches gilt, wenn die Schnittkanten nicht phosphatiert, aber mit einem selbstabscheidenden Tauchlack (AC) beschichtet werden (Abbildung 1, Verfahren IVc). Die vorliegende Erfindung zeichnet sich jedoch dadurch aus, dass die erfindungsgemäß metallisierend vorbehandelten Zinkoberflächen insbesondere die Kantenkorrosion hervorragend unterbinden. In einer erfindungsgemäßen Prozesskette, die die Elektrotauchlackierung (KTL, ATL) im Verfahren (IV) und die Auftragung weiterer Lackschichten in einem Verfahren (V) umfasst, kann daher die Menge an abgeschiedenen Tauchlack pro m2 des Bauteils bestehend aus erfindungsgemäß vorbehandelten Zinkoberflächen (Abbildung 1, Verfahren I) und/oder die Menge an aufzutragendem Füller, welcher vor allem die Aufgabe hat, die Karosseriebleche vor Steinschlag zu schützen und vorhandene Unebenheiten der Metalloberfläche auszugleichen, in der Zweitbeschichtung (Abbildung 1, Verfahren V) deutlich verringert werden, ohne dass ein Verlust an Performance hinsichtlich Korrosionsschutz und Lackhaftung die Folge ist.The present invention therefore relates, in a further aspect, to a process (IV) which extends the process chain (i-vi) of process (III), wherein a crystalline phosphate layer is first deposited on the exposed metal surfaces, in particular on the cut edges, in order to subsequently to provide a final corrosion protection by means of dip paint, in particular protection against infiltration of the paint system at the cutting edges. In the event that the first coating in process (III) leads to a conductive coating with an organic coating agent (1), the entire metallic component including the phosphated cut edges and the first-coated surfaces in process (III) can be electrodeposited ( illustration 1 , Method IVb). at Insufficient conductivity of the initial coating, the phosphated cutting edges are exclusively electrocoated, without a further paint build on the erstbeschichteten surfaces is realized. The same applies if the cut edges are not phosphated, but coated with a self-depositing dip (AC) ( illustration 1 , Method IVc). However, the present invention is distinguished by the fact that the zinc surfaces pretreated in a metallizing manner according to the invention in particular excellently prevent edge corrosion. In a process chain according to the invention, which comprises the electrodeposition coating (KTL, ATL) in process (IV) and the application of further paint layers in a process (V), therefore, the amount of deposited dip paint per m 2 of the component consisting of zinc surfaces pretreated according to the invention (US Pat. illustration 1 , Method I) and / or the amount of filler to be applied, which has the main task of protecting the body panels against stone chipping and compensate for any unevenness of the metal surface, in the secondary coating ( illustration 1 , Method V) are significantly reduced, without a loss of performance in terms of corrosion protection and paint adhesion is the result.

Die vorliegende Erfindung betrifft in einem weiteren Aspekt die verzinkte und/oder legierungsverzinkte Stahloberfläche sowie das metallische Bauteil, welches zumindest teilweise aus einer Zinkoberfläche besteht, das gemäß dem erfindungsgemäßen Verfahren mit dem wässrigen Mittel (1) metallisierend vorbehandelt ist oder nachfolgend dieser Vorbehandlung mit weiteren passivierenden Konversionsschichten und/oder Lacken, z.B. entsprechend der erfindungsgemäßen Verfahren (II-IV), beschichtet ist.
Eine derartig behandelte Stahloberfläche oder behandeltes Bauteil findet Verwendung im Karosseriebau bei der automobilen Fertigung, im Schiffsbau, im Baugewerbe sowie für die Herstellung Weißer Ware.
In a further aspect, the present invention relates to the galvanized and / or alloy-galvanized steel surface and the metallic component, which consists at least partially of a zinc surface which has been pretreated by metallizing in accordance with the process according to the invention with the aqueous agent (1) or subsequently this pretreatment with further passivating Conversion layers and / or paints, for example according to the inventive method (II-IV) coated.
Such a treated steel surface or treated component is used in body construction in automotive manufacturing, shipbuilding, construction and for the production of white goods.

