EP2244235A1 - Method for self-calibrating an alarm siren module for a vehicle - Google Patents

Method for self-calibrating an alarm siren module for a vehicle Download PDF

Info

Publication number
EP2244235A1
EP2244235A1 EP09158403A EP09158403A EP2244235A1 EP 2244235 A1 EP2244235 A1 EP 2244235A1 EP 09158403 A EP09158403 A EP 09158403A EP 09158403 A EP09158403 A EP 09158403A EP 2244235 A1 EP2244235 A1 EP 2244235A1
Authority
EP
European Patent Office
Prior art keywords
frequency
siren
signal
values
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09158403A
Other languages
German (de)
French (fr)
Other versions
EP2244235B1 (en
Inventor
Bruno Tessier
Benoit Ferreira
Jean-Marie Carvalho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies Inc
Original Assignee
Delphi Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Technologies Inc filed Critical Delphi Technologies Inc
Priority to EP20090158403 priority Critical patent/EP2244235B1/en
Publication of EP2244235A1 publication Critical patent/EP2244235A1/en
Application granted granted Critical
Publication of EP2244235B1 publication Critical patent/EP2244235B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B3/00Audible signalling systems; Audible personal calling systems
    • G08B3/10Audible signalling systems; Audible personal calling systems using electric transmission; using electromagnetic transmission

Definitions

  • the present invention relates to a siren and a method of controlling a siren. More particularly, the present invention relates to vehicle alarm sirens.
  • an anti-theft alarm siren to warn people in the vicinity of a parked car that an abnormal situation is detected, such as a major shock, breakage of glass, or an attempt to pick a lock. door.
  • the sound power of the siren must be both high enough to be heard from a relatively large distance, and low enough not to affect the safety and well-being of nearby people, that is, to say to respect constraints of public health and public order.
  • the sound signal emitted by the siren must be identifiable, that is to say, it must be able to distinguish it from other sounds that may be emitted in the automobile environment, for example the sound of a horn or the sound Warning signal of a truck traveling in reverse.
  • the European Directive 95/56 EC standardises alarm systems for vehicles by imposing constraints on the sound power and on the different types of signals that can be transmitted, among which are the signals of the frequency-modulated type.
  • the directive requires a continuous and uniform sound, except for the equal passage of a large frequency range in the range 1850Hz to 3550Hz in both directions, with a frequency of change from 1 to 3 Hz.
  • such signals therefore have a period of 0.33 to 1 second comprising a first portion in which the instantaneous frequency increases so as to go from 1850 Hz to 3550 Hz, a second portion at 3550 Hz, a third portion in which the instantaneous frequency decreases so as to change from 3550Hz to 1850Hz and a fourth portion to 1850Hz.
  • This type of signal is identified by users as coming from a vehicle alarm siren.
  • a signal generator produces an output signal which, when amplified, transformed and applied to a piezoelectric crystal, produces a sound signal in accordance with the requirements of Directive 95/56 EC, which the manufacturers of automobiles and users identify as being that of a vehicle alarm siren.
  • the output signal of the generator is a square wave whose instantaneous frequency varies according to a periodic pattern.
  • Curve 40 of the figure 1 represents the evolution of the instantaneous frequency of the output signal conventionally generated, during a period. In the portion 41, the instantaneous frequency increases from 1850Hz to 3550Hz. Then in the portion 42, the instantaneous frequency remains constant at 3550Hz.
  • the frequency decreases from 3550Hz to 1850Hz and finally in the portion 44 it remains constant at 2000Hz.
  • Each portion has a duration of 125 ms, the period being 500 ms.
  • the curve 70 of FIG. 7 represents the envelope of the measurement curve of the corresponding acoustic pressure.
  • the sound pressure reached is of the order of 6 Pa.
  • the directive requires that the sound pressure measured at 2 meters against the siren in anechoic medium be at least 100dB (A) and 118dB (A) maximum.
  • the minimum level of 100dB (A) at each moment of the cycle is difficult to reach, especially with the sirens comprising a piezoelectric crystal.
  • EP 1 653 420 a method for controlling the sound power of a siren, the sound signal of which can be identified by the informed public as that of a vehicle alarm siren.
  • the method of controlling a siren comprising a sound production device comprising a transducer capable of emitting a sound signal in response to an electrical control signal, comprises generating an electrical control signal whose instantaneous frequency remains in a predefined frequency range, the control signal comprising at least a rising frequency signal portion 51 whose instantaneous frequency increases, at least a down-frequency signal portion 53 whose instantaneous frequency decreases and at least a portion of constant-frequency signal 52, 54 whose instantaneous frequency is equal to a resonance frequency of the sound producing device or a sub-multiple of the resonant frequency.
  • the resonance frequency of the sound producing device makes it possible to increase the sound power of the siren.
  • the acoustic signal emitted according to this method remained identifiable by the users as being that of a vehicle alarm siren, without significant differences in perception compared to conventional sirens.
  • the sound power of the sound signal varies with the frequency of the signal applied to the transducer 9.
  • figure 2 illustrates this dependency.
  • Curve 30 gives the frequency response of the sound producing device, and presents one or more local maxima 32.
  • the resonance frequency of the sound producing device is called a frequency corresponding to the maximum or one of the maxima of the response curve.
  • the microcontroller In the siren according to the prior art, the microcontroller generates a periodic control signal whose variation of the instantaneous frequency during a period 56 is represented by the curve 50 of the figure 3 .
  • the instantaneous frequency In the portion 51 of duration equal to the transit time t rise, the instantaneous frequency increases from a minimum frequency f min of 1850Hz to a maximum frequency f max of 3550Hz. Then in the portion 51 of duration equal to the hold time t high , the instantaneous frequency remains constant, equal to the stationary frequency f stat which is the resonance frequency of the sound production device.
  • the frequency decreases from f max to f min and finally in the portion 54 of duration equal to the time of maintaining t low it is again constant and equal f stat .
  • the rise time t and t fall is 100 ms.
  • the times t high and t low are 150 ms.
  • the period is 500 ms.
  • the audible signal corresponding to this output signal complies with the requirements of Directive 95/56 EC. Due to the portions 52 and 54 at the resonance frequency, the average sound power of the siren 1 is greater than with the control signal of the figure 1 .
  • An object of the present invention is to meet the drawbacks mentioned above by providing a method of self-calibration of a siren so that the sound signal that it emits is adapted to the environment in which it is located.
  • a first aspect of the present invention relates to a method of self-calibration of a siren comprising a transducer able to emit a sound signal in response to an electrical control signal, characterized in that the method comprises the steps (i) controlling the instantaneous frequency of the electrical control signal comprising at least a rising frequency signal portion whose instantaneous frequency increases and at least a down-frequency signal portion whose instantaneous frequency decreases; (ii) measuring the voltage generated at the terminals of the transducer; (iii) detecting a voltage extremum in a predefined range of frequency values for determining an in situ resonance frequency of the siren for that range of values; and (iv) modifying the control parameters of the instantaneous frequency of the electrical control signal so that it further comprises at least a constant frequency signal portion whose instantaneous frequency is equal to the in situ resonance frequency of the siren or at a sub-multiple of this resonance frequency in situ.
  • the range of frequency values is determined between 1850 KHz and 3550 KHz.
  • the range of frequency values is determined by the vehicle manufacturer or the equipment manufacturer so as to obtain a siren sound close to those usually perceived.
  • the present invention relates to a siren comprising a transducer capable of emitting a sound signal in response to an electrical control signal, the said siren comprising a self-calibration system able to control the instantaneous frequency of the control signal.
  • an electrical circuit comprising at least a rising frequency signal portion in the instantaneous frequency and at least a downconverting signal portion whose instantaneous frequency decreases; measuring one or more electrical parameters (voltage, current, impedance ...) generated at the transducer; detecting an extremum of one or more of these parameters within a predefined range of frequency values for determining an in situ resonance frequency of the siren for that range of values; and modifying the control parameters of the instantaneous frequency of the electrical control signal, so as to further comprise at least one constant-frequency signal portion whose instantaneous frequency is equal to the siren's in-situ resonance frequency or to a sub-multiple of this resonance frequency in situ.
  • the siren used in the context of the present invention is preferably a siren similar to that described in relation to the Figures 1 and 2 from the previous document EP 1 653 420 , whose description of the siren is incorporated herein by reference.
  • FIG 4 is represented a graph showing the offset of the resonance frequency of the acoustic pressure of the transducer of the same siren under the influence of its environment.
  • the maximum value intended to determine the resonant frequency (f R1, f R2) of the transducer mounted in the siren substantially varies in the range of values defined in the directive 95/56 EC, namely between 1850 Hz and 3550 Hz under the influence of the environment in which the siren is placed.
  • the curves in this figure show that under these conditions of measurement, depending on the environment, the resonance frequency at 3300hz ( f R2 ) is not optimal; this frequency ( f R2 ) turns out however to be the effective frequency in a first environment depending for example on the location of the transducer under the hood of the vehicle. At its final location or after a modification of its environment, the frequency ( f R1 ) becomes the resonant frequency to be retained and this is done using the methodology described in this patent. This 50 Hz automatic glide in the control system is enough to increase the level of 2 dB, which is very useful to stay in the conditions required by the directive.
  • the figure 5 is a graph showing an example of the evolution of the acoustic pressure Pa with respect to the voltage measured across the transducer of the siren.
  • electrical parameters such as the voltage, the current and the impedance measured at the level of the siren transducer, for example, the minimum voltage detected V min , provide a true image of the maximum sound pressure Pa max of the siren, more particularly the maximum sound pressure for determining the so-called resonance frequency f R independently of the environment of the siren.
  • An object of the present invention is to be able to calibrate the resonance frequency of the siren independently of the environment in which it is located. For this, it has been implemented a method of self-calibration of the siren shown schematically in the figure 6 , making it possible to determine the resonant frequency according to the environment more precisely than the previously used method.
  • the self-calibration method comprises the following steps. After installation of the siren on the vehicle for which it is intended, it is expected an initialization of the siren. During this step (i) of initialization of the siren, piloting, preferably, without a landing is generated by the siren.
  • This control of the instantaneous frequency of the electrical control signal comprises a rising frequency signal portion whose instantaneous frequency increases and / or a down-frequency signal portion whose instantaneous frequency decreases. It is important to note that this initialization step is performed on a functioning siren installed on a vehicle so as to be in its environment.
  • the frequency variations are performed within a predetermined range of values.
  • the value range is between 1850 Hz and 3550 Hz so as to meet the requirements of the Directive 95/56 EC. Nevertheless, this range of values may be determined by the vehicle manufacturer or the supplier supplier of the siren so that the selected resonant frequency causes the sound to be generated by the siren at the convenience of the users of the system.
  • one or more electrical parameters of the siren are measured at the level of the piezoelectric transducer of the siren which are the image of the acoustic pressure, in particular with regard to the extrema.
  • the values of the measured electrical parameters are stored in correspondence of the frequency for which a value is measured.
  • a frequency pointer makes it possible to detect the frequency corresponding to the value of the measured extremal parameter (s), for example the lowest voltage.
  • the resonant frequency f R in situ of the siren that is to say as installed in the vehicle or more generally as installed in its final environment.
  • the stored values correspond to the values measured in the predefined range of values during initial piloting.
  • the in situ resonance frequency retained will be that corresponding to the extrema of the measured parameter (s), the lowest value in this range. regarding the voltage.
  • a new piloting parameter incorporating a step at this frequency is programmed in a fourth step (iv) instead of the initial piloting, so that the following control generated further comprises a portion of constant frequency signal, also called bearing frequency, whose instantaneous frequency is equal to the resonance frequency f R in situ of the siren determined by means of the self-calibration process.
  • a period of the output signal may contain more than a rising frequency portion and more than a downward frequency portion. These portions may be in regular or irregular staircase. They may also not be stepped but have a continuous variation of the instantaneous frequency, if the control signal generator is capable of generating such a signal.
  • the output signal is not necessarily periodic.
  • it can present a diagram of variation of the instantaneous frequency being repeated with small differences.
  • the frequency is not necessarily equal to the resonant frequency. It can be a submultiple, the sound producing device then being resonantly excited by a harmonic of the control signal.