Claims (14)

  1. A method for the metallizing pretreatment of galvanized or alloy-galvanized steel surfaces, wherein the galvanized or alloy-galvanized steel surface is brought into contact with an aqueous agent (1) for at least 1 second, but not longer than 30 seconds, the pH value of which is not less than 4 and not greater than 8, wherein cations and/or compounds of a metal (A) are contained in the agent (1), the redox potential ERedox of which cations and/or compounds of the metal (A) measured at a metal electrode of the metal (A) at a specified method temperature and concentration of cations and/or compounds of the metal (A) in the aqueous agent (1) is more anodic than the electrode potential EZn of the galvanized or alloy-galvanized steel surface in contact with an aqueous agent (2) that differs from the agent (1) only in that the agent (2) does not contain cations and/or compounds of the metal (A), characterized in that the cations and/or compounds of the metal (A) in the agent (1) are selected from cations and/or compounds of tin in the oxidation states +II and/or +IV and, after the galvanized or alloy-galvanized steel surface has been brought into contact with the aqueous agent, a metallic plating with metal (A) is present in a coating of at least 1 mg/m2, but not more than 50 mg/m2.
  2. The method according to claim 1, characterized in that the redox potential ERedox of the cations and/or compounds of the metal (A) in the aqueous agent (1) is more anodic than the electrode potential EZn of the galvanized or alloy-galvanized steel surface in contact with the aqueous agent (2) by at least +50 mV, preferably at least +100 mV, and especially preferably at least +300 mV, but at most +800 mV.
  3. The method according to one or both of claims 1 and 2, characterized in that the concentration of cations and/or compounds of the metal (A) is at least 0.001 M and preferably at least 0.01 M, but does not exceed 0.2 M, preferably 0.1 M.
  4. The method according to one or more of the preceding claims, characterized in that the pH value of the aqueous agent is not greater than 6.
  5. The method according to one or more of claims 1 to 4, characterized in that the aqueous agent additionally contains accelerators selected from oxoacids of phosphorus or nitrogen and salts thereof, wherein at least one phosphorus atom or nitrogen atom is present in an average oxidation state.
  6. The method according to one or more of claims 1 to 4, characterized in that the aqueous agent additionally contains accelerators selected from hydrazine, hydroxylamine, nitroguanidine, N-methylmorpholine-N-oxide, glucoheptonate, ascorbic acid, and reductive sugars.
  7. The method according to one or both of claims 5 to 6, characterized in that the molar ratio of accelerator to the concentration of the cations and/or compounds of the metal (A) is not greater than 2:1, preferably not greater than 1:1, but is not below 1:5.
  8. The method according to one or more of claims 1 to 7, characterized in that the aqueous agent additionally contains not more than 50 ppm, preferably not more than 10 ppm, but at least 0.1 ppm, of copper(II) cations.
  9. The method according to one or more of claims 1 to 8, characterized in that the aqueous agent additionally contains surfactants.
  10. The method according to one or more of claims 1 to 9, characterized in that the galvanized or alloy-galvanized steel surface is brought into contact with the aqueous agent for not longer than 10 seconds.
  11. The method according to one or more of claims 1 to 10, characterized in that, after the galvanized or alloy-galvanized steel surface has been brought into contact with the aqueous agent, a passivating conversion treatment of the galvanized or alloy-galvanized steel surface pretreated in a metallizing manner occurs with or without an intermediate rinsing and/or drying step.
  12. The method according to claim 11, characterized in that further steps for applying additional layers, particularly organic paints or paint systems, follow.
  13. A metallic component, consisting at least partially of a galvanized or alloy-galvanized steel surface metallized according to one or more of claims 1 to 10.
  14. The metallic component according to claim 13, characterized in that further layers, particularly conversion layers and/or paints, are applied.
EP10187987.2A 2007-05-04 2008-04-30 Metallising pre-treatment of zinc surfaces Active EP2292808B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007021364A DE102007021364A1 (en) 2007-05-04 2007-05-04 Metallizing pretreatment of zinc surfaces
EP08749904.2A EP2145031B1 (en) 2007-05-04 2008-04-30 Preliminary metallizing treatment of zinc surfaces

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP08749904.2 Division 2008-04-30
EP08749904.2A Division EP2145031B1 (en) 2007-05-04 2008-04-30 Preliminary metallizing treatment of zinc surfaces
EP08749904.2A Division-Into EP2145031B1 (en) 2007-05-04 2008-04-30 Preliminary metallizing treatment of zinc surfaces

Publications (2)

Publication Number Publication Date
EP2292808A1 EP2292808A1 (en) 2011-03-09
EP2292808B1 true EP2292808B1 (en) 2016-06-08

Family

ID=39791281

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10187987.2A Active EP2292808B1 (en) 2007-05-04 2008-04-30 Metallising pre-treatment of zinc surfaces
EP08749904.2A Active EP2145031B1 (en) 2007-05-04 2008-04-30 Preliminary metallizing treatment of zinc surfaces

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08749904.2A Active EP2145031B1 (en) 2007-05-04 2008-04-30 Preliminary metallizing treatment of zinc surfaces