Abstract

The method involves controlling instantaneous frequency of an electric control signal, and measuring electric parameters generated at level of a transducer. Extremum or measured parameters in predefined range of frequency values are detected to determine resonant frequency in siren for value ranges. Control parameters of the instantaneous frequency of electric control signal are modified so that the signals has constant frequency signal portion whose instantaneous frequency is equal to resonant frequency in siren or sub-multiple of resonant frequency.

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention se rapporte à une sirène et à un procédé de commande d'une sirène. Plus particulièrement, la présente invention se rapporte aux sirènes d'alarme pour véhicule.The present invention relates to a siren and a method of controlling a siren. More particularly, the present invention relates to vehicle alarm sirens.

ARRIERE-PLAN TECHNOLOGIQUEBACKGROUND

Il est connu d'utiliser une sirène d'alarme antivol pour prévenir les personnes à proximité d'une automobile parquée qu'une situation anormale est détectée, telle qu'un choc important, un bris de vitre ou une tentative de crochetage d'une portière.It is known to use an anti-theft alarm siren to warn people in the vicinity of a parked car that an abnormal situation is detected, such as a major shock, breakage of glass, or an attempt to pick a lock. door.

La puissance sonore de la sirène doit être à la fois suffisamment élevée pour pouvoir être entendue depuis une distance relativement grande, et suffisamment faible pour ne pas nuire à la sécurité et au bien-être des personnes se trouvant à proximité, c'est-à-dire respecter des contraintes de santé publique et d'ordre public. Le signal sonore émis par la sirène doit être identifiable, c'est-à-dire qu'il faut pouvoir le distinguer des autres sons pouvant être émis dans l'environnement de l'automobile, par exemple le son d'un klaxon ou le signal d'avertissement d'un camion roulant en marche arrière.The sound power of the siren must be both high enough to be heard from a relatively large distance, and low enough not to affect the safety and well-being of nearby people, that is, to say to respect constraints of public health and public order. The sound signal emitted by the siren must be identifiable, that is to say, it must be able to distinguish it from other sounds that may be emitted in the automobile environment, for example the sound of a horn or the sound Warning signal of a truck traveling in reverse.

La directive européenne 95/56 CE normalise les systèmes d'alarmes pour véhicule en imposant des contraintes sur la puissance sonore et sur les différents types de signaux pouvant être émis, parmi lesquels on trouve les signaux du type modulé en fréquence. Pour de tels signaux, la directive exige un son continu et uniforme, sauf pour le passage égale d'une gamme de fréquence importante dans la gamme 1850Hz à 3550Hz dans les deux sens, avec une fréquence de passage de 1 à 3 Hz. Classiquement de tels signaux présentent donc une période de 0.33 à 1 seconde comportant une première portion dans laquelle la fréquence instantanée croît de manière à passer de 1850Hz à 3550Hz, une deuxième portion à 3550Hz, une troisième portion dans laquelle la fréquence instantanée décroît de manière à passer de 3550Hz à 1850Hz et une quatrième portion à 1850Hz. Ce type de signal est identifié par les utilisateurs comme provenant d'une sirène d'alarme pour véhicule.The European Directive 95/56 EC standardises alarm systems for vehicles by imposing constraints on the sound power and on the different types of signals that can be transmitted, among which are the signals of the frequency-modulated type. For such signals, the directive requires a continuous and uniform sound, except for the equal passage of a large frequency range in the range 1850Hz to 3550Hz in both directions, with a frequency of change from 1 to 3 Hz. such signals therefore have a period of 0.33 to 1 second comprising a first portion in which the instantaneous frequency increases so as to go from 1850 Hz to 3550 Hz, a second portion at 3550 Hz, a third portion in which the instantaneous frequency decreases so as to change from 3550Hz to 1850Hz and a fourth portion to 1850Hz. This type of signal is identified by users as coming from a vehicle alarm siren.

Dans une sirène connue, un générateur de signal produit un signal de sortie qui, une fois amplifié, transformé et appliqué à un cristal piézo-électrique, produit un signal sonore conforme aux exigences de la directive 95/56 CE, que les constructeurs d'automobiles et utilisateurs identifient comme étant celui d'une sirène d'alarme pour véhicule. Pour cela, le signal de sortie du générateur est une onde carrée dont la fréquence instantanée varie selon un schéma périodique. La courbe 40 de la figure 1 représente l'évolution de la fréquence instantanée du signal de sortie classiquement généré, au cours d'une période. Dans la portion 41, la fréquence instantanée croît de 1850Hz à 3550Hz. Ensuite dans la portion 42, la fréquence instantanée reste constante à 3550Hz. Dans la portion 43, la fréquence décroît de 3550Hz à 1850Hz et enfin dans la portion 44 elle reste constante à 2000Hz. Chacune des portions a une durée de 125 ms, la période étant de 500 ms. La courbe 70 de la figure 7 représente l'enveloppe de la courbe de mesures de la pression acoustique correspondante. Dans la portion 72 qui correspond à la portion 42, la pression acoustique atteinte est de l'ordre de 6 Pa.In a known siren, a signal generator produces an output signal which, when amplified, transformed and applied to a piezoelectric crystal, produces a sound signal in accordance with the requirements of Directive 95/56 EC, which the manufacturers of automobiles and users identify as being that of a vehicle alarm siren. For this, the output signal of the generator is a square wave whose instantaneous frequency varies according to a periodic pattern. Curve 40 of the figure 1 represents the evolution of the instantaneous frequency of the output signal conventionally generated, during a period. In the portion 41, the instantaneous frequency increases from 1850Hz to 3550Hz. Then in the portion 42, the instantaneous frequency remains constant at 3550Hz. In the portion 43, the frequency decreases from 3550Hz to 1850Hz and finally in the portion 44 it remains constant at 2000Hz. Each portion has a duration of 125 ms, the period being 500 ms. The curve 70 of FIG. 7 represents the envelope of the measurement curve of the corresponding acoustic pressure. In the portion 72 which corresponds to the portion 42, the sound pressure reached is of the order of 6 Pa.

La directive exige que la pression acoustique mesurée à 2 mètres face à la sirène en milieu anéchoïque soit de 100dB(A) minimum et 118dB(A) maximum. Dans les sirènes actuelles, le niveau minimal de 100dB(A) à chaque instant du cycle est difficilement atteint, notamment avec les sirènes comprenant un cristal piézo-électrique.The directive requires that the sound pressure measured at 2 meters against the siren in anechoic medium be at least 100dB (A) and 118dB (A) maximum. In the current sirens, the minimum level of 100dB (A) at each moment of the cycle is difficult to reach, especially with the sirens comprising a piezoelectric crystal.

Il est connu dans l'art antérieur, en particulier du document, EP 1 653 420 , un procédé de commande de la puissance sonore d'une sirène dont le signal sonore est identifiable par le public averti comme celui d'une sirène d'alarme pour véhicule.It is known in the prior art, in particular from the document, EP 1 653 420 , a method for controlling the sound power of a siren, the sound signal of which can be identified by the informed public as that of a vehicle alarm siren.

Pour cela, le procédé de commande d'une sirène comprenant un dispositif de production de son comportant un transducteur apte à émettre un signal sonore en réaction à un signal de commande électrique, comprend le fait de générer un signal de commande électrique dont la fréquence instantanée reste dans une gamme de fréquence prédéfinie, le signal de commande comprenant au moins une portion de signal à fréquence montante 51 dont la fréquence instantanée croît, au moins une portion de signal à fréquence descendante 53 dont la fréquence instantanée décroît et au moins une portion de signal à fréquence constante 52, 54 dont la fréquence instantanée est égale à une fréquence de résonance du dispositif de production de son ou à un sous-multiple de la fréquence de résonance.For this purpose, the method of controlling a siren comprising a sound production device comprising a transducer capable of emitting a sound signal in response to an electrical control signal, comprises generating an electrical control signal whose instantaneous frequency remains in a predefined frequency range, the control signal comprising at least a rising frequency signal portion 51 whose instantaneous frequency increases, at least a down-frequency signal portion 53 whose instantaneous frequency decreases and at least a portion of constant-frequency signal 52, 54 whose instantaneous frequency is equal to a resonance frequency of the sound producing device or a sub-multiple of the resonant frequency.

Le fait d'utiliser la fréquence de résonance du dispositif de production de son permet d'augmenter la puissance sonore de la sirène. De plus, le signal sonore émis selon ce procédé restait identifiable par les utilisateurs comme étant celui d'une sirène d'alarme pour véhicule, sans différences significatives de perception par rapport aux sirènes classiques.Using the resonance frequency of the sound producing device makes it possible to increase the sound power of the siren. In addition, the acoustic signal emitted according to this method remained identifiable by the users as being that of a vehicle alarm siren, without significant differences in perception compared to conventional sirens.

Pour une amplitude constante, la puissance sonore du signal sonore varie avec la fréquence du signal appliqué au transducteur 9. La figure 2 illustre cette dépendance. La courbe 30 donne la réponse en fréquence du dispositif de production de son, et présente un ou plusieurs maxima locaux 32. On appelle ici fréquence de résonance du dispositif de production de son une fréquence correspondant au maximum ou à un des maxima de la courbe de réponse.For a constant amplitude, the sound power of the sound signal varies with the frequency of the signal applied to the transducer 9. figure 2 illustrates this dependency. Curve 30 gives the frequency response of the sound producing device, and presents one or more local maxima 32. Here, the resonance frequency of the sound producing device is called a frequency corresponding to the maximum or one of the maxima of the response curve.

Dans la sirène selon l'art antérieur, le microcontrôleur génère un signal de commande périodique dont la variation de la fréquence instantanée au cours d'une période 56 est représentée par la courbe 50 de la figure 3. Dans la portion 51 de durée égale au temps de passage trise, la fréquence instantanée croît d'une fréquence minimale fmin de 1850Hz à une fréquence maximale fmax de 3550Hz. Ensuite dans la portion 51 de durée égale au temps de maintient thigh, la fréquence instantanée reste constante, égale à la fréquence stationnaire fstat qui est la fréquence de résonance du dispositif de production de son. Dans la portion 53 de durée égale au temps de passage trait, la fréquence décroît de fmax à fmin et enfin dans la portion 54 de durée égale au temps de maintient tlow elle est de nouveau constante et égale fstat. Les temps trise et tfall sont de 100 ms. Les temps thigh et tlow sont de 150 ms. La période est de 500 ms.In the siren according to the prior art, the microcontroller generates a periodic control signal whose variation of the instantaneous frequency during a period 56 is represented by the curve 50 of the figure 3 . In the portion 51 of duration equal to the transit time t rise, the instantaneous frequency increases from a minimum frequency f min of 1850Hz to a maximum frequency f max of 3550Hz. Then in the portion 51 of duration equal to the hold time t high , the instantaneous frequency remains constant, equal to the stationary frequency f stat which is the resonance frequency of the sound production device. In the portion 53 of duration equal to the crossing time, the frequency decreases from f max to f min and finally in the portion 54 of duration equal to the time of maintaining t low it is again constant and equal f stat . The rise time t and t fall is 100 ms. The times t high and t low are 150 ms. The period is 500 ms.

Le signal sonore correspondant à ce signal de sortie est conforme aux exigences de la directive 95/56 CE. Du fait des portions 52 et 54 à la fréquence de résonance, la puissance sonore moyenne de la sirène 1 est plus importante qu'avec le signal de commande de la figure 1.The audible signal corresponding to this output signal complies with the requirements of Directive 95/56 EC. Due to the portions 52 and 54 at the resonance frequency, the average sound power of the siren 1 is greater than with the control signal of the figure 1 .

Bien que la solution antérieure sus-présentée ait permis de pallier dans une certaine mesure au problème de puissance minimale requise pour les sirènes de véhicule, il est néanmoins apparue que le niveau de pression acoustique délivré par chaque transducteur piézoélectrique en fonctionnement, pouvait varier en fonction de l'électronique et/ou éléments mécaniques auxquels il est rattaché, mais également de l'environnement dans lequel le transducteur est placé.Although the above-mentioned prior solution has made it possible, to a certain extent, to overcome the problem of the minimum power required for vehicle sirens, it nevertheless appeared that the sound pressure level delivered by each piezoelectric transducer in operation could vary according to electronics and / or mechanical elements to which it is attached, but also the environment in which the transducer is placed.

Or justement la fréquence de palier utilisée dans la solution antérieure présentée ci-dessus ne tient pas compte de l'environnement dans lequel se situe la sirène. La figure 4 permet de se rendre compte dans quelle mesure la détermination de la fréquence de résonance uniquement basée sur la pression acoustique en champ-libre peut entraîner des différences de fréquence selon l'environnement dans lequel est situé la sirène.But precisely the bearing frequency used in the previous solution presented above does not take into account the environment in which the siren is located. The figure 4 allows to realize in how far the determination of the resonant frequency solely based on the field-free sound pressure can result in frequency differences depending on the environment in which the siren is located.

RESUME DE L'INVENTIONSUMMARY OF THE INVENTION

Un but de la présente invention est de répondre aux inconvénients mentionnés ci-dessus en fournissant un procédé d'auto-calibration d'une sirène de sorte que le signal sonore qu'elle émet soit adapté à l'environnement dans lequel elle se situe.An object of the present invention is to meet the drawbacks mentioned above by providing a method of self-calibration of a siren so that the sound signal that it emits is adapted to the environment in which it is located.

Dans ce but, un premier aspect de la présente invention concerne un procédé d'auto-calibration d'une sirène comprenant un transducteur apte à émettre un signal sonore en réaction à un signal de commande électrique, caractérisé en ce que le procédé comprend les étapes (i) de pilotage de la fréquence instantanée du signal de commande électrique comprenant au moins une portion de signal à fréquence montante dont la fréquence instantanée croît et au moins une portion de signal à fréquence descendante dont la fréquence instantanée décroît ; (ii) de relevé de la tension générée aux bornes du transducteur ; (iii) de détection d'un extremum de tension dans une plage prédéfinie de valeurs de fréquence permettant de déterminer une fréquence de résonance in situ de la sirène pour cette plage de valeurs ; et (iv) de modification des paramètres de pilotage de la fréquence instantanée du signal de commande électrique de sorte qu'il comprend en outre au moins une portion de signal à fréquence constante dont la fréquence instantanée est égale à la fréquence de résonance in situ de la sirène ou à un sous-multiple de cette fréquence de résonance in situ.For this purpose, a first aspect of the present invention relates to a method of self-calibration of a siren comprising a transducer able to emit a sound signal in response to an electrical control signal, characterized in that the method comprises the steps (i) controlling the instantaneous frequency of the electrical control signal comprising at least a rising frequency signal portion whose instantaneous frequency increases and at least a down-frequency signal portion whose instantaneous frequency decreases; (ii) measuring the voltage generated at the terminals of the transducer; (iii) detecting a voltage extremum in a predefined range of frequency values for determining an in situ resonance frequency of the siren for that range of values; and (iv) modifying the control parameters of the instantaneous frequency of the electrical control signal so that it further comprises at least a constant frequency signal portion whose instantaneous frequency is equal to the in situ resonance frequency of the siren or at a sub-multiple of this resonance frequency in situ.