Country Status (17)

Country Link
US (1) US8293334B2 (en)
EP (2) EP2292808B1 (en)
JP (2) JP5917802B2 (en)
KR (1) KR20100028542A (en)
CN (1) CN101675181B (en)
AU (1) AU2008248694B2 (en)
BR (1) BRPI0811537A2 (en)
CA (1) CA2686380C (en)
DE (1) DE102007021364A1 (en)
ES (2) ES2589380T3 (en)
HU (2) HUE028450T2 (en)
MX (1) MX2009011876A (en)
PL (2) PL2292808T3 (en)
PT (2) PT2145031E (en)
RU (1) RU2482220C2 (en)
WO (1) WO2008135478A2 (en)
ZA (1) ZA200907724B (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007021364A1 (en) * 2007-05-04 2008-11-06 Henkel Ag & Co. Kgaa Metallizing pretreatment of zinc surfaces
US9574093B2 (en) 2007-09-28 2017-02-21 Ppg Industries Ohio, Inc. Methods for coating a metal substrate and related coated metal substrates
WO2011062031A1 (en) * 2009-11-18 2011-05-26 Jx日鉱日石金属株式会社 Nickel-iron alloy plating solution
DE102009047522A1 (en) * 2009-12-04 2011-06-09 Henkel Ag & Co. Kgaa Multi-stage pre-treatment process for metallic components with zinc and iron surfaces
DE102010001686A1 (en) * 2010-02-09 2011-08-11 Henkel AG & Co. KGaA, 40589 Composition for the alkaline passivation of zinc surfaces
KR101262497B1 (en) * 2011-03-28 2013-05-08 주식회사 노루코일코팅 A Composition for Forming the Film for Preventing the Black Stain of Steel Sheet, the Steel Sheet Containing the Film Formed from the Composition and Method for Forming the Film
DE102011078258A1 (en) 2011-06-29 2013-01-03 Henkel Ag & Co. Kgaa Electrolytic icing of zinc surfaces
EP2631333A1 (en) * 2012-02-24 2013-08-28 Henkel AG & Co. KGaA Pre-treatment of zinc surfaces before passivation
WO2013160567A1 (en) 2012-04-25 2013-10-31 Arcelormittal Investigacion Y Desarrollo, S.L. Method for producing a pre-lacquered metal sheet having zn-al-mg coatings, and corresponding metal sheet
DE102012212598A1 (en) 2012-07-18 2014-02-20 Henkel Ag & Co. Kgaa Tinning pretreatment of galvanized steel in the presence of pyrophosphate
DE102012111066A1 (en) 2012-11-16 2014-06-05 Salzgitter Flachstahl Gmbh Coated steel sheet comprises zinc-based coating, organic coating, iron-containing layer and non-crystalline conversion layer, which is arranged between the iron-containing layer and the organic coating
CN104338668A (en) * 2013-07-30 2015-02-11 比亚迪股份有限公司 Surface autophoresis coating method of base materials and housing for electronic products
RU2591919C1 (en) * 2015-04-01 2016-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Metal parts zinc impregnation plant of
DE102015206812A1 (en) 2015-04-15 2016-10-20 Henkel Ag & Co. Kgaa Polymer-containing pre-rinse before a conversion treatment
DE102015209909A1 (en) 2015-05-29 2016-12-01 Henkel Ag & Co. Kgaa Conditioning before a conversion treatment of metal surfaces
DE102015209910A1 (en) 2015-05-29 2016-12-01 Henkel Ag & Co. Kgaa Pre-rinse containing a quaternary amine for conditioning prior to a conversion treatment
CN105063696A (en) * 2015-08-07 2015-11-18 昆山—邦泰汽车零部件制造有限公司 Manufacturing method of abrasion-proof automotive hardware
MX2019002144A (en) 2016-08-23 2019-07-04 Henkel Ag & Co Kgaa USE OF AN ADHESION PROMOTER OBTAINABLE AS THE REACTION PRODUCT OF A DI- OR POLYAMINE WITH a,ß-UNSATURATED CARBOXYLIC ACID DERIVATIVES FOR METAL SURFACE TREATMENT.
WO2018158959A1 (en) * 2017-03-03 2018-09-07 日産自動車株式会社 High-design sliding member
EP3569734A1 (en) 2018-05-18 2019-11-20 Henkel AG & Co. KGaA Passivation composition based on trivalent chromium
CN109267079A (en) * 2018-11-15 2019-01-25 济南大学 A kind of preparation method of neutral metal surface derusting cleaning agent
EP3663435B1 (en) * 2018-12-05 2024-03-13 Henkel AG & Co. KGaA Passivation composition based on mixtures of phosphoric and phosphonic acids
EP3771749A1 (en) * 2019-07-29 2021-02-03 Ewald Dörken Ag Method for passivating metallic substrates
US20220403528A1 (en) * 2019-12-09 2022-12-22 Hewlett-Packard Development Company, L.P. Coated metal alloy substrate and process for production thereof
CN110923768B (en) * 2019-12-19 2022-01-25 漳州市福美鑫新材料科技有限公司 Equipment for post-treatment process of trivalent chromium electroplating workpiece
CN110983220B (en) * 2019-12-30 2023-08-18 江苏圣大中远电气有限公司 Nuclear power product wear-resistant and corrosion-resistant surface treatment system
WO2021139955A1 (en) 2020-01-06 2021-07-15 Henkel Ag & Co. Kgaa Passivation composition suitable for inner surfaces of zinc coated steel tanks storing hydrocarbons
EP3872231A1 (en) * 2020-02-28 2021-09-01 voestalpine Stahl GmbH Method for conditioning the surface of a metal strip coated with a zinc alloy corrosion protection layer
EP4274865A1 (en) 2021-01-06 2023-11-15 Henkel AG & Co. KGaA Improved cr(iii)-based passivation for zinc-aluminum coated steel
GB2603194A (en) 2021-02-01 2022-08-03 Henkel Ag & Co Kgaa Improved cr(iii) based dry-in-place coating composition for zinc coated steel
EP4174211A1 (en) 2021-11-02 2023-05-03 Henkel AG & Co. KGaA Multistage treatment for activated zinc phosphating of metallic components with zinc surfaces
CN114108043B (en) * 2021-11-19 2023-08-11 山东省路桥集团有限公司 Repairing and regenerating pretreatment method for rusted area of steel structure bridge