En effet, outre les variations de la fréquence de résonnance de la sirène en fonction de son environnement, les inventeurs ont su montrer la corrélation entre certains paramètres électriques (courant, tension, impédance...) de la sirène (côté transducteur) et la pression acoustique. C'est pourquoi, un tel procédé d'auto-calibration permet de régler la fréquence de résonance in situ de la sirène, i.e. en fonction de l'environnement dans lequel elle est placée, par le biais de la mesure d'un ou de plusieurs paramètres électriques de la sirène au niveau du transducteur.Indeed, in addition to the variations of the resonant frequency of the siren as a function of its environment, the inventors have been able to show the correlation between certain electrical parameters (current, voltage, impedance, etc.) of the siren (transducer side) and the sound pressure. That is why such a self-calibration method makes it possible to adjust the resonance frequency in situ of the siren, ie as a function of the environment in which it is placed, by means of the measurement of one or several electrical parameters of the siren at the transducer.

De préférence, la plage de valeurs de fréquence est déterminée entre 1850 KHz et 3550 KHz. Avantageusement, la plage de valeurs de fréquence est déterminée par le constructeur du véhicule ou par l'équipementier de sorte à obtenir un bruit de sirène proche de ceux usuellement perçu.Preferably, the range of frequency values is determined between 1850 KHz and 3550 KHz. Advantageously, the range of frequency values is determined by the vehicle manufacturer or the equipment manufacturer so as to obtain a siren sound close to those usually perceived.

Selon un deuxième aspect, la présente invention concerne une sirène comprenant un transducteur apte à émettre un signal sonore en réaction à un signal de commande électrique, la dite sirène comprenant un système d'auto-calibration apte à piloter la fréquence instantanée du signal de commande électrique comprenant au moins une portion de signal à fréquence montante dans la fréquence instantanée croît et au moins une portion de signal à fréquence descendante dont la fréquence instantanée décroît ; à mesurer un ou plusieurs paramètres électriques (tension, courant, impédance...) générés au niveau du transducteur ; à détecter un extremum d'un ou de plusieurs de ces paramètres dans une plage prédéfinie de valeurs de fréquence permettant de déterminer une fréquence de résonance in situ de la sirène pour cette plage de valeurs ; et à modifier les paramètres de pilotage de la fréquence instantanée du signal de commande électrique, de sorte à comprendre en outre au moins une portion de signal à fréquence constante dont la fréquence instantanée est égale à la fréquence de résonance in situ de la sirène ou à un sous-multiple de cette fréquence de résonance in situ.According to a second aspect, the present invention relates to a siren comprising a transducer capable of emitting a sound signal in response to an electrical control signal, the said siren comprising a self-calibration system able to control the instantaneous frequency of the control signal. an electrical circuit comprising at least a rising frequency signal portion in the instantaneous frequency and at least a downconverting signal portion whose instantaneous frequency decreases; measuring one or more electrical parameters (voltage, current, impedance ...) generated at the transducer; detecting an extremum of one or more of these parameters within a predefined range of frequency values for determining an in situ resonance frequency of the siren for that range of values; and modifying the control parameters of the instantaneous frequency of the electrical control signal, so as to further comprise at least one constant-frequency signal portion whose instantaneous frequency is equal to the siren's in-situ resonance frequency or to a sub-multiple of this resonance frequency in situ.

BREVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF THE FIGURES

D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description détaillée qui suit de modes de réalisation de l'invention donnés à titre d'exemples nullement limitatifs et illustrés par les dessins annexés, dans lesquels :

  • la figure 1 est un graphe représentant l'évolution de la fréquence instantanée d'un signal de commande électrique d'une sirène selon un premier art antérieur ;
  • la figure 2 est un graphe représentant la puissance acoustique d'une sirène en fonction de la fréquence du signal de commande ;
  • la figure 3 est un graphe représentant l'évolution de la fréquence instantanée d'un signal de commande électrique d'une sirène selon un deuxième art antérieur ;
  • la figure 4 est un graphe représentant le décalage de la fréquence de résonance de la pression acoustique du transducteur d'une même sirène sous l'influence de son environnement ;
  • la figure 5 est un graphe représentant l'évolution de la pression acoustique par rapport à la tension mesurée aux bornes du transducteur de la sirène ;
  • la figure 6 est un schéma représentant les étapes d'un procédé d'auto-calibration d'une sirène selon un mode de réalisation de l'invention.
Other features and advantages of the present invention will appear more clearly on reading the following detailed description of embodiments of the invention given as non-limiting examples and illustrated by the appended drawings, in which:
  • the figure 1 is a graph representing the evolution of the instantaneous frequency of an electrical control signal of a siren according to a first prior art;
  • the figure 2 is a graph representing the sound power of a siren as a function of the frequency of the control signal;
  • the figure 3 is a graph representing the evolution of the instantaneous frequency of an electrical control signal of a siren according to a second prior art;
  • the figure 4 is a graph representing the offset of the sound pressure resonance frequency of the transducer of the same siren under the influence of its environment;
  • the figure 5 is a graph representing the evolution of the acoustic pressure with respect to the voltage measured across the transducer of the siren;
  • the figure 6 is a diagram showing the steps of a method of self-calibration of a siren according to an embodiment of the invention.

DESCRIPTION DETAILLEE DE L'INVENTIONDETAILED DESCRIPTION OF THE INVENTION

L'invention sera décrite ci-après uniquement à titre d'exemples non limitatifs en relation avec les figures 4 à 6, les figures 1 à 3 ayant déjà été décrites en liaison avec l'art antérieur. Tout d'abord, on notera que la sirène utilisée dans le cadre de la présente invention est de préférence une sirène similaire à celle décrite en relation avec les figures 1 et 2 du document antérieur EP 1 653 420 , dont le descriptif de la sirène est incorporé ici par référence.The invention will be described hereinafter only by way of non-limiting examples in relation to the Figures 4 to 6 , the Figures 1 to 3 having already been described in connection with the prior art. First of all, it will be noted that the siren used in the context of the present invention is preferably a siren similar to that described in relation to the Figures 1 and 2 from the previous document EP 1 653 420 , whose description of the siren is incorporated herein by reference.

Sur la figure 4, est représenté un graphe montrant le décalage de la fréquence de résonance de la pression acoustique du transducteur d'une même sirène sous l'influence de son environnement. On remarque plus particulièrement que la valeur maximale censée déterminer la fréquence de résonance (f R1, f R2) du transducteur monté dans la sirène varie sensiblement dans la plage de valeurs définie dans la directive 95/56 CE, à savoir entre 1850 Hz et 3550 Hz sous l'influence de l'environnement dans lequel est placée la sirène. Ainsi, les courbes sur cette figure montrent que dans ces conditions de mesure, en fonction de l'environnement, la fréquence de résonnance à 3300hz (f R2) n'est pas optimale ; cette fréquence (f R2) se révèle être pourtant la fréquence efficace dans un premier environnement dépendant par exemple de la localisation du transducteur sous le capot du véhicule. A son emplacement définitif ou après une modification de son environnement, la fréquence (f R1) devient la fréquence de résonance à retenir et cela est effectué grâce à la méthodologie décrite dans ce brevet. Ce glissement automatique de 50 Hz dans le pilotage suffit à augmenter le niveau de 2 dB, ce qui s'avère très utile pour rester dans les conditions requises par la directive.On the figure 4 , is represented a graph showing the offset of the resonance frequency of the acoustic pressure of the transducer of the same siren under the influence of its environment. We particularly noted that the maximum value intended to determine the resonant frequency (f R1, f R2) of the transducer mounted in the siren substantially varies in the range of values defined in the directive 95/56 EC, namely between 1850 Hz and 3550 Hz under the influence of the environment in which the siren is placed. Thus, the curves in this figure show that under these conditions of measurement, depending on the environment, the resonance frequency at 3300hz ( f R2 ) is not optimal; this frequency ( f R2 ) turns out however to be the effective frequency in a first environment depending for example on the location of the transducer under the hood of the vehicle. At its final location or after a modification of its environment, the frequency ( f R1 ) becomes the resonant frequency to be retained and this is done using the methodology described in this patent. This 50 Hz automatic glide in the control system is enough to increase the level of 2 dB, which is very useful to stay in the conditions required by the directive.

La figure 5 est un graphe représentant un exemple de l'évolution de la pression acoustique Pa par rapport à la tension mesurée aux bornes du transducteur de la sirène. Dans le cadre de la présente invention, les inventeurs ont mis en évidence de manière théorique et expérimentale que des paramètres électriques tels que la tension, le courant et l'impédance mesurés au niveau du transducteur de la sirène, par exemple, le minimum de tension détecté Vmin, fournissent une image juste de la pression acoustique maximale Pamax de la sirène, plus particulièrement du maximum de la pression acoustique permettant de déterminer la fréquence dite de résonance f R indépendamment de l'environnement de la sirène.The figure 5 is a graph showing an example of the evolution of the acoustic pressure Pa with respect to the voltage measured across the transducer of the siren. In the context of the present invention, the inventors have demonstrated theoretically and experimentally that electrical parameters such as the voltage, the current and the impedance measured at the level of the siren transducer, for example, the minimum voltage detected V min , provide a true image of the maximum sound pressure Pa max of the siren, more particularly the maximum sound pressure for determining the so-called resonance frequency f R independently of the environment of the siren.

Un but de la présente invention est de pouvoir calibrer la fréquence de résonance de la sirène indépendamment de l'environnement dans lequel elle est située. Pour cela, il a été mis en oeuvre un procédé d'auto-calibration de la sirène représenté schématiquement à la figure 6, permettant de déterminer la fréquence de résonance selon l'environnement de manière plus précise que le procédé antérieurement utilisé.An object of the present invention is to be able to calibrate the resonance frequency of the siren independently of the environment in which it is located. For this, it has been implemented a method of self-calibration of the siren shown schematically in the figure 6 , making it possible to determine the resonant frequency according to the environment more precisely than the previously used method.

Pour cela, le procédé d'auto-calibration selon un mode de réalisation avantageux selon l'invention comprend les étapes suivantes. Après installation de la sirène sur le véhicule auquel elle est destinée, il est prévu une initialisation de la sirène. Lors de cette étape (i) d'initialisation de la sirène, un pilotage, de préférence, sans palier est généré par la sirène. Ce pilotage de la fréquence instantanée du signal de commande électrique comprend une portion de signal à fréquence montante dont la fréquence instantanée croît et/ou une portion de signal à fréquence descendante dont la fréquence instantanée décroît. Il est important de noter que cette étape d'initialisation est réalisée sur une sirène en fonctionnement installée sur un véhicule de sorte à être dans son environnement.For this, the self-calibration method according to an advantageous embodiment according to the invention comprises the following steps. After installation of the siren on the vehicle for which it is intended, it is expected an initialization of the siren. During this step (i) of initialization of the siren, piloting, preferably, without a landing is generated by the siren. This control of the instantaneous frequency of the electrical control signal comprises a rising frequency signal portion whose instantaneous frequency increases and / or a down-frequency signal portion whose instantaneous frequency decreases. It is important to note that this initialization step is performed on a functioning siren installed on a vehicle so as to be in its environment.

Les variations de fréquence sont effectuées dans une plage prédéterminées de valeurs. De préférence, la plage de valeur varie entre 1850 Hz et 3550 Hz de manière à correspondre aux exigences de la directive 95/56 CE. Néanmoins, cette plage de valeurs pourra être déterminée par le constructeur du véhicule ou l'équipementier fournisseur de la sirène de sorte que la fréquence de résonance sélectionnée entraîne la génération d'un son par la sirène à la convenance des utilisateurs du système.The frequency variations are performed within a predetermined range of values. Preferably, the value range is between 1850 Hz and 3550 Hz so as to meet the requirements of the Directive 95/56 EC. Nevertheless, this range of values may be determined by the vehicle manufacturer or the supplier supplier of the siren so that the selected resonant frequency causes the sound to be generated by the siren at the convenience of the users of the system.

Ensuite, dans une deuxième étape (ii) on vient mesurer un ou plusieurs paramètres électriques de la sirène au niveau du transducteur piézoélectrique de la sirène qui sont l'image de la pression acoustique, en particulier en ce qui concerne les extrema. Lors des variations de fréquences dans la plage de valeurs prédéterminées lors du pilotage initial, les valeurs des paramètres électriques mesurées sont stockées en correspondance de la fréquence pour laquelle une valeur est mesurée.Then, in a second step (ii), one or more electrical parameters of the siren are measured at the level of the piezoelectric transducer of the siren which are the image of the acoustic pressure, in particular with regard to the extrema. During frequency variations in the range of predetermined values during initial piloting, the values of the measured electrical parameters are stored in correspondence of the frequency for which a value is measured.