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE171455C (en)
CH361954A (en) 1953-08-27 1962-05-15 Gen Am Transport Process for chemical nickel plating
NL282799A (en) * 1961-09-13
DE2103086C3 (en) * 1971-01-23 1979-11-15 Metallgesellschaft Ag, 6000 Frankfurt Process for the surface treatment of workpieces made of iron and steel
JPS5243171B2 (en) * 1973-01-11 1977-10-28
JPS51135840A (en) * 1975-05-21 1976-11-25 Nippon Packaging Kk Surface treatment process for zinc or zinc alloy
JPS5817254B2 (en) * 1981-05-13 1983-04-06 工業技術院長 Method for improving corrosion resistance of galvanized steel
JPS6169978A (en) * 1984-09-12 1986-04-10 Nisshin Steel Co Ltd Pretreatment for low-lead galvanized steel sheet before coating
JPS62127479A (en) * 1985-11-26 1987-06-09 Nisshin Steel Co Ltd Surface treatment of galvanized steel sheet
US5298289A (en) 1987-12-04 1994-03-29 Henkel Corporation Polyphenol compounds and treatment and after-treatment of metal, plastic and painted surfaces therewith
JPH0331484A (en) * 1989-06-27 1991-02-12 Nippon Parkerizing Co Ltd Blackening treatment of zinc or zinc-based plating material
JPH0448095A (en) * 1990-06-15 1992-02-18 Nippon Steel Corp Production of surface-treated steel sheet for vessel having superior rust resistance at outside of can and fine appearance
JP2904592B2 (en) * 1991-01-14 1999-06-14 日本鋼管株式会社 Pretreatment method for chromate treatment of zinc or zinc alloy
JP2968147B2 (en) * 1993-04-07 1999-10-25 日本パーカライジング株式会社 Acid displacement plating solution composition for zinc-containing metal plated steel sheet
US5449415A (en) * 1993-07-30 1995-09-12 Henkel Corporation Composition and process for treating metals
DE69404663T2 (en) * 1993-09-17 1997-11-27 Brent Int Plc PRE-RINSE FOR PHOSPHATING METAL SURFACES
JP3366724B2 (en) * 1994-04-20 2003-01-14 日本ペイント株式会社 Chemical conversion aqueous solution for metal surfaces
DE19733972A1 (en) 1997-08-06 1999-02-11 Henkel Kgaa Alkaline band passivation
DE19751153A1 (en) * 1997-11-19 1999-05-20 Henkel Kgaa Chromium-free coil coating composition
DE19923084A1 (en) 1999-05-20 2000-11-23 Henkel Kgaa Chromium-free corrosion protection agent for coating metallic substrates contains hexafluoro anions, phosphoric acid, metal compound, film-forming organic polymer or copolymer and organophosphonic acid
DE10010758A1 (en) * 2000-03-04 2001-09-06 Henkel Kgaa Corrosion protection of zinc, aluminum and/or magnesium surfaces such as motor vehicle bodies, comprises passivation using complex fluorides of Ti, Zr, Hf, Si and/or B and organic polymers
US6530999B2 (en) * 2000-10-10 2003-03-11 Henkel Corporation Phosphate conversion coating
DE10322446A1 (en) * 2003-05-19 2004-12-09 Henkel Kgaa Pretreatment of metal surfaces before painting
DE102004041142A1 (en) * 2004-08-24 2006-03-02 Basf Ag Process for passivating metallic surfaces using itaconic acid homo- or copolymers
JP2007023353A (en) * 2005-07-19 2007-02-01 Yuken Industry Co Ltd Non-chromium reactive chemical conversion treatment of galvanized member
DE102007001654A1 (en) 2007-01-04 2008-07-10 Henkel Kgaa Conductive, organic coatings with optimized polymer system
DE102007021364A1 (en) * 2007-05-04 2008-11-06 Henkel Ag & Co. Kgaa Metallizing pretreatment of zinc surfaces
US8784629B2 (en) * 2007-09-27 2014-07-22 Chemetall Gmbh Method of producing surface-treated metal material and method of producing coated metal item