Lors d'une troisième étape (iii), un pointeur de fréquence permet de détecter la fréquence correspondant à la valeur du ou des paramètres extrémaux mesurés, par exemple la tension la plus basse. De cette manière, on peut en déduire la fréquence de résonance f R in situ de la sirène, c'est-à-dire telle qu'installée dans le véhicule ou encore de manière plus générale telle qu'installée dans son environnement final. On comprendra que les valeurs stockées correspondent aux valeurs mesurées dans la plage prédéfinie de valeurs lors du pilotage initial. Ainsi, si cette plage est réduite et que la fréquence de résonance du transducteur ne se trouve pas dans la plage définie, la fréquence de résonance in situ retenue sera celle correspondant aux extrema du ou des paramètres mesurés, la valeur la plus basse dans cette plage en ce qui concerne la tension.In a third step (iii), a frequency pointer makes it possible to detect the frequency corresponding to the value of the measured extremal parameter (s), for example the lowest voltage. In this way, one can deduce the resonant frequency f R in situ of the siren, that is to say as installed in the vehicle or more generally as installed in its final environment. It will be understood that the stored values correspond to the values measured in the predefined range of values during initial piloting. Thus, if this range is reduced and the resonant frequency of the transducer is not within the defined range, the in situ resonance frequency retained will be that corresponding to the extrema of the measured parameter (s), the lowest value in this range. regarding the voltage.

Une fois la fréquence de résonance f R déterminée pour la plage définie de valeurs, un nouveau paramétrage de pilotage incorporant un palier à cette fréquence est programmé lors d'une quatrième étape (iv) en remplacement du pilotage initial, de sorte que le pilotage suivant généré comprend en outre une portion de signal à fréquence constante, appelée encore fréquence de palier, dont la fréquence instantanée est égale à la fréquence de résonance f R in situ de la sirène déterminée par le biais du procédé d'auto-calibration.Once the resonance frequency f R has been determined for the defined range of values, a new piloting parameter incorporating a step at this frequency is programmed in a fourth step (iv) instead of the initial piloting, so that the following control generated further comprises a portion of constant frequency signal, also called bearing frequency, whose instantaneous frequency is equal to the resonance frequency f R in situ of the siren determined by means of the self-calibration process.

On comprendra que diverses modifications et / ou améliorations évidentes pour l'homme du métier peuvent être apportées aux différentes modes de réalisation de l'invention décrits dans la présente description sans sortir du cadre de l'invention défini par les revendications annexées. En particulier, on comprendra que l'invention concerne également une sirène apte à mettre en oeuvre le procédé d'auto-calibration objet de la présente description.It will be understood that various modifications and / or improvements obvious to those skilled in the art can be made to the various embodiments of the invention described in the present description without departing from the scope of the invention defined by the appended claims. In particular, it will be understood that the invention also relates to a siren adapted to implement the self-calibration method object of the present description.

On notera aussi qu'une période du signal de sortie peut contenir plus qu'une portion à fréquence montante et plus qu'une portion à fréquence descendante. Ces portions peuvent être en escalier régulier ou irrégulier. Elles peuvent aussi ne pas être en escalier mais présenter une variation continue de la fréquence instantanée, si le générateur de signal de commande est capable de générer un tel signal.Note also that a period of the output signal may contain more than a rising frequency portion and more than a downward frequency portion. These portions may be in regular or irregular staircase. They may also not be stepped but have a continuous variation of the instantaneous frequency, if the control signal generator is capable of generating such a signal.

On notera encore que le signal de sortie n'est pas nécessairement périodique. Par exemple il peut présenter un schéma de variation de la fréquence instantanée se répétant avec des petites différences.It will also be noted that the output signal is not necessarily periodic. For example it can present a diagram of variation of the instantaneous frequency being repeated with small differences.

On notera enfin que durant les portions à fréquence constante, la fréquence n'est pas nécessairement égale à la fréquence de résonance. Elle peut en être un sous-multiple, le dispositif de production de son étant alors excité de manière résonnante par une harmonique du signal de commande. En outre, on comprendra qu'il n'y a pas nécessairement deux portions à la fréquence de résonance. Il peut y en avoir une seule ou plus de deux.Finally, it should be noted that during constant frequency portions, the frequency is not necessarily equal to the resonant frequency. It can be a submultiple, the sound producing device then being resonantly excited by a harmonic of the control signal. In addition, it will be understood that there are not necessarily two portions at the resonant frequency. There can be one or more than two.

Claims (5)

Procédé d'auto-calibration d'une sirène comprenant un transducteur apte à émettre un signal sonore en réaction à un signal de commande électrique, caractérisé en ce que le procédé comprend les étapes suivantes : i. pilotage de la fréquence instantanée du signal de commande électrique comprenant au moins une portion de signal à fréquence montante dont la fréquence instantanée croît et/ou au moins une portion de signal à fréquence descendante dont la fréquence instantanée décroît ; ii. mesure d'un ou de plusieurs paramètres électriques générés au niveau du transducteur ; iii. détection d'un extremum du ou des paramètres mesurés dans une plage prédéfinie de valeurs de fréquence permettant de déterminer une fréquence de résonance (f R) in situ de la sirène pour cette plage de valeurs ; iv. modification des paramètres de pilotage de la fréquence instantanée du signal de commande électrique de sorte qu'il comprend en outre au moins une portion de signal à fréquence constante dont la fréquence instantanée est égale à la fréquence de résonance in situ de la sirène ou à un sous-multiple de cette fréquence de résonance in situ. A method of self-calibration of a siren comprising a transducer adapted to emit a sound signal in response to an electrical control signal, characterized in that the method comprises the following steps: i. controlling the instantaneous frequency of the electrical control signal comprising at least a rising frequency signal portion whose instantaneous frequency is increasing and / or at least a down-frequency signal portion whose instantaneous frequency is decreasing; ii. measuring one or more electrical parameters generated at the transducer; iii. detecting an extremum of the measured parameter (s) within a predefined range of frequency values for determining an in situ resonance frequency ( f R ) of the siren for that range of values; iv. modification of the control parameters of the instantaneous frequency of the electrical control signal so that it further comprises at least a constant frequency signal portion whose instantaneous frequency is equal to the siren's in-situ resonance frequency or to a sub-multiple of this resonance frequency in situ. Procédé d'auto-calibration d'un système de commande d'une sirène selon la revendication 1, caractérisé en ce que le paramètre électrique considéré est la tension au borne du transducteur de la sirène et en ce que l'extremum détecté pour ce paramètre correspond au minimum de tension relevé dans la plage de valeurs.Method for self-calibration of a siren control system according to Claim 1, characterized in that the electrical parameter considered is the voltage at the terminal of the siren transducer and in that the extremum detected for this parameter corresponds to the minimum voltage measured in the range of values. Procédé d'auto-calibration d'un système de commande d'une sirène selon l'une des revendications 1 ou 2, caractérisé en ce que la plage de valeurs de fréquence est déterminée entre 1850 KHz et 3550 KHz.Method for self-calibration of a siren control system according to one of claims 1 or 2, characterized in that the range of frequency values is determined between 1850 KHz and 3550 KHz. Procédé d'auto-calibration d'un système de commande d'une sirène selon l'une des revendications 1 à 3, caractérisé en ce que la plage de valeurs de fréquence est déterminée par le constructeur du véhicule ou par l'équipementier.Method for self-calibration of a siren control system according to one of claims 1 to 3, characterized in that the range of frequency values is determined by the vehicle manufacturer or the equipment manufacturer. Sirène comprenant un transducteur apte à émettre un signal sonore en réaction à un signal de commande électrique, ladite sirène comprenant un système d'auto-calibration apte à piloter la fréquence instantanée du signal de commande électrique comprenant au moins une portion de signal à fréquence montante dont la fréquence instantanée croît et au moins une portion de signal à fréquence descendante dont la fréquence instantanée décroît ; à mesurer un ou plusieurs paramètres électriques générés au niveau du transducteur ; à détecter un extremum du ou des paramètres mesurés dans une plage prédéfinie de valeurs de fréquence permettant de déterminer une fréquence de résonance in situ de la sirène pour cette plage de valeurs ; et à modifier les paramètres de pilotage de la fréquence instantanée du signal de commande électrique, de sorte à comprendre en outre au moins une portion de signal à fréquence constante dont la fréquence instantanée est égale à la fréquence de résonance in situ de la sirène ou à un sous-multiple de cette fréquence de résonance in situ.Siren comprising a transducer capable of emitting an audible signal in response to an electrical control signal, said siren comprising a self-calibration system able to control the instantaneous frequency of the electrical control signal comprising at least one portion of an up-frequency signal whose instantaneous frequency is increasing and at least one down-frequency signal portion whose instantaneous frequency is decreasing; measuring one or more electrical parameters generated at the transducer; detecting an extremum of the measured parameter (s) within a predefined range of frequency values for determining an in situ resonance frequency of the siren for that range of values; and modifying the control parameters of the instantaneous frequency of the electrical control signal, so as to further comprise at least one constant-frequency signal portion whose instantaneous frequency is equal to the siren's in-situ resonance frequency or to a sub-multiple of this resonance frequency in situ.
EP20090158403 2009-04-21 2009-04-21 Method for self-calibrating an alarm siren module for a vehicle Active EP2244235B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20090158403 EP2244235B1 (en) 2009-04-21 2009-04-21 Method for self-calibrating an alarm siren module for a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20090158403 EP2244235B1 (en) 2009-04-21 2009-04-21 Method for self-calibrating an alarm siren module for a vehicle

Publications (2)

Publication Number Publication Date
EP2244235A1 true EP2244235A1 (en) 2010-10-27
EP2244235B1 EP2244235B1 (en) 2014-08-13

Family

ID=41059627

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20090158403 Active EP2244235B1 (en) 2009-04-21 2009-04-21 Method for self-calibrating an alarm siren module for a vehicle

Country Status (1)

Country Link
EP (1) EP2244235B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369185A2 (en) * 2002-06-04 2003-12-10 Coltene/Whaledent, Inc. Device for driving an ultrasonic transducer at an optimal frequency
EP1653420A1 (en) 2004-10-27 2006-05-03 Delphi Technologies, Inc. Warning siren for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369185A2 (en) * 2002-06-04 2003-12-10 Coltene/Whaledent, Inc. Device for driving an ultrasonic transducer at an optimal frequency
EP1653420A1 (en) 2004-10-27 2006-05-03 Delphi Technologies, Inc. Warning siren for vehicle

Also Published As

Publication number Publication date
EP2244235B1 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
EP1330372B1 (en) Low-power consumption system for monitoring pressure in a tyre
FR3010800A1 (en) SYSTEM AND METHOD FOR DETECTION OF LATERAL ENVIRONMENT OF A MOTOR VEHICLE
EP1879756A1 (en) Method for monitoring the pressure and assisting in the inflation of a tire of a vehicle wheel
EP3060441B1 (en) Determination of pressure thresholds for a vacuum pump used in a vehicle brake system
FR2815711A1 (en) System for surveying motor vehicle tire pressure has both pressure and pressure variation sensors operating with a controller to switch between normal and accelerated modes so that punctures etc. are rapidly detected
WO2009112731A1 (en) Optimisation of the excitation frequency of a radiofrequency plug
FR2970210A1 (en) System for regulating speed of motor vehicle based on tire wear state, has risk analysis module to analyze output signal from wear determination devices, and control speed limiting module and/or warning equipment based on analysis result
WO2009024673A1 (en) Device for monitoring a physical parameter of the state of a tyre with pulsed response
EP2244235B1 (en) Method for self-calibrating an alarm siren module for a vehicle
JP2014058237A (en) Vehicle approach warning device
EP1653420B1 (en) Warning siren for vehicle
WO2016066254A1 (en) Method for controlling a processor of an electronic enclosure mounted on a wheel of a motor vehicle
WO2006058970A1 (en) Method for assessing the state of charge of an electric battery
EP2330439B1 (en) Obstacle-detection system for a vehicle
EP1698488B1 (en) Vibrating device and method for its control
EP3981616B1 (en) Method for evaluating the wear of a tyre
FR3014064A1 (en) MOTOR VEHICLE EQUIPPED WITH A DEVICE FOR DETECTING WATER SPLASHES AND METHOD OF ESTIMATING THE THICKNESS OF A LAYER OF WATER ON THE ROAD IMPLEMENTED BY THE VEHICLE
WO2019166718A2 (en) System and method for detecting the operation of the engine of a motor vehicle
WO2020011830A1 (en) Radio-transmitting sensor for a vehicle wheel, comprising a dual-mode antenna impedance matching circuit
EP1167085B1 (en) Improved device and method for tyre pressure monitoring
FR2887103A1 (en) Functional parameter e.g. pressure, representing data frame transmitting method for monitoring system, involves setting up time intervals by random calculation using module identification code and vehicle wheel parameter representing data
FR2854101A1 (en) Wheel tires characteristic acquiring and transmitting process for motor vehicle, involves supplying electromagnetic energy from exterior of vehicle and converting energy in tire region for transmitting size and parameter of tire
EP1347308B1 (en) On board traffic monitoring device
EP0661679B1 (en) Method for adjusting an alarm module, in particular an ultrasonic alarm module and alarm module for applying this method, especially in a motor vehicle
FR3056451A1 (en) METHOD FOR ASSISTING INFLATION OF TIRES OF A VEHICLE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110426

17Q First examination report despatched

Effective date: 20120529

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140326

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 682620

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009025900

Country of ref document: DE

Effective date: 20141002

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140813

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 682620

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140813

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141114

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009025900

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150421

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009025900

Country of ref document: DE

Owner name: APTIV TECHNOLOGIES LIMITED, BB

Free format text: FORMER OWNER: DELPHI TECHNOLOGIES, INC., TROY, MICH., US

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190117 AND 20190123

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190124 AND 20190130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230427

Year of fee payment: 15

Ref country code: FR

Payment date: 20230428

Year of fee payment: 15

Ref country code: DE

Payment date: 20230426

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 15