Also Published As

Publication number Publication date
PL2292808T3 (en) 2016-12-30
PL2145031T3 (en) 2016-09-30
JP2016074985A (en) 2016-05-12
JP5917802B2 (en) 2016-05-18
KR20100028542A (en) 2010-03-12
CN101675181B (en) 2012-10-24
AU2008248694A1 (en) 2008-11-13
BRPI0811537A2 (en) 2014-11-18
PT2292808T (en) 2016-09-08
EP2145031A2 (en) 2010-01-20
ES2575993T3 (en) 2016-07-04
WO2008135478A2 (en) 2008-11-13
JP2010526206A (en) 2010-07-29
MX2009011876A (en) 2010-02-24
WO2008135478A3 (en) 2009-01-08
EP2292808A1 (en) 2011-03-09
DE102007021364A1 (en) 2008-11-06
ZA200907724B (en) 2011-04-28
HUE030515T2 (en) 2017-05-29
PT2145031E (en) 2016-06-16
CN101675181A (en) 2010-03-17
US20100209732A1 (en) 2010-08-19
HUE028450T2 (en) 2016-12-28
US8293334B2 (en) 2012-10-23
ES2589380T3 (en) 2016-11-14
AU2008248694B2 (en) 2012-10-04
EP2145031B1 (en) 2016-03-16
RU2009144881A (en) 2011-06-10
RU2482220C2 (en) 2013-05-20
CA2686380C (en) 2016-04-05
CA2686380A1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
EP2292808B1 (en) Metallising pre-treatment of zinc surfaces
EP2016138B1 (en) Anti-corrosion system for metals and pigment therefor
EP2507408B1 (en) Multi-stage pre-treatment method for metal components having zinc and iron surfaces
EP2817434B1 (en) Pre-treatment of zinc surfaces before passivation
EP1692325A1 (en) Two-stage conversion treatment
DE102007001654A1 (en) Conductive, organic coatings with optimized polymer system
DE102007057185A1 (en) Zirconium phosphating of metallic components, in particular iron
EP2726650B1 (en) Electrolytic iron plating on zinc surfaces
DE10353149A1 (en) Supplementary corrosion protection for components made of pre-coated metal sheets
WO2005061570A1 (en) Functionalised phenol-aldehyde resin and method for treating metallic surfaces
WO2008014885A1 (en) Corrosion protective layer with improved characteristics
DE102012111066A1 (en) Coated steel sheet comprises zinc-based coating, organic coating, iron-containing layer and non-crystalline conversion layer, which is arranged between the iron-containing layer and the organic coating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101019

AC Divisional application: reference to earlier application

Ref document number: 2145031

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20110214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 2145031

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 805304

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008014296

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2292808

Country of ref document: PT

Date of ref document: 20160908

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20160902

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160908

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2589380

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160909

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161008

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008014296

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

26N No opposition filed

Effective date: 20170309

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E030515

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 805304

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20190322

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20190328

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20190325

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190627

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 21933

Country of ref document: SK

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230425

Year of fee payment: 16

Ref country code: ES

Payment date: 20230627

Year of fee payment: 16

Ref country code: DE

Payment date: 20230420

Year of fee payment: 16

Ref country code: CZ

Payment date: 20230425

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230419

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 16